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Abstract—A well-defined distance is critical for the
performance of time series classification. Existing distance mea-
surements can be categorized into two branches. One is to utilize
handmade features for calculating distance, e.g., dynamic time
warping, which is limited to exploiting the dynamic informa-
tion of time series. The other methods make use of the dynamic
information by approximating the time series with a generative
model, e.g., Fisher kernel. However, previous distance measure-
ments for time series seldom exploit the label information, which
is helpful for classification by distance metric learning. In order
to attain the benefits of the dynamic information of time series
and the label information simultaneously, this paper proposes a
multiobjective learning algorithm for both time series approx-
imation and classification, termed multiobjective model-metric
(MOMM) learning. In MOMM, a recurrent network is exploited
as the temporal filter, based on which, a generative model is
learned for each time series as a representation of that series.
The models span a non-Euclidean space, where the label informa-
tion is utilized to learn the distance metric. The distance between
time series is then calculated as the model distance weighted by
the learned metric. The network size is also optimized to learn
parsimonious representations. MOMM simultaneously optimizes
the data representation, the time series model separation, and
the network size. The experiments show that MOMM achieves
not only superior overall performance on uni/multivariate time
series classification but also promising time series prediction
performance.

Index Terms—Echo state network (ESN), learning in the model
space, multiobjective learning, time series classification.

I. INTRODUCTION

T IME series are ubiquitously created and exploited
in scientific [1], engineering [2], [3], medicine [4],
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entertainment [5], stock market [6], etc. The pervasiveness
of time series inspires machine learning techniques for time
series analysis. One of the key issues is to define the distance
between time series.

Euclidean distance (ED) compares time steps one-by-one
and is most suitable for equal length time series. When time
series have variable length, dynamic time warping (DTW) [7]
is usually employed to align the series to the same length
by allowing many-to-one or one-to-many comparisons of time
steps. Although ED and DTW have demonstrated their use-
fulness in measuring the distance of time series on many
tasks [8], [9], previous researchers argued that they are
not suitable when dealing with time series that are high-
dimensional, long, or noisy [10]. Besides, time series usually
have long or short temporal dependencies, which character-
ize the dynamics of time series. However, ED and DTW
essentially ignore the dynamic information [10].

In order to employ the dynamic information, some attempts
have been made to utilize a generative model to approximate
the time series. Fisher kernel [11], [12] utilizes the gradients
of the log likelihood of a generative model as a representation
of the time series. Fisher kernel assumes that time series in the
same class make the parameters of a generative model change
in a similar manner. However, the separation capacity (SC)1

of the gradients is not clear. Reservoir kernel (RV) [2], [13]
employs the echo state network (ESN) to learn a model for
each time series. It demonstrates that the final connection
weights of the ESN network are able to predict the class mem-
bership. Similar to Fisher kernel, the SC of the learned models
is ignored.

Time series usually have labels. The label information is
critical for classification tasks. Yet, ED and DTW [7], etc. are
unsupervised distance measurements, while Fisher kernel [11],
RV [13], etc. are not intuitive to employ the supervised
similarity constraint, which prevents them from finding dis-
criminative features for classification. Luckily, there have been
some strategies to take advantage of the label information in
discriminative learning, such as distance metric learning [14].

In this paper, our goal is to employ the dynamic informa-
tion of time series to learn faithful models and employ the
label information to enhance the classification performance

1For the moment, it is enough to consider the representation capacity (RC)
as the capacity of a generative model to approximate time series, and the SC
as the relative distances of the learned models (representations) of the time
series in different classes. Please see Section III-C for more information.
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Fig. 1. Illustration of the proposed MOMM method. Given a set of time series (step 1), we first learn a model for each time series by using the ESN
(step 2). The models span a space, which we term model space. Then learning algorithms are performed in the model space. To learn models, our goal is
to optimize three objectives, i.e., RC of learned models, SC of learned models, and the network size (step 3). We formulate the problem as a multiobjective
learning problem and implement an MOEA for optimizing the ESN.

