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Abstract—It is widely accepted that traditional word em-
bedding models, which rely on distributional semantics hy-
pothesis, are relatively limited for contrast meaning problem.
Distributional semantics hypothesis indicates that words lying
in similar contexts have similar representations in vector space.
Nevertheless, synonyms and antonyms often locate in similar
contexts, which means they appear close to each other in vector
space. Hence, it is of great difficulty to distinguish antonyms from
synonyms. To address this challenge, we propose an optimization
model, named Lexicon-based Word Embedding Tuning (LWET)
model. The goal of LWET is to incorporate reliable semantic
lexicons to tune the distributions of pre-trained word embeddings
in the vector space so as to improve their ability of distinguishing
antonyms from synonyms. To speed up the training process
of LWET, we propose two approximation algorithms, including
positive sampling and quasi-hierarchical softmax. Compared with
quasi-hierarchical softmax, positive sampling is faster, however,
at the cost of worse performance. In experiments, LWET and
other state-of-the-art models are tested on antonyms recognition,
distinguishing antonyms from synonyms and word similarity.
The results of the first two experiments show that LWET
significantly improves the ability of word embeddings to detect
antonyms, thus achieving the state-of-the-art performance. On
word similarity, LWET gets slightly better performance than the
state-of-the-art models. It means that LWET can remain and
strengthen the semantic structure rather than destroy it when
tuning word distributions in vector space. In general, compared
with related work, LWET can not only achieve similar or even
better performance, but also speed up the training process.

I. INTRODUCTION

Word embedding, which is defined as learning word repre-

sentations into vector space from collocations in large corpus,

has been widely used in the area of Natural Language Pro-

cessing (NLP). Traditional word embedding models contain

Semantic Extraction using a Neural Network Architecture

(SENNA) [1], the hierarchical log-bilinear model [2], Con-

tinuous Bag-of-Word Model (CBOW), Skip-gram [3] and

Global Vectors [4]. Effectiveness of these models has been

demonstrated by various applications, such as information

retrieval [5], question answering [6] and text classification [7].

These models mentioned above are mainly based on the

distributional semantics hypothesis, which indicates that words

in similar context have similar representations in vector space.

Nevertheless, it is reported that word embeddings trained by

distributional semantics hypothesis are relatively limited in

∗ indicates the corresponding author

modeling lexical contrast [8]. Since a word’s synonyms and

its antonyms tend to share the same context, and they are

likely to have similar representations. As a result, these word

embeddings often lead to confusion between synonyms and

antonyms. For example, in sentences “he likes the cat” and

“he dislikes the cat”, “likes” and “dislikes” sit in the same

context. According to distributional semantics hypothesis, the

two words will have similar representations. Hence, it is

very difficult to distinguish them. Actually, modeling lexical

contrast is a key point in NLP because it is strongly associated

with other applications such as sentiment analysis [9] and

text classification [7]. In order to overcome the deficiency

of distributional semantics hypothesis in modeling lexical

contrast, some effective models have been proposed [8], [10]–

[13]. However, most of these models are time-consuming when

applied to capture semantic information from a huge corpus.

Recent work shows that the performance of word embed-

dings can be significantly improved by incorporating other reli-

able linguistic resources [14]–[17] including semantic lexicons

like PPDB [18], WordNet [19] and Rogets [20]. Motivated by

the idea of using semantic lexicons, we propose an optimiza-

tion model, called Lexicon-based Word Embedding Tuning
(LWET) model, to improve the ability of word embeddings

to detect contrast meanings. Based on the pre-trained word

embeddings, we introduce a tuning process where reliable

semantic lexicons are appended to tune the distributions of

word embeddings in vector space so that the ability of word

embeddings to distinguish antonyms from synonyms can be

improved. For a target word, our strategy is to make synonyms

locate in the nearest positions to the target word and antonyms

far from the target word, while the irrelevant words act as

a boundary locating between synonyms and antonyms. More

details of LWET are illustrated in Fig.1.

