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A Cluster-Based Semisupervised Ensemble for
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Rodrigo G. F. Soares, Huanhuan Chen , Senior Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Semisupervised classification (SSC) algorithms use
labeled and unlabeled data to predict labels of unseen instances.
Classifier ensembles have been successfully studied and em-
ployed as a SSC approach. However, the generalization of existing
semisupervised ensembles can be strongly affected by incorrect la-
bel estimates produced by ensemble algorithms in order to train
supervised base learners. These ensembles do not optimize the
objective function present in their base learners, which causes
their supervised base classifiers to be sensitive to incorrect labeling
and to reinforce errors during training. We propose cluster-based
boosting (CBoost), a multiclass classification algorithm with clus-
ter regularization. In contrast to existing algorithms, CBoost and
its base learners jointly perform a cluster-based semisupervised
optimization, which allows base classifiers to overcome potential
incorrect label estimates for unlabeled data. CBoost is effective
and stable in the presence of overlapping classes and scarce labeled
points in dense regions. Experiments on artificial and real-world
datasets confirmed the effectiveness of our approach.

Index Terms—Boosting, Clusterreg, ensemble learning, semi-
supervised learning.

I. INTRODUCTION

ACQUIRING labeled data can be costly as labels may, for
example, depend on human experts or expensive sensors.

In contrast, collecting large amounts of unlabeled data might be
straightforward and cheap. Hence, it is intuitive to use the easily
available unlabeled instances to enhance generalization accu-
racy. Semisupervised learning (SSL) employs unlabeled and la-
beled instances to train learning machines with higher predictive
performance. SSL has been widely studied in both theoretical
and experimental machine learning research, due to its low re-
quirements of human effort and its potentially enhanced accu-
racy [1]. In this work, we propose the Cluster-based Boosting
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(CBoost) algorithm for multiclass semisupervised classification
(SSC).

A. Semisupervised Learning

The SSC training set X = L ∪ U is formed of L labeled in-
stances L = [(x1 ,y1), . . . , (xL ,yL )], where 0 ≤ yni ≤ 1, i =
1, . . . , C and

∑C
i=1 yni = 1, C is the number of classes and

U unlabeled instances U = [xL+1 , . . . ,xN ] with N = L + U
and often U � L. The aim of SSC algorithms is to deliver bet-
ter generalization than supervised classifiers, which use only
labeled data L.

In SSC, there are two types of algorithms: for transductive
classifiers, unlabeled training data corresponds to test instances
and they cannot generalize predictions to unseen data; while
inductive learners are able to generalize predictions to new
instances.

SSL algorithms assume that the true class distribution is
linked to the training data distribution. There are three com-
mon assumptions for semisupervised algorithms in literature
[2]. The smoothness assumption (also known as consistency as-
sumption) states that if a pair of instances is close to each other in
a high-density region, there will be a higher probability of these
points sharing the same label. The cluster assumption assumes
that classes are typically separated by a low-density region, that
is, if two instances belong to the same cluster, they will likely
lie in the same class (also known as the low-density separation
assumption [2]). A SSL method can also assume that the true
data distribution corresponds to a low-dimensional manifold
enclosed in a high-dimensional space, which is known as the
manifold assumption. This paper will concentrate on classifiers
with the cluster assumption.

B. Ensemble Learning

Ensemble learning consists of training and combining several
suitable single classifiers (also known as base learners) in or-
der to mitigate individual errors from such methods and produce
better generalization than each base learner independently. Such
an approach has the ability to reduce the variance of individual
classifiers and strengthen generalization performance [3]. We
selected the gradient boosting framework [4] to implement our
ensemble algorithm. This algorithm trains an ensemble in a
greedy stagewise approach with steepest descent minimization.
It allows the optimization of an arbitrary differentiable loss func-
tion. Such a method is relatively efficient [5], delivers accurate
classifiers and has straightforward instantiation [4].
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Fig. 1. Two half-moon dataset. � denotes labeled points. (a) True classes. (b) The predefined incorrect decision boundary. (c) The incorrect current label
estimates.

Fig. 2. Supervised base learner produced a poor decision boundary due to incorrect label estimates. (a) Posterior class probabilities of a supervised base classifier
trained with label estimates from Fig. 1(c). (b) Resulting decision boundary.

C. Semisupervised Ensembles

Ensemble learning has been employed in both supervised [6]
and semisupervised classification [3], [7]. This work employs
ensemble learning in SSC. State-of-the-art SSC ensembles use
supervised base classifiers that learn estimates of labels as su-
pervised instances. These methods explicitly use unlabeled data
only at ensemble level. We introduce an ensemble method that
uses semisupervised optimization for training both ensemble
and its base classifiers. And we compare its results to ensem-
bles that explicitly employ unlabeled instances for ensemble
optimization only.

Existing ensemble classifiers train their base learners with
pseudo-labels1 assigned to unlabeled data [3], [7]. When the
training algorithm generates incorrect pseudo-labels, base clas-
sifiers trained with such estimates may reinforce errors. This is
due to the supervised nature of the employed base classifiers,
which learn pseudo-labels as real labels.

We demonstrate the impact of incorrect pseudo-labels in
Fig. 1, which illustrates intermediate steps of SSC ensemble
training algorithms, such as RegBoost [7] and MCSSB [3].

1Pseudo-labels are estimates of posterior class probabilities artificially as-
signed to unlabeled instances.

Fig. 1(a) shows the Two Half-moon dataset, where � repre-
sents its only four labeled points. The ensemble produces label
estimates for unlabeled points to be employed in the training of
the next base classifier. In Fig. 1(b), we arbitrarily generate a
very low-quality decision boundary (it is based on an artificial
horizontal threshold) that leads to poor current label estimates.
Fig. 1(c) depicts the label estimates from the current ensemble.
Such pseudo-labels will compose the training set of the next
base classifier.

We can clearly notice that the point � and its neighbours
(marked as ×) should share the label from the top half-moon.
However, this inadequate decision boundary leads to incorrect
pseudo-labels. Fig. 2(a) and (b) presents the output and the deci-
sion boundary produced by a supervised base classifier trained
with poor label estimates shown in Fig. 1(C). The newly trained
base classifier learned an incorrect decision boundary and is
likely to reinforce errors in the remainder of the ensemble.
Existing ensemble algorithms in literature have such a draw-
back, that is, their base learners reinforce early errors produced
by the ensemble training.

On the other hand, a semisupervised base learner can tackle
incorrect pseudo-labels with the use of the data distribution in-
formation [8], instead of learning unreliable estimates as real
labels. The use of data distribution can compensate the lack of
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Fig. 3. Label estimates and resulting decision boundary from a semisupervised base learner. (a) Output of semisupervised base learner trained with pseudo-labels
from Fig. 2(c). (b) Resulting decision boundary.

correct label estimates. In Fig. 3, we demonstrate how a cluster-
based semisupervised algorithm [8] performs in the presence of
incorrect pseudo-labels delivered in Fig. 1(c). Fig. 3(a) and (b)
shows the output and the decision boundary, respectively, pro-
duced by a semisupervised base classifier. Such a cluster-based
learner could overcome wrong estimates by avoiding generating
a decision boundary in a high-density region. The data distri-
bution information used by the base learner corresponds to the
useful knowledge (that supervised base learners do not con-
sider) of such high-density regions. Misleading pseudo-labels
produced by the ensemble (Fig. 1(b)) are mitigated by penalising
contrasting outputs for similar instances lying in a high-density
region.

