
Sequential Data Classification
in the Space of Liquid State Machines

Yang Li, Junyuan Hong, and Huanhuan Chen(B)

UBRI, School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230027, Anhui, China

{csly,jyhong}@mail.ustc.edu.cn, hchen@ustc.edu.cn

Abstract. This paper proposes a novel classification approach to carry-
ing out sequential data classification. In this approach, each sequence in
a data stream is approximated and represented by one state space model
– liquid state machine. Each sequence is mapped into the state space of
the approximating model. Instead of carrying out classification on the
sequences directly, we discuss measuring the dissimilarity between mod-
els under different hypotheses. The classification experiment on binary
synthetic data demonstrates robustness using appropriate measurement.
The classifications on benchmark univariate and multivariate data con-
firm the advantages of the proposed approach compared with several
common algorithms. The software related to this paper is available at
https://github.com/jyhong836/LSMModelSpace.

Keywords: Sequential learning · Classification · Learning in the model
space

1 Introduction

Sequential data classification is a fundamental problem in the machine learning
community. In the classification, the degree of dissimilarity between sequences
needs to be quantified. If the sequential data are of equal length, it is sufficient to
use conventional machine learning methods by treating sequences as numerical
vectors. Kernel methods could be efficient and might achieve satisfying perfor-
mances [18], provided that the length of sequence is not long. However, in reality,
large amount of sequential data are variable-length.

To deal with sequential data that are variable-length and possibly long, plenty
of algorithms, e.g. dynamic time warping [1], autoregressive kernel [8], spectral
analysis [11], are proposed.

Searching for a global alignment between variable-length sequences is a way
to handle variable-length data. This methodology of non-linear warping and
matching segments of two sequences is exemplified by dynamic time warping
(DTW) [21]. However, due to non-linear warping, the triangular inequality, one
of the requisites for the validity of a metric, is not satisfied. The measurement
in DTW is not a metric actually, lacking geometric interpretation to the exper-
imental result [9].
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 313–328, 2016.
DOI: 10.1007/978-3-319-46128-1 20

https://github.com/jyhong836/LSMModelSpace

314 Y. Li et al.

Fisher Kernel [12] fits one single generative model (Hidden Markov Model)
to sequences and compares how much new incoming sequence “stretches” the
average model trained with past sequences. Fisher Kernel defines Fisher Score
as gradients of log-likelihood, log p(x|θ), with regard to hidden parameters. As
Fisher Kernel train the generative model under maximum likelihood principle, it
may lead to sub-optimal results. Since a generative model that fits data well may
easily get stuck in the local minimum of its log-likelihood, where the gradient
representation of data is (nearly) zero [17].

The computation of Fisher Kernel of sequences si and sj is defined as:

∇T
θ p(x|θ)I−1∇θp(x|θ) (1)

where I is the Fisher information matrix. Computation of Fisher Kernel
involves the inverse of Fisher information matrix. This procedure could be time-
consuming. A routinely adopted way to bypass this difficulty is to replace the
Fisher information matrix with identity matrix, at the cost of losing some pre-
cision in the approximation [22].

Fisher Kernel learning [17] leverages the label information so that the objec-
tive functions in the same class have similar gradients. It applies idea from
metric learning to improve its performance. Both methods show effectiveness
but low efficiency in obtaining the representations to data, as more computation
is involved in computing gradients, even when the Fisher information matrix is
assumed to be identity matrix.

Autoregressive Kernel (AR) [8] employs a likelihood profile as features for
sequences. The likelihood profile is generated by a Vector Autoregressive Model
under different parametric settings. The dissimilarity between sequences is com-
puted with Bayesian method. It can be verified that this measurement is a valid
Hilbertian metric [8]. AR relaxes the constraint of using a single generative
model to explain the whole data as did in Fisher Kernel and Fisher Kernel
learning. However, AR does not use the timestamps in a sequence to improve
the prediction [20].

