
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Efficient Cluster-Based Boosting for
Semisupervised Classification

Rodrigo G. F. Soares, Huanhuan Chen , Senior Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract— Semisupervised classification (SSC) consists of using
both labeled and unlabeled data to classify unseen instances.
Due to the large number of unlabeled data typically available,
SSC algorithms must be able to handle large-scale data sets.
Recently, various ensemble algorithms have been introduced with
improved generalization performance when compared to single
classifiers. However, existing ensemble methods are not able to
handle typical large-scale data sets. We propose efficient cluster-
based boosting (ECB), a multiclass SSC algorithm with cluster-
based regularization that avoids generating decision boundaries
in high-density regions. A semisupervised selection procedure
reduces time and space complexities by selecting only the most
informative unlabeled instances for the training of each base
learner. We provide evidences to demonstrate that ECB is able
to achieve good performance with small amounts of selected data
and a relatively small number of base learners. Our experiments
confirmed that ECB scales to large data sets while delivering
comparable generalization to state-of-the-art methods.

Index Terms— Cluster-based regularization, ensemble learn-
ing, multiclass classification, semisupervised classification.

I. INTRODUCTION

LABELING instances may require the allocation of expen-
sive resources, e.g., human expertise and time. On the

other hand, obtaining large amounts of unlabeled points
can be cheap and straightforward. Semisupervised classifica-
tion (SSC) algorithms learn from both labeled and unlabeled
instances.

In order to use the unlabeled data distribution, SSC algo-
rithms employ various assumptions [1]. The smoothness
assumption states that if a pair of points is similar, they are
likely to yield similar outputs. The cluster assumption assumes
that classes are often separated by a low-density region. If two
instances belong to one cluster, it is probable that they share
class probabilities. And the manifold assumption states that the
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true structure of the data lies in a low-dimensional manifold
embedded in the high-dimensional data space and, by using
such manifold instead of the original structure, the classifier
would have better generalization accuracy.

The typical large number of unlabeled instances has a
great impact on the computational time of existing semisuper-
vised classifiers. Among methods that implement the cluster
assumption (cluster-based algorithms), transductive support
vector machines (TSVMs) [2] is a popular choice. However,
it requires time O(m3) where m is the number of instances.
Classifiers based on the manifold assumption (manifold-based
algorithms) are also time consuming, they require O(m3)
or O(vm2) [3], [4]. For such binary classifiers, this issue
is aggravated in multiclass SSC by the additional computa-
tional time required by decomposition approaches, such as
one-versus-all.

Ensemble learning has been successfully employed in both
supervised [5] and semisupervised [6], [7] classification to
improve generalization when compared to single classifiers.
However, the use of existing ensemble techniques in large SSC
data sets is limited due to time and memory requirements.
For example, RegBoost [7] is a binary ensemble classifier
that, if implemented with support vector machines (SVMs),1

requires O(vm log m + τ s3 + τvu), where τ is the number of
base learners (boosting iterations), s is the sample size, and
u is the number of unlabeled points. Due to the computation
of nearest neighbors, RegBoost requires memory of O(m2),
which also might prevent its application to large data sets.

The computation complexity of binary ensembles will
increase for multiclass classification. A few multiclass ensem-
ble approaches have been proposed [6], [8]. However, despite
having implemented the cluster assumption, these algorithms
do not take full advantage of cluster assignments [9].

The work of [10] introduces cluster-based boosting
(CBoost), a multiclass ensemble approach that uses clus-
tering methods in its regularization technique. Such a clas-
sifier is able to overcome possible errors in pseudolabels
assignments from the ensemble procedure and is robust to
overlapping classes and to the relative situation of few labeled
points in a given cluster when the cluster assumption holds.
However, the complexity of CBoost is O(ec2h2u + τcvu),
where c is the number of classes, h is the number of
hidden nodes in radial basis function network (RBFN), e is
the number of epochs in RBFN, and u is the number of

1SVM is the base classifier recommended by Chen and Wang [7].
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unlabeled instances. CBoost may not be applicable to large-
scale data sets.

We propose the efficient cluster-based boosting (ECB). ECB
is a greedy boosting approach that improves the scalability of
ensemble learning for large-scale SSC data sets, while main-
taining the generalization ability of ensemble-based methods.
The proposed method implements the cluster assumption by
using a regularization technique based on cluster posteriors.
We tackle large data sets by selecting only the most informa-
tive unlabeled points, along with pseudolabels,2 to form the
training set for each base learner. Our experiments demonstrate
that ECB delivers good predictive accuracy in large data sets.
This paper is an extension of [11], where a comprehensive
study on SSC can be found.

A. Contributions

The proposed approach has the following contributions.
1) ECB tackles large-scale data sets by selecting few infor-

mative unlabeled instances that will help to produce
significant improvement in the decision boundary.

2) ECB employs efficient clustering algorithm and approx-
imates nearest neighbors to reduce time and memory
requirements.

3) ECB is robust to overlapping classes and to the position
of the few labeled instances in a given cluster when the
cluster assumption holds [9].

4) ECB is designed for multiclass problems, so that it does
not depend on decomposition techniques.

5) Both ensemble and base classifiers have the same semi-
supervised loss function. The base classifiers will also
consider the neighborhood of an unlabeled instance
when learning its pseudolabel, so that new base learners
may be able to overcome possible errors in pseudolabels.

The remainder of this paper is organized as follows.
Section II analyses existing methods. Section III introduces
ECB, and Section IV shows our experimental studies and
discusses our contributions. Section V presents our conclusion.

II. BACKGROUND

In this section, we discuss the importance of proposing
a cluster-based ensemble for multiclass SSC that is able to
handle large amounts of data.

The computational complexity of various popular SSC
methods prevents their application to large data sets [12].
Manifold-based algorithms require large computational effort
due to the construction of graphs to represent the data. Such
graphs have labeled and unlabeled points as vertices and
labels are assigned to unlabeled vertices based on their neigh-
bors. Zhu and Ghahramani [4] introduced label propagation,
where labeled instances are used to assign labels to unlabeled
instances in its neighborhood according to a graph. In [13],
a transductive version of the k-NN classifier was trained via
graphs. In [3], random walks were employed in graphs to
assign labels to unlabeled data. The computational complexity

2In this paper, pseudolabels are posterior class probabilities that are sys-
tematically assigned to unlabeled instances by some classifiers. Pseudolabels
might be different from true labels.

of such methods is O(m3) or O(vm2) [12]. Moreover, such
manifold-based algorithms depend on the graph construction,
which often is a suboptimal procedure [14]. Typically, these
methods are not able to tackle unseen (test) data as they
are inherently transductive. Such a limitation can prevent the
application of graph-based methods in inductive problems.

