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Abstract. Time series classification has attracted a lot of attention in
recent years. However, the original data often corrupted with noise. To
alleviate this problem, many approaches try to perform nonlinear trans-
formation, such that the resulting space could give out the most rele-
vant features. Since the resulting space is not a Euclidean space, strong
assumptions are needed for many kernel-based methods for the purpose
of obtaining a reasonable measurement. In this paper we propose a novel
approach based on Martin distance. The Martin distance is applied to
measure the pairwise distance in the resulting space, without imposing
strong assumptions on model states. Experiments on several benchmark
datasets demonstrate the advantages of the proposed kernel on its effec-
tiveness and performance.
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1 Introduction

Time series appear in many scientific tasks. In practice, most time series are
assumed to be generated from fixed but unknown sources. Based on this assump-
tion, learning becomes more subtler as more attention is focused on the under-
lying but unknown sources. Learning becomes nontrivial since it needs to under-
stand the intricate nature of sources. Among all the learning tasks on time series,
classification has been widely recognized as an efficient way.

Among related work, classifications based on Euclidean Distance (ED) or rel-
evant measures are the most popular ones. ED treats every time series as a vector
and computes the dissimilarity between two vectors by Euclidean rules. Short
time series distance (STS) [1] approximates every time series with piecewise lin-
ear functions and measures slope difference between functions. Compared to ED,
STS can better capture the temporal difference between two time series. Large
Margin Nearest Neighbor (LMNN) [2] provides a way to learn a Mahalanobis
distance metric. It builds measurement based on the intuition that neighbors in
the same class and the examples from different classes should be separated by
a margin. ED, STS, and LMNN are efficient in cases where the time series are
© Springer International Publishing AG 2017

D. Liu et al. (Eds.): ICONIP 2017, Part I, LNCS 10634, pp. 384-393, 2017.
https://doi.org/10.1007/978-3-319-70087-8_41



An Effective Martin Kernel for Time Series Classification 385

of equal length. But in practical applications, time series of variable-length are
quite often.

Dynamic Time Warping (DTW) [3] is able to process variable-length
sequences. It uses nonlinear wrapping in order to find an alignment between
variable-length time series. However, DTW can lead to unintuitive alignment,
which means a single point at one time series is mapped to a large subsequence
in the counterpart [4]. Longest Common Subsequence (LCSS) [5], Edit Distance
on Real sequence (EDR) [6], and Edit distance with Real Penalty (ERP) [7]
are measurements based on edit distance. LCSS employs longest common sub-
sequence model [5] and introduces a threshold parameter which states that two
points from different time series are considered to be matched when the distance
is no more than the threshold. Unlike LCSS, EDR penalizes the mismatched
segments or gaps according to their length. ERP computes the distance between
gaps using a constant reference point without introducing an additional thresh-
old parameter. DTW, EDR, LCSS and ERP are elastic measures that can better
tolerate local time shifting yet they all suffer from high computing complexity.

In order to reduce impact of noise in the data space, instead of computing the
similarities between time series in the time domain, an alternative is to compute
similarities in a high dimensional space. This methodology is substantiated by
the “kernel-trick”, i.e. mapping data from original data space to target space by
a nonlinear kernel function.

In this methodology, generative models are often employed to fit time series
and then the dissimilarities are redefined on the obtained model parameters.
Available researches include Kullback-Leibler divergence based kernel (KL) [§],
Autoregressive kernel [9], probability product kernel [10], Fisher kernel [11] etc.
Those methods use generative probability models in order to obtain highly
explicable results. This is advisable if the data is known to following certain
distribution. However, the assumption of the particular generative model under-
lying the data could be too strong for general cases.

If the model that generates the data is unknown, it is sensible to apply
“nonparametric” method which is applicable on a wide range of model classes.
This idea has been implemented in [12], which employs Echo State Network
(ESN) [13] in mapping time series to the model space. The core idea is to carry
out classification in the model space, which is filled with the readout weights
of trained ESN’s. As models are trained in a way of regenerating statistically
similar time series without referring to the exterior variables, the trainable part
(readout weights in the case of ESN) provides a representation for the training
data. The discriminative information of time series is thus assembled in the
model space, which in turn provides platform for carrying out classification and
other discriminative analysis.