in the model-spanned space. Model learning and class sepa-
ration learning focus on different goals. Generally speaking,
the objective constructed just for model learning concentrates
more on the sequential dynamics and less on the classi-
fication performance. In contrast, the objective constructed
just for class separation focuses more on the classification
performance and less on finding the dynamic information in
data. Hence, the RC and the SC might lead to conflicting
results. In addition, to exploit the temporal dynamic informa-
tion, this paper exploits a type of recurrent neural network.
A large network may lead to additional computational cost,
unwanted chaotic behaviors and overfit [6], [15]. A small
network may be unable to uncover the dynamics in the data.
The topology optimization usually requires intensive trial-
and-error procedure [6] of a human expert. It is desired to
automatically determine the network topology to make the
network compact.

Due to the conflict of the objectives, a single solution
that is optimal for all objectives simultaneously does not
exist [6], [16], [17]. Therefore, there has to be a trade-
off among the objectives in order for good performance.
Multiobjective evolutionary algorithms (MOEAs) provide a
general and flexible framework for multiobjective learning
problems. Based on population, it returns a number of solu-
tions in a single run. Each solution is a tradeoff between objec-
tives [18]. Therefore, we reformulate the learning problem of
the model space into a Pareto-based multiobjective learning
problem to simultaneously optimize the three objectives. The
potential advantages of using MOEA include: it enables us to
analyze the interactions among different objectives; and it is
convenient to add or remove an objective without adjusting
the algorithm.

In order to attain the benefits of data approximation and
model separation simultaneously and reducing human efforts
in determining a suitable network size, this paper proposes
a multiobjective learning algorithm, multiobjective model-
metric (MOMM) learning, to simultaneously optimize the
RC, SC of series models, and the network size. The label
information is utilized to learn a distance metric (a positive
semidefinite matrix) to enhance the SC in learning models.
In particular, we propose to represent time series that are

uni-dimensional/multidimensional or possibly varying length,
by learning models for them. The time series models are
aware of the dynamical behaviors of the series. The mod-
els span a space, termed model space. The distance of the
models is calculated to measure the distance of time series.
The learning algorithms are performed in the model space.
A lot of studies [1], [14], [19] have demonstrated that learn-
ing distance metric is helpful to enhance the discriminative
capacity of classifiers. Motivated by these results, we learn
a distance metric in the model space to facilitate the SC. In
doing so, time series in the same class are represented by
similar models while time series in different classes are rep-
resented by dissimilar models. Fig. 1 illustrates the key idea
of the MOMM.

The MOMM has several advantages.
1) The network structure and connection weights are tuned

automatically and effectively. It avoids tedious cross-
validation (CV) or local optima when training the
recurrent network.

2) A set of tradeoffs among different objectives can be
found by using the MOEA. The objectives are effec-
tively optimized without explicit specification of the
combinational coefficients.

3) The RC, SC, and the network structure are optimized
simultaneously. This simultaneous learning enables the
solutions to attain the advantages of each objective
and to be even better than optimizing the objectives
individually.

4) We are able to obtain suitable solutions for both
series representation and classification problem in one
run and the obtained networks are usually of small
size, which is desired for efficiency and hardware
implementation.

The main contributions of this paper include the following.
1) We propose a supervised multiobjective learning algo-

rithm MOMM to simultaneously optimize time series
approximation, time series model separation and
automatically accomplish network topology selection
(Section III).

2) We empirically reveal the effect of the objectives on
time series classification (Section IV-B) and the benefits
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of including the network size as the objective to be
optimized (Section IV-C).

3) By optimizing the three objectives with MOEA, we
achieve superior overall classification accuracy on uni-
variate and multivariate time series (Section IV-D).