In order to reduce the computational complexity of LWET,

we propose 2 approximation algorithms: positive sampling

and quasi-hierarchical softmax. The former is with higher

speed and the latter can achieve better performance but at the

cost of lower efficiency. We evaluate LWET and the state-of-

the-art methods on three experiments: antonym recognition,

distinguishing antonyms from synonyms and word similarity.

The results of the first two experiments show that LWET can

significantly improve the ability of word embeddings to detect

antonyms. The performance on word similarity demonstrates
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Fig. 1. The left part indicates the traditional model. After training process, synonyms and antonyms locate near with each other like the middle circle shows.
The right part illustrates the basic idea of our model. In vector space, our model can make the antonyms far away from the target word so that synonyms and
antonyms can be explicitly distinguished from each other.

that LWET can remain and strengthen the semantic structure

rather than destroy it when tuning word distributions in

vector space. For clarity, our contributions are summarized

as follows:

• Actually, LWET is a linear model. Compared with related

work, LWET is with lower computational complexity and

can achieve similar or better performance.

• For solving LWET, we propose two approximation algo-

rithms: positive sampling and quasi-hierarchical softmax.

Both of the algorithms can speed up the training process.

Positive sampling is quicker while quasi-hierarchical soft-

max can get better performance but at the cost of lower

efficiency.

• LWET gets the state-of-the-art performance in the first

two experiments and strengthens the original semantic

structure at the same time.

The rest of the paper is arranged as follows. Section II

introduces some related work. Lexicon-based Word Embed-

ding Tuning model is proposed in Section III. In Section IV,

we discuss the experiments used for performance comparison.

Conclusion is drawn in Section V.

II. RELATED WORK AND BACKGROUND

In dictionary, words “antonym”, “contrasting” and “oppo-

site” have different definitions. However these words some-

times can be used interchangeably. In this paper, they all refer

to the same meaning when they are used.

Word Embedding Word embedding is to represent words

with low dimensional vectors, which is a hot topic in NLP.

Recently, some researchers are committed to find ways to

improve the quality of word embeddings. Some of them

modified existing models, and the others proposed some brand

new models. In [21], global context information was added

to input layer of their model to improve the quality of

word embeddings. Recently, neural network-based models like

CBOW and Skip-gram [3] have attracted a lot of attentions due

to their effectiveness in dealing with large corpora. Pennington

et al. presented a new global log-bilinear regression model

named Glove that combines the advantages of global matrix

factorization and local context window methods [4]. Liu et

al. proposed a topic word embedding method, which learns

word embeddings based on both words and their topics [7].

Sun et al. raised two novel distributional models combining not

only syntagmatic but also paradigmatic relations [22]. Chen et

al. utilized convolutional neural network to capture valuable

information hidden in WordNet gloss and added it to training

process of word embeddings [23].

Modeling Lexical Contrast Due to the deficiency of dis-

tributional semantics hypothesis-based word embeddings in

modeling lexical contrast, Chen et al. proposed a contrasting

word embedding framework and two effective models, which

achieved the highest F-score of 92% on the Graduate Record

Examination (GRE) “most contrasting word” questions [8].

In [12], Yih et al. utilized latent semantic analysis (LSA)

to encode contrast meaning, which is called PILSA and

achieved one of the highest F-score of 81% on the same

dataset. Recently, Zhang et al. [24] proposed an efficient

model, called Bayesian probabilistic tensor factorization. Not

only the dimensional semantic information but also the other

unsupervised lexicons information were considered in tensor

factorization and this model achieved F-score of 82 % on the

same dataset. Ono et al. [13] proposed a learning model which

adds the thesauri information to Skip-gram with Negative

Sampling (SGNS) and achieved F-score of 89% on the same

dataset. However, these models mentioned above suffer from

high computational complexity and need a lot of time to
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conduct the training process. On the contrary, our model

LWET is with much lower computational complexity and can

train a large corpus in a short time.

III. LEXICON-BASED WORD EMBEDDING TUNING

(LWET) MODEL

In this section, we are going to introduce Lexicon-based

Word Embedding Tuning model (LWET). The objective of

LWET is to incorporate semantic lexicons to improve the

ability of word embeddings to detect contrast meanings.

To speed up the training process of LWET, we proposed

two approximation algorithms: positive sampling and quasi-

hierarchical softmax. Both of the algorithms are introduced in

the end of this section.