Most existing cluster-based algorithms are also computa-
tionally intensive. TSVM [2] attempts to find the largest
margin between classes by searching for different label assign-
ments for unlabeled data and calculating margins between
dense regions of similarly labeled instances. Such a procedure
is expensive and requires time of O(m3). Later, [15] developed
a more efficient implementation of TSVM. If dense regions
are overlapping, this classifier might not generate a correct
decision boundary in the gap between these regions (clusters).
And, in this case, TSVM might be sensitive to the scarce
labeled instances in the dense regions [9].

The aforementioned algorithms are binary classifiers.
In order to perform multiclass classification, such methods
depend on decomposition techniques, e.g., one-versus-one
and one-versus-all. Thus, applying these costly algorithms
to multiclass classification requires multiple and expensive
runs. Such a drawback has a great impact on large-scale
data sets [8].

ClusterReg [9] is a multiclass cluster-based single classifier.
Such a method uses posterior cluster probabilities in its
regularization mechanism. When the cluster assumption holds,
this algorithm is capable of delivering good performance in
the presence of overlapping classes and it is robust to the
position of labeled instances within a cluster. If implemented
with RBFN, the complexity of ClusterReg is O(ec2m2u).

Ensemble algorithms, in particular boosting techniques,
were successfully employed in SSC [6]–[8]. RegBoost [7] uses
three semisupervised learning (SSL) assumptions. In order to
implement the cluster assumption, RegBoost uses a kernel
density estimation that will penalize the classifier if it does not
assign the same class to a pair of similar instances in a high-
density region. However, if overlapping high-density regions
are present, RegBoost might not find a potentially correct
decision boundary between these regions. RegBoost requires
time of O(vcm log m + cτ s3 + τcvu) for multiclass classi-
fication and, due to search for nearest neighbors, demands
memory of O(m2), which might be prohibitive for large data
sets. Yu et al. [16] investigated the use of ensembles in high-
dimensional SSC. Such algorithm splits features into several
subspaces, builds a graph for each subspace, trains a linear
algorithm (base classifier) on each graph and combines these
classifiers as an ensemble. The computational complexity of
such method is O(m2d + nds + ds3), where d is the original
dimensionality and s is the subspace dimensionality.

The methods in [7] and [16] are binary classification algo-
rithms and depend on the reduction of multiclass classification
in multiple two-class problems. Such an issue is exacerbated
in the training of several base classifiers.

In order to perform ensemble learning in multi-
class SSC, [6], [8], and [17] proposed multiclass boost-
ing techniques. Valizadegan et al. [6] introduced multiclass
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semisupervised boosting (MCSSB) algorithm. MCSSB is
a multiclass version of the SemiBoost algorithm proposed
in [18]. Such an algorithm combines the similarity information
among the instances with the classifier predictions in order
to generate more reliable pseudolabels. It is a graph-based
approach, its objective function possesses three SSL assump-
tions and it uses supervised base classifiers. The computational
complexity of MCSSB is O(τcu2 + τ s3), where s is the
number of sampled instances. MCSSB stores a similarity
matrix that requires memory of O(m2). Such requirements
might limit its application to large data sets.

Applying the state-of-the-art algorithms described here to
large-scale data sets might be a challenging task due to
high computational complexity. Delalleau et al. [19] proposed
a sampling technique to reduce computational complexity
from O(m3) to O(s2m), where s is the number of sampled
instances. However, such a technique is designed for trans-
ductive graph-based algorithms and the experimental results
in [1] show that the difference between such an algorithm and
uniform random sampling is marginal. Other techniques for
increasing efficiency can reduce the time complexity to O(s3),
where s < m, but may reduce generalization [12], [20].

The training of several classifiers limits the use of existing
ensemble algorithms in large-scale SSC. This shortcoming is
aggravated in the multiclass context [8]. Delalleau et al. [19]
proposed a sampling procedure to tackle large-scale data sets.
However, such a technique is designed for transductive graph-
based algorithms. And in the experimental analysis of [1], such
a sampling technique did not show considerable improvement
over uniform random sampling. Moreover, many SSC methods
(ensemble and single classifiers) depend on the calculation of
a pairwise distance matrix [6], [9] that requires memory in
the order of O(m2), which also restrains the application of
ensemble methods to large data sets.

In order to address such limitations, we propose an effi-
cient cluster-based multiclass boosting algorithm that main-
tain comparable generalization with state-of-the-art methods.
We instantiated the gradient boosting framework [21] and
introduced a basis selection procedure to obtain an effi-
cient classifier [22]. Gradient boosting produces highly robust
ensemble classifiers and its instantiation is straightforward,
both boosting and selection procedures are based on the
steepest descent method [21].

In order to handle large amounts of data, in each iter-
ation, each base classifier is trained with only the most
relevant unlabeled instances along with all labeled points.3

Since ECB depends on the output of a clustering algorithm,
we employed the landmark-based spectral clustering (LSC)
algorithm to efficiently compute posterior cluster probabili-
ties [23]. We also used the approximation technique intro-
duced in [24] to efficiently obtain nearest neighbors and
avoid the expensive computation of pairwise distance matrix.
We selected RBFN as base learner due to its effectiveness and
efficiency [25].

3In SSC, the number of labeled instances may be order of magnitudes
smaller than the number of unlabeled points. Therefore, we can avoid sampling
and safely use all available labeled data in the training set of base learners.

Fig. 1. ECB’s architecture.

III. EFFICIENT CLUSTER-BASED BOOSTING

The training set X = L ∪U is formed of l labeled instances
L = {(xn, yn)}l

n=1 and u unlabeled instances U = {xn}m
n=l+1,

often u � l, and m = l + u. Labels yn are class probabilities,
0 ≤ yni ≤ 1 and

∑c
i=1 yni = 1. SSC aims to improve the

generalization of a classifier in comparison to using only the
labeled data L.

In this section, we introduce the ECB algorithm. Fig. 1
shows the general architecture of the proposed method. Its
steps are as follows.

1) Extract posterior cluster probabilities from an efficient
clustering algorithm.

2) An approximation technique is employed to find the
nearest neighbors for all unlabeled instances.