The rest of this paper is organized as follows. Section II
gives a brief review of the state-of-the-art time series classi-
fication methods and background of multiobjective learning.
Section III details the MOMM approach. Section IV demon-
strates the effectiveness of the MOMM and provides empirical
analysis. Section V concludes this paper.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce related work on
time series classification. We consider time series X =
[X(1); X(2); . . . ; X(LX)]T ∈ RLX×d, where X(i) ∈ Rd×1 is
the observation for d variables and LX is the length of time
series X. Each time series has a label y. Denote a training
set containing M samples as T = {Xm, ym}M

m=1. Time series
classification is to predict y given a new sample X.

The previous time series classification methods could be
predominantly categorized into the signal-based and model-
based approaches.

A. Signal-Based Methods

The signal-based methods operate on raw data directly
and often use handmade features to define the distance.
DTW [7], [20] allows nonlinear local warping to align two
time series temporally to the same length such that the
accumulative distance is minimized. However, due to the non-
linear local warping, the DTW distance violates the triangle
inequality. Thus it is not a properly defined distance mea-
surement [21]. Another strategy is to symbolize time series
by discretizing real values into symbols [22], which, how-
ever, causes a loss of information. Time series classification by
bag-of-feature (TSBF) [10] samples subsequences from orig-
inal time series as features. It is favored for flexibility and
insensitiveness to nonlinear local warping. However, the clas-
sification performance is dependent on advanced classification
techniques. These time series distance or representations are
strong solutions for processing time series. Yet, they have lim-
itations in leveraging the generating mechanism and the label
information of time series.

B. Model-Based Methods

The model-based methods address the problem with signal-
based methods by using a probabilistic generative model
to approximate the time series, such as Kullback–Leibler
divergence-based kernel [23], probability product kernel [24],
global alignment kernel (a generalization of DTW by taking all
candidate aligns into consideration) [21], Fisher kernel [11],
RV [13], etc.

Fisher kernel [11], [12] usually employs a hidden Markov
model (HMM) to approximate a set of series. It transforms
the series into Fisher scores, which are defined as the gra-
dient of the log-likelihood function ∇θ P(S|θ) of the HMM.
Fisher kernel calculates the distance between two time series

X1 and X2 by ∇θ P(X1|θ)I −1∇θ P(X2|θ), where I is Fisher
information metric. The inverse of the metric tensor results in
intensive computational cost. To avoid this effort, the Fisher
Information metric is usually ignored and the Fisher scores are
simply projected into a Euclidean space, with a loss of valuable
information [25]. Fisher kernel is trained by maximizing the
likelihood. It may have problems when the likelihood reaches
a local maximum, where the gradients are nearly zeros.

Chen et al. [13] proposed to use RV to learn models for
time series. The distance between time series is defined by
the function distance between models. However, the SC of
the models is ignored and may result in inferior classification
performance.

Chen et al. [19] proposed a model metric co-
learning (MMCL) algorithm. MMCL combines the learning
of models and distance metric into a single objective by a
tradeoff. Iterative gradient descent are employed to optimize
the network weights and the distance metric alternatively.
However, due to the recurrent training of the network, it may
suffer from gradient vanishing issues and be trapped in a
local optimum.

Previous studies have problems in properly taking into con-
sideration the label information. The time series models are
learned either by tedious CV-based grid-search [2], [13], which
has the disadvantage that it needs user interaction and selects
parameters from discrete values of the parameter space; or
learn models and distance metric by combining them with a
coefficient and are optimized alternatively by gradient-based
optimization [19], which may fall into local optima and limit
the ability.

Our MOMM is in line with RV and MMCL in learning
models for time series but they are essentially different. In
MOMM, the RC, SC of time series models, and the network
size are concurrently optimized by an MOEA. The objectives
of MOMM are generalizations of that in RV and MMCL, and
they are well-defined for optimization. Besides, the MOEA
enables us to gain more insights into these objectives. By
taking advantage of the flexible weighting coefficients and
avoiding local optima of training recurrent networks, the
MOMM often shows better performance than RV and MMCL.

C. Multiobjective Learning

Multiobjective learning is to find solutions by optimiz-
ing the several objectives { f1(x), f2(x), . . . , fN(x)} simultane-
ously [26]. The objectives are often conflicting with each other.
To compare solutions with multiple objectives, the dominance
relationship is usually employed [5].