Chen et al. approximated time series via echo state networks (ESN) [4,5], and
demonstrated that readout weights in ESNs could offer discriminant features for
sequences. Under the representation provided by topologically fixed reservoir for
the whole data, the readout weights, the only trained part, covers the unique-
ness of a specific sequence, bringing in more versatility and flexibility. It was
demonstrated that ESN is able to handle continuous sequences in complicated
scenario [6]. In addition, a co-learning strategy was devised to strengthen its
representation capability on continuous sequences [3]. In this paper, we further
extend this methodology to process binary data, and demonstrate the improve-
ment on performance by using liquid state machine (LSM). In LSM, individual
node (neuron) has its own “state memory”, and responds from its own history
and current input signal, while nodes in ESN give responses based on merely their
current state. The replacement brings enhancement “memory” to the reservoir,
and demonstrates to be beneficial by experiments.

In this paper, we propose a novel approach to representing sequences, which
might be of different lengths and of different characteristics, in a higher dimen-

Sequential Data Classification in the Space of Liquid State Machines 315

sional space. In this approach, each sequence is represented by a LSM, which
gives approximation to the conditional probability of likelihood of the sequence.
After obtaining models, the classification is conducted on the models, rather
than on the sequences directly. In this paper, we discuss measurements under
different assumptions on the “model distributions”. The model set, along with
the defined measurements, offers a novel space for classification and other possi-
ble learning tasks. This space is referred as a model space for a certain data set
in this paper.

2 Discriminant Learning in the Model Space

LSM incorporates time into the model of neural network to enhance the level of
realism in the simulation, emerging as a new computational model [16]. A LSM
consists of two parts (apart from input layer) in its framework. A large collection
of nodes that are randomly connected to each other make up the reservoir part.
Each node receives inputs from input layer as well as from other nodes. The
spatio-temporal pattern of the activations in nodes is read out by the final layer
as linear combinations in performing certain tasks. The final layer is the only
part that needs training.

We illustrate the scheme diagram of model space and LSM in Fig. 1. In the
figure, LSMs are used to give approximations to sequences and in turn the set
of LSMs is considered in the learning algorithms.

Fig. 1. The schematic diagram for LSM and model space. LSMs provide representations
for two sequences. The model space is seen as a high dimensional space, in which the
readout weights of LSMs are assembled.

The form of the LSM [14] is generalized as follows:
{
x(t) = Q(Rx(t − 1) + V s(t))
y(t) = f(x(t)) = Wx

(2)

316 Y. Li et al.

where x(t) ∈ �n is the state vector defined in the real domain. Subscript n
is the number of reservoir nodes. Input s(t) ∈ �d+1 is input which has been
augmented by adding bias as one of its components. R and V are the appropri-
ately defined coefficient matrices. y(t) ∈ �n′

and W denote output and readout
weights respectively. Superscript n′ is the dimensionality of output. Q(·) is the
response function defined on the internal nodes.

A LSM is trained by making use of past values and predicting the present
value. Readout weights W ∈ �n′×n are trained by adjusting W in order for
Wx(t) = s(t + 1). The dimensionality n′ satisfies n′ = d in this scenario.

We consider an arbitrary sequence s = {s0, s1, · · · , sn} ∈ �d, where d is the
dimensionality of the sequence. We also use s(t) to denote a sequence which is
indexed by t. We assume that the index starts from 0 unless otherwise stated.

The likelihood of a sequence s is expressed as:

�(s) = �({s0, s1, · · · , sn})

which can be further factorized into

�(s) = P0(s0)P1(s1|s0)P2(s2|s1, s0) · · · · · · Pn(sn|sn−1, · · · , s0)

where Pi(si|si−1 · · · s0), i = 0 · · · n is the conditional probability.
In most cases, the assumption is too strong that the conditional probability

Pi(·|·) of a sequence can be generalized and formulated explicitly. Assumptions
on the form of Pi(·|·) might lead to sub-optimal results.

