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Human Activity Recognition with Posture
Tendency Descriptors on Action Snippets

Yaqiang Yao, Yan Liu, Zhenyu Liu, Huanhuan Chen, Senior Member, IEEE

Abstract— Human activity recognition is a challenging problem in computer vision due to large resemblance across classes and
variance within an individual class. A routine way to recognize human activity from 3D skeleton sequences can be divided into two tasks,
discriminative features representation and temporal dynamics modeling. During the past few years, temporal pyramid is widely used
for capturing temporal dynamics after extracting discriminative features from frames. However, this uninformative dividing method could
destroy the geometric structure of meaningful action snippets within skeleton sequence. To resolve this problem efficiently, we propose a
novel and intuitive method in this paper. First, based on a more realistic assumption that adjacent postures in action sequences are more
similar and activity can be depicted with several action snippets, a dividing algorithm is designed to encode the temporal information.
Second, an interpretable and discriminative descriptor named posture tendency descriptor (PTD) is constructed to represent one action
snippet. Finally, multiple PTDs along the entire skeleton sequence are concatenated in a hierarchical and temporal order forming the
representation of a human activity. Experimental results on three benchmark datasets demonstrate that the proposed approach with an
off-the-shelf classification algorithm achieves highly competitive performance in comparison with the state-of-the-art approaches.

Index Terms—Activity Recognition, Manifold Dividing, Major Posture Feature, Main Dynamic Tendency
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1 INTRODUCTION

HUMAN activity recognition has been one of the most
popular research in computer vision field [1]–[3] for

its wide applications, including video surveillance, human-
computer entertainment, health care and social assistance,
and so on. The main objective of human action recognition
is to enable machines to analyze and recognize human
activities in videos automatically, which is associated with
two issues, representing the spatio-temporal features and
modeling dynamical patterns. Despite significant efforts
have been made in the past decade, recognizing human
action accurately is still a challenging problem.

Traditional studies for human action recognition focus
on RGB videos [1]. However, this RGB video-based methods
are sensitive to the inherent attributes of video frames,
such as background clutter, partial occlusion, changes in
scale, viewpoint, lighting, and appearance. Recently, the
emergence of depth camera such as Microsoft Kinect and
its corresponding real-time skeleton extraction method [4]
promote the study of human action recognition from both
aspects of depth maps-based methods [5]–[7] and skeleton-
based methods [8]–[10]. Compared with 2D frame images,
depth images reflect pure geometric or shape clues and are
insensitive to lighting conditions, which are more robust in
practical application. Different from approaches based on
features extraction from RGB or depth images, skeleton-
based methods require 3D coordinates of human body joints
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(human posture) and then model posture sequences to
recognize human action. Yao et al. [11] validated that 3D
skeleton information outperforms other low-level appear-
ance features for human activity recognition.

In the skeleton-based representation, a human body is
viewed as an articulated system of rigid segments, which
are connected by several joints, and a human action is
considered as a continuous evolution of the spatial config-
uration of these segments (i.e. postures) [12]. In this way,
skeleton-based human activity recognition can be treated as
a problem of structured time series analysis [13]. According
to the approach of modeling temporal dynamics, existing
skeleton-based action recognition methods can be divided
into three main categories [10]: approaches based on latent
variable models, approaches based on recurrent neural net-
works, and approaches based on temporal pyramid.

Latent variable model-based methods extract local fea-
tures from each frame first, and then try to capture the
dynamical patterns with sequential models such as hidden
Markov model (HMM) [14], linear dynamic system (LDS)
[15], and conditional restricted Boltzmann machine (CRBM)
[16]. Recurrent neural network-based methods combine
convolutional neural network (CNN) with recurrent neural
network (RNN) to classify human action directly. CNN is
employed to capture the multiscale features of individual
or partial combination of body joints, while RNN is trained
to learn the contextual information of action sequences [17].
Although these two kinds of methods can obtain excellent
performance, they need a large amount of data samples and
time epochs to estimate the large number of parameters
accurately.

Different from the above approaches, temporal pyramid-
based methods capture the temporal dependency of joint
locations by dividing the action sequence into several sub-
sequences, and every sub-sequence is represented by cor-
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responding discriminative features [18]–[20]. For example,
Wang et al. [19] proposed to describe the 3D appearance
with local occupancy pattern (LOP) features, which can cap-
ture the interaction between a human body and associative
objects, and then Fourier temporal pyramid (FTP) is utilized
to represent the temporal structure. Recently, a Covariance
descriptor on 3D Joint locations with temporal hierarchy
construction (Cov3DJ) was proposed in [20]. The authors
first represent a sequence with the covariance matrix of
skeleton joints over time, and then model temporal dynam-
ics with multiple covariance matrices of sub-sequences in a
hierarchical way.

Despite its simplicity, Cov3DJ outperformed compli-
cated methods such as random occupancy patterns [21]
and actionlets ensemble [19] on several datasets. On the
other hand, Elgammal and Lee [22] proposed learning the
view-based representation of human activity using manifold
embedding, and indicated that temporal relation could not
preserve the geometric structure of the manifold. Therefore,
there are still some problems for Cov3DJ method. First and
foremost, dividing a sequence into several sub-sequences
with equal length would destroy the geometric structure of
action snippets within an activity. Second, Cov3DJ ignores
the mean vector of skeleton sequence, which seems useless
at first sight, but each mean vector of sub-sequences can
be viewed as a major posture of one action. Finally, the
covariance matrix used in Cov3DJ contains some redundant
information, and using vectorized covariance matrix as fea-
tures might impact the discriminative ability of descriptor.