Definition 1: Define domination as (Assuming
Minimization):

1) A solution x1 dominates x2 iff ∀i ∈ {1, 2, . . . , N},
fi(x1) ≤ fi(x2), denoted by x1 � x2.

2) When x1 � x2 and ∃j ∈ {1, 2, . . . , N}, fj(x1) < fj(x2), x1
strictly dominates x2, denoted by x1 ≺ x2.

A solution that is not dominated by any other solutions is
a Pareto optimal solution. The goal of multiobjective learning
is to approximate the set of Pareto optimal solutions, which is
also called the Pareto front.
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Esling and Agon [5] proposed to retrieve target time series
by jointly minimizing a set of distances, which are calcu-
lated by multiple descriptors. To classify a time series, the
predicted label is assigned based on the voting or domi-
nance volume of the Pareto front. Krause et al. [27] proposed
to find a small and efficient network for a pattern gen-
erator by treating the approximation accuracy and network
size as two conflicting objectives. The network connectivity
and weights are optimized by MOEA and a genetic algo-
rithm, respectively. Delgado et al. [6] treated the time series
prediction accuracy, network size and number of hidden acti-
vations as three objectives to evolve recurrent networks for
prediction problem. Despite the potential overlap of the last
two objectives, promising prediction accuracy is achieved.

III. MOMM FOR TIME SERIES CLASSIFICATION

This section first introduces the ESN. The model for
each time series is then introduced. Next, the optimization
objectives for the ESN are explicated. Finally, the MOMM
algorithm is presented.

A. Echo State Networks

To learn a parsimonious model for each time series, ESN is
employed as the state space model in this paper. ESN [28] is a
discrete time recurrent network. It receives inputs step-by-step
and converts each input into a latent state by combining the
input and the previous state. Due to this recursive nature, the
ESN is able to maintain the input history information with a
fading memory.

The ESN is composed of an input layer, a reservoir network,
and a readout layer. The reservoir is a high-dimensional sparse
network, where the neurons are connected recurrently. In a
typical ESN setting, the recurrent network structure and con-
nection weights are randomly fixed subject to echo state
property, i.e., the largest eigenvalue of the reservoir weight
matrix ||ρ|| < 1 [29]. Loosely speaking, the echo state prop-
erty is to make far earlier inputs have less influence on the
current state. The readout layer is the only trainable part. It
is usually trained through linear regression [30] by mapping
from state space to the target output.

In order to avoid the randomness in designing a proper
reservoir, a deterministically constructed derivative of ESN
is proposed recently [31], called cycle reservoir with
jumps (CRJs). Fig. 2 illustrates the architecture of the CRJ
network. The N reservoir neurons of CRJ are cyclically
interconnected in uni-direction. The cyclic connection weights
share the same value rc. Neurons at a distance J are bi-
directionally connected, where the jump connection weights
share the same value rj. The inputs are fully connected to the
reservoir. The input weights share an absolute value ri, and the
sign flips randomly [31]. This paper employs this determinis-
tic version of ESN as the base model to ease the operations
and analysis.

The reservoir state and the readout mapping of CRJ can be
generalized as{

h(t) = f
(
Whhh(t − 1) + WhxX(t)

)
f̂ (t) = Wyhh(t)

(1)

Fig. 2. Illustration for CRJ reservoir network.

where X(t) ∈ Rd+1 is the input stream with an additional unit
bias, d is the dimension of the input sequences; h(t) ∈ RN rep-
resents the hidden state, N is the number of reservoir neurons;
Whx ∈ RN×(d+1) is the input weight matrix, Whh ∈ RN×N

is the reservoir weight matrix, Wyh ∈ Rd′×N is the output
weight matrix to be learned, d′ is the dimension of output
sequences; and f is the nonlinear state transition function,
which is implemented with sigmoid function or tanh.