This learning scheme raises the question about how to measure the difference
between models. In [3], authors measure the dissimilarities between models in
the form of integral of reserver states. The integral is computed under different
probabilistic assumptions, which reconsider the model population such that the
integral is less affected by outliers. For the reservoir states, the uniform distrib-
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ution rationalizes the usage of Ly norm in computing the dissimilarity between
models. The author also poses other kernel-based measurements or probabilis-
tic density functions for more general cases, i.e. a mixture of Gaussian to the
reservoir state for the non-uniform distributions and assumes Gaussian form for
the residuals in the predefined Fisher kernel. As ESN is a highly nonlinear func-
tion, the reservoir is unlikely to satisfy the preconditions of the measurement.
Hence, the assumptions greatly limit the scope of applications and may lead to
unsatisfactory results. Moreover, these assumptions may be impractical in many
situations.

To tackle the problem mentioned above without imposing additional assump-
tions, we propose a novel kernel based on Martin distance [14] for time series clas-
sification. Martin distance, which is designed for dynamical system, is employed
to measure the discrepancy of two time series in the model space. This metric
relaxes strong assumptions on the reservoir state distributions. Our work keeps
in line with learning in the model space and inherits its merits. Compared with
work from [12], our method does not assume much on the form of reservoir state
and relaxes the Gaussian assumption on the residuals. In this respect, we greatly
enlarge the scope of applicable tasks.

Model Dlscrl.mmat.lve
learning with
Space Martin-based

kernel

Fig. 1. Illustration of learning in the model space. ESN is firstly employed to map
time series to the model space. Each time series is represented by a learned model. The
discriminative learning is performed in the model space.

2 Proposed Model

2.1 From Time Series to Model Space

The main idea of carrying out learning in the model space, as illustrated in
Fig. 1, is that each model in the model space gives representation to an instance
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of the training data. The discriminative learning (e.g. Support Vector Machine
(SVM)) is performed in the model space rather than in the data space.

The ESN is subsumed into Reservoir Computing (RC) [15], which provides
a principled way for training recurrent neural networks. RC drives a randomly-
generated recurrent neural network (the hidden layers are also known as reser-
voir) with the inputs, thereby inducing in “reservoir” a nonlinear response func-
tion. The output signals are obtained by linearly combining trainable weights
from individual neuron to approximate the response. A typical ESN consists of
three layers: input, reservoir and readout. Its topology is shown in Fig.2. The
input and internal weights are randomly generated. Only linear readout weights
are trainable. The ESN provides a platform with wide applicability for many
learning strategies.

N reservoir units

D input units .. O output units
> [ @Y AN\, - >
> @,  FX o - >
> \1 & / - >
u’m . W L Waul

Fig. 2. Illustration of the topology of ESN. The internal units in reservoir are sparsely
connected. Solid arrows indicate fixed, random connections and dotted arrows for train-
able connections.

The ESN reservoir model with N internal states and without output-reservoir
feedback can be formulated as Eq. (1) [16].

{ z(t+1)=f(Wa(t)+ Wms(t)) Q)
y(t) = (W' 2(t))

where z(t) = [z1(t), 22(t), -+, zn(t)] is the N-dimensional reservoir state vector
at time ¢, f and g are state activation and output function respectively. In this
paper, we use tanh for f. g is set to be identity as routine. s(t) is input time
series, W is the N x N reservoir weight matrix, W is the D x N input weight
matrix, D is the size of input units, y(¢) is the output vector, W°u¢ is the
O x (N + D) output weight matrix, z(t) = [z(t); s(t)] is the extended system
state at time ¢ and O is the size of output units.

The benefit brought by ESN is that while the general and fixed reservoir
offers a shared and rich “pool” for the whole data set and the topologies are
independent of any external factors, the individual readout from ESN provides
an insight into the intricate nature of each sequence in the training data. The
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learning in the model space benefits from the flexibility of ESN in represent-
ing specifics of different time series. In the case of ESN, the model is trained
to predict the future observation(s) based on the history. As the model states
are randomly generated, they are associated no identifiable information of the
training data. The output matrix, or the readout weights, act as distinct com-
biner from a random, large, fixed pool for the nonlinear responses. The readout
weights are identifiable for a particular training instance. The readout weights,
the only trainable parts, are assembled in the model space, where measurements
could be devised. For more information, refer to [12].