3) The initialization procedure assigns initial label esti-
mates to unlabeled instances.

4) ECB selects a subset of the unlabeled instances and
their label estimates, along with all labeled instances,
to compose the initial training set in order to improve
the efficiency of the ensemble training.

5) The training of the first base classifier is performed on
the initial training set.

6) The ensemble algorithm trains a number of semisu-
pervised base classifiers with unlabeled instances that
are selected and greedily labeled according to gradient
descent at each iteration.

7) The ensemble weights and combines the outputs of all
trained base classifiers to perform predictions for unseen
instances.

A. Multiclass Loss Function With Cluster Regularization

We employ a cluster-based loss function that consists of
two terms: supervised cost and cluster regularization [9]. Since
we are focusing on multiclass SSC, we use cross-entropy and
softmax functions to compose the loss function [26].

We assume that a clustering algorithm produces a partition
Q = [qni ]m×g with g clusters and m instances. The
vector qn is the nth row of Q, which has the posterior
cluster probabilities of instance n. This vector sums to
one and n is associated with the group with highest
probability.
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Equation (1) defines the multiclass loss function with cross
entropy

L(F, Y) = −
m∑

n=1

c∑

i=1

{
InL

l
yni ln ( fni )

+ InU λ max(qn)

u
ŷni ln( fni )

}

(1)

where InL = 1 if n ∈ L and 0 otherwise; InU = 1 if n ∈ U
and 0 otherwise. We denote the posterior class probabilities,
for class i and instance n, produced by single classifiers and
ensembles as F = [ fni ]m×c and F� = [ f �

ni ]m×c, respectively.4

The matrix Y = [yni ]l×c contains the true class memberships
of labeled instances. The parameter λ controls the tradeoff
between the supervised loss and semisupervised regularization,
c is the number of classes and max(qn) returns the maximum
cluster likelihood in qn .

For unlabeled instances, we assign an estimate label to each
unlabeled point according to its penalty values and neigh-
borhood (derived from cluster memberships). Equation (2)
denotes the estimated class for an unlabeled instance

ŷni =
∑

j∈Vn
p(q j , qn)γ j i

∑
j∈Vn

p(q j , qn)
(2)

where ŷni is the estimated probability of class i for instance n.
The set Vn has the nearest neighbors of n. The penalty
p(q j , qn) is calculated according to cluster memberships.
Higher similarity between instaces n and j incurs a higher
penalty for that pair. The value γ j i may be either the true
label y j i if j is labeled or the ensemble prediction f �

j i if
j is unlabeled. When j is unlabeled, γ j i is an estimate of
class i for instance j . The pseudolabel ŷni is the weighted
average of current pseudolabels present in the neighborhood
of n. In contrast to [9], we opted to normalize ŷni by the sum
of penalties assigned to each neighbor j , instead of using only
the number of neighbors as a scaling factor. This approach
weights the influence of neighboring instances on putative
labels by their similarity. In this sense, unlabeled instances
will have label estimates ŷni more similar to each γ j i (either
label estimates or true labels) of its closest instances.

Equation (3) computes the penalty between n and j . It maps
similarity into penalization following a Gaussian curve:

p(q j , qn) = exp

(−||qn − q j )||2
σ 2

)

. (3)

The width σ regulates the steepness of such a mapping.
With lower σ , only most similar instances will have high
penalty. It controls the extent in which the decision bound-
ary avoids clusters. In this sense, contrasting predictions for
instances with similar cluster memberships will be more
severely regularized.

B. Approximate Nearest Neighbors and
Large-Scale Clustering

In the proposed method, the clustering algorithm has a
great impact on both generalization ability and efficiency.

4Ensemble-related values are distinguished by the prime symbol.

Our preliminary experiments showed that LSC [23] can handle
large data sets and leads to good generalization accuracy
when compared to other clustering algorithms, e.g., k-means
and the spectral method in [27]. Its time complexity is
O(t pmd + p3 + p3d), where t is the number of iterations
in k-means and p is the number of landmarks and p � m.
Thus, we selected LSC as the clustering algorithm employed
to produce matrix Q.

Semisupervised methods often seek the labels in the neigh-
borhood of an instance in order to assign pseudolabels. The
construction of such a neighborhood requires the calculation
of all pairwise distances in a n×n matrix and the search for all
neighbors, which requires time of O(vm log m) and memory
of O(m2) [28], where v is the number of neighbors.

Since there is a number of approximation techniques
that can be employed to reduce computational complexity,
we chose a method that automatically selects a suitable
approximate algorithm to find nearest neighbors for each
instance (row) represented in Q with less time require-
ment [24].5 With the use of such an approximation technique,
ECB reduces the memory requirement to O(vm), and v � m.

The output of such an algorithm is a matrix with the
distances from each instance in Q to its v neighbors. We use
such a matrix to calculate the penalty values. The soft partition
arising from the clustering algorithm is used to generate regu-
larization and, therefore, to implement the cluster assumption
in our algorithm. ECB employs the smoothness assumption by
penalizing the classifier if it assigns different labels to similar
points, as denoted by −ŷni ln( fni ).

C. Initialization Procedure

For many SSC algorithms, if the classifier assigns the same
class to every unlabeled instance, the training error will be
in a useless local optimum [12]. This is due to the loss
function comparing a predicted output with similar output of
its neighbors. In order to overcome this local optimum, we use
an initialization procedure that employs the distribution of
labeled points in a cluster to assign initial label estimates to
unlabeled data [9].

We use the sum of labels present in a cluster, weighted by
penalty values p(q j , qn), to assign pseudolabels to unlabeled
instances in such cluster [7]. If there are no labeled points in a
cluster, equal probabilities will be assigned to each class. For
class i of unlabeled instance n in each cluster C we have

ŷni =
∑

j∈C I j L ∗ p(q j , qn) ∗ y j i
∑

j∈C I j L ∗ p(q j , qn)
. (4)

The initialization procedure consists of training an initial
base classifier for a small number of iterations6 with the
pseudolabels ŷni .

5From the available distances in [24], we selected euclidean distance
for searching nearest neighbors. Other distances may be used to improve
performance.