The input layer and the reservoir are the same for all the
time series in order to provide a unique platform for providing
versatile dynamic features. The output mapping assembles the
state space features to learn a model for the specific input
sequence. The nonlinear approximation capacity of CRJ is able
to approximate the time series well, providing the input and
the reservoir are designed properly. The work in this paper is
to optimize the ESN in learning models for time series.

B. Models of Time Series

The model for a time series is trained by future
prediction [6], which has been widely applied in language
processing and video learning. In this paper, the CRJ network
is employed to extrapolate one-step-ahead future observation
according to the past input history. A time series is then
represented by the linear readout function, i.e., (1).

Specifically, the state of the CRJ reservoir is initially set
as all zeros, i.e., storing no characteristics about the data. To
fill the gap of cold start, a time series is divided into two
parts X(0 ∼ L0 − 1) and X(L0 ∼ L). The first part X(0 ∼
L0−1) is employed to wash out the stochastic initial transition.
The second part XL0∼L is employed for training the readout
mapping. Let Y denote the target output sequence. For one-
step prediction, Y = X(L0 + 1 ∼ L) ∈ R(L−L0−1)×d. Denote
H ∈ R(L−L0−1)×N be the collections of the reservoir states over
time points X(L0 ∼ L − 1), i.e., h(L0) ∼ h(L − 1). Then the
readout mapping is trained by

Wyh = arg min
Wyh

L−1∑
t=L0

∥∥∥f̂ (t) − X(t + 1)

∥∥∥2 + λ||Wyh||2.

By virtue of ridge regression, Wyh can be calculated in a
closed-form

Wyh = (
HTH + λI

)−1
HTY. (2)

Here λ needs to be adjusted for generalization. However, the
learned models do not exploit the label information and cannot
guarantee to be suitable for classification.
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C. Objectives of MOMM

The goals are to learn the time series models that are faith-
ful for future prediction and with good class distribution for
classification, by a CRJ which is as compact as possible.
Due to the highly constrained CRJ structure, the connec-
tion weights (ri, rc, rj), the network topology (N, J) and the
regularization parameter of ridge regression (λ) fully deter-
mine the performance [31]. Denote the optimizing parameters
collectively as θ = {ri, rc, rj, J, N, λ}.

1) Representation Capacity: Given a time series X, the time
series model is trained by one-step-ahead future prediction
(as stated in Section III-B). Despite the assembling ability of
the readout layer, our goal is to optimize the general-purpose
reservoir so that it memorizes the input history information
and approximates the dynamics of the time series effectively.
In particular, the reservoir network is optimized so that the
likelihood of time series X is maximized given the initial value
X(1) and the learned model f̂θ (t)

P
(

X(2), X(3), . . . , X(L)| f̂θ (t)
)

= P
(

X(L)|X(L − 1), . . . , X(2), X(1), f̂θ (t)
)

× P
(

X(3)|X(2), X(1), f̂θ (t)
)

P
(

X(2)|X(1), f̂θ (t)
)

(3)

where f̂θ is the time series model trained with a CRJ network
parameterized by θ and P(X(i)|X(i − 1), . . . , X(2), X(1), f̂θ )
is the likelihood that f̂θ outputs X(i) given the previous inputs.

We employ normalized mean square error (NMSE) on the
training set to evaluate the RC

RC : arg min
θ

⎛
⎜⎝ 1

M

M∑
m=1

Lm−1∑
t=1

∥∥∥f̂ m
θ (t) − Xm(t + 1)

∥∥∥2

var(Xm)

⎞
⎟⎠ (4)

where M is the number of training samples. var denotes the
variance. The smaller the RC, the better the learned model
approximates the original time series.

