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Abstract—It is widely accepted that traditional word em-
bedding models, which rely on distributional semantics hy-
pothesis, are relatively limited for contrast meaning problem.
Distributional semantics hypothesis indicates that words lying
in similar contexts have similar representations in vector space.
Nevertheless, synonyms and antonyms often locate in similar
contexts, which means they appear close to each other in vector
space. Hence, it is of great difficulty to distinguish antonyms from
synonyms. To address this challenge, we propose an optimization
model, named Lexicon-based Word Embedding Tuning (LWET)
model. The goal of LWET is to incorporate reliable semantic
lexicons to tune the distributions of pre-trained word embeddings
in the vector space so as to improve their ability of distinguishing
antonyms from synonyms. To speed up the training process
of LWET, we propose two approximation algorithms, including
positive sampling and quasi-hierarchical softmax. Compared with
quasi-hierarchical softmax, positive sampling is faster, however,
at the cost of worse performance. In experiments, LWET and
other state-of-the-art models are tested on antonyms recognition,
distinguishing antonyms from synonyms and word similarity.
The results of the first two experiments show that LWET
significantly improves the ability of word embeddings to detect
antonyms, thus achieving the state-of-the-art performance. On
word similarity, LWET gets slightly better performance than the
state-of-the-art models. It means that LWET can remain and
strengthen the semantic structure rather than destroy it when
tuning word distributions in vector space. In general, compared
with related work, LWET can not only achieve similar or even
better performance, but also speed up the training process.

I. INTRODUCTION

Word embedding, which is defined as learning word repre-
sentations into vector space from collocations in large corpus,
has been widely used in the area of Natural Language Pro-
cessing (NLP). Traditional word embedding models contain
Semantic Extraction using a Neural Network Architecture
(SENNA) [1], the hierarchical log-bilinear model [2], Con-
tinuous Bag-of-Word Model (CBOW), Skip-gram [3] and
Global Vectors [4]. Effectiveness of these models has been
demonstrated by various applications, such as information
retrieval [5], question answering [6] and text classification [7].

These models mentioned above are mainly based on the
distributional semantics hypothesis, which indicates that words
in similar context have similar representations in vector space.
Nevertheless, it is reported that word embeddings trained by
distributional semantics hypothesis are relatively limited in
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modeling lexical contrast [8]. Since a word’s synonyms and
its antonyms tend to share the same context, and they are
likely to have similar representations. As a result, these word
embeddings often lead to confusion between synonyms and
antonyms. For example, in sentences “he likes the cat” and
“he dislikes the cat”, “likes” and “dislikes” sit in the same
context. According to distributional semantics hypothesis, the
two words will have similar representations. Hence, it is
very difficult to distinguish them. Actually, modeling lexical
contrast is a key point in NLP because it is strongly associated
with other applications such as sentiment analysis [9] and
text classification [7]. In order to overcome the deficiency
of distributional semantics hypothesis in modeling lexical
contrast, some effective models have been proposed [8], [10]—
[13]. However, most of these models are time-consuming when
applied to capture semantic information from a huge corpus.

Recent work shows that the performance of word embed-
dings can be significantly improved by incorporating other reli-
able linguistic resources [14]-[17] including semantic lexicons
like PPDB [18], WordNet [19] and Rogets [20]. Motivated by
the idea of using semantic lexicons, we propose an optimiza-
tion model, called Lexicon-based Word Embedding Tuning
(LWET) model, to improve the ability of word embeddings
to detect contrast meanings. Based on the pre-trained word
embeddings, we introduce a tuning process where reliable
semantic lexicons are appended to tune the distributions of
word embeddings in vector space so that the ability of word
embeddings to distinguish antonyms from synonyms can be
improved. For a target word, our strategy is to make synonyms
locate in the nearest positions to the target word and antonyms
far from the target word, while the irrelevant words act as
a boundary locating between synonyms and antonyms. More
details of LWET are illustrated in Fig.1.