To resolve the above problems, we propose a novel
and intuitive approach to recognize human activity in this
paper. First, based on a realistic assumption that adjacent
postures in action sequence is more similar and activity
can be depicted with several action snippets, we design an
intuitive dividing algorithm combining the advantages of
temporal relation and manifold learning to divide an action
sequence into two compact sub-sequences (action snippets),
where the compactness is measured by linear perturbation
of postures in a sub-sequence [23]. Second, a major posture
feature (MTF), which is computed by the mean of skeleton
sequence, is appended to the descriptor to enhance the
discriminative capacity. Finally, instead of vectorizing the
whole covariance descriptor, a main dynamical tendency
feature (MPF) that combines the top-T eigenvectors of the
obtained covariance matrix is constructed to improve the
robustness of the descriptor. The concatenation of MTF and
MPF consists of the proposed posture tendency descriptor
(PTD), which is interpretable and discriminative for human
activity recognition. The dividing algorithm leads to a hi-
erarchical temporal description of an initial human action
sequence. We deploy multiple PTDs over an entire action
sequence and its sub-sequences, and the final representation
of a human activity is the concatenation of PTDs in hierar-
chical and temporal order. With the help of an off-the-shelf
classification method, we conduct experiments on three
publicly available benchmarks, including the KARD dataset
[24], the UTKinect dataset [25], and the Florence3D dataset
[26]. The results demonstrate our proposed approach out-
performs the state-of-the-art approaches. In summary, the
major contributions of this paper are:

1) We propose an intuitive dividing algorithm to di-
vide the action sequence into several meaningful
action snippets, which can preserve the geometric
structure within the activity.

2) An interpretable and discriminative posture ten-
dency descriptor consisted of major posture feature
and main dynamical tendency feature is designed
to represent the action snippet.

3) Experimental results demonstrate that the proposed
approach with an off-the-shelf classification algo-
rithm achieves competitive performance on several
benchmark datasets.

The remainder of this paper is organized as follows.
We review the skeleton-based human activity recognition
methods and manifold learning in Section 2. Section 3
gives an introduction to some preliminaries, the problem
formulation of skeleton-based human activity recognition
and manifold assumption on human action sequence. The
proposed approach is presented in Section 4, including
posture tendency descriptor construction and hierarchical
temporal dividing. Section 5 discusses the experimental
studies, and finally, the paper is concluded in Section 6.

2 RELATED WORK

The proposed approach is based on the representation and
measurement of 3D skeleton sequence with manifold di-
viding, therefore, we review some related works of human
activity recognition based on skeleton sequence, and the
applications of manifold learning on activity recognition in
this section.

2.1 Activity Recognition with Skeleton Sequences
With the emergence of depth cameras such as Microsoft
Kinect and corresponding real-time skeleton extraction
methods [4], acceptable accuracies of 3D joint locations have
led to a boom in research into human activity recognition.
Johansson et al. demonstrated that human actions can be
identified by the joint position of 3D skeleton individually
[27]. Skeleton-based action sequence can be treated as the
evolution of human skeleton. In terms of the methods of
modeling temporal dynamics, existing skeleton-based ap-
proaches can be divided into three main classes [10], ap-
proaches based on latent variable models, approaches based
on neural networks, and approaches based on hierarchical
temporal pyramid.

Latent variable model-based approaches extract dis-
criminative features from individual frame first, and then
try to capture the dynamical patterns with transitions be-
tween latent variables such as HMM [13], [14], [28], LDS
[15], and CRBM [16]. For example, by replacing Gaussian
mixture models with deep neural networks in the emis-
sion part of HMM, Wu and Shao [28] extracted high level
features of 3D joint positions in a generative way to learn
the emission probabilities, which is demonstrated to be
beneficial to action sequences inference. In consideration
of the complex non-linearity contained in the components
of motion sequences, Taylor et al. [16] proposed a model
with distributed hidden state. In particular, to incorporate
the temporal information in motion sequences, the authors
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extend the RBM to a conditional RBM by adding two kinds
of directed connections, connections from past visible units
to current visible units and connections from past units to
current hidden units.

Recurrent neural networks-based approaches model
the temporal relationship with directed cyclical connections
and classify human action sequences with RNN directly
[10], [29]–[31]. Du et al. [10] proposed a hierarchical bidirec-
tional recurrent neural network (BRNN) to perform action
recognition. The entire skeleton is divided into five parts
first, and then the representations obtained from previous
layers are merged as the inputs of next layers. In order to
capture the salient dynamics, Veeriah et al. [29] proposed
a differential RNN to learn the salient spatio-temporal in-
formation contained in actions. However, the importance
of joints varies over different frames, and the conventional
LSTM does not consider this attention mechanism. Some
work brings attention mechanism into LSTM [32], [33]. On
the other hand, other work employs CNN to capture the
multiscale features of individual or partial combination of
body joints, and models contextual information of action
sequences with RNN [17], [34].

The above approaches based on latent variable models
and neural networks are widely used for human activity
recognition in compute vision community, however, there
are some problem with these two approaches. In the latent
variable model-based approaches, the model parameters
of HMM and LDS are often learned with EM algorithm,
which is sensitive to initialization and easy to get stuck
in local optimal solutions. As for neural networks-based
approaches, the model training process need a large amount
of data samples and is very time and computation resource
consuming.

Temporal pyramid-based approaches model the tem-
poral dependency of joint locations by dividing the action
sequence into several sub-sequences, and then represent the
sequence with the concatenation of discriminative features
extracted from these sub-sequences [19], [20], [35]. Wang et
al. [19] proposed describing the 3D appearance with LOP
feature, which can capture the interaction between human
body and associative objects, and then FTP was utilized
to represent the temporal structure. A dictionary learning
method combined with temporal pyramid matching was
proposed in [35] to learn the set of representative features
and capture the temporal information respectively. More-
over, an actionlet ensemble model that combined features of
a subset of joints is proposed to enhance the discriminative
ability. Hussein et al. [20] first represented a sequence with
the covariance matrix of skeleton joints over time, and
then modeled temporal dynamics with multiple covariance
matrices of sub-sequences in a hierarchical way.

The posture tendency descriptor in our approach is moti-
vated by Hussein et al. [20]. However, the posture tendency
descriptor not only enhance the discriminative capacity of
the descriptor by taking into consideration of the mean of
skeleton sequence, but also improve the robustness of the
descriptor by replacing the vectorized covariance matrix
with the top-T eigenvectors of the covariance matrix.