2) Separation Capacity: Let f̂ m(t)2 be the model for
time series indexed by m. Then the distance of two time
series q and c can be measured by the distance of their
models [2]

D2( f q(t), f c(t)
) =

(∫
H

(
f q(t) − f c(t)

)2
dμ(h)

)

=
(∫

H

(∥∥∥Wyh
qch
∥∥∥2 + 2bT

qcWyh
qch + ∥∥bqc

∥∥2
)

dμ(h)

)

where H is the integral range of the reservoir state. μ(h) is
the probability distribution of the state h. Wyh

qc = Wyh
q − Wyh

c

and bqc = bq − bc.
We set the state transition function f as tanh, then the state

range H ∈ [−1, 1]N . Assuming μ(h) is uniform distribution,
the middle term in the second row can be omitted because for
any fixed b and W,

∫
H bTWyhh dμ(h) = 0. Then the above

2We omit θ here for compactness.

equation can be rewritten as

D2( f q(t), f c(t) = 2N

3

N∑
j=1

d′∑
i=1

w2
i,j + 2N‖b‖2 (5)

∝
N∑

j=1

d′∑
i=1

1

3
w2

i,j + ‖b‖2 (6)

where wi,j is the (i, j)th element of Wyh
qc, N is the number

of reservoir neurons, and d′ is the dimension of the output
sequence. Since N is the same for all the time series, thus 2N

can be omitted. We rescale the original orientation to elimi-
nate the weight 1/3 in (5). Then we concatenate Wyh and b
into a vector w ∈ R(N+1)d′

. The distance between models is
generalized as the ED3 between the scaled model parameters
w. In the following, we denote the distance of two models
f q(t) and f c(t) as D(wq, wc).

The ED is not adapted to the characteristics of data and
cannot guarantee to be optimal. As a mitigation, we induce
a Mahalanobis distance metric Q to let models in the same
class have small distance while models in different classes
have large distance. To learn the distance metric, we follow
neighborhood component analysis (NCA) [14]. In principle,
NCA learns a linear transformation of original space so that
a stochastic variant of K-nearest neighbor classifier is opti-
mized. The positive semidefinite matrix Q = ATA, where A
is the learned transformation. We restrict A to be diagonal such
that it measures the relative importance of different reservoir
neurons

D2(wq, wc
)

A = (
wq − wc

)TQ
(
wq − wc

)
= (

wq − wc
)TATA

(
wq − wc

)
where wq and wc are the scaled readout parameters. Let

Pq,c|A,θ = e−D2(wq|θ ,wc|θ )A∑M
k=1,k �=q e−D2(wq|θ ,wk|θ )A

, q �= c

be a soft nearest neighbor selection rule. Pq|A,θ =∑
m|yq=ym Pq,m|A,θ measures the likelihood of the time series

q being correctly classified in the transformed space.
The SC is to maximize the likelihood of all the training

time series being correctly classified

SC : arg min
θ

−E(θ) = arg min
θ

−
(

M∑
m=1

Pm|A,θ

)
. (7)

The distance metric is learned as a subroutine in our MOEA
algorithm. The projection mapping A is learned by maximizing
the above equation through gradient descent [14]

∇AE(θ) = −2A
M∑

m=1

∑
yq=ym

Pm,q|A,θ

(
wmqwT

mq−∑M
k=1 Pm,k|A,θ wmkwT

mk

)

= 2A
M∑

m=1

(
Pm|A,θ

∑M
k=1 Pm,k|A,θ wmkwT

mk

−∑yq=ym Pm,q|A,θ wmqwT
mq

)
)

(8)

where wmq = wm − wq.

3As stated, we have scaled the parameters. Strictly speaking, the distance
between models puts less weight (1/3) to the orientation than the offset, so
it is different from ED.
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3) Reservoir Size: The number of neurons in the reser-
voir determines the memory capacity and the dynamics the
network could provide [29], [30]. A large reservoir may intro-
duce unnecessary computational cost and unwanted chaotic
behaviors. Besides, the large reservoir is hard to train and
may easily overfit, resulting in deteriorated generalization
performance. However, a small reservoir is unable to cap-
ture the dynamic characteristics of input sequences. RC and
SC are network performance concerning different aspects, i.e.,
generating mechanism and pattern discrimination. Previous
studies have demonstrated that the increase of reservoir size
will improve RC [28], [31] and SC [17]. This implies a trade-
off between the network performance, i.e., RC and SC, and the
reservoir size. The determination of a suitable reservoir size
usually needs the trial-and-error procedure, which requires a
lot of training time and expert knowledge [30]. Luckily, the
ability to take the network topology and complexity into con-
sideration in a remarkable advantage for applying MOEA in
neural networks [6], [15]. The network structure optimization
has been widely performed in evolutionary neural networks
and receives promising benefits [3], [6], [16]. It makes pos-
sible to evaluate networks with different structures inside the
training process, without an extra loop to adapt the network
topology.