In particular, the point � has neighbours (similar instances de-
noted as×) of both classes in Fig. 1(c). A cluster-based classifier
can consider a weighted average of neighbouring pseudo-labels
as a more robust label estimate for instance �. Such reliable label
estimates can lead to a decision boundary that avoids splitting
similar instances. If � was in a high-density region, the penal-
ization for incorrectly learning that robust pseudo-label would
be even greater. The resulting decision boundary is shown in
Fig. 3(b).

Our motivation is to tackle intermediate errors produced
by ensemble training algorithm. The reinforcement of these
errors degrades the predictive performance of an ensemble.
Therefore, we propose the Cluster-based Boosting (CBoost),
a cluster-based boosting ensemble method for multiclass SSC.
This method handles intermediate errors in a more robust man-
ner: it optimizes the cluster assumption on both ensemble and
base learners training algorithms. The use of a cluster-based
neighbourhood can produce a more robust training of the en-
tire ensemble. Its loss function can effectively avoid generating
decision boundaries in dense regions and is able to dilute the
influence of noisy labeled instances in such regions.

We instantiated the ClusterReg framework [8] with Radial
Basis Functions Networks (RBFN) as the base learners.
RBFN networks can be efficient learners [9] and are trained
with the Iteratively Reweighted Least Squares (IRLS) [10],

as an iterative second-order algorithm is recommended for
non-convex multiclass learning [10].

D. Contributions

CBoost contributions are as follows. (i) when the cluster
assumption holds, CBoost is an effective and stable algorithm
in the presence of overlapping classes and scarce labeled points
in dense regions. (ii) since the intermediate decision boundaries
might not align with cluster boundaries, CBoost uses an
effective multiclass combination of semisupervised learners.
(iii) multiclass ensemble algorithm and its base classifiers
jointly perform a cluster-based semisupervised optimization.
Ensemble and base learner training methods consider the
neighbourhood of an unlabeled data point in order to calculate
its desired target, so that the ensemble has stability to overcome
potentially incorrect estimates.

Next section reviews existing SSC algorithms. Section III
presents the proposed classifier. In Section IV, we show the
experimental study and its results. Section V discusses the out-
come of this work and Section VI presents its conclusions.

II. RELATED WORKS

The combination of several classifiers can deliver better per-
formance when compared to single learners [6]. In this section,
we address state-of-the-art semisupervised ensembles.

Semisupervised MarginBoost (SSMB) [11] is a generaliza-
tion of MarginBoost [12]. At each iteration, it generates la-
bel estimates, drawn from the output of the current ensemble,
to unlabeled data that will form the training set of the next
semisupervised base learner. Its objective function consists of
a monotonically decreasing loss function, the supervised and
semisupervised margins.

ASSEMBLE [13] is a semisupervised margin-based boost-
ing method. It uses a greedy optimization method to max-
imize the pseudo-margin. This algorithm employs pseudo-
labels to train base learners. Only the most confident instances
compose the training sets of base learners. This approach
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may increase the margin without improving the current de-
cision boundary. In case of early incorrect pseudo-labels, er-
rors might be reinforced in next base classifiers and degrade
generalization.

In [3], the authors proposed Multiclass SemiSupervised
Boosting (MCSSB), which is a graph-based ensemble approach.
MCSSB combines the similarity of instances with the current
ensemble output to generate more reliable pseudo-labels. Its
objective function implements all aforementioned SSL assump-
tions. MCSSB uses supervised base learners.

The algorithm in [14] is a gradient-based extension of
the information regularization framework to semisupervised
boosting. Its loss function incorporates the cluster, manifold and
smoothness assumptions. The authors of [15] also introduced
a boosting learner based on AdaBoost for multiclass problems.
SemiBoost, MCSSB and [15] used pseudo-labels to train
supervised base classifiers.

SSMB, ASSEMBLE and [14] are designed for two-class SSC.
Such methods rely on suboptimal decomposition procedures to
tackle multiclass datasets. SSMB, ASSEMBLE, and methods in
[14] and [15] are largest-margin separators. Such an approach
might be unreliable with overlapping classes and to noisy sparse
labeled points in dense regions [8].

In [16], the authors introduced a multiclass SSC boosting
approach that considers the proportion of classes in a given
cluster. A majority class in a cluster can cause the unlabeled
data to have the majority class label, which can misguide the
boosting optimization. A multi-view margin-based algorithm
was proposed in [17]. This algorithm uses priors generated by
base learners to train another set of base classifiers. Their loss
function can handle noisy priors. However, such a margin-based
algorithm is sensitive to noisy classes [8].

RegBoost [7] employs all SSL assumptions in its boosting
optimization. The authors propose a new cost functional that
consists of a margin cost on labeled data and a regularization
term based on unlabeled data. This algorithm minimizes the
proposed cost functional with a greedy stagewise functional
optimization procedure. It implements the cluster assumption by
kernel density estimation. The manifold assumption is addressed
by a Gaussian kernel that defines the affinity between instances
and their labels. It will penalize a learning machine if it assigns
different classes to two neighbouring points lying in a dense
region. However, RegBoost might not find good margins when
overlapping dense regions exist. Furthermore, it only performs
binary classification. Our study confirmed our expectations that
RegBoost has lower generalization when applied to real-world
multiclass SSC.

ClusterReg [8] is a multiclass cluster-based single classifier.
This method employs soft partitions in a regularization
technique. When the cluster assumption holds, it is capable
of delivering good performance when overlapping classes are
present and becomes less sensitive to the small number of
labeled points in dense regions.

The aforementioned ensembles can be very confident about
the pseudo-labels of unlabeled instances, even though these
points may have poor label estimates. Such methods are binary
classifiers and depend on decomposition methods that do not ex-

Algorithm 1: Gradient boosting.

Input: Training set {(xn , yn )}N
n=1 , number of iterations T

and learning rate η.
Output: Predicted targets Zt .

1: Initialize the ensemble with a constant Z0 = 0.
2: for t = 1 to T , n = 1 to N do
3: Find residuals of L w.r.t. Zn with rule

rn = −
[
∂L(Zt−1

n , yn )
∂Zt−1

n

]

4: Fit a base learner zn to rn

5: Compute multiplier βt by solving

βt = argminβ

∑

i

L(Zt−1
n + βtzn , y)

6: Update the ensemble Zt
n = Zt−1

n + ηβtzn

7: end for

ploit classes as mutually exclusive categories. And employing
binary learners in multiclass classification requires mitigating
imbalanced classes and different output scales from the vari-
ous learners [3]. These algorithms are sensitive to the position
of the few labeled points in a given cluster. Uncertain points
have a great impact on the generated decision boundary. Un-
labeled instances in low-density regions can also influence the
learning methods. The ensembles that rely on pseudo-labels are
often sensitive to incorrect pseudo-labelling produced by their
base classifiers. Wrongly assigned pseudo-labels are reinforced
in future training of base classifiers, which affects the decision
boundary of the ensemble. We propose CBoost in order to over-
come these limitations.