In our approach, we make use of the universal approximating ability [16]
of LSM under a weak assumption on the conditional probability distribution,
assuming Pi(·|·) is time-invariant, i.e. Pi(·|·) = P(·|·). The universal approxi-
mating ability states that, given enough variety in the interior nodes, nonlinear
input-output mappings could be approximated by LSM under training of suf-
ficiently long input sequences. Our approach bases the approximation to P(·|·)
on this ability and therefore uses models rather than simplified formulations in
the classification algorithm.

2.1 Measurement of Dissimilarity Between Models in the Model
Space

The dissimilarity of two sequences is judged from the divergence between two
fitting LSMs. Given two sequences si and sj , a general measurement of dissim-
ilarity is formulated as follows:

D(si, sj) = (
∫

x∈I
||fi − fj ||2dμ(x))1/2 (3)

=
(∫

x∈I
(Wix − Wjx)T (Wix − Wjx)dμ(x)

)1/2

Sequential Data Classification in the Space of Liquid State Machines 317

|| · || is the norm which calculates the disagreement between two model outputs.
I is the change interval for model vector x. μ(x) is the probability distribution
for x.

Uniform distribution over x considers the simplest case, in which the proba-
bility distribution μ(x) is assumed to be only dependent on the interval I. Later,
this assumption will be relaxed and more general cases will be discussed.

Under the assumption of the uniform distribution, the dissimilarity between
sequences si and sj is simplified into

D(si, sj) =
(∫

(Wix − Wjx)T (Wix − Wjx)dμ(x)
)1/2

(4)

= C||Wix − Wjx||.
where the irrelevant terms in last formula of Eq. (4) are generalized into
constant C.

In more general cases where x is not evenly distributed, but not changes
dramatically, we use Gaussian mixture model to approximate the probability
distribution μ(x). It fits the probability distribution μ(x) with a mixture of
finite Gaussian distributions.

μ(x) =
∑

αiN(θi, Σi)

where αi are the mixture coefficients for i-th Gaussian distribution. All αi sum
up to 1,

∑
αi = 1. Parameters θi and Σi are mean and variance in i-th Gaussian

distribution.
Substitute μ(x) with Gaussian mixture model, the dissimilarity between two

sequences is formulated as:

D(si, sj) =
∑

k

αktrace(WT
i WjΣk) + θT

k WT
i Wjθk (5)

Sampling, as a natural alternative to the above approximation method, makes
no assumptions on the form of μ(·). An asymptotic optimal estimation for a
probability distribution μ(·) is guaranteed from the law of large numbers. This
estimation may lead to more robust result, if no prior information on μ(·) exists.
Applying sampling to Eq. (3) is straightforward.

D(si, sj) ≈ 1
m

∑

k

||Wixk − Wjxk|| (6)

where m denotes the amount of sampling points.
Assume the deviation ε(t) between the output of a LSM y(t) = Wx and

the desired output s(t + 1) follows a zero-mean Gaussian distribution ε(t) =
N (0, δ2I). When the methodology of Fisher Kernel is applied, the conditional
probability of observing s(t + 1) given past values is formulated as:

P((s(t + 1)|s(1 · · · t)) = (2πδ2)−d/2exp
(− ||s(t + 1) − Wx(t)||

2δ2
)

318 Y. Li et al.

The Fisher score U between si and sj takes the form of inner product of two
derivatives with regard to the hidden parameters. The derivative quantifies how
the model adjusts its current parametric setting in order to fit a new sequence.
The derivative of probability P(·|·) in terms of W gives rise to:

U =
∂ log P(s(1 · · · l))

∂W

=
l∑

t=1

s(t)x(t − 1)T − Wx(t − 1)x(t − 1)
δ2

The dissimilarity between si and sj is expressed as:

D(si, sj) = 1Ui. ∗ Uj1T (7)

where .∗ denotes element-wise multiplication and 1 is the all-one vector.