A. Model Description

For some word embedding models, which are related to

model lexical contrast, the words in vocabulary are divided

into only two parts: synonyms and antonyms. Basic idea of

these models is to expand the distance between the target word

and its antonyms. Although this method can help us easily

distinguish antonyms from synonyms, the distance between

antonyms and the irrelevant words is shortened as well, since

the irrelevant words are always locate far away from the target

word in initial vector space. Hence, it will be more difficult

to distinguish antonyms from the irrelevant words.

In LWET, for a target word, the remaining words in vo-

cabulary are divided into 3 categories: synonyms, antonyms

and irrelevant words. In lexicons, irrelevant words are defined

as the words, which are neither semantic-close nor semantic-

opposite to the target word. As shown in Fig.1, the middle

circle represents the structure of pre-trained word embeddings,

where synonyms and antonyms of the target word are mixed

together. Therefore, it is hard to distinguish them from each

other. The right circle in Fig.1 illustrates the ideal result of

LWET: synonyms become the nearest to the target word while

antonyms stay in the furthest area, and the irrelevant words

lie somewhere in between, which form a boundary to separate

synonyms and antonyms.

Let V = {w1, w2, · · · , wn} be the vocabulary, and n is the

vocabulary size. The matrix Q̂ denotes the pre-trained word

embeddings, which are trained based on the models like Skip-

gram, CBOW [3], Glove [4], etc. Each column q̂i (q̂i ∈ R
d) of

Q̂ is defined as the word vector of wi, and d is the dimension

of word vectors. The retrofitted vector representations are

saved in a new collection matrix Q = {q1, · · · , qn} (qi ∈ R
d).

For a target word wi, define ES = {(i, j) | wi, wj ∈ V
and wi, wj are synonyms } as its synonymy relationship

in vocabulary, EA = {(i, k) | wi, wk ∈ V and wi, wk

are antonyms } as its antonymy relationship, and EI =
{(i, l) | wi, wl ∈ V and wi, wl are semantically unrelated
} as its irrelevant relationship.

After the tuning process, the retrofitted word vectors should

be not only the closest to their counterparts and synonyms in

Q̂, but also far away from their antonyms. At the same time,

the irrelevant words as a boundary locate between synonyms

and antonyms. Ideally, the word distribution should meet the

following conditions:

Condition 1: ∀i ∈ [1, n],D(qi, qj) < D(qi, ql),
∀(i, j) ∈ ES , ∀(i, l) ∈ EI .

Condition 2: ∀i ∈ [1, n],D(qi, qk) > D(qi, ql),
∀(i, k) ∈ EA, ∀(i, l) ∈ EI .

where D(qi, q̂i), D(qi, qj), D(qi, qk), D(qi, ql) represent the

distance from word vector qi to its counterpart in Q̂, its

synonym vector qj , its antonym vector qk and its irrelevant

word vector ql in Q, respectively. From the pre-trained word

embeddings, we observe that the distances between the target

word wi and its irrelevant words are usually the largest. In

order to get an ideal result, the distances between wi and its

irrelevant words need to be shortened. Accordingly, during

the tuning process, our optimal objective is to minimize the

following cost function:

Ψ(Q) =
n∑

i=0

[
α ·D(qi, q̂i) + β

∑
(i,j)∈ES

D(qi, qj)

N i
S

−γ ∑
(i,k)∈EA

D(qi, qk)

N i
A

+ δ
∑

(i,l)∈EI

D(qi, ql)

N i
I

] (1)

In the square brackets, the second component indicates

the average distance between wi and its synonyms, the third

component denotes the average distance between qi and its

antonyms and the last component represents the average

distance between wi and its irrelevant words. N i
S , N i

A and

N i
I separately denote the number of synonyms, the number

of antonyms and the number of irrelevant words of wi. The

parameters α, β, γ, δ control the relative strength of each

component and need to be determined according to specific

requirements. In this paper, we utilize Euclidean distance [14]

to measure the relation between two words.