III. CBoost ALGORITHM

In this section, we present our gradient boosting approach.
Then, we describe the cluster-based loss function and instan-
tiate the gradient boosting framework. We also introduce an
instantiation of ClusterReg for RBFN as the base classifier for
CBoost.

A. Gradient Boosting

We instantiate gradient boosting in order to implement
CBoost. In this framework, each base learner is trained
with the residuals of the opposite direction of the gradient
rn = −[ ∂L(Z t−1

n ,yn )
∂Z t−1

n
] of a loss function L (superscript denotes

the iteration number). The weight βt is the result of a
line-search βt = argminβ

∑
i L(Zt−1

n + βtzn , y) along the
direction produced by a new base classifier. New base learners
are added to the ensemble proportionally to βt with the rule
Zt

n = Zt−1
n + ηβtzn , where η is a learning rate, which avoids

overfitting. At each iteration, gradient boosting finds the
steepest descent, trains a base learner that helps the ensemble to
follow the gradient, performs a line-search along that direction
and includes a base learner that minimizes the loss function.
This framework is described in Algorithm 1.
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In multiclass classification, the ensemble outputs posterior
class probabilities F = {Fn}N

n=1 , where Fn = {Fni}C
i=1 and

∑C
i=1 Fni = 1, which is a transformation of the linear combi-

nation Z. The residual rn should be transformed into posterior
probabilities ỹn . And the multiplier βt becomes a vector with a
weight associated to each class.

B. Multiclass Gradient Boosting Algorithm

We used gradient boosting framework [4] for minimizing the
loss function L(F,Y), where matrices F and Y are N × C, N
is the number of instances and C is the number of classes. F
represents the output of the ensemble in the form of posterior
class probabilities and Y denotes the desired class probabilities.

CBoost employs the cross-entropy loss function for multi-
class classification [10]. In order to produce posterior class prob-
abilities Fni , the linear output signals Zni of the ensemble are
transformed by the softmax function as in (1). This function
allows each class, associated to an output node, to be trained
dependently to all other nodes, which may improve the decision
boundary between one given class and all others. Therefore,
0 ≤ Fni ≤ 1, i = 1, . . . , C,

∑C
i=1 Fni = 1 and

Fni = F (Zni) =
exp(Zni)

∑C
j exp(Znj )

. (1)

We first assign a constant to the initial ensemble Z0 , which
is a N × C matrix, where each Zni is the linear output of node
i for instance n; and Znj represents the linear outputs of the
other nodes j for that instance. At each iteration t, residuals rni

of the gradient descent of the loss function L, w.r.t. the output
of the current ensemble Zt−1

ni , are assigned to instance n and
class i, as shown in (2). These residuals represent the opposite
direction of the gradient ofL. Feeding these residuals to the base
learners allows the ensemble to move the optimization towards
the opposite steepest gradient. New base learners are trained
with such residuals as labels.

rt
ni = −

[
∂L(F t−1 , Y )

∂Zt−1
ni

]

(2)

A new base learner zni , n = 1, · · · , N and i = 1, · · · , C, is
trained with the newly generated pseudo-labels. Since the en-
semble is a weighted sum of all base classifiers, we perform
a line search for each new base learner with a weight vector
βt = [βt

1 , . . . , β
t
C ] in order to include it in the ensemble. The

weight βt represents the influence of the base learner at itera-
tion t in the ensemble. Higher βt denotes a higher generalization
performance of such base learner, which should have a higher
weight in the predictions produced by the ensemble. The βt for
a new base learner is as (3).

βt = argminβ

N∑

n

C∑

i

L (
F

(
Zt−1

ni + βi ∗ zni

)
, yni

)
(3)

A new base learner is added to the ensemble as (4), where η
is the learning rate, which reduces the influence of this base
classifier on the ensemble and, hence, diminishes overfitting
[4]. This equation denotes the stagewise learning of gradient

boosting, which adds and weights new base learners trained
with the current residuals.

Zt
ni = Zt−1

ni + ηβt
i zni (4)

A number of greedy gradient descent steps are performed. An
increase in the training or validation error rates, or maximum
number of iterations T could be stopping criteria.

C. Multiclass Cluster-Based Loss Function

The loss function is composed of supervised loss and clus-
ter regularization [8]. It uses soft partitions generated by
clustering algorithms to penalize the assignment of different
classes to similar instances in a cluster neighbourhood. The min-
imization of this function produces good predictors despite very
few labeled instances. The trained learners can handle noisy
sparse labeled data in dense regions by naturally considering
neighbourhood structures arising from soft partitions. Learners
are also able to deliver good generalization when classes or
clusters overlap [8].

Label estimates of unlabeled instances are weighted averages
of current putative labels (these can be either true labels or
label estimates) in the neighbourhood of each point. Weights
are penalty values and the neighbourhood is defined according
to cluster posterior probabilities. The estimated desired label for
an unlabeled point follows (5).

uni =

∑
k∈ν (n) p(qk ,qn )ŷki

∑
k∈ν (n) p(qk ,qn )

, (5)

where

ŷki =

{
yki, if k is labeled

Fki, if k is unlabeled.

Penalties p(qk ,qn ) are calculated according to a soft partition
Q = [qnk ]N×K , where

∑K
i=1 qni = 1 and K is the number of

clusters. They are proportional to the cluster membership simi-
larity of a pair of points. Current label estimates uni are updated
at each iteration. ŷki represents the pseudo-label of neighbour
k. If k is labeled, ŷki is its true label. Otherwise, ŷki is the en-
semble prediction for k. The set ν(n) denotes the nearest neigh-
bours of n. Then, uni is a weighted average of current label
estimates lying in the neighbourhood of n. The estimated de-
sired label uni implements the cluster neighbourhood that will
help to tackle intermediate errors produced by the ensemble
training algorithm, which will lead to a more robust ensemble
learning.

Equation (6) maps the similarity, s(qn ,qk ), between
instances n and k into penalization. As the similarity measure
s(qn ,qk )), we adopt the product of the inverse of Euclidean
distance and Pearson correlation between vectors qn and qk .
Such a measure will ensure that similar instances have close
and highly correlated cluster memberships.

p(qn ,qk ) = sin
(π

2
(s(qn ,qk ))κ

)
. (6)

The steepness of p(qn ,qk ) is controlled by the parameter
κ. This technique is flexible and allows various degrees
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of penalization: higher κ signifies that only most similar
instances will have high penalty, while low values will also
penalize less similar points. It regulates the degree in which
the training should avoid decision boundaries in dense regions.
Higher κ relaxes the cluster assumption by allowing decision
boundaries in high-density regions, whereas lower values force
the classifier to avert decision boundaries that split clusters.