In order to reduce the computational complexity of LWET,
we propose 2 approximation algorithms: positive sampling
and quasi-hierarchical softmax. The former is with higher
speed and the latter can achieve better performance but at the
cost of lower efficiency. We evaluate LWET and the state-of-
the-art methods on three experiments: antonym recognition,
distinguishing antonyms from synonyms and word similarity.
The results of the first two experiments show that LWET can
significantly improve the ability of word embeddings to detect
antonyms. The performance on word similarity demonstrates
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Fig. 1. The left part indicates the traditional model. After training process, synonyms and antonyms locate near with each other like the middle circle shows.
The right part illustrates the basic idea of our model. In vector space, our model can make the antonyms far away from the target word so that synonyms and

antonyms can be explicitly distinguished from each other.

that LWET can remain and strengthen the semantic structure
rather than destroy it when tuning word distributions in
vector space. For clarity, our contributions are summarized
as follows:

o Actually, LWET is a linear model. Compared with related
work, LWET is with lower computational complexity and
can achieve similar or better performance.

« For solving LWET, we propose two approximation algo-
rithms: positive sampling and quasi-hierarchical softmax.
Both of the algorithms can speed up the training process.
Positive sampling is quicker while quasi-hierarchical soft-
max can get better performance but at the cost of lower
efficiency.

o LWET gets the state-of-the-art performance in the first
two experiments and strengthens the original semantic
structure at the same time.

The rest of the paper is arranged as follows. Section II
introduces some related work. Lexicon-based Word Embed-
ding Tuning model is proposed in Section III. In Section IV,
we discuss the experiments used for performance comparison.
Conclusion is drawn in Section V.

II. RELATED WORK AND BACKGROUND

In dictionary, words “antonym”, ‘“contrasting” and “oppo-
site” have different definitions. However these words some-
times can be used interchangeably. In this paper, they all refer
to the same meaning when they are used.

Word Embedding Word embedding is to represent words
with low dimensional vectors, which is a hot topic in NLP.
Recently, some researchers are committed to find ways to
improve the quality of word embeddings. Some of them
modified existing models, and the others proposed some brand
new models. In [21], global context information was added
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to input layer of their model to improve the quality of
word embeddings. Recently, neural network-based models like
CBOW and Skip-gram [3] have attracted a lot of attentions due
to their effectiveness in dealing with large corpora. Pennington
et al. presented a new global log-bilinear regression model
named Glove that combines the advantages of global matrix
factorization and local context window methods [4]. Liu et
al. proposed a topic word embedding method, which learns
word embeddings based on both words and their topics [7].
Sun et al. raised two novel distributional models combining not
only syntagmatic but also paradigmatic relations [22]. Chen et
al. utilized convolutional neural network to capture valuable
information hidden in WordNet gloss and added it to training
process of word embeddings [23].

Modeling Lexical Contrast Due to the deficiency of dis-
tributional semantics hypothesis-based word embeddings in
modeling lexical contrast, Chen et al. proposed a contrasting
word embedding framework and two effective models, which
achieved the highest F-score of 92% on the Graduate Record
Examination (GRE) “most contrasting word” questions [8].
In [12], Yih et al. utilized latent semantic analysis (LSA)
to encode contrast meaning, which is called PILSA and
achieved one of the highest F-score of 81% on the same
dataset. Recently, Zhang et al. [24] proposed an efficient
model, called Bayesian probabilistic tensor factorization. Not
only the dimensional semantic information but also the other
unsupervised lexicons information were considered in tensor
factorization and this model achieved F-score of 82 % on the
same dataset. Ono et al. [13] proposed a learning model which
adds the thesauri information to Skip-gram with Negative
Sampling (SGNS) and achieved F-score of 89% on the same
dataset. However, these models mentioned above suffer from
high computational complexity and need a lot of time to



conduct the training process. On the contrary, our model
LWET is with much lower computational complexity and can
train a large corpus in a short time.

III. LEXICON-BASED WORD EMBEDDING TUNING
(LWET) MODEL

In this section, we are going to introduce Lexicon-based
Word Embedding Tuning model (LWET). The objective of
LWET is to incorporate semantic lexicons to improve the
ability of word embeddings to detect contrast meanings.
To speed up the training process of LWET, we proposed
two approximation algorithms: positive sampling and quasi-
hierarchical softmax. Both of the algorithms are introduced in
the end of this section.