6We fixed the number of iterations of pretraining at 10. According to our
preliminary experiments, different numbers of iterations did not improve the
generalization ability of our classifier.
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D. RBFN as Base Learner

We chose RBFN as base classifier as it can be efficient [25]
and easily adapted to our method. The unsupervised phase
of RBFN training consists of the center selection and width
estimation described in Section III-F. Its semisupervised train-
ing phase has the loss function in (1), with the addition of a
weight regularization term. The output (activation) function is
fni = softmax(zni ), where Z = [zni ]m×c represents the net
input of the output nodes, as in (8). Equation (5) presents the
loss function for RBFN

L(F, Y) = −
m∑

n=1

c∑

i=1

{
InL

l
yni ln ( fni )

+ InU λ max(qn)

u
ŷni ln( fni ) − α

wT
i wi

2

}

(5)

where wi is the weight vector for output node (class) i and α
controls the amount of weight regularization.

The semisupervised training algorithm for our base learner
is the iteratively reweighted least-square (IRLS) method [26].
IRLS consists of e Newton–Raphson steps (epochs) to update
network weights, in the following equation:

�w j = −H−1 ∗ ∇w jL(F, Y) (6)

where H is the Hessian matrix and ∇w jL is the gradient of
loss function L with respect to (w.r.t.) weight vector w j .

Equation (7) shows the gradient of L for point n. The
vector fn is the nth row in F

∇w jL(fn, yn) = InL

l
( fnj − ynj )φn

+ InU λ max(qn)

u
( fnj − ŷn j )φn + αw j (7)

where φn is the output column vector of hidden nodes.
The Hessian is a block matrix H = [H jk]hc×hc (h is the

number of hidden nodes), where each block is

H jk =
[

∂2L
∂w j∂wk

]

=
m∑

n=1

{(
InL

l
+ InU λ max(qn)

u

)

∗ fnj (δ j k − fnk) ∗ φnφ
T
n + α

}

.

The update rule in (6) is iterated until a stopping criterion
(e.g., increase in validation error) is met. The width of a hidden
node in an RBFN is estimated by the median of the pairwise
Euclidean distances among instances in the cluster to which
that center belongs.

E. Boosting for Large-Scale Multiclass Classification

Following [21] and [26], we employ (8) to transform linear
outputs Z� = [z�

ni ]m×c from an ensemble into posterior class
probabilities F�

f �
ni = softmax(z�

ni ) = exp(z�
ni )

∑C
j exp(z�

nj )
. (8)

Unlike original gradient boosting, a base classifier, trained
with pseudolabels ŷn delivered by the initialization procedure,
is assigned to initial ensemble Z�(0), where we denote linear
ensemble outputs as an iterative function. As indicated in
our preliminary experiments, this initialization delivered better
results than simply assigning a constant, e.g., Z�(0) = 0.

We calculate the derivative of L(F�(t), Y) w.r.t. z�
ni (t) to

obtain the current residuals rnj for class i that will be used to
train a new base classifier F. Such residuals are computed as
in the following equation:

rni = − InL

l
( f �

ni (t) − yni ) − InU λ max(qn)

u
( f �

ni (t) − ŷni ).

(9)

We select a subset S of size s from U and include all
labeled instances, according to the procedure in Section III-F
in order to approximate the information in X as accurately
and efficiently as possible. A new base learner is fit to the
residuals rnj in probability scale, i.e., ŷn j = softmax(rnj ),
where xn ∈ S. The residuals from S provide an approximation
of the direction of the gradient ∇L. Each new base classifier
represents a greedy step to approximately minimize L.

For each class, we perform a line search with a sin-
gle Newton–Raphson step in order to find an appropriate
fit for the new base learner in the current ensemble. This
line search consists of optimizing the base learner weight
β = (β1, . . . , βc), which is initially 0, as shown in the
following equation:

β = −H−1 ∗ ∇βL(F�(t), Y). (10)

The gradient ∇βiL for each class i is7

∇βiL(F�(t), Y) =
m∑

n=1

{
InL

l

(
f �
ni (t) − yni

)
zni

+ InU λ max(qn)

u

(
f �
ni (t) − ŷni

)
zni

}

and Hessian matrix H is

H jk =
m∑

n=1

(
InL

l
+ InU λ max(qn)

u

)

∗ f �
nj (t)(δ j k − f �

nk(t)) ∗ znj znk

where δ j k = 1 if j = k and 0 otherwise.
The base classifier is included in the current ensemble

following the rule in (11), where η is a learning rate. Such
a learning rate might reduce overfitting by decreasing the
influence of newly trained base learners on the ensemble

z�
ni (t + 1) = z�

ni (t) + ηβi zni . (11)

Several greedy steps of gradient descent are performed until
a stopping criterion is met, e.g., a fixed number of itera-
tions τ , increase of training or validation errors. In order to
produce posterior class probabilities as the ensemble outputs,
we apply (8). The proposed ensemble technique is summarized
in Algorithm 1.

7We derive βi w.r.t F�(t) since initially βi = 0 and hence F�(t +1) = F�(t).
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Algorithm 1 ECB Algorithm With RBFN
1: Input: training set X .
2: Calculate initial pseudo-labels ŷni as Equation (4).
3: Generate a subset S according to Algorithm 2.
4: Fit an initial RBFN fni = softmax(zni ) to ŷni , n ∈ S.
5: Assign initial ensemble Z�(0) = Z.
6: for t = 0 to τ − 1 do
7: for j = 1 to c do
8: Find residuals rni w.r.t. F� with Equation (9).
9: Calculate new label estimates ŷn j = softmax(rnj ).

10: Generate S according to Algorithm 2.
11: Fit a RBFN fni to ŷni , where n ∈ S.
12: Find multiplier β using Equation (10).
13: Update ensemble linear combination Z�(t + 1) with

Equation (11).
14: end for
15: Update the posterior class probabilities with f �

ni (t +1) =
softmax(z�

nj (t + 1))
16: end for
17: Output: posterior class probabilities F�.

F. Cluster-Based Subset Selection

In order to use RBFNs as base classifiers, it is necessary
to select the basis (centers) for the hidden layer. The number
of basis affects the inversion of the hessian matrix in (10).
Assigning all available data as centers can be prohibitive for
large data sets. Therefore, sampling instances can alleviate
the time complexity of the training of individual learners and
improve the RBFN combination. This can be accomplished
by restricting the number of basis and reducing the size of
the training set of each base classifier. Therefore, the centers
of each RBFN coincide with the selected instances S at each
boosting iteration.