The nearest neighbours of n are the V instances with
the highest p(qk ,qn ) scores. In this sense, the soft partition
helps to implement the cluster assumption by producing a
cluster-based neighbourhood structure.

Equation (7) shows the CBoost objective function with cross
entropy.

L(F,y) = −
N∑

n=1

C∑

i=1

{
InL

L
yni log (Fni)

+
InU λ

U
m(qn )uni log (Fni)

}

, (7)

where InL and InU are binary masks that indicate if n is either
labeled or unlabeled, respectively. Fni is the predicted class
probability for class i and instance n. The parameter λ controls
the magnitude of the semisupervised regularization. m(qn ) is
the highest score in qn , and it indicates the most likely cluster
for point n.

Regarding the smoothness assumption, the regularization
term in (7) regularizes the classifier when it predicts different
classes to a pair of similar points, as denoted by −uni log (Fni).
CBoost implements the cluster assumption by calculating puta-
tive labels uni with the weighting of influences of neighbouring
labels ŷki according to their density information in Q. Besides
uni , the probability m(qn ) is an estimate of the density of in-
stance n. It also helps to weight the impact of point n in the
training. The penalty function will regularize the optimization
if it delivers distinct predictions to instance n and its neighbour
k (in case the classifier generates a decision boundary between
these potentially similar points). The regularization will have an
even greater impact on the training if n lies in a dense region.
Thus, the algorithm will avert producing decision boundaries
that divide clusters.

D. Multiclass Boosting With Cluster Regularization

The initial ensemble, Z0 , consists of a base classifier trained
with label estimates produced by the initialization method in
Section III-B.

A new base classifier f is trained with the current resid-
uals rnj , which are the opposite direction of the gradient
L(Ft−1

n ,yn ) w.r.t. Zt−1
nj . Each new base classifier helps to

minimize the ensemble loss function L by minimizing the same
L w.r.t. rnj . Residuals are as in (8).

rnj = −InL

L
∗ (F t−1

nj − ynj ) − InU λm(qn )
U

∗ (F t−1
nj − unj )

(8)

Algorithm 2: CBoost algorithm.

Input: X = L ∪ U, L = [(x1 ,y1), . . . , (xL ,yL )], U =
[xL+1 , . . . ,xN ] and N = L + U , often U � L.

Output: Posterior class probabilities FT .
1: Train base learner fnj with initial pseudo-labels ŷnj as

in (16).
2: Assign initial ensemble Z0

nj = znj and F 0
nj =

softmax(Z0
nj ).

3: for t = 1 to T , n = 1 to N and j = 1 to C do
4: Calculate ŷnj using F t

nj as in (2).
5: Calculate class probabilities unj for unlabeled

instances with (5).
6: Calculate residuals of L w.r.t. Znj with (8).
7: Calculate pseudo-labels ỹnj = softmax(rnj ).
8: Train semisupervised learner fnj to ỹnj .
9: Find multiplier βt

j using (3).
10: Update ensemble and its posterior class probabilities

as

Zt
nj = Zt−1

nj + ηβt
j znj

F t
nj = softmax(Zt

nj )

11: end for

The residuals rnj are mapped into posterior class probabili-
ties, ỹnj = softmax(rnj ), which are employed for training the
next base learner f .

Since there is no closed form in the line search for (3), we op-
timize the base learner weight βt with a single Newton-Raphson
step [4], as shown in (9).

βt
j = −H−1 ∗

[
∂L(Ft−1 ,y)

∂βj

]

. (9)

We derive βt
j w.r.t Ft−1

n since initially βt
j = 0 and hence Ft

n =
Ft−1

n . The gradient of each instance is
[

∂L(Ft−1
n ,yn )

∂βt
j

]

=
InL

L

(
F t−1

nj − ynj

)
znj

+
InU λm(qn )

U

(
F t−1

nj − unj

)
znj , (10)

and Hessian matrix H is

Hjk =
∑N

n=1

(
In L

L + In U λm (qn )
U

)

∗ F t−1
nj (δjk − F t−1

nk ) ∗ znj znk , (11)

where δjk = 1 if j = k and 0 otherwise.
The ensemble is updated as (4) until a stopping criterion is

met, e.g. increase of validation error. Ensemble outputs are also
transformed into posterior class probabilities by Equation (1).
CBoost is outlined in Algorithm 2.

E. RBFN as Base Learner

We chose RBFN as the base classifier as it can be efficient and
easily adapted to our method. In our preliminary experiments, it
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was faster than Multilayer Perceptron (MLP) networks. Its loss
function is as (7) with the addition of a weight regularization
term. The output function is fnj = softmax(znj ). Equation (13)
shows the loss function for RBFN.

L(f ,y) = −
N∑

n=1

C∑

i=1

{
InL

L
yni log (fni)

+
InU λm(qn )

U
unj log (fni) − α

wT
i wi

2

}

, (12)

where wi is the weight vector for node i and α regulates the
weight decay.

Since there is no closed form of RBFN training algorithm
for multiclass classification, we use the IRLS method to train
the RBFN [10]. The weights are updated by several Newton-
Raphson steps as in (13).

Δwj = −H−1 ∗
[
∂L(f ,y)

∂wj

]

, (13)

where H denotes the Hessian matrix and [ ∂L
∂w j

] is the gradient
vector. Equation (14) shows the gradient of L w.r.t. weight wj .

[
∂L(fn ,yn )

∂wj

]

=
InL

L
(fnj − ynj ) Φn

+
InU λm(qn )

U
(fnj − unj ) Φn + αwj

(14)

where Φn is the output column vector of hidden nodes.
The Hessian in (13) is a block matrix H = [Hjk ]M C×M C

where M is the number of RBF centres and each block is

Hjk =
[

∂2L
∂wj ∂wk

]

=
N∑

n=1

{(
InL

L
+

InU λm(qn )
U

)

∗ fnj (δjk − fnk ) ∗ ΦnΦT
n + α

}

.

(15)

Weights are trained with (13) until a stopping criterion is met,
e.g. validation error starts to increase.

F. Initialization Procedure

The initialization procedure assigns initial label estimates
to unlabeled points [7] in order to train the first base learner.
Pseudo-labels of instances in a given cluster are weighted
averages of true labels present in that dense region. Weights
are p(qn ,qk ). If no labeled point lies in a cluster, classes will
have equal probabilities. We aim to provide the algorithm with
more reliable initial pseudo-labels than simple equal probabil-
ities. For each cluster Ψ, class i and unlabeled point n, the
estimated desired labels ŷni for unlabeled data is:

ŷni =
∑

k∈Ψ IkL ∗ p(qn ,qk ) ∗ yki∑
k∈Ψ IkL ∗ p(qn ,qk )

. (16)

Most of exiting semisupervised classifiers assign similar la-
bels to all unlabeled instances, hence the training error might

be extremely low. This is caused by their loss function com-
paring the predicted output with itself. This initialization pro-
cedure avoids this problem by using the distribution of labeled
instances in a given cluster.