On the other hand, there is a trend of representing
skeleton-based action sequences as curves in Lie group in
recent years [9], [36], [37]. Vemulapalli et al. [9] modeled the

relative 3D geometric relationships of skeleton joints with
rotations and translations in a matrix Lie group, and then
combine dynamic time warping and Fourier temporal pyra-
mid to capture the temporal dynamics. Considering that
human activities represented with high-dimensional trajec-
tories in Lie group are in a non-Euclidean space, the authors
combined logarithm map with rolling map to unwrap these
curves onto the Lie algebra to perform classification in [36].

2.2 Manifold Learning and Action Recognition
In a nutshell, the manifold can be seen as a superposition
of many local patches, which are constructed by a series of
low-dimensional planes embedding into a high-dimensional
space. The main purpose of manifold learning is extracting a
set of low-dimensional bases that reflect the inherent dimen-
sions of the manifold to describe high-dimensional data.
Two classic manifold learning algorithms named Isometric
Feature Mapping (Isomap) and Local Linear Embedding
(LLE) were proposed by Tenenbaum et al. [23] and Roweis
et al. [38], respectively.

In Isomap [23], the geodesic distance between pair-
wise points are computed by Dijkstra’s algorithm based
on k-nearest neighbors graph, and Multi Dimensional Scale
analysis (MDS) are employed to process distance data for
extracting low-dimensional bases. Isomap maintains the
global structure of the manifold and requires less param-
eters, but the algorithm is sensitive to noise and has a high
time complexity. Different from Isomap, to characterize the
local geometric properties of a manifold, LLE [38] used
the linear representation of the local point under its least
squares and the final form combined all of the local geomet-
ric properties (linear representation coefficients). Moreover,
LLE is additive and has low time complexity, which is also
invariant to translation and rotation.

Manifold based representation and related algorithms
have also made great progress in the field of human activity
recognition [22], [39]–[42]. Instead of modeling temporal
dynamics in sequence explicitly, manifold based learning
methods embed the sequence into a low-dimensional space
by preserving the local geometric properties. Before the
emergence of cost-effective depth cameras, the human sil-
houettes are commonly used for activity recognition [22],
[39]. For example, Elgammal et al. [22] proposed learning
view-based representation of activity manifolds and infer
3D body poses directly from human silhouettes. The activity
manifolds embedding was implemented with LLE. Skeleton
3D joint positions provide more intrinsic and robust motion
structure for activity recognition [40], [42]. In particular,
taking into consideration of temporal dimension, Gong et
al. [40] proposed a model named Spatio-Temporal Manifold
(STM) to analyze non-linear multivariate time series with
latent spatial structure, which is utilized to recognize actions
in the joint-trajectories space.

Based on the intuitive assumption that adjacent postures
in action sequence are more similar and activity can be de-
picted with several action snippets, the dividing algorithm
in our approach combines the advantages of temporal rela-
tion and manifold learning to divide an action sequence into
two compact action snippets. This dividing algorithm can
preserve the geometric structure of action snippets within
an activity.
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Fig. 1. Human skeleton labeled with 20 joints (5 optional joints are
indicated with “•” and others are denoted with “◦”).

3 PRELIMINARIES

This section presents preliminaries for the proposed ap-
proaches, the 3D coordinates of human body joints and
manifold assumption on human action sequence. The joints
coordinates describe a human body posture, which char-
acterizes the transformation invariance of human activity.
The posture sequence of a human activity is regarded as a
manifold which captures the intrinsic structure of motion.
These preparations are the basis of our proposed approach
for human activity recognition.

3.1 Human Activity Representation

The human body is an articulated system of rigid segments
connected by joints, and human activity is considered as a
continuous evolution of the spatial configuration of these
segments (i.e. body postures) [12]. In this paper, we build
a representation of human activity based on a sequence
of 3D joint locations. With the emergence of depth camera
Microsoft Kinect and corresponding real-time skeleton ex-
traction method [4], 15 (or 20) acceptable accurate skeletal
3D joint locations are provided: head, neck, torso, L/R
shoulders, L/R elbows, L/R hands, L/R hips, L/R knees,
L/R feet (hip center, L/R wrists and L/R ankles), as illus-
trated in Fig. 1.

For a human activity video, there are J joint locations
and each joint j has 3 coordinates p̂j

f = [xjf , y
j
f , z

j
f ]T at

the f -th frame. For each joint j, we extract the relative
position to joint hip center by taking the difference between
the coordinates of joint j to hip center joint c

pj
f = p̂j

f − p̂c
f (j = 1, ..., J).

In the case of J = 20, p̂c
f is obtained from the tracked

coordinates of hip center directly, while for J = 15, we set

Fig. 2. An illustration of manifold assumption on human action sequence
that a human activity denoted by a series of ordered points in the high
dimensional space extends to a manifold.

p̂c
f as the average coordinates of left hip and right hip. The

3D joint positions for frame f is defined as

pf = [p1
f ;p2

f ; · · · ;pJ
f ],

where the derived pf ∈ R3J describes human action state
(posture) at frame f . Yao et al. [11] validated that the
pose-based features outperform other low-level appearance
features. In addition, pose-based features is a natural and
intrinsic representation for human activity as it conforms to
the study of how human understand actions [43]. Finally,
a human activity is represented by a sequence of postures
P = {p1,p2, · · · ,pF }, where each posture pf is a high
dimensional vector consisting of a set of body joint locations,
and F is the number of postures.

3.2 Manifold Assumption on Action Sequence

For a human action sequence during a certain period of
time, the actual number of human joints participated in and
the direction of movement in the three-dimensional space is
limited. In other words, the human activity can be described
by part of the dimensionality of data, which forms a low-
dimensional plane and has the Euclidean space property. On
the other hand, human joints and their movement direction
associated with an action sequence vary smoothly over
time. Therefore, an action sequence can be decomposed into
several sub-sequences, which are defined as action snippets
in this paper. In summary, a human activity denoted by
a series of ordered points in the high dimensional space
extends to a manifold, which consists of several local planes
(action snippets).