Extending to Binary Data. The sequential data recorded in binary digits
{0, 1} are more encountered in clinical research, e.g. heart beating signal, signals
from neurons. In terms of binary or discrete data, the traditional ways that
minimize mean square error (MSE) as did on numerical sequences are infeasible.
The traditional ways rely on the gradient of objective function for inference of
parameters, while MSE from binary data is non-smooth and thus no gradients
exist. LSM is extended to process binary data by replacing MSE with exponential
van Rossum metric [23].

A general exponential van Rossum metric ψ(t, t0) can be formulated as:

ψ(t, t0) =

⎧
⎨

⎩
− (t − t0)

e−(t−t0)/τ

τ
0 ≤ t < Δt + t0

+ ∞ otherwise
(8)

where index t0 is the expected index. Δt is a threshold, restricting the comparison
to the affinity of t0. Argument τ is a penalty on the deviation.

3 Experimental Study

This section presents experiments conducted on synthetic binary data and clas-
sifications on benchmark univariate and multivariate data. For a given task, the
topology (200 interior nodes) and interior weights between nodes were initial-
ized and kept fixed. In this way, the randomness in LSM was controlled as an
invariant factor for comparison purpose. The strategy of restart was adopted in
experiments1.

The implementation of LSM made use of a software simulating the micro-
circuits of neural network–CSIM [19]. The parameters were set referring the
attached examples.
1 The source code is available from https://github.com/jyhong836/LSMModelSpace.

https://github.com/jyhong836/LSMModelSpace

Sequential Data Classification in the Space of Liquid State Machines 319

Table 1. The parameters and search ranges

Name Parameters Search range

DTW γ γ ∈ {10−6, 10−5, · · · , 101}
AR γ, ξ, p γ ∈ {10−6, 10−5, · · · , 101}, ξ ∈ {0.1, 0.2, · · · , 0.9}, p ∈ {1, 2, · · · , 10}
FK state state ∈ {1, 2, 3, 10}

λ,γ λ ∈ {10−6, 10−5, · · · , 101}, λ ∈ {10−5, 104, · · · , 101}
γ is the parameter in the kernel function.
ξ and p are the weight and the order of the negative definite kernel.
state is the number of states of hidden Markov model defined in Fisher kernel.
λ is the parameter used in ridge regression.

In the implementation of the Gaussian mixture model, the number of
Gaussian distribution was auto-determined by the method proposed in [10]. In
the sampling, since there existed training sequences that were not sufficiently
long, circular block bootstrap was applied. The block length was auto-determined
by the method proposed in [15].

LIBSVM [2] was adopted in the classification algorithm. Multi-class data
were classified via its default strategy, one-against-one.

The proposed methods were compared with common methods, including
Dynamic Time Warping (DTW), Autoregressive Kernel (AR), Fast Fisher Ker-
nel (Fisher), and Reservoir model (RV) proposed in [4,5].

The parameters in the proposed algorithms (regression parameter λ), support
vector machine (bandwidth θ and cost C), and the comparison algorithms were
tuned with 5-fold-cross-validation2. The search ranges for the parameters are
detailed in Table 1.

Three classification methods defined with Eqs. (4)–(7) are named as LSM
with L2 norm (L2-LSM), LSM with Gaussian mixture model (Gaussian-LSM),
LSM with sampling method (Sampling-LSM), and LSM with Fisher methodol-
ogy (Fisher-LSM).

3.1 Synthetic Data

Synthetic binary data were generated following Poisson distribution p(t) =
λte−λ

t! . The merit of using Poisson distribution is that it makes the events (bars
in Fig. 2) evenly distributed and ensures that no events happen at the same
time. The synthetic data were labeled into three classes. Different classes were
generated under a slightly changed parameter setting.