IV. EXPERIMENTS

We present experimental studies performed with both trans-
ductive and inductive approaches using artificial and real-world
datasets.

A. Parameter Tuning

Parameter tuning is performed with a grid search and 10-
fold cross-validation. The highest generalization is presented.
In order to provide fairness of comparison, we follow the tuning
suggestions of the authors of each existing algorithm analysed
in this work in both inductive and transductive scenarios.

As MCSSB [3] implements three SSC assumptions, it is ex-
pected that CBoost outperforms MCSSB solely on problems
where there is a relevant cluster structure. We chose deci-
sion trees as base learners and C = 10000 as suggested in
[3]. Our preliminary experiments confirmed that these values
produce best generalization. The proportion σ of dis-
tances employed to calculate the kernel was searched in
{0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.8, 1}. The sample size s
was searched in {0.1, 0.5, 0.8, 1}. We used 20 and 50 base clas-
sifiers in the experiments.

For RegBoost [7], the number of neighbours was searched
in {3, 4, 5, 6}. The number of iterations was either 20 or 50.
The resampling rate was fixed at 0.1 for the first iteration. And,
for the remaining iterations, this parameter was searched in
{0.1, 0.25, 0.5}. We selected SVM as its base learner following
the recommendation in [7].

We analyse CBoost in two versions: CBoost-Semi is the pro-
posed ensemble and CBoost-Sup is a similar boosting approach
with supervised base learners. Both versions have analogous
parameter tuning. We also compare CBoost-Semi to a single
ClusterReg with RBFN. Its parameters are selected following
the settings of the base classifiers from CBoost-Semi.

The trade-off λ can be in [0, 1] and optimized in
{0.2, 0.4, 0.6, 0.8, 1}. For each base learner, λ was uniformly
drawn from [0.2, 1] to provide diversity to the ensemble.

Parameter V should be 30 for most datasets due to their
size. With V = 30 in datasets with less than 1500 instances,
CBoost-Semi can exploit a comprehensive amount of labels in
the neighbourhood of a point. We can set V to 2% of the number
of points for datasets with more than 1500 instances.

Self-Tuning Spectral Clustering (STSC) [18] produces cluster
memberships Q with arbitrary shapes. We also used K-means
[19] for transductive setting.

We should set the number of clusters K to, at least, the num-
ber of classes [8]. When the partition produced by the clustering
algorithm does not resemble the class structure, the number of
clusters can be increased. In this case, a single class will be
formed of multiple clusters. The classifier will avert generating
contrasting labels in such dense region and may produce a de-
cision boundary that does not split that class. K was searched
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TABLE I
SUMMARY OF TUNED PARAMETERS FOR CBoost

Tuned Parameters of CBoost

Clustering algorithm (produce
matrix Q)

K -means and STSC

λ (controls the amount of
regularization)

Grid search in {0.2, 0.4, 0.6, 0.8, 1}

K (number of clusters) Grid search with {1, 2, 3, 4} times the
number of classes

in 1, . . . , 4 times the number of classes. We fixed κ at 5 for all
settings. Further tuning of κ can be performed.

The centres of the hidden nodes of the RBFN were the
instances in the training set. At each iteration, centre widths
were randomly chosen from between 20% and 80% of the
median of pairwise Euclidean distances among all training
instances. The weight decay α was randomly selected from
[0.2, 0.5] and λ was randomly chosen from [0.2, 1].

We used 20 base learners, η was fixed at 0.5 and the number of
IRLS iterations was 50. The tuning of the remaining parameters
of RBFN follows the respective settings of Cboost-Semi. The
parameter tuning is summarized in Table I.

B. Transductive Setting

With the transductive setting, we demonstrate the supe-
rior predictive accuracy of CBoost-Semi over single classifiers
and the influence of using semisupervised base learners in a
semisupervised ensemble. Thus, we compare CBoost-Semi to
ClusterReg, CBoost-Sup and other state-of-the-art classifiers.

1) Datasets: In [2], the authors designed several transduc-
tive benchmarks. Among those, we used three artificial (g241c,
g241d and Digit1) and three real-world datasets (USPS, COIL
and BCI) to assess the generalization of these algorithms. The
cluster assumption holds in g241c, that is, its class distribution
corresponds to clusters. Whilst g241d has a misleading clus-
ter structure and does not have manifolds. Digit1 possesses a
manifold structure and does not hold the cluster assumption.
USPS has cluster and low-dimensional manifold structures. All
datasets are binary problems with 1500 instances and 241 at-
tributes. The exceptions are BCI, that has 400 instances and
114 dimensions, and COIL with six classes. Further details of
these datasets are described in [2, Ch 21]. The datasets have 12
subsets of 10 and 100 labeled points.

2) Algorithms and Results: Algorithms were trained with 12
disjoints subsets with distinct 10 and 100 labels. The average
error of each algorithm was reported. We compared CBoost-
Sup and CBoost-Semi with various methods described in [2],
[7], [8], [20]. As suggested in [2], test sets are predefined and
we directly compare the average of predictive errors. Further
details of these learners are in [2, Ch 21] and [7], [8], [20].

Tables II and III present the results. Algorithms are grouped
by the implemented assumptions: manifold and cluster assump-
tions, and ensembles of multiple assumptions. Fig. 4 presents
box plots of the test errors of these classifiers. It shows the supe-

rior generalization of CBoost-Semi in comparison to ClusterReg
and CBoost-Sup.

C. Inductive Setting

Inductive algorithms can classify unseen data points. In this
scenario, we evaluate the generalization ability of CBoost, Clus-
terReg, MCSSB and RegBoost.

1) Datasets: We selected 13 datasets from the UCI machine
learning repository [21]. Table IV summarizes these datasets.

We generated three versions of each dataset. Each version
has 5%, 10% or 20% of labeled data. In order to use these
versions as semisupervised problems, we uniformly drawn the
respective amount of points to be labeled. Each version has a
distinct set of labeled instances. In this sense, each version of
a dataset presents itself as a particular SSC task. We used a
10-fold cross-validation procedure for all datasets.

2) Algorithms and Results: We compare CBoost-Semi to en-
semble methods, MCSSB and RegBoost, which use all SSC
assumptions. We also study ClusterReg with RBFN to assess
the difference in performance of CBoost-Semi over a single
classifier. Experiments with CBoost-Sup help to elucidate the
impact of using semisupervised base classifiers instead of fully
supervised base learners.

Table V(a) and (b) presents the predictive results of the
evaluated classifiers. Specifically, Table V(a)–(c) shows the
obtained results for different proportions of labeled data: 5%,
10% and 20%, respectively. We performed pairwise t-tests with
95% of significance level to compare methods. The •/◦ denote
whether CBoost-Semi was significantly superior or inferior to
other algorithms. The scores of wins, ties and losses are the
number of cases where CBoost-Semi was statistically superior,
comparable or inferior to the other classifiers. The Friedman
test [22] with 5% of significance provided statistical evidence
of the difference between the means of errors in Table V. After
the Friedman test, we performed the Bonferroni-Dunn test [22]
with 5% of significance level. Such a post-hoc test confirmed
that CBoost-Semi was superior to all other algorithms, including
state-of-the-art methods, across all amounts of labeled data.