An uniform random selection of basis can cover a large
proportion of the available data even when a small fraction
of the training set is sampled in each iteration [10]. However,
using a small sample of the available unlabeled data may not
generalize as well as employing the entire data set [1, Ch. 18].
Uniform sampling may not select particular regions in space,
which leads to poor estimates, i.e., (2), in these regions. It can
also choose uninformative points. For example, instances far
from the decision boundary are the ones with the most certain
label estimates, whereas the region near the decision boundary
is the one where the classifier is most likely to produce wrong
labels. Thus, it is useful to select as many points from that
region and very few instances that are far from that boundary.

The method in [29] is a fast forward selection algorithm
that chooses instances with the highest absolute values in their
current residuals, which incurs only a minor time cost. How-
ever, this method might not be reliable on SSC, as uncertain
instances might also have low residuals, which may cause
these instances to not be selected.

Linearly dependent points are considered redundant in [30]
and should be discarded. Only independent instances may
contain useful information. Their algorithm attempts to select
informative instances by searching for approximately linearly
independent points. However, this procedure is unsupervised

and, as in uniform sampling, may choose points that have very
certain labels, which do not contribute to the improvement of
the decision boundary.

We propose a semisupervised cluster-based selection proce-
dure that greedily picks only the most useful instances for the
training set S of each base learner. At each boosting iteration,
we form an initial set D = L. In order to cover as much of
the information available as possible, we sample d unlabeled
instances drawn from each cluster according to its probability
distribution in Q and add them to the set D, which will have
d + l instances. The sum

∑
j∈Vn

p(q j , qn) is an estimate of
the similarity between point n and its neighbors. If such a sum
is less than a threshold θ , n will be regarded as an outlier and
will not be in S.

We select a subset S of size s from D of instances with
the lowest difference between the two highest-scoring classes
in label estimates ŷn , as these points are the ones typically
closest to the current ensemble’s decision boundary and more
likely to have information on the correct shape of such a
surface. Instances that do not belong to S are likely to be
correctly classified independently whether they are in training
set S or not. The subset S can approximate the residual
gradient step at each boosting iteration. This procedure is
summarized in Algorithm 2.

Algorithm 2 Basis Selection Algorithm
1: Input: θ , d , s, L, U , Q, C = {C1, . . . , Cg}
2: Output: S
3: D = L
4: for i = 1 to g do
5: D = D ∪ {i.i.d. sample of size |Ci |d

m from cluster Ci

according to Q}
6: end for
7: for n = 1 to m do
8: if

∑
j∈Vn

p(q j , qn) < θ then
9: D = D\{n}

10: end if
11: S = {The s instances in D with the lowest difference

between the two highest-scoring labels}.
12: end for

Such a selection costs O(dm + d log d). It reduces the time
complexity of the base learner from O(ec2h2u) to O(ec2h2s+
dm + d log d), where s � u. Our experiments demonstrate
that ECB maintain comparable performance with state-of-
the-art algorithms. Our results also show a comparison with
our proposed algorithm without sampling procedure and with
exact neighbor selection.

The calculation of loss function requires time of O(τcvu),
where τ is the number of base learners (iterations) in ECB.
Then, along with the time complexity of the base learner,
ECB time complexity becomes O(ec2h2s + τ (cvu + dm +
d log d)). Therefore, unlike existing state-of-the-art ensemble
methods [6], [7], [16], the time complexity of ECB grows
linearly with the number of unlabeled instances.
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IV. EXPERIMENTAL STUDIES

In this section, we perform experiments with two settings:
transductive and inductive. We show the selection of para-
meters and discuss results with artificial and real-world data
sets. A grid search with tenfold cross-validation was used to
tune all algorithms. We also present a comparison in terms
of efficiency and effectiveness with state-of-the-art algorithms
using large-scale data sets.8

A. Methods and Parameter Tuning

Since MCSSB [6] uses all three SSC assumptions, we
expect ECB to outperform MCSSB only on data sets
where the cluster assumption holds, that is, a meaningful
cluster structure is, in fact, present in such data. MCSSB
would deliver better results on data sets where there is an
unclear or no cluster structure. As its base classifier, we chose
SVM, since it delivered the best results in our preliminary
experiments for large-scale data sets. We fixed the parameter9

C = 10000. The parameter σ was searched in {0.01, 0.05, 0.1,
0.15, 0.2, 0.25, 0.5, 0.8, 1}. We set sample size with
s ∈ {0.1, 0.5, 0.8, 1} for transductive and inductive contexts
and for large-scale data sets we fixed the sample size at 0.1.
The number of base learners was set to 200 for large-scale
data sets in order to have a fair comparison with ECB.
And we searched it in {20, 50} for the remainder of the
experiments.

For RegBoost [7], the number of boosting iterations was
set to 20 and 50 for inductive and transductive settings and
200 for the large-scale experiments. The number of neighbors
was searched in {3, 4, 5, 6}. The resampling rate in the first
iteration was fixed at 0.1. And the resampling rate for the
remaining base classifiers was searched in {0.1, 0.25, 0.5}. For
large-scale data sets, we fixed the resampling rate at 0.1.
We selected SVM as base classifier following the results
obtained in our preliminary experiments and [7].

In ECB, λ controls the amount of semisupervised regular-
ization. Since the presence of a informative cluster structure
is unknown, we performed a broad search for λ in the
interval [10−4, 100] [7]. We suggest setting this value between
0 and 1, since different values might degrade generalization
performance. In order to provide diversity to the ensemble,
λ is uniformly drawn from the interval [10−4, 100] for base
classifiers. Assigning the same λ value for all base classifiers
did not improve the generalization error according to our
preliminary experiments.

As in [9], the number of neighbors v was fixed at 30 for
most data sets used in this work, as our preliminary experi-
ments suggested. Further tuning might improve generalization
accuracy. For the approximate nearest neighbors algorithm,
we fixed the target precision parameter at 0.7 and the other
parameters were set as in [24].

We employed LSC to generate Q instantiated with Gaussian
mixture models, as such method is able to find clusters with

8All data sets were standardized with zero mean and standard deviation of
one.

9Our preliminary experiments and [6] showed that this parameter should be
set to 10000. Lower and higher values did not improve the performance.

arbitrary shapes and can be employed to large-scale data sets.
We fixed the number of landmarks to 200 for all settings,
as our preliminary experiments suggested that it is a good
tradeoff between efficiency and generalization ability. For the
remainder of its configuration, we followed [23], where the
selection of landmarks is performed by the k-means algorithm.