Each action snippet C is a local linear patch and embod-
ies Euclidean property. We resort to local linearity to extract
representative action snippets from a human action posture
sequence. Specifically, the local linearity is determined by
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Fig. 3. An illustration of posture tendency descriptor (PTF) on action snippets. The proposed dividing algorithm leads to a meaningful segmentation
on sequence of action walk of the second subject from UTKinect Dataset. The action snippets in dotted local patches indicate the separation in
the next level. The length of the posture sequence is 54, and one third of those postures is uniformly sampled (i.e. the {1, 4, · · · , 52}-th posture) to
make the illustration clear and not overlapping. In addition, the 52-th posture is ignored due to its distortion in 2D plane. The result shows that the
proposed algorithm can preserve the completeness of action snippets. In particular, the posture sequence is first divided into two action snippets,
each of which corresponds to a continuous movement of left and right foot, and then each action snippet is divided into two action snippets that
correspond to the movement of left foot and right foot, respectively. The traditional dividing algorithm would segment the posture sequence into
two sub-sequence of the same length and destroy the geometric structure of action snippets. Multiple PTDs are deployed over the entire action
sequence and its sub-sequences to construct the final representation.

the ratio of the geodesic distance to the Euclidean distance
of all pairwise posture points in C [44],

β =
1

|C|2
∑
i∈C

∑
j∈C

r(pi,pj), (1)

where |C| denotes the number of postures in an action
snippet C, and r(pi,pj) is the ratio between posture points
pi and pj ,

r(pi,pj) =
dG(pi,pj)

dE(pi,pj)
. (2)

Euclidean distance dE(pi,pj) is computed by the L2 norm
and the geodesic distance dG(pi,pj) is computed by Dijk-
stra’s algorithm based on k nearest neighbors graph, which
is defined as:

Definition 1. k nearest neighbors (k-NN) graph: A connected
graph where each node links to its nearest k nodes based on
Euclidean distance.

k-NN graph is able to construct the feature relations
among disordered images and is widely used in Face
Recognition with Image Sets (FRIS) problem. However, the
construction of k-NN graph neglects the order of image se-
quence, it can not be used for computing geodesic distance
of postures in sequence since the temporal relationship of
human postures is significant for activity recognition.

As we have mentioned, a human activity is represented
by a sequence of postures P = {p1,p2, · · · ,pF }, and con-
tinuous postures tend to have smaller Euclidean distance.
As illustrated in Fig 2, the x, y axes in the horizontal

plane denote frame number, and the vertical height is the
distance between frames. The concave diagonal validates
the hypothesis that adjacent frames have more similar fea-
ture. Therefore, for the purpose of holding the temporal
relationship of human postures, we present the following
definition of k sequential neighbors graph to replace k-NN
graph:

Definition 2. k sequential neighbors (k-SN) graph: A con-
nected graph where each node links to its previous and next k
nodes based on action postures order.

All geodesic distances of pairwise human postures in
this paper are computed by Dijkstra’s algorithm based on
the proposed k-SN graph.

4 THE PROPOSED APPROACH

In this approach, the initial 3D skeleton sequence of a
human activity is represented in a hierarchical temporal
fashion, as illustrated in Fig. 3. For a specific human action
snippet, we compute the mean and the covariance matrix
for the sub-sequence, where the mean represents the major
posture feature (MPF) and the main dynamical tendency
feature (MTF) is characterized by top-T eigenvectors of the
obtained covariance matrix. Our proposed posture tendency
descriptor (PTD) is the concatenation of MPF and MTF,
which is interpretable and discriminative for human activity
recognition.

To encode the temporal information, we design a divid-
ing algorithm to divide an action sequence into two compact
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sub-sequences (action snippets), where the compactness is
measured by the linear perturbation of postures in a sub-
sequence [23]. The dividing algorithm leads to a hierarchical
temporal description of an initial human action sequence.
We deploy multiple PTDs over an entire action sequence
and its sub-sequences, and the final representation of a
human action is the concatenation of PTDs in hierarchical
and temporal order.

4.1 Posture Tendency Descriptor

For a human activity formulated as a sequence of postures
P = {p1,p2, · · · ,pF }, the MPF p̄ is defined as the average
of all posture vectors,

p̄ =
1

F

F∑
f=1

pf , (3)

where the derived p̄ ∈ RN , N = 3 × J . MPF describes
the most representative posture of corresponding posture
sequence.

The sample covariance matrix is given by the following
equation,

Cp =
1

F − 1

F∑
f=1

(pf − p̄)(pf − p̄)T . (4)

The obtained Cp ∈ RN×N is a symmetric matrix. Since
every symmetric matrix can be orthogonally diagonalizable,
there exists an orthogonal matrix Q such that,

Q−1CpQ = Λ, (5)

where Λ is a diagonal matrix with real eigenvalues of
Cp on the diagonal elements, and Q is the eigenvectors
corresponding to the eigenvalues in Λ, the MTF T is defined
as the top-T eigenvectors,

T = [q1, q2, · · · , qT ], (6)

where qt ∈ RN is the eigenvector corresponding to the t-th
largest eigenvalue.

During a certain period of time, the actual number of
human joints participated in a specific human action snippet
is limited, as well as the direction of movement in the
three-dimensional (x, y, and z) space. For example, the
participated human body joints of action “draw circle” are
left hand/wrist/elbow (or right hand/wrist/elbow), and
the main motion direction is in the x and y directions (where
z-axis is in the direction perpendicular to the camera’s
imaging plane), so the action can be characterized by the
changes in directions of x and y axes of the associated
human body joints. In this respect, the proposed definition
of MTF is capable of describing the movement trend of
human action snippet.