D. Efficiency Investigation

We studied the time efficiency of CBoost-Semi, ClusterReg
and CBoost-Sup. Fig. 5 reports the average time and stan-
dard deviation of the executions that produced the highest
generalization in Table V(a)–(c). We show the CPU time spent
on problems with 5%, 10% and 20% of labels.

We used an Intel Core 2 Quad CPU Q8200 with 2 gigabytes
of RAM. All implementations were in Matlab. Implementations
of CBoost can be further optimized.

V. DISCUSSIONS

Tables II and III demonstrate that CBoost-Semi was superior
to other methods (as in g241c, for 10 and 100 labeled instances).
This fact demonstrates that CBoost-Semi was able to properly
employ data distribution, estimated by clustering algorithm, to
produce a classifier with robustness to the few labeled instances
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TABLE II
MEAN OF THE PERCENTAGE OF PREDICTION ERRORS WITH 12 DISJOINT SUBSETS OF 10 LABELED INSTANCES

Algorithm g241c g241d Digit1 USPS COIL BCI Text

Manifold-based algorithms

1NN 44.05 43.22 23.47 19.82 65.91 48.74 39.44
MVU+1NN 48.68 47.28 11.92 14.88 65.72 50.24 39.40
LEM+1NN 47.47 45.34 12.04 19.14 67.96 49.94 40.48
QC+CMN 39.96 46.55 9.80 13.61 59.63 50.36 40.79
Discrete Reg. 49.59 49.05 12.64 16.07 63.38 49.51 40.37
SGT 22.76 18.64 8.92 25.36 n/a 49.59 29.02
Laplacian RLS 43.95 45.68 5.44 18.99 54.54 48.97 33.68
CHM (normed) 39.03 43.01 14.86 20.53 n/a 46.90 n/a

Cluster-based algorithms

SVM 47.32 46.66 30.60 20.03 68.36 49.85 45.37
TSVM 24.71 50.08 17.77 25.20 67.50 49.15 31.21
Cluster-Kernel 48.28 42.05 18.73 19.41 67.32 48.31 42.72
Data-Rep. Reg. 41.25 45.89 12.49 17.96 63.65 50.21 n/a
LDS 28.85 50.63 15.63 15.57 61.90 49.27 27.15
ClusterReg (MLP) 16.90 40.82 12.06 19.42 65.51 45.36 40.48
ClusterReg (RBFN) 26.94 27.95 10.64 19.98 69.13 49.19 40.48

Ensembles and multiple-assumptions algorithms

AdaBoost 40.12 43.05 28.92 25.57 71.16 47.08 47.42
SAMME 50.09 50.07 50.07 19.98 70.25 50.30 n/a
ASSEMBLE 40.62 44.41 23.49 21.77 65.49 48.96 49.13
RegBoost 38.22 42.90 17.94 17.41 65.39 46.73 34.96
CBoost-Sup 44.65 45.76 15.64 19.98 77.61 47.37 44.49
CBoost-Semi 22.76 23.07 14.72 19.98 64.33 48.50 43.77

Note: Test sets are fixed. As in [2, Ch. 21], we present only the mean errors of these results. Bold face indicates the highest predictive performance within each group of classifiers.
And n/a is unavailable results in [2, Ch. 21].

TABLE III
MEAN OF THE PERCENTAGE OF PREDICTION ERRORS WITH 12 DISJOINT SUBSETS OF 100 LABELED INSTANCES

Algorithm g241c g241d Digit1 USPS COIL BCI Text

Manifold-based algorithms

1NN 40.28 37.49 6.12 7.64 23.27 44.83 30.77
MVU+1NN 44.05 43.21 3.99 6.09 32.27 47.42 30.74
LEM+1NN 42.14 39.43 2.52 6.09 36.49 48.64 30.92
QC+CMN 22.05 28.20 3.15 6.36 10.03 46.22 25.71
Discrete Reg. 43.65 41.65 2.77 4.68 9.61 47.67 24.00
SGT 17.41 9.11 2.61 6.80 n/a 45.03 23.09
Laplacian RLS 24.36 26.46 2.92 4.68 11.92 31.36 23.57
CHM (normed) 24.82 25.67 3.79 7.65 n/a 36.03 n/a

Cluster-based algorithms

SVM 23.11 24.64 5.53 9.75 22.93 34.31 26.45
TSVM 18.46 22.42 6.15 9.77 25.80 33.25 24.52
Cluster-Kernel 13.49 4.95 3.79 9.68 21.99 35.17 24.38
Data-Rep. Reg. 20.31 32.82 2.44 5.10 11.46 47.47 n/a
LDS 18.04 28.74 3.46 4.96 13.72 43.97 23.15
ClusterReg (MLP) 13.38 4.36 3.45 5.25 24.73 33.92 32.09
ClusterReg (RBFN) 19.54 17.07 7.20 16.53 36.35 48.11 32.09

Ensembles and multiple-assumptions algorithms

AdaBoost 24.82 26.97 9.09 9.68 22.96 24.02 26.31
SAMME 36.75 38.70 19.55 16.94 53.79 41.64 n/a
ASSEMBLE 27.19 27.42 6.71 8.12 21.84 28.75 27.77
RegBoost 20.54 23.56 4.58 6.31 21.78 23.69 23.25
CBoost-Sup 20.92 28.35 4.87 8.78 63.78 40.25 30.76
CBoost-Semi 12.71 6.99 4.34 7.20 30.67 38.83 25.58

Note: Test sets are fixed. As in [2, Ch. 21], we present only the mean errors of these results. Bold face indicates the highest predictive performance within each group of classifiers.
And n/a is unavailable results in [2, Ch. 21].
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Fig. 4. Box plot of test errors (%) of ClusterReg, CBoost-Sup and CBoost-Semi. (a) BCI - 10 labels. (b) BCI - 100 labels. (c) COIL - 10 labels. (d) COIL - 100
labels. (e) USPS - 10 labels. (f) USPS - 100 labels. (g) Digit1 - 10 labels. (h) Digit1 - 100 labels. (i) g241c - 10 labels. (j) g241c - 100 labels. (k) g241d - 10 labels.
(l) g241d - 100 labels.

available. The proposed method was also superior to existing
ensemble methods. Differently from other algorithms, CBoost-
Semi was able to tackle poor label estimates.

CBoost-Semi could overcome misleading cluster structures
(as in g241d) by using the few available labeled instances more
effectively than all other algorithms (except for Cluster-Kernel
on g241d with 100 labeled instances).

As expected, methods with manifold assumption produced
the highest accuracy for Digit1 and USPS with 10 and 100
labels. Nevertheless, CBoost-Semi obtained superior general-
ization compared to other cluster-based algorithms. CBoost-
Semi also produced comparable generalization with other
cluster-based and multiple-assumptions methods for USPS. In
this sense, when the assumed data distribution did not relate to
the class distribution, the proposed method was able to weight
the impact of labeled data more severely and dilute the misguid-
ing cluster assumption.