2.2 From Martin Distance between Dynamical System to Martin
Kernel

In the methodology of learning in the model space, as every ESN is trained to fit
an instance of time series and only the readout part is trainable, it is sensible to
conduct learning directly on the readout weights. For the purpose of performing
discriminative learning, it is necessary to calculate the distance between different
models in the obtained model space. A general formation for metric could be
formulated as Eq. (2).

1/2
Lo (y1(=(t)), yo(2(t))) = </F 1y, (=(t)) — yz(m(t))lldu(w(t))> (2)

where p(x) is the probability density function defined on the feasible domain F'.

In [12], the authors explore cases where closed-form solutions are readily
available including uniform and mixtures of Gaussian distributions. The tech-
nique of sampling is adopted as an alternative for cases where closed-form solu-
tions are nonexistent or hard to obtain. However, as we have pointed out that the
state space is mapped with nonlinear functions, the yielded space is unlikely to
be a well-defined space. The experimental results in [12] also confirm this point,
and show that the technique based on sampling succeeds in cases where other
predefined hypotheses on the distribution p(z) fail. In a word, the assumption
on pu(x) is of no practical advantage in some situations.

To relax the assumptions in [12], we employ Martin distance in the com-
parison between pairwise models. Martin distance is raised in the behavioral
framework [17] and its main advantage is on the independence of particular para-
meterization of systems. The conventional ways to measure discrepancy between
models often rely heavily on specific parameterization of models, but this con-
dition could be easily violated by counter examples which have quite different
functional dependency but have identical system behavior. Martin distance mea-
sures discrepancy based on system behaviors and could be applicable even when
the unique parameterization is unavailable. Moreover, since the distance is based
on the behavioral discrepancy, it relies little on the distribution of state space,
which partly explains its better classification performance (detailed in Sect. 3.2).

The Martin distance concerns the system behaviors. The computation of sim-
ilarity involves a linearized system transition matrix A and system output matrix
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C'. In the case of ESN, as its topology is randomly generated, it carries no infor-
mation on the training data. The output matrix, or the readout weights, C' acts
as distinct combiner from a random, large, fixed pool for the nonlinear responses.
The readout weights are identifiable for a particular training instance. Based on
this discovery, one could safely fix the transition matrix A. The variables for
Martin distance are expressed as Eq. (3).

C:Wc)ut
{A:I+6R ®)

where WU is system output matrix of ESN. I is a (N 4+ D) x (N + D) identity
matrix. eR is a (N + D) x (N + D) random matrix of small magnitude in order
to ensure the stability in solving the Lyapunov function.

For ease of implementation, we adopt the idea from [18], which points out
the relations between distances defined in behavioral framework and subspace
angles. In [18] the authors bridge the computation of Martin distance and cosines
of subspace angular with Lyapunov equation. The proof is skipped and main
result is sketched here. Given the system matrix and output matrix pair {4, C'},
the cosines of largest n subspace principal angles {601,605, -- ,6,} of M; and M;
are equal to the largest n eigenvalues of
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The Martin distance between systems M; and M; is formulated as:

where Q = <

) is the unique solution of Lyapunov equation

1
cos?0;

dM(Mi,Mj) :l’nH (5)
=0

where 0; is the i-th subspace principal angle between M; and M;.

Based on the above formula, after having defined the distance in the model
space, any distance-based classification scheme could be used. In this paper, we
adopt the “kernel-trick” and define proximity matrix.

1

K:(M“M]) dM(M“MJ) (6)
where KC(M;, M;) is proximity matrix recording pairwise similarities. For sim-
plicity, the proximity is described as the reciprocal of the distance. The diagonal
elements which record the proximities of the same models are assigned with
maximum integer in our algorithm. The Martin distance between models M;
and M, dy(M;, M;), is defined as Eq. (5). The main algorithm is summarized
as Algorithm 1.
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Algorithm 1. Kernel based ESN and Martin distance

Input: set of time series {si,s2, - ,sn}; parameters (number of reservoir units N;
number of input units D; number of output units O; size of sliding window w)

Output: Kernel matrix IC

1: for each time series s;, i1 =1,--- , M do

2 Slide input data with overlaps.

3 Drive the reservoir state evolution with input data (Eq. (1)).

4: Train W% matrix for s;.

5

6

: end for

: Calculate the pairwise Martin distance das(M;, M;) between the i*" and 5" models
th,j=1,---,M.

Calculate the Martin kernel matrix as K(s;,s;) via Eq. (6).