The number of clusters g should be set to, at least, the num-
ber of classes [9]. We also examined larger number of clusters
(multiples of the number of classes). In the case where the
clustering algorithm does not produce partitions that forms
the class structure, the number of clusters can be increased,
as a single class might be composed of multiple clusters. The
classifier will avoid splitting these clusters and may generate
a decision boundary that does not divide a particular class [9].
We searched g in the set of {1, 2, 3, 4} times the number of
classes for all experimental settings.

Our preliminary experiments suggested the grid search in
the set {0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 0.75, 1, 1.5, 2} for
the tuning of the width σ . The initial subset size d was fixed at
1000. The number of selected instances s was fixed at 100. The
parameter α was uniformly drawn from [0.2, 0.5] for each base
classifier. Ranges for λ, α, and center widths were empirically
assessed in our preliminary experiments.

In transductive and inductive settings, we fixed the number
of base classifier at 20, η was fixed at 0.5 and the number of
IRLS iterations for RBFN was set to 50. Further optimization
on these values can improve results. For large-scale, the num-
ber of base classifiers that was fixed at 200.

For CBoost, we used LSC as clustering algorithm and
we calculated the exact nearest neighbors (no approximation
techniques). For the rest of the parameters, we followed the
tuning scheme as for ECB. In Table I, we summarize the
tuning of each parameter in the compared methods.

B. Transductive Setting
In this section, we aim to establish the advantages of ECB

over single classifiers and other ensembles with one or more
SSC assumptions on transductive learning. In this setting, test
instances are regarded as unlabeled data and generalization
error is the training error on unlabeled data. Chapelle et al. [1]
designed several transductive benchmarks. Among those,
we used three artificial data sets, namely, g241c, g241d, and
Digit1. And four real-world data sets: USPS, COIL, BCI,
and Text.

The cluster assumption holds in g241c, that is, its classes
correspond to clusters. Whereas g241d was especially built
so that the cluster assumption is misleading and the mani-
fold assumption does not hold. Digit1 was generated with a
low-dimensional manifold embedded into a high-dimensional
space; it does not possess a cluster structure. It is also expected
that both cluster and manifold assumptions hold in USPS data
set. Such data sets are summarized in Table II. Further details
of these data sets can be found in [1, Ch. 21].

Each data set has 12 subsets of 10 and 100 labeled instances,
and the algorithms are run 12 times with 10 and 100 labels
and the mean error is reported. Tables III and IV present the
results of ECB, CBoost [10], ClusterReg [9], RegBoost [7]
and the algorithms in [1, Ch. 21].
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TABLE I

SUMMARY OF THE PARAMETER TUNING FOR ENSEMBLES.
CLUSTERREG FOLLOWS THE PARAMETER SELECTION

OF THE BASE LEARNER IN ECB

TABLE II

SUMMARY OF DATA SETS IN TRANSDUCTIVE SETTING

As expected, for the g241c data set (with 10 and 100 labeled
instances), ECB was superior to all manifold-based algorithms
since such a data set holds the cluster assumption. When
compared to cluster-based classifiers applied to g241c with
10 labeled instances, ECB obtained better performance than
most algorithms, except for the single classifier ClusterReg,
which indicates that the ensemble approach might have overfit
the data. With 100 labels, ECB outperformed most algorithms,
except for CBoost. Such fact might indicate that the use
of approximate nearest neighbors could not find informative
points. Despite of g241d having a misleading cluster structure,
ECB achieved comparable results with SGT (best perfor-
mance) and was superior to all other cluster-based algorithms,
with 10 labeled instances. With 100 labeled instances, ECB
also obtained comparable results with the best algorithm
(ClusterReg). Such a performance is explained by the use

TABLE III

AVERAGE OF ERRORS (%) OF RUNS WITH 12 SUBSETS OF 10 LABELED
INSTANCES. FOR ALL THE ALGORITHMS, THE TEST SETS ARE FIXED.

THE TABLE REPORTS ONLY THE MEAN OF THE RESULTS, AS IN

[1, CH. 21]. BOLD FACE DENOTES THE BEST RESULT

TABLE IV

AVERAGE OF ERRORS (%) OF RUNS WITH 12 SUBSETS OF 100 LABELED

INSTANCES. FOR ALL THE ALGORITHMS, THE TEST SETS ARE FIXED.
THE TABLE REPORTS ONLY THE MEAN OF THE RESULTS, AS

IN [1, CH. 21]. BOLD FACE DENOTES THE BEST RESULT

of cluster neighborhood. In such a method, classes can be
represented by more than one cluster and, even though the data
distribution does not match the class distribution, these classes
can be identified by several clusters. Therefore, classifiers that
use this technique, ClusterReg and CBoost, could overcome
such a misleading structure.

Manifold-based algorithms are expected to deliver better
generalization in Digit1 data set [1]. This expectation was con-
firmed on data sets with 10 labeled instances. With 100 labeled
instances, ECB obtained better generalization ability than other
cluster-based techniques due to its robustness to the uncer-
tain labeled points in clusters. Data-dependent regularization,
ClusterReg, and CBoost produced better predictive accuracy
than ECB, which can be explained by ECB’s approximate
neighborhoods.

Both cluster and manifold assumptions are expected to hold
in USPS data set [1]. However, with 10 and 100 labeled
instances, manifold-based algorithms delivered best perfor-
mance (QC+CMN, discrete regularization and laplacian RLS).
ECB obtained comparable accuracy with cluster-based meth-
ods for both amounts of labeled data. Such results might
indicate that, in fact, the manifold present in the data is relevant
for classification.
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TABLE V

SUMMARY OF DATA SETS IN INDUCTIVE SETTING

The structures of COIL, BCI, and Text data sets are
unknown. Nonetheless, ECB yielded competitive performance
among cluster-based and manifold-based algorithms on these
real-world data sets with 10 and 100 labeled instances. This
might denote ECB’s robustness to uncertain unlabeled points
and scarce labels.

C. Inductive Setting

In inductive learning, classifiers predict labels of unseen
instances. We use this setting to evaluate ECB along with
state-of-the-art algorithms: ClusterReg, CBoost, MCSSB, and
RegBoost. We selected 20 data sets from the UCI machine
learning repository [31]. Table V summarizes the data sets
employed.

We generated three versions of each data set, the proportion
of labeled data l

m in each variant is 5%, 10%, and 20%.
We transformed these data sets into semisupervised prob-
lems by randomly selecting the respective amount of labeled
instances for each data set. The labeled instances of each data
set are different for each version, so that each data set variant
poses a different problem.