The superior performance of manifold-based algorithms in
COIL in comparison with cluster-based methods indicates that
COIL has an underlying manifold that relates to the classes. As
RegBoost implements all SSC assumptions, its performance in
BCI suggests that this dataset has relevant cluster and manifold
structures [7].

TABLE IV
SUMMARY OF DATASETS

Datasets # instances # attributes # classes

Australian credit 690 14 2
BUPA 345 6 2
Contraceptive 1473 9 3
Dermatology 366 34 6
Ecoli 336 6 5
Glass 214 9 6
Horse Colic 368 27 2
House Votes 435 16 2
Ionosphere 351 34 2
SPECT 267 22 2
Statlog 846 18 4
Yeast 1479 8 9
WDBC 569 32 2

According to Fig. 4, CBoost-Semi was statistically more accu-
rate than ClusterReg in most problems, especially for g241d and
COIL, where there was no meaningful cluster structure. When
cluster assumption held, CBoost-Semi also produced higher ac-
curacy. This indicates that ensemble approaches can also mini-
mize errors (variance) of individual classifiers in SSC.
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TABLE V
MEAN AND STANDARD DEVIATION (%) OF PREDICTION ERRORS ON 10-FOLD CROSS-VALIDATION WITH (A) 5% , (B) 10% AND (C) 20% OF LABELED INSTANCES

Datasets MCSSB RegBoost ClusterReg CBoost-Sup CBoost-Semi

australian 44.52 ± 4.87 • 18.15 ± 3.74 41.88 ± 17.14 • 21.47 ± 3.47 • 18.67 ± 1.26
bupa 38.91 ± 10.85 ◦ 47.45 ± 10.83 • 30.50 ± 2.21 ◦ 49.59 ± 9.77 • 38.90 ± 4.90
contraceptive 57.07 ± 4.59 • 67.76 ± 8.20 • 49.85 ± 1.27 ◦ 49.38 ± 4.02 ◦ 52.74 ± 2.84
dermatology 11.12 ± 5.82 • 58.24 ± 5.63 • 23.40 ± 7.44 • 19.80 ± 4.87 • 5.34 ± 5.31
ecoli 18.66 ± 5.96 • 37.62 ± 6.83 • 16.54 ± 4.74 • 14.59 ± 4.25 • 11.68 ± 2.81
glass 60.31 ± 10.60 • 77.53 ± 17.87 • 58.40 ± 9.29 • 38.96 ± 12.01 36.31 ± 10.36
horse-colic 30.38 ± 10.08 48.44 ± 19.57 • 31.06 ± 5.61 • 25.87 ± 6.27 26.23 ± 6.17
house-votes-84 61.57 ± 7.24 • 56.10 ± 12.64 • 7.81 ± 3.06 10.73 ± 3.69 • 7.84 ± 2.30
ionosphere 35.64 ± 12.78 • 50.55 ± 19.80 • 12.97 ± 2.51 9.05 ± 2.04 13.35 ± 7.78
spect 79.51 ± 10.71 • 31.99 ± 4.27 • 11.09 ± 1.78 10.69 ± 2.74 11.08 ± 3.12
statlog 49.47 ± 6.09 • 69.71 ± 5.89 • 52.11 ± 5.51 • 45.60 ± 3.18 • 35.33 ± 5.59
yeast 56.58 ± 3.03 • 68.63 ± 3.68 • 53.35 ± 2.12 • 53.06 ± 1.76 • 48.78 ± 0.99
WDBC 37,25 ± 5,37 • 18,93 ± 5,67 • 8,69 ± 1,17 • 7,02 ± 1,86 6,86 ± 2,68
Win/Tie/Loss 11/2/0 12/1/0 8/3/2 7/5/1 –

(a) Results for 5% of labeled data.

Datasets MCSSB RegBoost ClusterReg CBoost-Sup CBoost-Semi

australian 44.58 ± 6.90 • 13.38 ± 2.54 ◦ 12.76 ± 1.46 ◦ 19.96 ± 2.67 • 16.18 ± 2.73
bupa 43.64 ± 9.92 • 47.11 ± 12.00 • 33.22 ± 2.43 • 26.80 ± 3.20 • 23.55 ± 4.31
contraceptive 53.35 ± 3.51 • 61.00 ± 4.59 • 45.71 ± 1.91 45.37 ± 2.97 46.65 ± 1.80
dermatology 9.97 ± 6.31 • 69.25 ± 5.95 • 20.12 ± 6.85 • 5.49 ± 4.84 • 1.26 ± 1.64
ecoli 18.59 ± 6.63 35.11 ± 7.51 • 18.90 ± 5.93 25.98 ± 4.51 • 19.17 ± 4.57
glass 52.54 ± 11.18 • 67.30 ± 12.24 • 43.09 ± 9.44 • 19.01 ± 7.31 19.54 ± 4.36
horse-colic 25.35 ± 9.32 57.12 ± 18.39 • 30.10 ± 6.89 • 23.45 ± 5.23 22.52 ± 5.19
house-votes-84 61.35 ± 8.08 • 58.12 ± 11.63 • 11.76 ± 1.24 • 4.86 ± 1.93 • 1.78 ± 1.23
ionosphere 35.90 ± 6.75 • 44.85 ± 15.40 • 10.48 ± 2.08 • 6.41 ± 4.06 8.27 ± 2.20
spect 79.60 ± 8.61 • 49.55 ± 32.36 • 15.45 ± 1.49 • 12.12 ± 1.06 11.70 ± 1.58
statlog 43.46 ± 7.23 • 74.44 ± 2.74 • 55.63 ± 3.75 • 49.38 ± 3.32 • 37.90 ± 2.31
yeast 53.90 ± 3.70 • 68.63 ± 2.94 • 52.09 ± 3.50 • 50.26 ± 0.98 • 47.57 ± 1.66
WDBC 37,37 ± 7,19 • 13,86 ± 6,47 • 2,77 ± 1,49 ◦ 5,12 ± 1,99 5,31 ± 2,05
Win/Tie/Loss 11/2/0 12/0/1 9/2/2 7/6/0 –

(b) Results for 10% of labeled data.