8: Carry out discriminative learning with SVM based on the obtained K(s;,s;).

I

3 Experiments

3.1 Experiment Setup

Euclidean Distance (ED), Large Margin Nearest Neighbor (LMNN) [2],
Dynamic Time Warping (DTW) [3], and Reservoir Based Kernel (RV)
[12] are taken as baseline methods in our experiments. All the hyper-
parameters of RV are set by 5-fold-cross-validation. The search range of kernel
width v is {10_6, 1075, -- ,101}; hyper-parameter of ridge regression A €
{10_57 1074, .-, 101}. In the Martin distance based kernel, we use a fixed reser-
voir topology with N = 30 neurons for all datasets. The size of sliding window is
8. LIBSVM [19] is employed in our method. The slack weight in SVM is set by
cross-validation and the search range is {107%,1072,--- ,10%}. One-against-one
strategy is selected to perform multi-classification.

3.2 Experiment Results

We perform time series classification task on 15 UCR datasets [20] to validate the
efficiency of our proposed kernel based on Martin distance. All the datasets have
been divided into training and test sets. The detailed information is presented
in Table 1.

Table 2 shows the classification error rates on the benchmark datasets. In
order to evaluate the performance of our method, Euclidean Distance (ED),
Large Margin Nearest Neighbor (LMNN), Dynamic Time Warping (DTW), and
Reservoir Based Kernel (RV) are selected as baseline methods and the lowest
error rate on each dataset has been boldfaced. These results demonstrate that,
in terms of classification accuracy, our proposed kernel surpasses ED and DTW
on 15 datasets and also outperforms RV and LMNN on the most of datasets,
especially on RefrigerationDevices, Ham, and Beef. For long time series, e.g.
WormsTwoClass, SmallKitchenAppliances of length 900 and 720 respectively
(see Table 1), our kernel method still has lower classification error rates than the
baseline methods.
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Table 1. Datasets from UCR time series Repository

Dataset # Classes | # Training set | # Testing set | Length
Coffee 2 28 28 286
Computers 2 250 250 720
Earthquakes 2 139 322 512
Meat 3 60 60 448
OliveOil 4 30 30 570
RefrigerationDevices 3 375 375 720
Herring 2 64 64 512
Ham 2 109 105 431
Wine 2 57 54 234
ScreenType 3 375 375 720
ShapesAll 60 600 600 512
SmallKitchenAppliances | 3 375 375 720
WormsTwoClass 2 77 181 900
BeetleFly 2 20 20 512
Beef 2 30 30 470

Table 2. Comparison of Euclidean Distance (ED), Large Margin Nearest Neighbor
(LMNN), Dynamic Time Warping (DTW), Reservoir Based Kernel (RV), and our
model on fifteen UCR datasets by classification error rates.

Dataset ED LMNN | DTW | RV Our model
Coffee 0.000 | 0.000 |0.000/|0.142 |0.000
Computers 0.424 10.472 |0.380 [0.304 | 0.224
Earthquakes 0.326 |0.245 |0.258 | 0.202|0.224
Meat 0.067 |0.033 | 0.067 | 0.083 |0.033
OliveOil 0.133 |0.133 |0.133 1 0.067 | 0.100
RefrigerationDevices 0.605 |0.589 |0.560 |0.533 | 0.003
Herring 0.484 |0.438 |0.469 | 0.578 |0.422
Ham 0.400 |0.362 |0.400 | 0.324 |0.009
Wine 0.389 |0.167 |0.389 |0.148 | 0.074
ScreenType 0.640 [0.624 |0.589 |0.459 |0.219
ShapesAll 0.248 [0.323 |0.198 | 0.283 |0.158
SmallKitchenAppliances | 0.659 |0.656 |0.328 | 0.328 | 0.227
WormsTwoClass 0.414 /0.481 |0.414 |0.282 | 0.271
BeetleFly 0.250 |{0.200 |0.300 | 0.150 |0.050
Beef 0.333 |0.167 |0.333 |0.367 | 0.067
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4 Conclusion

We propose a novel time series kernel based on Martin distance, which measures
the pairwise model distance. Our approach is in line with learning in the model
space and inherits merits from its learning scheme. Compared with prior work
in [12], our method relaxes strong assumptions on the model state. The exper-
imental results confirm its better performance compared with several baseline
methods including ED, LMNN, DTW and RV.
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