A. Model Description

For some word embedding models, which are related to
model lexical contrast, the words in vocabulary are divided
into only two parts: synonyms and antonyms. Basic idea of
these models is to expand the distance between the target word
and its antonyms. Although this method can help us easily
distinguish antonyms from synonyms, the distance between
antonyms and the irrelevant words is shortened as well, since
the irrelevant words are always locate far away from the target
word in initial vector space. Hence, it will be more difficult
to distinguish antonyms from the irrelevant words.

In LWET, for a target word, the remaining words in vo-
cabulary are divided into 3 categories: synonyms, antonyms
and irrelevant words. In lexicons, irrelevant words are defined
as the words, which are neither semantic-close nor semantic-
opposite to the target word. As shown in Fig.1, the middle
circle represents the structure of pre-trained word embeddings,
where synonyms and antonyms of the target word are mixed
together. Therefore, it is hard to distinguish them from each
other. The right circle in Fig.1 illustrates the ideal result of
LWET: synonyms become the nearest to the target word while
antonyms stay in the furthest area, and the irrelevant words
lie somewhere in between, which form a boundary to separate
synonyms and antonyms.

Let V = {wy,wa, - 7wn}/\be the vocabulary, and n is the
vocabulary size. The matrix Q denotes the pre-trained word
embeddings, which are trained based on the models like Skip-
gram, CBOW [3], Glove [4], etc. Each column G (@ € R of
Q is defined as the word vector of w;, and d is the dimension
of word vectors. The retrofitted vector representations are
saved in a new collection matrix Q = {q1,--- ,qn} (¢; € R?).
For a target word w;, define Eg = {(i,j) | w;,w; € V
and w;,w; are synonyms } as its synonymy relationship
in vocabulary, E4 = {(i,k) | w;,wxy € V and w;, wy
are antonyms } as its antonymy relationship, and E; =
{(4,1) | wi,w; € V and w;, w; are semantically unrelated
} as its irrelevant relationship.

After the tuning process, the retrofitted word vectors should
be not only the closest to their counterparts and synonyms in
Q, but also far away from their antonyms. At the same time,
the irrelevant words as a boundary locate between synonyms
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and antonyms. Ideally, the word distribution should meet the
following conditions:

Condition 1: Vi € [1,n],D(qi,q5) < D(qi, q1),
(i, j) € Es,¥(i,1) € E;.

Condition 2: Vi € [1,7],D(q:, qx) > D(qs, @),
V(’i,k) c EA,V(i,l) cE;s.

where D (q;, @), D(4i,q5), D(¢i, qx), D(¢i, @) represent the
distance from word vector ¢; to its counterpart in Q, its
synonym vector g;, its antonym vector g and its irrelevant
word vector ¢; in Q, respectively. From the pre-trained word
embeddings, we observe that the distances between the target
word w; and its irrelevant words are usually the largest. In
order to get an ideal result, the distances between w; and its
irrelevant words need to be shortened. Accordingly, during
the tuning process, our optimal objective is to minimize the
following cost function:

D(qi,q5)

N§

@(qi,ql)] M
Ni

¥Q) =3

i=0

[a-i)(qu@) +8 >
(4,J)EEg
D(qi, qr)

2L 5w

— :
NA (i,1)EE}

(i,k)EE 4
In the square brackets, the second component indicates
the average distance between w; and its synonyms, the third
component denotes the average distance between ¢; and its
antonyms and the last component represents the average
distance between w; and its irrelevant words. N&, N% and
N separately denote the number of synonyms, the number
of antonyms and the number of irrelevant words of w;. The
parameters «, (3, v, & control the relative strength of each
component and need to be determined according to specific
requirements. In this paper, we utilize Euclidean distance [14]
to measure the relation between two words.