In order to improve error estimation, all labels in test set
were available. It is not possible to know in advance the true
class structure and the corresponding SSC assumption that
these real-world data sets possess. Then, the success of a
classifier will depend on the proper matching between their
assumptions and the actual class structure of the data [1].
Ensemble-based algorithms with multiple assumptions may
deliver higher average performance throughout various data
sets [7], that is, such methods are more likely to deliver
better predictions than a specialist algorithm that implements
the wrong assumption for a given data set. In this sense,
we compare ECB to two ensemble classifiers that use all
assumptions—MCSSB and RegBoost—and a cluster-based
ensemble, CBoost.

Table VI(a)–(c) shows the means and standard deviations of
the generalization errors of all algorithms for all data sets with
5%, 10%, and 20% of labeled data, respectively. We employ
a pairwise t-test with 95% of significance level. Symbols
•/◦ indicate whether ECB is statistically superior/inferior and
Win/Tie/Loss denotes the number of data sets where ECB
is significantly superior/comparable/inferior to the compared
algorithm. The Friedman test [32] with 5% of significance pro-
vided statistical evidence of the difference between the means
of errors in Table VI. After the Friedman test, we performed
the Bonferroni–Dunn test [32] with 5% of significance level.
Such a posthoc test confirmed that ECB was superior to all
other algorithms, including state-of-the-art methods, across all
amounts of labeled data.

We used only real-world data sets (Table V) with unknown
structures. When compared to MCSSB and RegBoost,
ECB was statistically superior in most data sets across all
amounts of labeled instances, as shown in Table VI. This fact
indicates that our method was robust to fewer labeled instances
and potentially overlapping classes. The decision boundary
generated by ECB might have not been severely affected by the
position of labeled points in dense regions. Such a performance
can be explained by the use of semisupervised base learners.
Such base learners are able to seek the neighborhood for an
appropriate label of an unlabeled instance and might recover
from incorrect label estimates.

Both MCSSB and RegBoost implement all three semisu-
pervised assumptions. In cases where there is a clear cluster
structure, the quality of the decision boundary generated
by these algorithms might be limited by the search for a
useful manifold. In such situations, methods specialized in
finding informative clusters may yield significantly superior
generalization, as evidenced in Table VI.

When compared to ClusterReg, ECB was able to sig-
nificantly improve generalization in many data sets with
10% and 20% of labeled data. Therefore, our ensemble
approach was able to recover from errors of base classifiers,
despite the use of approximate nearest neighbors and sampled
training sets. However, for 5% of labeled instances, ECB only
statistically improved over ClusterReg in five data sets. This
result might indicate that ECB’s greedy approach might have
overfit.

As expected, ECB obtained similar generalization ability
to CBoost across the majority of data sets. Therefore, despite
the use of approximation and subset selection techniques, ECB
was successful in relatively small real-world data sets when
compared to algorithms that compute exact nearest neighbors
and uses all data available in each iteration.

D. Large-Scale Setting

In this section, we present a scalability and convergence
study of ECB in comparison to other methods. We compare
the computation time and generalization error of ECB to
MCSSB, RegBoost, and CBoost.10 Our experiment used six

10The CPU time was measured in an Intel(R) Xeon(R) CPU at 2.20GHz
with 64 gigabytes of memory. All algorithms were implemented in
MATLAB(R). The implementation of ECB can be further optimized.
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TABLE VI

MEAN AND STANDARD DEVIATION (%) OF TENFOLD CROSS-VALIDATION ERROR AT 5%, 10%, AND 20% OF LABELED DATA.
•/◦ INDICATES WHETHER ECB IS STATISTICALLY SUPERIOR/INFERIOR TO THE COMPARED METHOD, ACCORDING TO

PAIRWISE T-TEST AT 95% OF SIGNIFICANCE LEVEL. WIN/TIE/LOSS DENOTES THE NUMBER OF DATA SETS WHERE

ECB IS SIGNIFICANTLY SUPERIOR/COMPARABLE/INFERIOR TO THE COMPARED ALGORITHM. (a) RESULTS FOR

5% OF LABELED DATA. (b) RESULTS FOR 10% OF LABELED DATA. (c) RESULTS FOR 20% OF LABELED DATA

large real-world data sets, which are summarized in Table VII.
We randomly selected 100 labeled instances for each
data set.

In Fig. 2, we show the generalization ability and efficiency
of ECB along with MCSSB, RegBoost, and CBoost across
different amounts of unlabeled data. As depicted in Fig. 2(a),
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Fig. 2. Plots of generalization error and computational time versus the increase of the number of unlabeled instances on SecStr, Acoustic, and Shuttle data
sets. Points used in one run are also employed in the next runs. (a) and (d) Generalization error and computational time for the SecStr data set. (b) and (e)
Generalization error and computational time for the Acoustic data set. (c) and (f) Generalization error and computational time for the Shuttle data set.

TABLE VII

SUMMARY OF LARGE DATA SETS. MCSSB, REGBOOST, AND CBOOST

COULD NOT HANDLE THE HIGHLIGHTED DATA SETS

all methods reduce their test error with the increase of the
number of unlabeled instances, which might denote the use-
fulness of unlabeled data.

Existing algorithms were not able to handle the data sets
highlighted in Table VII. MCSSB, RegBoost, and CBoost fail
with a few thousands of instances, as shown in Fig. 2(d).
MCSSB updates each instance weight with the consideration
of all other unlabeled points, that is, it uses all instances to
assign the pseudolabel of an unlabeled instance. This leads
to a quadratic growth of computational time with respect to
the number of unlabeled points. Moreover, MCSSB stores a
m ×m similarity matrix. Such facts cause the algorithm to fail
with a limited computational budget.

RegBoost requires the computation of exact nearest neigh-
bors, which involves the use of a m × m distance matrix.
As indicated in Fig. 2(d)–(f), such an algorithm has large space
complexity with relatively small amounts of data, which also
leads to an increase in CPU time. Therefore, likewise MCSSB,
with a certain small number of instances, RegBoost fails due
to unfeasible running time and memory consumption.

In Fig. 2(b) and (e), the algorithms reduce their general-
ization error with larger amounts of unlabeled data. However,
as depicted in Fig. 2(e), only ECB was able to handle full

data sets. In Fig. 2(c), MCSSB did not deliver comparable
accuracy with the other algorithms, this fact may indicate that
its decision boundary was affected by the search for manifolds
when clusters are relevant. Likewise the Acoustic data set, only
ECB showed scalability for Shuttle data set [Fig. 2(f)].