MPF indicates the major posture and MTF denotes the
main dynamical tendency of an action snippet. The pro-
posed PTD is the combination of MPF and MTF,

dPT = [p̄; q1; q2; · · · ; qT ], (7)

Thus the dimensionality of our proposed PTD is N+T ×N .
A larger T means more information of the original sample

covariance matrix but with worse robustness. Our prelim-
inary experiments indicate that T = 2 is a good trade-
off between accuracy and robustness, and in this case, the
dimensionality of PTD under the skeleton recorded with 20
joints is 3× 20 + 2× (3× 20) = 180.

Compared with the Cov3DJ descriptor presented in [20],
the proposed PTD is more discriminative with the sup-
plement of MPF. On the other hand, the low-dimensional
MTF consisted of principal eigenvectors is more compact
and robust. Therefore, PTD is an interpretable descriptor
that takes both MPF and MTF of an action sequence into
consideration.

4.2 Hierarchical Temporal Dividing Algorithm

The proposed PTD captures both MPF and MTF information
for a human action sequence. However, it ignores the order
of action snippets in a human action. For example, “stand
up” and “sit down” are two actions in reverse order of mo-
tions, but their PTDs are identical even though they are to-
tally different actions. To encode the temporal information,
an intuitive and practical dividing algorithm is proposed to
divide a sequence into two compact sub-sequences (action
snippets). The compactness of snippet is measured by linear
perturbation of postures, which is naturally reflected by
the deviation between Euclidean distances and geodesic
distances.

A human activity represented by a postures sequence
P = {p1,p2, · · · ,pF } is divided into two action snippets
corresponding to two sub-sequences PL and PR using the
proposed dividing algorithm, as described in Algorithm 1.
We utilize two indexes l and r to indicate two positions
on initial sequence, thus the current lengths of left sub-
sequence PL and right sub-sequence PR are ML = l−1 and
MR = F − r, respectively. At the start of dividing, both the
nonlinear scores and the length of sub-sequences are equal,
and we concatenate pl to the left sub-sequence PL in this
case. If the nonlinear score βL < βR, we concatenate pl to
the left sub-sequence PL and update the related parameters.
Otherwise, if the nonlinear score βL > βR, we concatenate
pr to the right sub-sequence PR. In the case of βL = βR,
we concatenate posture to the shorter sub-sequence in order
to balance their length. Specifically, we concatenate pl to
the left sub-sequence PL if ML < MR, and concatenate pr

to the right sub-sequence PR if ML > MR. The Euclidean
distance matrix DEL, the geodesic distance matrix DGL,
and the distance ratio matrix RL for the left sub-sequence
are all ML×ML matrices. After concatenating pl to PL, the
expansion of RL can be illustrated as follows, r11 · · · r1,l−1

...
. . .

...
rl−1,1 · · · rl−1,l−1



=⇒


r11 · · · r1,l−1 r1l

...
. . .

...
...

rl−1,1 · · · rl−1,l−1 rl−1,l
rl,1 · · · rl,l−1 rl,l


where rij = r(pi,pj). The matrices for the right sub-
sequence are expanded in the same way.
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Algorithm 1 Hierarchical Temporal Dividing Algorithm.
1: Input: A human activity represented by postures se-

quence P = {p1,p2, · · · ,pF }; the sequential neighbors
k.

2: Output: Two sub-sequences PL = {p1,p2, · · · ,pd} and
PR = {pd+1,pd+2, · · · ,pF } represent the left and the
right part of the initial action sequence, respectively.

3: Initialization:
PL ← p1, PR ← pF ;
Compute Euclidean distance matrix DEL and DER;
Compute geodesic distance matrix DGL and DGR;
Compute distance ratio matrix RL and RR;
l← 2, r ← F − 1, βL ← 1, βR ← 1;

4: while l < r do
5: if βL < βR then
6: Update PL ← [PL;pl];
7: Expand DEL, DGL, RL to include pl;
8: Compute βL with Eq. (1);
9: l← l + 1;

10: else if βL > βR then
11: Update PR ← [PR;pr];
12: Expand DER, DGR, RR to include pr ;
13: Compute βR with Eq. (1);
14: r ← r − 1;
15: else
16: if ML ≤MR then
17: Execute line 6—9;
18: else if ML > MR then
19: Execute line 11—14;
20: end if
21: end if
22: end while
23: return PL, PR;

d11

d21 d22

d31 d32 d33 d34

L1

L2

L3

Fig. 4. Hierarchical temporal description of human action sequence. dli

is the ith PTD in the lth level over corresponding sub-sequence.

The expansion step makes the algorithm efficient since
we just compute the relative distances between the current
posture pl (or pr) and each posture in PL (or PR). Besides,
the defined k sequential neighbors graph leads to a faster
computation of DG as it is not necessary to use Dijkstra’s al-
gorithm, so the computation of βL and βR can be efficiently
carried out. Moreover, the balance step is applied to ensure
a more balanced dividing, that is, if βL = βR, we tend
to increase the shorter sub-sequence and update relevant
information. Compared with the common average dividing

method [20], [45], the proposed dividing algorithm takes
full account of the internal geometric structure of human
activity and enhances the interpretability, which leads to
better experimental performance.

The dividing algorithm obtains a hierarchical temporal
description of an initial human action sequence as shown in
Fig. 4, where three levels are annotated. The first level PTD
d11 is computed over the entire action sequence, and the sec-
ond level PTDs d21 and d22 are computed over two divided
sub-sequences, and so on. We deploy multiple PTDs over an
entire action sequence and its sub-sequences, the final rep-
resentation of a human action is the concatenation of PTDs
in hierarchical and temporal order [d11;d21;d22;d31; · · · ]. It
can be conjectured that adding more levels would enhance
the discriminative ability of hierarchical temporal PTDs to
represent a human activity, where both coarse (level one)
and detailed (level two, three, and et al.) descriptions are
taken into consideration. However, more levels increase
the dimensionality of obtained features, and may impact
classification performance due to over-fitting. Our prelim-
inary experiments indicate that the level L = 3 is a good
compromise between accuracy and generalization. In this
case, a skeleton recorded with 20 joints and a MTF with
T = 2 obtain the final action representation feature, whose
dimensionality (1 + 2 + 4)×180 = 1260 is much lower than
Cov3DJ.