B. Learning

Although the synonyms and antonyms of a word are count-

able, the number of its irrelevant words is nearly equal to the

vocabulary size n, which means the computational complexity

of Eq. (1) is equal to O(n2) and can hardly be solved in finite

time. To reduce the computational complexity, we propose

two approximation algorithms: positive sampling and quasi-

hierarchical softmax.

1) Positive Sampling: This method is motivated by the

strategy “negative sampling” [25] where non-context words

are regarded as “negative” samples. Here, the distance

D(qi, ql), (i, l) ∈ EI also need to be shortened to some extent,

which is similar to the operations of qi and its synonymy

vectors. Therefore, the irrelevant words are regarded to be

“positive” samples. For word wi, we assume that its irrelevant

words are uniformly distributed in vector space and randomly

sample mi words from its original irrelevant word set as its

new irrelevant word set, as shown in the following equation:

C(wi) = sample(i,mi) ⊆ EI , i ∈ [1, n],
mi = max{N i

A, N
i
S}, (2)

where sample(i,mi) means randomly sampling mi irrelevant

connections from EI . If word wi has no antonym or synonym,
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Algorithm 1 LWET with Positive Sampling

1: Input: Initial word embeddings Q̂, Learning rate step,

Threshold λ, Iterating times t
2: Output: Word embeddings which have been improved Q
3: Initialize: α, β, γ, δ, Ψold = 0, Ψnew = 0, Q = Q̂,

index = 0
4: while TRUE do
5: index = index+ 1
6: Ψold = Ψnew

7: Ψnew = 0
8: for wi in V do
9: get wi’s synonyms from lexicons, Swi

10: get wi’s antonyms from lexicons, Awi

11: sample m irrelevant words and get C(wi)
12: update Ψnew according to cost function.

13: update the first derivative of Ψ(Q) with respect to wi

14: update wi’s vector according to the first derivative

15: end for
16: if Ψnew −Ψold < λ or index > t then
17: BREAK

18: end if
19: end while
20: return Q

Algorithm 2 LWET with Quasi-hierarchical Softmax

1: Input: Initial word embeddings Q̂, Learning rate step,

Threshold λ, Iterating times t
2: Output: Word embeddings which have been improved Q
3: Initialize: α, β, γ, δ, Ψold = 0, Ψnew = 0, Q = Q̂,

index = 0
4: while TRUE do
5: index = index+ 1
6: Ψold = Ψnew

7: Ψnew = 0
8: for wi in V do
9: get wi’s synonyms from lexicons, Swi

10: get wi’s antonyms from lexicons, Awi

11: get irrelevant words Iwi , Iwi = V − Swi −Awi

12: divide Iwi
into

⌈√
N i

I

⌉
parts and calculate the central

points qt of each part

13: update Ψnew according to cost function.

14: update the first derivative of Ψ(Q) with respect to wi

15: update wi’s vector according to the first derivative

16: end for
17: if Ψnew −Ψold < λ or index > t then
18: BREAK

19: end if
20: end while
21: return Q

mi is set as 0, otherwise mi is equal to the max value of N i
A

and N i
S . Thus, the fourth part of Eq. (1) can be approximated

as (mi �= 0):

δ
∑

(i,l)∈EI

D(qi, ql)

N i
I

∼= δ
∑

(i,l)∈C(wi)

D(qi, ql)

mi
, (3)

Hence, the computational complexity of modified Eq. (1)

becomes O(nm), where m = 1
n

∑n
i=1 mi.

2) Quasi-hierarchical Softmax: This method is inspired by

hierarchical softmax [25]. For word wi, we equally separate

its N i
I irrelevant words into T groups and each group contains

nearly
⌈√

N i
I

⌉
words. In each group, the central point of

all words qt (t ∈ [1, T ], T =
⌈√

N i
I

⌉
) is figured out as

the representative for the group. Therefore, we can utilize T
derived vectors to approximately calculate the fourth part of

Eq. (1):

δ
∑

(i,l)∈EI

D(qi, ql)

N i
I

∼= δ
T∑

t=1

D(qi, qt)

T
. (4)

Thus, the computational complexity of Eq. (1) can be reduced

to O(n
√
n). With the modified cost function, we can employ

stochastic gradient decent to tune each word embedding qi (i ∈
[1, n]) iteratively. Hyperparameters α, β, γ, δ are chosen based

on grid searching.