As shown in Fig. 2(d)–(f), the time requirement of ECB
grows linearly with the number of unlabeled instances. And,
as depicted in Fig. 2(a)–(c), ECB can also produce comparable
results with existing algorithms.

In this sense, the employed clustering algorithm, LSC,
is suitable for large data sets, delivering good partitions
efficiently without compromising memory usage. The approx-
imation technique increases efficiency in terms of both time
and memory, which solves the drawbacks from RegBoost
and MCSSB with respect to high memory consumption (such
drawbacks also have an impact on execution time due to the
overhead caused by virtual memory). And the subset selection
also greatly reduces time complexity and allows training with
large data sets in reasonable time.

E. Subset Selection

In this section, we assess the selection procedure and the
size of S with respect to accuracy and efficiency. Figs. 3 and 4
show the impact of different sample sizes s on generalization
error and computational time. Since ECB was the only method
that could handle the highlighted data sets in Table VII, we use
these data sets to evaluate different subset selection procedures
for the proposed algorithm.

In order to evaluate the sensitivity of ECB to the sample
size s regarding accuracy and efficiency, Figs. 3 and 4 present
the generalization error and CPU time on SecStr and Acoustic
data sets, respectively, for different amounts of sampled data.
The amount of unlabeled data needed on SecStr is small,
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Fig. 3. Analysis of the influence of the amount of sampled points s on (a) generalization error and (b) computational time of ECB on SecStr data set.

Fig. 4. Analysis of the influence of the amount of sampled points s on (a) generalization error and (b) computational time of ECB for Acoustic data set.

as shown in Fig. 3(a), which denotes that such a data set does
not possess a clear cluster structure. Hence, labeled data will
be more important for the training algorithm. In contrast, ECB
could improve its generalization ability with larger amounts of
sampled data for Acoustic data set [Fig. 4(a)].

As shown in Figs. 3(a) and 4(b), the computational time
stabilizes when the sample size reaches the limit of the number
of hidden nodes in the RBFN. This behavior is expected since
the number of centers employed in RBFN increases with s
until it reaches a threshold (in this case, 2000 hidden nodes).11

We also plotted the generalization error throughout
1000 iterations (number of base learners) of ECB on SecStr,
Acoustic, and Shuttle data sets [Fig. 5(a)–(c), respectively]
without a second termination criterion. We verified that the
proposed algorithm converges with a small number of base
learners, despite the small number of sampled instances,
s = 100, in each iteration. And, as expected, the algorithm
starts to overfit in later iterations. The ensemble tends to
overfit the training data as gradient boosting is a greedy
approach. Such a figure suggests that ECB can be successfully
employed to large-scale data sets with a large number of base
learners without compromising time efficiency.

11The complexity of RBFN grows quadratically with the number of centers
and we limit such a parameter.

TABLE VIII

GENERALIZATION ERROR ± STANDARD DEVIATION OF DIFFERENT

SUBSET SELECTION PROCEDURES. BOLD FACE INDICATES
STATISTICALLY SUPERIOR PERFORMANCE

In order to evaluate the convergence of ECB, we plotted its
generalization error in Fig. 5. We fixed the maximum number
of iterations (number of base learners) at 1000 and imple-
mented no other stopping criterion in order to assess the impact
of number of base learners on training and overfitting. We also
compared the generalization error and computational time of
three different subset selection approaches: random, kernel-
based [30], and the proposed greedy cluster-based selection.
In Table VIII, we present the generalization ability of these
three methods in the data sets highlighted in Table VII.

In order to study the predictive performance and efficiency
of the proposed subset selection method, we compare the
greedy cluster-based procedure to random and kernel-based
selection. In Table VIII, the proposed method outperforms all
other algorithms according to pairwise t-test. Fig. 6 shows the
CPU time of ECB with the three different subset selection
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Fig. 5. Plots of iterations (number of base learners) versus generalization errors of ECB on (a) SecStr, (b) Acoustic, and (c) Shuttle data sets, respectively.

Fig. 6. Computational time versus subset size of ECB with different subset selection methods on (a) covtype, (b) hepmass, and (c) SUSY data sets,
respectively.

TABLE IX

TIME AND MEMORY COMPLEXITIES, s, d � u

methods on the data sets in bold face in Table VII. Subset
sizes are varied from 103 to 104. According to Fig. 6, our
selection method also presents comparable time efficiency to
the other approaches.

Table IX summarizes time and memory complexities of
the methods employed in our experiments. The computational
time of ECB does not grow quickly (exponentially) with the
number of sampled instances. ECB is able to tackle large data
sets with a wide range of sampled instances. In the analysis
with these figures, we used the validation error as a stop-
ping criterion. The slight instability is due to early stopping
(termination criterion) caused by the increase of validation
error. In the greedy cluster-based selection, the decision of
selecting each point depends on the density of its region
and on its relative position (estimated by label uncertainty)
to the decision boundary. Unlike the compared unsupervised
methods, our algorithm was able to select relevant unlabeled
points for the training set of each base learner, which causes
a better estimated correction of the current decision surface.
In fact, our experiments confirmed that the proposed method
is suitable for large-scale data sets.

V. CONCLUSION

In this paper, we introduced an ECB algorithm. State-of-
the-art algorithms cannot be applied to large data sets due to
their time and memory requirements. The proposed method
employs an efficient clustering algorithm, approximates near-
est neighbors and a greedy cluster-based selection to reduce

the training set of base learners. Such improvements reduce
both time and memory requirements of ECB.

We designed three experimental settings: transductive,
inductive, and large-scale data sets. In both transductive and
inductive settings, ECB could deliver comparable predictive
performance to state-of-the-art algorithms. In our analysis on
large-scale data sets, we evaluated and validated the scalability
of the proposed algorithm.

The experimental analysis confirmed the following.

1) The use of our selection method along with approximate
nearest neighbors and LSC can increase the efficiency
of ECB and maintains comparable generalization per-
formance with other methods.

2) ECB is robust to the position of labeled data in a cluster.
3) By using semisupervised base learners, it is robust to

incorrect label assignments during training.

ECB depends on the presence of relevant clusters. We intend
to study the use of the manifold assumption in ECB in order
to propose an efficient multiassumption method to big data
problems.
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