For each parametric setting, the simulation lasted 2 s with time unit 10−3 s,
generating a 2000-length sequence. We generated 55 sequences for each class. In
addition, all the sequences were corrupted with Gaussian white noise (mean =
0, Σ = 0.02I). The Eq. (8) was adopted as cost function in the training algo-
rithm. Figure 2 demonstrates parts of the binary sequences of three classes. From
this figure, it is not easy to distinguish class labels.

2 The procedure of cross-validation keeps identical to [4] for comparison.

320 Y. Li et al.

Fig. 2. The parts of synthetic binary sequences. The data were generated following
Poisson distribution and were corrupted with additive Gaussian white noise. Horizontal
axis denotes the index. Different classes are drew in different colors, and are separated
by a dash line.

The model space in this experiment, which is populated by readout weights
of fitting models, is depicted in Fig. 3. In order to visualize the model space,
multidimensional scaling (MDS) was used to reduce its dimensionality. MDS
keeps the original between-objective distance faithfully in a lower dimensional
space. Although it was hard to distinguish class labels in the binary data as
depicted in Fig. 2, after representing the sequences in the model space, they
became separable in Fig. 3.

-1

0

5.1- 1-1-0.500.511.52

-0.8

-0.6

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Fig. 3. The model space of synthetic binary data in a 3-dimensional coordinate. Parts
of the data are depicted in Fig. 2. The model space was constructed by fitting LSMs
to the binary data and extracting data-specific features, i.e. the readout weights, from
LSMs. Each point offers representation to an individual binary sequence. Different
classes are denoted with different markers.

The sensitivity of proposed method to the additive Gaussian noise was also
investigated, in comparison with AR and Fast Fisher Kernel (Fisher)3. The
3 The methodology of searching a global alignment is unsuitable for binary data, so

the experiment of DTW was not reported.

Sequential Data Classification in the Space of Liquid State Machines 321

Amplitudes of Gaussian noise
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

0

10

20

30

40

50

60

70

80

90

100

L2-LSM
Sampling-LSM
Gaussian-LSM
Fisher
AR
Fisher-LSM

Fig. 4. The classification accuracy versus different amplitudes of Gaussian noise. The
horizontal axis denotes the amplitude of noise, and the vertical axis is the classifica-
tion accuracy on the synthetic data. Overall, the proposed methods demonstrate clear
advantages in handling binary sequences in this experimental setting.

classifications were conducted on data with various amplitudes of Gaussian noise.
The experimental results are depicted in Fig. 4.

An overall advantage can be observed from Fig. 4. Not surprisingly, Fisher-
LSM has the best performance in terms of classification accuracy and robustness
to the noise among all the methods. Fisher-LSM assumes that the deviation
between observation and true value follows zero-mean Gaussian distribution,
which coincides with the noise used in this experiment. Sampling-LSM shows to
be less robust to the added noise. Its classification accuracy drops after corrupt-
ing data with noise. But as the amplitude of noise grows, its influence on the
performance of Sampling-LSM decreases.

3.2 Benchmark Data

The benchmark data sets were obtained from UCR time series classification
archive [7] and UCI machine learning repository4. Table 2 gives a summary of
all data sets. In order to eliminate the influence of different units, all data sets
were rescaled into interval [−1, 1].

The experimental results of 5 runs are listed in Table 3. From this table, A
general advantage of classifications carried out in the model space of LSM over
comparison algorithms can be observed. Among all the proposed methods, learn-
ing based on sampling achieved the best performance. The better performance

4 EEG data was obtained from UCI machine learning repository, https://archive.ics.
uci.edu/ml/datasets/EEG+Database. And it was preprocessed via Principle Com-
ponent Analysis to reduce its dimensionality.

https://archive.ics.uci.edu/ml/datasets/EEG+Database
https://archive.ics.uci.edu/ml/datasets/EEG+Database

322 Y. Li et al.

Table 2. Summary description of univariate data sets.