The algorithm descriptions of positive sampling and quasi-

hierarchical softmax are shown in Algorithm 1 and Algorithm

2, respectively.

IV. EXPERIMENTS

In this section, we are about to introduce the experiments

used to evaluate the performance of LWET. Among all ex-

periments, antonym recognition and distinguishing antonyms

from synonyms are conducted for testing the ability of word

embeddings to do contrast meanings detection. Word similarity

is utilized to show whether LWET will destroy the semantic

structures in original word vector space. In the end, we

discuss the effect of hyperparameters on the quality of word

embeddings. For clarity, some experimental settings are given

firstly.

A. Experimental Settings

In this paper, we compare LWET with the baselines: CBOW,

Skip-gram [3] and Glove [4], which are all based on distri-

butional semantics hypothesis. All baselines are famous for

their efficiency and effectiveness. Glove is trained based on the

source code1 and the rest baselines are trained by word2vec2

using negative sampling algorithm. The corpus utilized in this

paper origins from the 2013 ACL Workshop on Machine

Translation3, which is used in [26]. It contains nearly 500

millions of tokens and 600 thousands of vocabularies. The

lexicons we adopt are provided by Chen et al. [8], which

contain 92339 word types, 520734 antonym pairs and 646433

synonym pairs. The dimension of word embeddings is set as

300, which is reported to work well in [3]. The number of

1http://nlp.stanford.edu/projects/glove/
2https://github.com/dav/word2vec
3http://www.statmt.org/wmt13/translation-task.html
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negative samples is set as 20 according to the empirical rule

mentioned in [25]. Context window size is set as 5. Other

parameters are equal to the default settings in the source codes.

Based on grid searching, in LWET, we set α = 1, β = 2,

γ = 3 and δ = 4. We observe that the retrofitted word

embeddings perform better than all the baselines no matter

which approximation algorithm is selected.

Compared with quasi-hierarchical softmax, the tuning pro-

cess can work faster with positive sampling but at the cost

of worse performance. For fair comparison, we report our

best performance which is based on quasi-hierarchical softmax

algorithm.

TABLE I
THE RESULTS OF ANTONYM RECOGNITION. “+” MEANS THE RESULTS OF

LWET IS BASED ON THE ADJACENTLY LEFT-SIDE TRAINING PROCESS.
NUMBERS IN BOLD MEAN THE BEST ANSWERS.

CBOW +LWET SG +LWET Glove +LWET

Dev. 0.16 0.59 0.10 0.61 0.15 0.56

Test 0.13 0.63 0.12 0.65 0.13 0.60

Adj. 0.32 0.86 0.42 0.86 0.41 0.86

Verb 0.39 0.91 0.29 0.94 0.31 0.88

Noun 0.36 0.81 0.43 0.82 0.34 0.81

Adv. 0.29 0.92 0.41 0.92 0.37 0.92

B. Antonym Recognition

The experiment is conducted to test the ability of word

embeddings to distinguish antonyms. We utilize the “closest-

to-opposite” dataset, which is widely used in previous work

[8], [12]. The dataset includes 2 parts: development set and test

set. The former contains 162 questions and the latter contains

790 questions [11]. Moreover, we also use another “closest-

to-opposite” question dataset which is created for WordNet

opposites. This dataset consists of 4 parts including adjectives

(551 questions), adverbs (165 questions), nouns (330 questions

) and verbs (226 questions). All the datasets are kindly released

at Mohammad’s homepage4. Each question in the datasets has

three components including target word, five candidates and

the correct answer. This task is to find the antonym of target

word from the candidates. In the vector space of retrofitted

word embeddings, the candidate with the largest Euclidean

distance to the target word is chosen as the answer. For

question “a :: c1, c2, c3, c4, c5 :: ans”, the target of this task

can be organized as following equation:

âns = argmax
ci

Euc(a, ci), i ∈ [1, 5] (5)

where Euc(a, ci) denotes the Euclidean distance between a
and ci. If âns = ans, the question is identified to be correctly

answered. For pre-trained word embeddings, the word whose

distance to the target word is the smallest is viewed as

4http://www.saifmohammad.com/WebPages/
ResearchInterests.html

answer. We apply F-score to evaluate the performance of word

embeddings. The results are reported in Table I.