B. Learning

Although the synonyms and antonyms of a word are count-
able, the number of its irrelevant words is nearly equal to the
vocabulary size n, which means the computational complexity
of Eq. (1) is equal to O(n?) and can hardly be solved in finite
time. To reduce the computational complexity, we propose
two approximation algorithms: positive sampling and quasi-
hierarchical softmax.

1) Positive Sampling: This method is motivated by the
strategy “negative sampling” [25] where non-context words
are regarded as “negative” samples. Here, the distance
D(qi,q1), (i,1) € Ey also need to be shortened to some extent,
which is similar to the operations of ¢; and its synonymy
vectors. Therefore, the irrelevant words are regarded to be
“positive” samples. For word w;, we assume that its irrelevant
words are uniformly distributed in vector space and randomly
sample m; words from its original irrelevant word set as its
new irrelevant word set, as shown in the following equation:

C(w:)

m;

sample(i,m;) C Ey, i € [1,n],

where sample(i, m;) means randomly sampling m; irrelevant
connections from E7. If word w; has no antonym or synonym,



Algorithm 1 LWET with Positive Sampling

1: Input: Initial word embeddings @, Learning rate step,
Threshold ), Iterating times ¢

2: Output: Word embeddings which have been improved ¢
Initialize: o, 3,7,6, Yo g = 0, Ypeoo = 0, Q@ = Q,
index = 0

4: while TRUE do

5 index = index + 1
6: Voig = Ynew

T \Ijnew =0
8
9

W

for w; in V do
get w;’s synonyms from lexicons, S,

10: get w;’s antonyms from lexicons, A,

1 sample m irrelevant words and get C'(w;)

12: update ¥,,.,, according to cost function.

13: update the first derivative of ¥(Q) with respect to w;
14: update w;’s vector according to the first derivative
15:  end for

16:  if Uye, — Yorg < A or index > t then

17: BREAK

18:  end if

19: end while

20: return @

Algorithm 2 LWET with Quasi-hierarchical Softmax

1: Input: Initial word embeddings @, Learning rate step,
Threshold ), Iterating times ¢

2: Output: Word embeddings which have been improved ¢
Imitialize: o, 3,7,6, Yo g = 0, Ypeoo = 0, Q@ = Q,
index = 0

4: while TRUE do

5 index = index + 1
6: Voig = Ynew

T \Ilnew =0
8
9

W

for w; in V do
get w;’s synonyms from lexicons, S,

10: get w;’s antonyms from lexicons, A,

11 get irrelevant words I, L,, =V — Sy, — Ay,

12: divide I,,, into [\/ﬁ}—‘ parts and calculate the central
points ¢; of each part

13: update ¥,,.,, according to cost function.

14: update the first derivative of ¥(Q) with respect to w;

15: update w;’s vector according to the first derivative

16:  end for

17 if Uyew, — Yoig < A or index > t then
18: BREAK

19:  end if

20: end while

21: return )

m,; 1s set as 0, otherwise m; is equal to the max value of Ni‘
and N§. Thus, the fourth part of Eq. (1) can be approximated

as (m; # 0):

§ Z 9(‘1“(11 ~ 5 Z

(i,1)€E; Ni (i,1)eC(w;)

D(qi, q1)

m;

3

Hence, the computational complexity of modified Eq. (1)
becomes O(nm), where m = = 37" m;.

2) Quasi-hierarchical Softmax: This method is inspired by
hierarchical softmax [25]. For word w;, we equally separate
its N irrelevant words into 7' groups and each group contains

nearly [\/N}'-‘ words. In each group, the central point of

all words ¢; (¢t € [1,T],T = L/N}W) is figured out as
the representative for the group. Therefore, we can utilize T’
derived vectors to approximately calculate the fourth part of

Eq. (1):

T

5 Z quqr) @

(i,))EE] Ni t=1

q1>9l) ~

Thus, the computational complexity of Eq. (1) can be reduced
to O(n+/n). With the modified cost function, we can employ
stochastic gradient decent to tune each word embedding ¢; (i €
[1,n]) iteratively. Hyperparameters «, 3, 7, ¢ are chosen based
on grid searching.