Name Instances Length Classes

Beef 60 470 6

Car 120 576 4

OSULeaf 220 240 6

Adiac 780 176 37

FISH 175 175 7

OliveOil 60 570 4

EEG 60 60 2

Table 3. Classification accuracy of Dynamic Time Warping (DTW), Autoregres-
sive Kernel (AR), Fisher Kernel Learning (Fisher), Reservoir Model (RV), L2-LSM,
Gaussian-LSM, sampling-LSM and Fisher-LSM. The best results are marked in bold.

Name DTW AR Fisher RV [4] L2-LSM Gaussian-LSM Fisher-LSM Sampling-LSM

Beef 66.67 56.67 58.00 86.67 60.00 46.67 53.3 76.67

Car 73.3 60.0 65.00 86.67 78.33 61.67 70.00 90

OSULeaf 62.15 73.33 54.96 64.59 72.31 69.00 69.01 75.20

Adiac 65.47 64.54 68.03 76.73 76.63 78.10 57.54 76.98

FISH 69.86 51.43 57.14 85.71 89.71 85.71 68.57 87.43

OliveOil 83.33 42.15 56.67 90.00 76.67 80.00 73.33 86.67

EEG 38.0 50.0 50.0 - 48.33 51.67 61.67 63.33

of sampling-LSM is largely contributed from the weak hypothesis it imposed
on the probability distribution μ(·). However, Fisher-LSM underperformed on
all sequences. A possible reason for its deficiency lies in the pre-assumption
over the deviation. When strong autocorrelation exists, the assumption of zero-
mean Gaussian noise is unlikely to be true. Compared with good performance
achieved on binary sequences, it is more encouraged to be used on binary or
discrete sequences.

As the number of Gaussian distributions was auto-determined in Gaussian-
LSM and bootstrap was adopted in Sampling-LSM, the computational complex-
ities of proposed approaches are difficult to analyze. We adopted experiments
to illustrate the actual time consumption on benchmark data. Experiments
were conducted on a sequential data set PEMS5. By truncating the sequences
and recording the time consumed in obtaining dissimilarities between pairwise
sequences, we obtained tuples of time consumption6 versus length of sequence.
And the results are plotted in Fig. 7.

5 PEMS was obtained from UCI machine learning repository. The sequences in PEMS
were vectorized to be sufficiently long.

6 The computational environment is Windows 7 with Intel Core i5 Duo 3.2 GHz CPU
and 8 G RAM.

Sequential Data Classification in the Space of Liquid State Machines 323

Libras handwritten AUSLAN

C
P

U
 t

im
e

(s
ec

)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

L2-LSM
Fisher
AR
DTW
RV

Fig. 5. The time consumptions on three multivariate data sets. The vertical axis
denotes the time consumption. It is measured in the unit of CPU time (sec).

In the Fig. 7, the time consumptions of all proposed approaches grow slowly
after the sequential length becomes large (beyond 1800). The lines of Gaussian-
LSM and L2-LSM grow in a similar pattern. However, Sampling-LSM maintains
a (roughly) consistent time usage, even when the training sequences are short.
The reason is, in order to compensate the approximation loss when the train-
ing sequences were not sufficiently long, more sampling had to been done. The
computation of Fisher-LSM involves matrix multiplication, which makes it grow
(roughly) linearly with the sequential length in our experiments (not shown).

In contrast, the time complexity of DTW is O(mimj), where mi is the length
of i-th sequence. An improved variation [13] speeds up DTW by using piece-wise
line of length c to approximate the time series. It is reported to have time com-
plexity O(mimj

c2). Autoregressive kernel [8] have time complexity (mi+mj −2p)3,
where p is the order of employed model, far less than min(mi,mj). So compared
with the above algorithms, Gaussian-LSM and L2-LSM show computational
advantage.

Multivariate Sequences. The experiments of classifications on three multi-
variate data sets, Brazilian sign language (Libras), handwritten characters and
Australian language of signs (AUSLAN) were conducted. Notably, handwritten
and AUSLAN are also variable-length. The summary of three data sets is listed
in Table 4.