Note that the sequence can be divided into more than
two subsequences by computing the entire distance ratio
matrix, in which case, a threshold parameter σ > 1 needs
to be set in advance. Starting from the first posture, the
dividing algorithm concatenates the current posture pt to
the current subsequence Pc (initialized as empty set) and
calculates the nonlinear score β of the subsequence [Pc;pt].
If nonlinear score βc ≤ σ, concatenate the current posture to
the current subsequence Pc = [Pc;pt]. Otherwise, the cur-
rent subsequence is separated from the entire sequence to
form an action snippet, and the dividing algorithm restarts
from the current posture. This process continues until the
entire sequence is divided into action snippets. Compared
with the proposed dividing algorithm, the number of action
snippets obtained with this dividing algorithm is sensitive
to the threshold parameter σ, whose value varies to different
action sequence and is difficult to set appropriately.

4.3 Complexity Analysis
The computational complexity of the proposed approach is
composed of the following three parts.

1) The complexity of computing sample covariance
matrix Cp of a sequence of postures of length F
isO(FN2), where N is number of coordinates of all
joints.

2) After obtaining the samples covariance matrix, the
complexity of eigendecomposition of Cp is O(N3).

3) Since the complexity of computing geodesic dis-
tance matrix of F × F is O(F 2), the com-
putational complexity of dividing algorithm is
O
(∑F

n=1 n
2
)

= O
(
F 3
)
.

The number of coordinates of all joints N = 3 × 20 = 60,
which is smaller than the length of a sequence of postures
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TABLE 1
Parameters search scopes for all methods.

Methods Parameters Parameter Scope

Gaglio et al. [24] k, N k ∈ {15, 16, · · · , 51}, N ∈ {3, 4, · · · , 17}
Cippitelli et al. [46] k k ∈ {3, 5, 10, 15, · · · , 35}
Xia et al. [25] k, N k = 125, N = 6
Hussein et al. [20] L L = 3

k is the number of clusters.
N is the number of the HMM states.
L is the number of levels of descriptor.

TABLE 2
Activity sets grouping different and similar activities from the KARD

dataset. Actions are in bold.

Activity Set 1 Activity Set 2 Activity Set 3
Horizontal arm wave High arm wave Draw tick

Two-hand wave Side kick Drink

Bend Catch cap Sit down

Phone call Draw tick Phone call

Stand up Hand clap Take umbrella

Forward kick Forward kick Toss paper

Draw X Bend High throw

Walk Sit down Horizontal arm wave

F . Therefore, the total complexity of the proposed approach
is approximated by O

(
F 3
)
.

5 EXPERIMENTAL STUDIES

We evaluate the discriminative ability of the proposed
approach on three public available benchmarks, including
the KARD dataset [24], the UTKinect dataset [25], and the
Florence3D dataset [26], each of them provides 15 or 20
3D joint locations for the participating person. We compare
our approach with state-of-the-art approaches on these three
datasets, and carry out parameters analysis of the proposed
approach on the KARD dataset. To remove center symmetry
of eigenvectors, we take the absolute value of all MTFs,
and then normalize the MPF and all MTFs to have unit L2

norm before concatenation for training and testing. In all
experiments, a linear SVM classifier is used for classification.

The hyperparameter settings for the baseline methods
here follow settings in the original papers. In particular, the
number of clusters k and the number of states of HMM
N in [24] are set by grid search approach, and the search
scope are k ∈ {15, 16, · · · , 51} and N ∈ {3, 4, · · · , 17}
respectively. The search scope of the number of clusters k
in [46] is k ∈ {3, 5, 10, 15, · · · , 35}. The set of clusters and
number of HMM states in [25] are taken k = 125 andN = 6,
respectively. The number of levels of the descriptor in [20]
is set to L = 3. The search scope for parameters of each
method is summarized in Table 1.

5.1 KARD Dataset
Gaglio et al. [24] collected the KARD dataset that contains
18 activities, which are divided into ten gestures and eight
actions as listed in Table 2 with different fonts. Ten gestures
are simple sequences related to specific parts of a body,
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Fig. 5. Confusion matrix of the proposed approach using the KARD
dataset under “new-person” setting. The x and y axis denote the actual
label and predicted label of the sequences, respectively.

while eight actions involving interaction between different
parts of the body are complex. Each activity is performed
3 times by 10 different performers, therefore, there are 540
(18× 10× 3) video sequences in total.

Previous work [24] uses three different experimental
setups and two modalities of dataset splitting. The three
experimental setups are:

1) One-Third Setup (A): One-third of the samples of
each person are used for training and the rest is for
testing.

2) Two-Third Setup (B): Two-thirds of the samples of
each person are used for training and the rest is for
testing.

3) Half Setup (C): Half of the samples of each person
are used for training and the rest for is testing.

The activities constituting the dataset are divided into fol-
lowing groups:

1) Gestures and Actions.
2) Three subsets: Activity Set 1, Activity Set 2, and

Activity Set 3 as listed in Table 2. From subset 1
to 3, the similarity of activities increases gradually.