The algorithm descriptions of positive sampling and quasi-
hierarchical softmax are shown in Algorithm 1 and Algorithm
2, respectively.

IV. EXPERIMENTS

In this section, we are about to introduce the experiments
used to evaluate the performance of LWET. Among all ex-
periments, antonym recognition and distinguishing antonyms
from synonyms are conducted for testing the ability of word
embeddings to do contrast meanings detection. Word similarity
is utilized to show whether LWET will destroy the semantic
structures in original word vector space. In the end, we
discuss the effect of hyperparameters on the quality of word
embeddings. For clarity, some experimental settings are given
firstly.

A. Experimental Settings

In this paper, we compare LWET with the baselines: CBOW,
Skip-gram [3] and Glove [4], which are all based on distri-
butional semantics hypothesis. All baselines are famous for
their efficiency and effectiveness. Glove is trained based on the
source code! and the rest baselines are trained by word2vec?
using negative sampling algorithm. The corpus utilized in this
paper origins from the 2013 ACL Workshop on Machine
Translation®, which is used in [26]. It contains nearly 500
millions of tokens and 600 thousands of vocabularies. The
lexicons we adopt are provided by Chen et al. [8], which
contain 92339 word types, 520734 antonym pairs and 646433
synonym pairs. The dimension of word embeddings is set as
300, which is reported to work well in [3]. The number of

Uhttp://nlp.stanford.edu/projects/glove/
Zhtps://github.com/dav/word2vec
3hitp://www.statmt.org/wmt13/translation-task.html



negative samples is set as 20 according to the empirical rule
mentioned in [25]. Context window size is set as 5. Other
parameters are equal to the default settings in the source codes.
Based on grid searching, in LWET, we set « 1, B =2,
v = 3 and § = 4. We observe that the retrofitted word
embeddings perform better than all the baselines no matter
which approximation algorithm is selected.

Compared with quasi-hierarchical softmax, the tuning pro-
cess can work faster with positive sampling but at the cost
of worse performance. For fair comparison, we report our
best performance which is based on quasi-hierarchical softmax
algorithm.

TABLE I
THE RESULTS OF ANTONYM RECOGNITION. “+” MEANS THE RESULTS OF
LWET IS BASED ON THE ADJACENTLY LEFT-SIDE TRAINING PROCESS.
NUMBERS IN BOLD MEAN THE BEST ANSWERS.

CBOW | +LWET SG | +LWET Glove | +LWET
Dev. 0.16 0.59 0.10 0.61 0.15 0.56
Test 0.13 0.63 0.12 0.65 0.13 0.60
Adj. 0.32 0.86 0.42 0.86 0.41 0.86
Verb 0.39 0.91 0.29 0.94 0.31 0.88
Noun 0.36 0.81 0.43 0.82 0.34 0.81
Adv. 0.29 0.92 0.41 0.92 0.37 0.92

B. Antonym Recognition

The experiment is conducted to test the ability of word
embeddings to distinguish antonyms. We utilize the “closest-
to-opposite” dataset, which is widely used in previous work
[8], [12]. The dataset includes 2 parts: development set and test
set. The former contains 162 questions and the latter contains
790 questions [11]. Moreover, we also use another “closest-
to-opposite” question dataset which is created for WordNet
opposites. This dataset consists of 4 parts including adjectives
(551 questions), adverbs (165 questions), nouns (330 questions
) and verbs (226 questions). All the datasets are kindly released
at Mohammad’s homepage®*. Each question in the datasets has
three components including target word, five candidates and
the correct answer. This task is to find the antonym of target
word from the candidates. In the vector space of retrofitted
word embeddings, the candidate with the largest Euclidean
distance to the target word is chosen as the answer. For
question “a :: ans”, the target of this task
can be organized as following equation:

C1,C2,C3,C4,C5

ans = argmax Fuc(a,¢;),i € [1,5]

Ci

®

where Euc(a,c;) denotes the Euclidean distance between a
and c¢;. If ans = ans, the question is identified to be correctly
answered. For pre-trained word embeddings, the word whose
distance to the target word is the smallest is viewed as

4http://www.saifmohammad.com/WebPages/
ResearchInterests.html
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answer. We apply F-score to evaluate the performance of word
embeddings. The results are reported in Table I.