In this experiment, we compared L2-LSM against comparison algorithms in
multivariate data. And the experimental results of 5 runs are plotted in Fig. 6.

From Fig. 6, L2-LSM outperforms all comparison algorithms on handwritten.
It also gains a slight advantage on data set Libras. On high dimensional data
set AUSLAN, L2-LSM only surpasses AR. The hypothesis of uniform distribu-

324 Y. Li et al.

Libras handwritten AUSLAN

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

70

75

80

85

90

95

100

L2-LSM
Fisher
AR
DTW
RV

Fig. 6. The classification accuracies carried out on three multivariate data sets.

Sequential length
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
co

n
su

m
in

g
 (

C
P

U
 T

im
e)

100

200

300

400

500

600

700

800

900

1000

L2-LSM
Gaussian-LSM
Sampling-LSM

Fig. 7. The time consumptions under different length of sequential data. The vertical
axis denotes the time consumption. It is measured in the unit of CPU time (sec). The
horizontal axis denotes the sequential length.

tion fails to hold in the high dimensional data set AUSLAN, which leads to a
suboptimal result for L2-LSM.

The time consumption of L2-LSM and comparison algorithms are plotted in
Fig. 5. Generally, L2-LSM demonstrates an advantage on its efficiency. It has
comparative time usage with RV. On high dimensional data set AUSLAN, L2-
LSM and RV build a classifier using less time over other algorithms, and the
difference within these two algorithms is not obvious.

Sequential Data Classification in the Space of Liquid State Machines 325

Regression coefficient
0 1 2 3 4 5 6

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

0

0.005

0.01

0.015

0.02

0.025

0.03

Adiac
Beef
Car

Fig. 8. The approximating errors under different regression coefficients ξ.

Regression coefficient
0 2 4 6 8 10 12

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

35

40

45

50

55

60

65

70

75

80

Adiac
Beef
car

Fig. 9. The classification accuracies under different regression coefficients ξ.

Parametric Sensitivity Analysis. The performance achieved in the model
space of LSM are jointly determined by two factors, i.e. the representations
offered by LSMs to the sequences and the separation of LSMs in the correspond-
ing space. An unsettled issue is the relationship between these two goals. In the
approach, regression coefficient ξ is the parameter which needs careful tuning for
a better trade-off between the approximation to the sequences and separation of
LSMs in the model space.

In this experiment, three data sets were used as benchmark data sets. And
experiments were conducted with different settings of parameter ξ. For simplicity,

326 Y. Li et al.

Table 4. The description of multivariate data sets.

Name Dim Len Class Train Test

Libras 2 45 15 360 585

handwritten 3 60-182 20 600 2268

AUSLAN 22 45-136 95 600 1865

we assume a uniform distribution for μ(·). The experimental result in terms of
classification accuracies versus ξ is plotted in Fig. 9, and the approximation errors
versus ξ are plotted in Fig. 8.

Compare Figs. 8 and 9, we can observe a higher classification accuracy and
a lower approximation error are likely to occur jointly, which suggests that two
goals may not be conflicting objectives with regard to ξ. A joint optimization
procedure for ξ may be feasible.

4 Conclusion

This paper proposes model space learning for the sequential data on the basis of
LSM. LSM is used as a universal approximating tool to fit the conditional prob-
ability of a sequence. The models offer representations for sequences of training
data. As a result, the learning strategy is carried out in the model space instead
of on the original data. From the experiments, the benefits brought by replacing
the “memoryless” response function with node that has its own “history” are
clear. Fisher-LSM is shown to be robust and effective on processing binary data.
An overall improvement of classification accuracy on benchmark data has been
observed via experiments. Sampling-LSM is encouraged when the dimensionality
of training data is not high.

This paper also discusses measuring the dissimilarity between two LSMs in
the model space. A set of models, instead of a single model, is used to give approx-
imations to the training data. Learning in model space relaxes the requirement to
use a single model to explain the whole data. The relationship between approx-
imating capability to sequences and separation of LSMs is studied. The result
shows the feasibility to implement joint optimization on two seemingly conflict
targets.