We perform the experiments on three different exper-
imental setups and five dataset splittings. All results are
obtained under the parameter setting: T = 2, k = 6, L = 3
unless otherwise specified. Due to the randomness in the
procedure of splitting training and testing data, each exper-
imental setup is run 10 times. Table 3 presents the average
classification accuracy. We can find that the proposed ap-
proach beats comparative methods on three activity subset
and the gestures subset under all three experimental setups.
In particular, the accuracy of the proposed approach on
gestures subset is much higher than the other methods.
Our approach is only inferior to the method proposed
in [46] with a small disadvantage on the actions subset.
The difference between performances on the gestures and
actions subset is caused by following the reasons. The PTD
is a linear descriptor, which has limited capacity to capture
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TABLE 3
Accuracy (%) of the proposed approach compared with other methods using the KARD dataset for different experimental setups with different

Activity Sets and split in Gestures/Actions.

`````````̀Methods
Setups Activity Set 1 Activity Set 2 Activity Set 3 Gestures Actions

A B C A B C A B C A B C A B C

Gaglio et al. [24] 95.1 99.1 93.0 89.9 94.9 90.1 84.2 89.5 81.7 86.5 93.0 86.7 92.5 95.0 90.1

Cippitelli et al. [46] 98.0 99.0 97.7 99.8 100 99.6 91.6 95.8 93.3 89.9 95.9 93.7 99.0 99.9 99.1

The Proposed Approach 98.2 99.3 98.8 99.9 100 100 94.5 97.9 95.9 97.9 98.6 98.2 98.1 99.4 97.9

TABLE 4
Accuracy (%) of the proposed approach compared with state-of-the-art

methods, using the KARD dataset under “new-person” setting.

Methods Accuracy

Reported
Results

Gaglio et al. [24] 84.8

Cippitelli et al. [46] 95.1

Hussein et al. [20] 96.8

Our
Results

MPF + SVM 92.5

MPF + HTDA + SVM 93.2

MTF + SVM 95.7

MTF + HTDA + SVM 96.1

PTD + HTDA + SVM 98.7

some features of complex activities. On the other hand, there
might be very similar activities in the actions subset.

In addition, “new-person” scenario, also known as leave-
one-person-out setting is evaluated. The test results of this
setting are in line with those of [46]. We implemented the
code of Cov3DJ according to the paper [20], and report
the best result by varying their parameters across all the
possible range in this scenario. The results of the proposed
approach compared with state-of-the-art approaches are
listed in Table 4. Our approach achieves the best perfor-
mance under the methods combination of “PTD + HTDA +
SVM”, where the abbreviation “HTDA” means the proposed
hierarchical temporal dividing algorithm under nonlinear
degree. The corresponding confusion matrix is illustrated
in Fig. 5, from which we can observe that most activities
obtain a high recognition accuracy except for a very small
level of confusion among several activities. In particular,
the confusion between activities phone call and drink is
the main reason that leads to the lower performance in the
experimental setup of “actions” in Table 3. Note that all
misclassified activities belong to Activity Set 3, the main
reason causing this confusion is that these activities are
very similar from the perspective of 3D joint locations, and
there is too little information available to avoid confusion
between classes. On the whole, from the strong diagonal it
is evident that we achieve encouraging recognition perfor-
mance for the different human activities in this dataset.

5.2 UTKinect Dataset

UTKinect dataset [25] contains 10 kinds of human actions in
indoor settings: walk, sit down, stand up, pick up, carry,
throw, push, pull, wave, and clap hands. 10 different sub-

TABLE 5
Accuracy (%) of the proposed approach compared with the

state-of-the-art methods on UTKinect dataset.

Methods Accuracy

Xia et al. [25] 90.92

Devanne et al. [47] 91.46

Wang et al. [48] 93.47

The Proposed Approach 94.97

Liu et al. [31] 95.00

Cippitelli et al. [46] 95.10

0.85

0.05

0.16

1.00

0.05 0.95

0.05 0.90

0.05

0.10

0.84

0.05

0.95

1.00

1.00

1.00

1.00

walk

sit down

stand up

pick up

carry

throw

push

pull

wave

clap hands

walk

sit
 d

ow
n

sta
nd

 u
p

pic
k u

p
ca

rry
th

ro
w

pu
sh pu

ll

wav
e

cla
p 

ha
nd

s

Fig. 6. Confusion matrix of the proposed approach using the UTKinect
dataset under “leave-one-sequence-out” setting. The x and y axis de-
note the actual label and predicted label of the sequences, respectively.

jects perform each action twice, and there are 199 recorded
human action sequences in total.

In this dataset, we adopt the leave-one-sequence-out
cross validation experimental setup as employed in [25].
Since some recorded action sequences are too short to im-
plement the hierarchical temporal dividing algorithm, we
expand the action sequence by linear interpolation when
the sequence length is less than 32. The use of linear inter-
polation is acceptable since it holds the intrinsic structure
of the initial posture sequence. We compare the proposed
approach with state-of-the-arts as listed in Table 5, which
shows that our approach is superior to most of the compar-
ative methods and inferior to [46] and [31] with a small
disadvantage. The possible reasons are as follows. There
are no much geometric structures preserved in very short
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TABLE 6
Accuracy (%) of the proposed approach compared with the

state-of-the-art methods on Florence3D dataset.

Methods Accuracy

Cippitelli et al. [46] 86.10

Devanne et al. [47] 87.04

Vemulapalli et al. [9] 90.88

The Proposed Approach 91.59

Ma et al. [17] 91.72

Wang et al. [48] 92.25

sequence, which limits the performance of hierarchical tem-
poral dividing. However, the postures in [46] are selected
with clustering and do not suffer from short sequence. Since
spatio-temporal LSTM [31] considers the recurrent analysis
in spatial domain and discovers the spatial dependency pat-
terns between different joints in each frame, it could capture
more discriminative dynamics and motion patterns than
the proposed approach that simply concatenate the joints
information. The attendant shortcoming of this RNN-based
method is the high computational complexity. On the other
hand, the linear interpolation would include some synthetic
noise to some extent. Therefore, one possible limitation of
the proposed method is that it might not be applicable to
very short sequences. The best result of 94.97% is achieved
under the parameters setting: T = 2, k = 6, L = 3. The
corresponding confusion matrix is illustrated in Fig. 6. It is
obvious that the proposed approach recognizes most of the
actions in UTKinect dataset correctly.

5.3 Florence3D Dataset
Florence dataset [26] is captured using a Kinect camera and
collected at the University of Florence. It includes 9 human
actions: wave, drink from a bottle, answer phone, clap,
tight lace, sit down, stand up, read watch, and bow. 10
different subjects perform each action 2 or 3 times, and
there are 215 action samples in total. The high intra-class
variations (the same action is performed using the left hand