From Table I, we find that the baselines achieve poor

performance on all datasets, which validates the drawback

of distributional semantics hypothesis when modeling lexical

contrast. On the contrary, LWET significantly improves the

performance, which illustrates the effectiveness of our model.

C. Distinguishing antonyms from synonyms

This experiment is conducted to evaluate the ability of word

embeddings to distinguish antonyms from synonyms. To some

extent, this experiment is more difficult to the first one. We

utilize the dataset mentioned in [27], which contains 3 parts:

adjectives (300 antonymous pairs and 300 synonymous pairs),

nouns (350 antonymous pairs and 350 synonymous pairs) and

verbs (400 antonymous pairs and 400 synonymous pairs). The

accuracy is applied to evaluate the performance. To calculate

the accuracy, we firstly sort the synonymous and antonymous

word pairs according to their Euclidean distances. If a word

pair belongs to the first half, it is viewed as synonymous pair.

An antonymous pair is confirmed if it is in the last half. The

results are reported in Table III.

Compared with the results described in [27], LWET gets

better performance. Therefore, LWET gets the state-of-the-

art result on this task, which consistently demonstrates the

effectiveness of LWET.

TABLE II
THE RESULTS OF WORD SIMILARITY. “+” MEANS THE RESULTS OF LWET
IS BASED ON THE ADJACENTLY LEFT-SIDE TRAINING PROCESS. RESULTS

ARE REPORTED BASED ON SPEARMAN’S RANK.

CBOW +LWET SG +LWET Glove +LWET

RG-65 0.63 0.64 0.68 0.70 0.60 0.62

WS-353 0.60 0.61 0.65 0.66 0.49 0.50

Men-3k 0.68 0.68 0.72 0.73 0.61 0.61

SCWS 0.63 0.64 0.63 0.64 0.62 0.62

RW 0.44 0.45 0.46 0.46 0.43 0.44

MTurk287 0.65 0.67 0.66 0.67 0.65 0.65

D. Effect of Modeling Contrast on Semantic Similarity

According to our strategy, LWET can adjust the positions

of words in vector space, which probably does harm to the

original semantic structure. This experiment, which is also

called word similarity, is conducted to test whether LWET

has a negative effect on the semantic structure in initial

vector space. We choose 6 gold standard datasets: Wordsim-

353 [28], RG-65 [29], Men-3k [30], Rare-Word [31], SCWS

[21] and MTurk287 [32]. Each dataset consists of 2 parts:

word pairs and human score. After obtaining the Euclidean

distance of each word pair, we evaluate the correlation between

the distance and human score. We apply Spearman’s rank

correlation coefficient to quantify the results , which are shown

in Table II. It is obvious that LWET maintains and slightly

enhances the semantic information rather than destroys it.
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TABLE III
RESULTS OF DISTINGUISHING ANTONYMS FROM SYNONYMS.“S” DENOTES SYNONYMOUS PAIRS AND “A” DENOTES ANTONYMOUS PAIRS. RESULTS ARE

REPORTED BASED ON ACCURACY. “+” MEANS THE RESULTS OF LWET IS BASED ON THE ADJACENTLY LEFT-SIDE TRAINING PROCESS. NUMBERS IN

BOLD MEAN THE BEST ANSWERS.

CBOW +LWET SG +LWET Glove +LWET

Verb
S 0.53 0.68 0.58 0.69 0.55 0.66

A 0.53 0.68 0.58 0.69 0.55 0.66

Noun
S 0.43 0.55 0.51 0.55 0.53 0.63

A 0.43 0.55 0.51 0.55 0.53 0.63

Adj.
S 0.54 0.78 0.54 0.77 0.56 0.77

A 0.54 0.78 0.54 0.77 0.56 0.77
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Fig. 2. Semantic structure of LWET’s word embeddings. Words “important”, “increase” and “similar” are the target words. Obviously, synonyms are the
nearest to the target word. Antonyms are far away from the target word. Irrelevant words like “tiger”, “bear”, “pear” and “apple” are always located in the
area between synonyms and antonyms.