In general, this paper proposes an approach to constructing data representa-
tion without need of assuming a parametric formulation. Its applications on lower
dimensional data have been demonstrated to be effective. Promising future work
includes improving the model space learning on high dimensional data without
sacrificing its efficiency.

Acknowledgements. This work is supported by the National Ket Research and
Development plan under Grant 2016YFB1000905, and the National Natural Science
Foundation of China under Grants 91546116, 61511130083, 61673363. The authors
would like to thank Dr. Hongfei Xing for her valuable comments.

Sequential Data Classification in the Space of Liquid State Machines 327

References

1. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: KDD Workshop, vol. 10, pp. 359–370 (1994)

2. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans.
Intell. Syst. Technol. 2(3), 27 (2011)

3. Chen, H., Tang, F., Tino, P., Cohn, A.G., Yao, X.: Model metric co-learning for
time series classification. In: Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, pp. 3387–3394. AAAI Press (2015)

4. Chen, H., Tang, F., Tino, P., Yao, X.: Model-based kernel for efficient time series
analysis. In: Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 392–400. ACM (2013)

5. Chen, H., Tino, P., Rodan, A., Yao, X.: Learning in the model space for cognitive
fault diagnosis. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 124–136 (2014)

6. Chen, H., Tiňo, P., Yao, X.: Cognitive fault diagnosis in tennessee eastman process
using learning in the model space. Comput. Chem. Eng. 67, 33–42 (2014)

7. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The
UCR time series classification archive, July 2015. www.cs.ucr.edu/∼eamonn/time
series data/

8. Cuturi, M., Doucet, A.: Autoregressive kernels for time series. arXiv preprint
arXiv:1101.0673 (2011)

9. Cuturi, M., Vert, J.P., Birkenes, O., Matsui, T.: A kernel for time series based on
global alignments. In: IEEE International Conference on Acoustics, Speech and
Signal Processing, vol. 2, pp. 413–416 (2007)

10. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models.
IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

11. Granger, C.W.J., Hatanaka, M., et al.: Spectral Analysis of Economic Time Series.
Princeton University Press, Princeton (1964)

12. Jebara, T., Kondor, R., Howard, A.: Probability product kernels. J. Mach. Learn.
Res. 5, 819–844 (2004)

13. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining appli-
cations. In: Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 285–289. ACM (2000)

14. Kitagawa, G.: A self-organizing state-space model. J. Am. Stat. Assoc. 93, 1203–
1215 (1998)

15. Lahiri, S.N.: Theoretical comparisons of block bootstrap methods. Ann. Stat. 27,
386–404 (1999)

16. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14(11), 2531–2560 (2002)

17. Maaten, L.: Learning discriminative fisher kernels. In: Proceedings of the 28th
International Conference on Machine Learning, pp. 217–224 (2011)

18. Müller, K.-R., Smola, A.J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.:
Predicting time series with support vector machines. In: Gerstner, W., Germond,
A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 999–1004.
Springer, Heidelberg (1997). doi:10.1007/BFb0020283

19. Natschläger, T., Markram, H., Maass, W.: Computer models and analysis tools
for neural microcircuits. In: Kötter, R. (ed.) Neuroscience Databases, pp. 123–138.
Springer, New York (2003)

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
http://arxiv.org/abs/1101.0673
http://dx.doi.org/10.1007/BFb0020283

328 Y. Li et al.

20. Sahoo, D., Sharma, A., Hoi, S.C., Zhao, P.: Temporal kernel descriptors for learning
with time-sensitive patterns. In: Proceedings of the First SIAM Conference on Data
Mining (2016)

21. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Sig. Process. 26(1), 43–49 (1978)

22. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, New York (2004)

23. Van Rossum, M.C.: A novel spike distance. Neural Comput. 13(4), 751–763 (2001)