in some samples and right hand in some others) make this
dataset more challenging.

In this dataset, we adopt the leave-one-subject-out cross
validation experimental setup as employed in previous
work [47], which means that the person for testing can-
not appear in the training. Since there are some actions
performed by left-hand in some instances, we modify the
dataset by exchanging the y-coordinates of left and right
hands (ankles and shoulders) when the y-coordinate of
left hand is larger than right hand, this heuristic effec-
tively transforms left-handed actions to right-handed ac-
tions. Moreover, we also expand the action sequence when
the sequence length is less than 32 as we did in UTKinect
dataset. The classification accuracy is presented in Table
6. The proposed approach obtains the accuracy of 91.59%
under the parameters setting: T = 2, k = 6, L = 2, which is
just lower than the best result by 0.66%. Due to the high
intra-class variations, the proposed descriptor would not
characterize the meaningful posture compared with key-
pose-motifs obtained in [48]. On the other hand, taking into
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Fig. 7. Confusion matrix of the proposed approach using the Florence
dataset under “leave-one-subject-out” setting. The x and y axis denote
the actual label and predicted label of the sequences, respectively.

account of multiscale features in RNN with convolutional
operation, Ma et al. [17] beats the proposed approach nar-
rowly. Fig. 7 shows the corresponding confusion matrix, we
can find that most of the actions in Florence dataset are
recognized correctly by the proposed approach.

5.4 Parameter Analysis
Finally, we investigate the three key parameters in the pro-
posed approach: MTF number T , hierarchical level number
L and, sequential neighbors number k. We run all parame-
ters settings on KARD dataset with leave-one-out scenario.

5.4.1 Analysis of MTF Number
To evaluate the influence of the MTF number T , we vary
the sequential neighbors number k ranging from 2 to 13
with step 1 and fix the hierarchical level number L = 3. The
MTF number T is specified to be 0, 1, 2, and 3, respectively
(where T = 0 means only MPF included). Fig. 8 shows the
corresponding result. We can observe that the performance
is significantly improved by supplementing MTF to MPF.
The main reason is that MTF is able to model the evolution
of an action. Thus MPF and MTF complement each other
and obtain the best performance. Moreover, compared with
T = 1 and T = 3, T = 2 performs best in most cases,
we attribute this phenomenon to two aspects: 1) T = 1
is not capable of capturing sufficient dynamical tendency
information, while 2) T = 3 may lead to slight over-fitting.

5.4.2 Analysis of the Hierarchical Level Number
To evaluate the influence of the hierarchical level number
L, we fix the MTF number T = 2 and vary the sequential
neighbors number k ranging from 2 to 13 with step 1. The
hierarchical level number L is specified to be 1, 2, 3, and 4,
respectively. The result is presented in Fig. 9. It can be ob-
served that there is a remarkable performance improvement
when we divide the entire human action sequence into two
sub-sequences (from L = 1 to L = 2). The main reason is
that the hierarchical levels encode the temporal relationship,
which is an important characteristic of a human action.
Moreover, compared with L = 2 and L = 4, L = 3 performs
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Fig. 8. The influence of the MTF number T with the hierarchical level
number L = 3 on activity recognition accuracies using the KARD
dataset under “new-person” setting.
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Fig. 9. The influence of the hierarchical level number L with the MTF
number T = 2 on activity recognition accuracies using the KARD
dataset under “new-person” setting.

best in all situations, this confirms our conjectures: 1) L = 2
is not able to capture enough temporal information, while
2) L = 4 may destroy the structural integrity of action
snippets.

5.4.3 Analysis of the Sequential Neighbors Number
In both Fig. 8 and Fig. 9, the sequential neighbors number k
is adjusted from 2 to 13 with step 1. For a given setting of
parameters (such as T = 2, L = 3 in Fig. 8 or Fig. 9), the
performance presents a noticeable upward tendency with
the increase of sequential neighbors k, and when k ≥ 6,
the performance tends to be stable. It is expected since
the proposed hierarchical temporal dividing algorithm is
based on the computation of nonlinearity degree, which
is heavily dependent on the k sequential neighbors graph.
Larger neighbors number k holds the intrinsic structure of
human action sequence to a higher degree, which leads
to more reasonable graph representation. However, larger
is not always better: if k is too large, it may break the
basic assumption that continuous postures tend to have
closer features. On the other hand, larger k means greater
computational complexity. As we have seen, k = 6 is a good
compromise in the proposed approach.

6 CONCLUSION

In this paper, a novel descriptor PTD is constructed from 3D
joint locations sequence for human action recognition. To
encode the temporal information, we design a hierarchical
temporal dividing algorithm to divide a sequence into two
compact sub-sequences (action snippets) based on the man-
ifold assumption on action sequence, and multiple PTDs
are deployed over an entire action sequence and its sub-
sequences. The final representation of a human action is a hi-
erarchical temporal description of the initial sequence. Our
experimental studies show the advantage of the proposed
approach. The success of the proposed approach results
from two aspects. Albeit simple, the major posture feature
and main dynamical tendency feature can capture most
discriminative features of the human posture represented by
joint locations. On the other hand, the natural and intuitive
dividing algorithm can encode the temporal dynamics and
preserve the geometric structures of action snippets within
an activity.

There are some directions to improve the proposed ap-
proach further in future work. First, for an action sequence
with highly nonlinear degree, the major posture would re-
sult in meaningless posture, in which case, the major posture
can be replaced with representative posture by extracting
the key frame in the action snippet. Besides, in addition to
focus on the global dynamical tendency by computing the
covariance of the whole body joint locations, considering
covariance of body parts that relevant to action evolution
would obtain discriminative local dynamics. Finally, the
manifold dividing algorithm can be performed based on
the entire distance ratio matrix, which holds distance ratio
between pairwise postures in the whole action sequence.
However, dividing sequence with global information could
increase the computation complexity to some extent. On the
other hand, application of the proposed approach in video
surveillance system for abnormal activities detection is an
interesting direction, which also comprise our future work.
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