Fig. 3. In this figure, we illustrate the difference between the average antonymous distance and the average irrelevant distance. The left figure illustrates the
result of pre-trained word embeddings. Most of the points are below zero, which indicates that the irrelevant words are always in the farthest position. The
right figure is ours. After tuning process, antonyms locate in the farthest position.

E. Semantic Structure In Vector Space of LWET

In this section, we exploit Principal Component Analysis
(PCA) to reduce the dimension of LWET’s word embeddings

from 200 to 2. The pre-trained word embeddings used in

LWET is based on Skip-gram. We randomly select some

words and their antonyms, synonyms and irrelevant words

from the vocabulary and illustrate them in Fig.2 by using

some visualization tools. From the pictures, we can easily

find some meaningful semantic structures. Firstly, synonyms

are always near to the target word. Secondly, the distance

between the target word and its antonyms is always the

largest. Lastly, irrelevant words are like a boundary between

synonyms and antonyms, which can help us easily distinguish

antonyms from synonyms. These exciting semantic structures

are corresponding to our expectation and consistent with the

objective of LWET.

F. Parameter Analysis
In order to validate LWET, we extract the target words,

which have synonyms and antonyms in lexicons, from all

datasets of antonym recognition experiment. Then, we cal-

culate the average distances between each word and its syn-

onyms, antonyms and irrelevant words, respectively. We find
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Fig. 4. Parameter Analysis of LWET based on antonym recognition. The
performance is sensitive to γ and δ.

the average distance between target word and its synonyms are

always the smallest. We use the average distance between a

word and its antonyms minus the average distance between it

and its irrelevant words. The difference is illustrated in Fig.3.

The x-axis is the order of target words. The y-axis describes

this difference. The left figure illustrates the original word

embeddings and the right figure is ours. From the left figure,

we observe that most of the points are below zero, which

means that the irrelevant words are always in the farthest

distance. After our revision, we observe that most of the

points are larger than zero in the right figure, which means

the antonyms are always in the farthest distance.

We also do parametric sensitivity analysis of LWET. Firstly,

all datasets of antonyms recognition are combined. Then, we

detect the F-score of antonyms recognition on the new dataset

when we change the parameters. Each parameter varies from 0

to 10, and we change only one parameter each time. Result is

illustrated in Fig.4. As observed, the result is not very sensitive

to α and β. When γ changes from 2 to 6 and δ changes

from 2 to 4, however, the result suffers great changes. In other

word, the result mainly depends on γ and δ. According to our

observation, parameter α and β should be chosen from 1 to 3,

γ should be chosen from 2 to 3 and δ should be chosen from

4 to 6.

V. CONCLUSION

To overcome the deficiency of distributional semantics

hypothesis when modeling lexical contrast, in this paper, we

proposed a novel model named Lexicon-based Word Em-

bedding Tuning model (LWET). The goal of LWET is to

utilize semantic lexicons to adjust the distributions of words

in vector space so that the ability of word embeddings to

distinguish antonyms and synonyms can be improved. For a

target word, our strategy is to make the synonyms become

the nearest to it while antonyms stay in the furthest area,

and the irrelevant words as a boundary lie somewhere in

between. To solve LWET, we propose 2 approximation al-

gorithms: positive sampling and quasi-hierarchical softmax.

Positive sampling is with faster training speed but at the cost

of worse performance than quasi-hierarchical softmax. We test

LWET together with the baselines on antonym recognition,

distinguishing antonyms from synonyms and word similarity.

The first two experiments indicate that LWET can significantly

improve the ability of word embeddings to detect antonyms.

The last experiment shows that LWET can remain and enhance

the semantic similarity in vector space rather than destroy

these valuable semantic information. In general, based on

semantic lexicons, LWET can significantly improve the ability

of word embeddings to distinguish synonyms and antonyms.

The word embeddings used in this paper are trained based

on a medium-size corpus. In future work, we will retrain all

models on a huge corpus and verify LWET again.
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