Datasets MCSSB RegBoost ClusterReg CBoost-Sup CBoost-Semi

australian 44.34 ± 7.04 • 17.37 ± 5.21 16.14 ± 3.12 18.35 ± 3.03 • 15.82 ± 3.44
bupa 38.25 ± 10.96 • 52.16 ± 11.77 • 20.41 ± 5.00 20.24 ± 6.20 21.22 ± 4.65
contraceptive 54.15 ± 6.38 • 57.22 ± 6.41 • 45.80 ± 3.09 • 48.45 ± 6.44 • 43.52 ± 2.12
dermatology 6.52 ± 3.99 59.61 ± 8.20 • 14.71 ± 4.92 • 3.54 ± 3.00 4.13 ± 2.24
ecoli 17.59 ± 7.73 37.52 ± 13.14 • 18.37 ± 3.34 • 12.64 ± 4.19 12.93 ± 7.42
glass 61.69 ± 12.82 • 67.06 ± 9.44 • 19.42 ± 6.93 18.84 ± 6.88 20.32 ± 7.66
horse-colic 40.87 ± 10.84 • 47.22 ± 14.98 • 37.05 ± 3.09 • 29.11 ± 4.99 29.12 ± 5.04
house-votes-84 61.29 ± 7.43 • 50.04 ± 10.84 • 6.87 ± 2.88 • 9.68 ± 5.17 • 3.11 ± 1.99
ionosphere 36.03 ± 10.85 • 38.46 ± 13.65 • 8.59 ± 1.78 8.27 ± 1.85 8.59 ± 1.78
spect 79.53 ± 5.20 • 30.85 ± 12.03 • 8.07 ± 2.53 8.07 ± 2.53 8.23 ± 4.06
statlog 33.47 ± 4.32 72.05 ± 5.28 • 50.83 ± 5.46 • 37.02 ± 4.43 34.26 ± 4.72
yeast 52.47 ± 4.27 • 68.65 ± 2.65 • 51.35 ± 2.79 • 49.54 ± 2.95 • 46.57 ± 2.61
WDBC 37,28 ± 6,42 • 28,99 ± 5,33 • 1,32 ± 1,14 2,41 ± 1,65 1,97 ± 1,28

Win/Tie/Loss 10/3/0 12/1/0 7/6/0 4/9/0 –

(c) Results for 20% of labeled data.

Symbols •/◦ denote significantly superior and inferior performance, respectively, of CBoost-Semi against other algorithms according to t-test with 95% of significance level. The scores
of wins, ties and losses indicate the number of problems in which CBoost-Semi was statistically superior, comparable, inferior to the other algorithms, respectively.

When the class distribution does not relate to clusters, the
generalization of cluster-based methods will strongly rely on
learning the labeled data. Thus, we expected CBoost-Sup to
outperform CBoost-Semi in datasets with misleading cluster
structure, since CBoost-Sup only raises this assumption for the
ensemble algorithm and base learner are supervised. Results of
USPS (with 10 labels) and Digit1 demonstrated this intuition. In
contrast, CBoost-Semi was superior in g241d and USPS (with
100 labels). This fact may be due to the base classifiers of
CBoost-Semi diminish their cluster bias with parameter λ and
κ, whilst the supervised base classifiers in CBoost-Sup learn
all the misleading signals from wrong label estimates. When

there was an useful cluster structure (as in g241c and COIL),
CBoost-Semi was superior. This result suggests the effectiveness
of training ensemble and its base classifiers to jointly optimize
a single cluster-based loss function.

In the inductive setting, CBoost-Semi was statistically su-
perior to ClusterReg in most datasets. In Australian Credit,
the ensemble might have produced large amounts of incorrect
pseudo-labels. These results might denote that ensembles can
deliver better generalization than single classifiers in SSC.

CBoost-Semi delivered better predictive accuracy than algo-
rithms with all SSC assumptions for most problems. Results
of RegBoost and MCSSB might denote the sensitiveness of
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Fig. 5. Plots of average CPU time and standard deviation consumed in 10-fold cross-validation executions with proportions of 5%, 10% and 20% of labeled
data. (a) Australian. (b) BUPA. (c) Contraceptive. (d) Dermatology. (e) Ecoli. (f) Glass. (g) Horse colic. (h) House votes.

algorithms based on largest-margin separator to overlapping
classes and noisy labeled data in dense regions. They are more
likely to propagate errors in pseudo-labels. Larger number of
classes had a greater impact on RegBoost. It was significantly
inferior to MCSSB for all multiclass datasets.

CBoost-Semi could tackle the scarce and noisy labeled data
and overlapping classes. It was specifically designed for mul-
ticlass SSC. The training algorithm of both ensemble and base
classifiers jointly minimize a semisupervised loss function that
uses the cluster-based neighbourhood of a point to assess its de-
sired label. Such characteristics and the inductive results provide
evidences that our approach allows base learners to overcome
possible incorrect label estimates.

RegBoost and MCSSB produced better generalization in
Australian Credit with 10% and BUPA with 5% of labels,
respectively. This fact indicates that such problems have mean-
ingful manifolds that favors manifold-based methods.

Our approach had significantly better generalization than
CBoost-Sup in most datasets. It was especially superior to
CBoost-Sup in problems with very few labels (5% and 10%
of labeled data). With 20% of labeled data, CBoost-Semi pro-
duced higher accuracy in four datasets and was not statistically
inferior in any problem. These results confirmed that designing
a base learner that explicitly helps the ensemble to minimize its
loss function improves the ensemble predictive performance.

If no relevant cluster structure is present, the generalization
of CBoost-Semi might degenerate. As depicted in Fig. 5,
the trade-off for obtaining high quality predictions with
CBoost-Semi is the increase of computational time. The use of
semisupervised base learners in CBoost-Semi causes the com-
putation of neighbourhoods, hence it is more time-consuming
than CBoost-Sup. Our experiments confirmed that, similarly
to other SSC methods, CBoost-Semi handles the lack of label
information by raising assumptions on the data distribution and
its relation to the class distribution.

CBoost-Semi delivered higher predictive performance in the
real-world datasets with larger number of classes in all pro-
portions of labels. CBoost-Semi was able to form good de-
cision boundaries for each class with respect to the others.
The ensemble learning algorithm and base learners are inher-
ently multiclass: each class is learned dependently of the oth-
ers, as described in Section III. The other methods, with the
exception of MCSSB, are binary and depend on sub-optimal
decomposition techniques. Such decomposition procedures are
sensitive to different scales and imbalanced classes [3].

VI. CONCLUSION

In this work, we proposed Cluster-based Boosting, a fully
semisupervised ensemble approach to multiclass SSC. When the
cluster assumption holds, CBoost can handle noisy classes and
the scarce labeled points lying in dense regions does not severely
affect CBoost’s decision boundaries. It employs semisupervised
base learners that consider the surroundings of a point when
assessing its label estimates. In this sense, base classifiers can
tackle potentially incorrect label estimates and produce a more
robust ensemble classifier.

Our experiments validated the relevance of our cluster-based
boosting approach and the use of semisupervised base clas-
sifiers. The results supported the significantly superior gener-
alization of CBoost over ClusterReg, CBoost-Sup, and other
state-of-the-art ensembles. The trade-off for the better general-
ization of CBoost-Semi when compared to CBoost-Sup is the
additional computational time required by the calculation of
neighbourhoods in its semisupervised base learner.

In the semisupervised context, the availability of unlabeled
data often incurs in large datasets. As future work, we aim to
investigate techniques to improve the efficiency of the proposed
ensemble method. We also intend to employ other parameter
selection procedures for CBoost-Semi in order to improve its
predictive performance.
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