From Table I, we find that the baselines achieve poor
performance on all datasets, which validates the drawback
of distributional semantics hypothesis when modeling lexical
contrast. On the contrary, LWET significantly improves the
performance, which illustrates the effectiveness of our model.

C. Distinguishing antonyms from synonyms

This experiment is conducted to evaluate the ability of word
embeddings to distinguish antonyms from synonyms. To some
extent, this experiment is more difficult to the first one. We
utilize the dataset mentioned in [27], which contains 3 parts:
adjectives (300 antonymous pairs and 300 synonymous pairs),
nouns (350 antonymous pairs and 350 synonymous pairs) and
verbs (400 antonymous pairs and 400 synonymous pairs). The
accuracy is applied to evaluate the performance. To calculate
the accuracy, we firstly sort the synonymous and antonymous
word pairs according to their Euclidean distances. If a word
pair belongs to the first half, it is viewed as synonymous pair.
An antonymous pair is confirmed if it is in the last half. The
results are reported in Table III.

Compared with the results described in [27], LWET gets
better performance. Therefore, LWET gets the state-of-the-
art result on this task, which consistently demonstrates the
effectiveness of LWET.

TABLE II
THE RESULTS OF WORD SIMILARITY. “+” MEANS THE RESULTS OF LWET
IS BASED ON THE ADJACENTLY LEFT-SIDE TRAINING PROCESS. RESULTS
ARE REPORTED BASED ON SPEARMAN’S RANK.

CBOW| +LWET || SG +LWET || Glove | +LWET
RG-65 0.63 0.64 0.68 | 0.70 0.60 0.62
WS-353 0.60 0.61 0.65 | 0.66 0.49 0.50
Men-3k 0.68 0.68 0.72 | 0.73 0.61 0.61
SCWS 0.63 0.64 0.63 | 0.64 0.62 0.62
RW 0.44 0.45 0.46 | 0.46 0.43 0.44
MTurk287 | 0.65 0.67 0.66 | 0.67 0.65 0.65

D. Effect of Modeling Contrast on Semantic Similarity

According to our strategy, LWET can adjust the positions
of words in vector space, which probably does harm to the
original semantic structure. This experiment, which is also
called word similarity, is conducted to test whether LWET
has a negative effect on the semantic structure in initial
vector space. We choose 6 gold standard datasets: Wordsim-
353 [28], RG-65 [29], Men-3k [30], Rare-Word [31], SCWS
[21] and MTurk287 [32]. Each dataset consists of 2 parts:
word pairs and human score. After obtaining the Euclidean
distance of each word pair, we evaluate the correlation between
the distance and human score. We apply Spearman’s rank
correlation coefficient to quantify the results , which are shown
in Table II. It is obvious that LWET maintains and slightly
enhances the semantic information rather than destroys it.



TABLE III
RESULTS OF DISTINGUISHING ANTONYMS FROM SYNONYMS.“S” DENOTES SYNONYMOUS PAIRS AND “A” DENOTES ANTONYMOUS PAIRS. RESULTS ARE
REPORTED BASED ON ACCURACY. “+” MEANS THE RESULTS OF LWET IS BASED ON THE ADJACENTLY LEFT-SIDE TRAINING PROCESS. NUMBERS IN
BOLD MEAN THE BEST ANSWERS.

CBOW | +LWET SG +LWET Glove | +LWET

S 0.53 0.68 0.58 0.69 0.55 0.66
Verb

A 0.53 0.68 0.58 0.69 0.55 0.66

S 0.43 0.55 0.51 0.55 0.53 0.63
Noun

A 0.43 0.55 0.51 0.55 0.53 0.63

Adi S 0.54 0.78 0.54 0.77 0.56 0.77
.

A 0.54 0.78 0.54 0.77 0.56 0.77
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Fig. 2. Semantic structure of LWET’s word embeddings. Words “important
nearest to the target word. Antonyms are far away from the target word. Irrelevant words like “tiger”, “bear”,

area between synonyms and antonyms.
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Fig. 3. In this figure, we illustrate the difference between the average antonymous distance and the average irrelevant distance. The left figure illustrates the
result of pre-trained word embeddings. Most of the points are below zero, which indicates that the irrelevant words are always in the farthest position. The
right figure is ours. After tuning process, antonyms locate in the farthest position.

E. Semantic Structure In Vector Space of LWET

In this section, we exploit Principal Component Analysis
(PCA) to reduce the dimension of LWET’s word embeddings
from 200 to 2. The pre-trained word embeddings used in
LWET is based on Skip-gram. We randomly select some
words and their antonyms, synonyms and irrelevant words
from the vocabulary and illustrate them in Fig.2 by using
some visualization tools. From the pictures, we can easily
find some meaningful semantic structures. Firstly, synonyms
are always near to the target word. Secondly, the distance
between the target word and its antonyms is always the

largest. Lastly, irrelevant words are like a boundary between
synonyms and antonyms, which can help us easily distinguish
antonyms from synonyms. These exciting semantic structures
are corresponding to our expectation and consistent with the
objective of LWET.

FE. Parameter Analysis

In order to validate LWET, we extract the target words,
which have synonyms and antonyms in lexicons, from all
datasets of antonym recognition experiment. Then, we cal-
culate the average distances between each word and its syn-
onyms, antonyms and irrelevant words, respectively. We find
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Fig. 4. Parameter Analysis of LWET based on antonym recognition. The
performance is sensitive to v and d.

the average distance between target word and its synonyms are
always the smallest. We use the average distance between a
word and its antonyms minus the average distance between it
and its irrelevant words. The difference is illustrated in Fig.3.
The x-axis is the order of target words. The y-axis describes
this difference. The left figure illustrates the original word
embeddings and the right figure is ours. From the left figure,
we observe that most of the points are below zero, which
means that the irrelevant words are always in the farthest
distance. After our revision, we observe that most of the
points are larger than zero in the right figure, which means
the antonyms are always in the farthest distance.

We also do parametric sensitivity analysis of LWET. Firstly,
all datasets of antonyms recognition are combined. Then, we
detect the F-score of antonyms recognition on the new dataset
when we change the parameters. Each parameter varies from 0
to 10, and we change only one parameter each time. Result is
illustrated in Fig.4. As observed, the result is not very sensitive
to o and . When v changes from 2 to 6 and & changes
from 2 to 4, however, the result suffers great changes. In other
word, the result mainly depends on + and §. According to our
observation, parameter « and 3 should be chosen from 1 to 3,
~ should be chosen from 2 to 3 and ¢ should be chosen from
4 to 6.

V. CONCLUSION

To overcome the deficiency of distributional semantics
hypothesis when modeling lexical contrast, in this paper, we
proposed a novel model named Lexicon-based Word Em-
bedding Tuning model (LWET). The goal of LWET is to
utilize semantic lexicons to adjust the distributions of words
in vector space so that the ability of word embeddings to
distinguish antonyms and synonyms can be improved. For a
target word, our strategy is to make the synonyms become
the nearest to it while antonyms stay in the furthest area,
and the irrelevant words as a boundary lie somewhere in
between. To solve LWET, we propose 2 approximation al-
gorithms: positive sampling and quasi-hierarchical softmax.
Positive sampling is with faster training speed but at the cost
of worse performance than quasi-hierarchical softmax. We test
LWET together with the baselines on antonym recognition,
distinguishing antonyms from synonyms and word similarity.
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The first two experiments indicate that LWET can significantly
improve the ability of word embeddings to detect antonyms.
The last experiment shows that LWET can remain and enhance
the semantic similarity in vector space rather than destroy
these valuable semantic information. In general, based on
semantic lexicons, LWET can significantly improve the ability
of word embeddings to distinguish synonyms and antonyms.
The word embeddings used in this paper are trained based
on a medium-size corpus. In future work, we will retrain all
models on a huge corpus and verify LWET again.
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