In this paper, the minimization of the reservoir size is
treated as an objective. A small network is preferred from
the consideration of efficiency and hardware implementation

RS : min N. (9)

The inclusion of the RS produces a search space which is dif-
ferent from using only RC and SC. Our experiments show that
taking the reservoir size as the third objective could be bene-
ficial to the overall performance, as well as reducing human
interaction in determining a proper reservoir size.

D. Objective Relation

In a multiobjective problem, a unique solution that opti-
mizes all objectives simultaneously does not exist. Otherwise,
the problem would be solved by optimizing a single objective.
In this paper, the RC and SC are dependent on the amount of
memory capacity the reservoir could provide. Simultaneously
optimizing RC/SC and RS requires the network to provide
satisfactory performance with a minimum number of neurons.

We now analyze the relation between RC and SC. RC
pursues approximation to the generating mechanism of the
training sequences. SC pursues separation among different
classes. We review the following considerations.

1) RC and SC could complement each other [32]. The
RC result provides generating mechanism information
of input sequences and may help improve the recog-
nition performance. The SC exploits the sequence label
information and provides the guidance for understanding
the variation structures in data.

2) RC and SC could be conflicting. For example, consid-
ering a dataset where the examples in two classes are
overlapped, if we only consider models that approxi-
mate the data well, the class distribution in the model

TABLE I
INITIALIZATION RANGES FOR THE PARAMETERS OF THE CRJ NETWORK

space may not be separable either. Whereas, by tak-
ing the separation ability into consideration, the models
can be learned to be separable according to the label
information.

Therefore, it would be desired to simultaneously optimize the
RC and SC by MOEA to attain the benefits of both domains.

Although the three objectives are different quantities and
concern different aspects of desired solutions, they are all
determined by the same set of CRJ network parameters. In
this paper, we employ a nondominated sorting evolutionary
algorithm to tune the network parameters.

E. Multiobjective Learning of Time Series Model Space

In this paper, we consider a population of CRJ networks,
which have three optimizing objectives. Initialization of the
CRJ network parameters θ is set randomly with uniform
distribution in the range given in Table I.

To optimize the reservoir network, we employ a
multiobjective nondominated sorting [33] and local selection
evolutionary algorithm. In particular, our method is based on
NSGAII [26]. NSGAII algorithm sorts the population by their
objective values and assigns fitness. To generate new solutions,
parents are selected based on their fitness. Since the fitness
range is broad and the selection is global, some solutions may
be frequently selected. Therefore, these solutions reproduce
themselves quickly. It results in the search being limited in an
area that is guided by a subset of the population. In order to
avoid this problem, in this paper, we propose to cluster the
solutions in each front according to their fitness by k-means
algorithm. The clustering algorithm employs ED. As the selec-
tion operator, we first select a cluster randomly, then select a
solution in the cluster. In this way, we block out the influence
of good solutions by the range of a cluster. Each cluster on the
fronts has equal probability of generating offsprings. In doing
so, we are able to generate solutions with more diversity. The
parent solutions perform crossover and mutation to generate
new solutions. Next, we describe the crossover and mutation
operators in the MOMM.

1) Crossover: There are many crossover methods in
the literature, for example one-point crossover, two-point
crossover [26]. For CRJ models, we define two kinds of
crossovers.

1) Weight Crossover: Take parameter ri as an example.
Given parents p and q, the crossover is defined as
follows:

r0ffs1
i = rp

i × γ + rq
i × (1 − γ )

r0ffs2
i = rq

i × γ + rp
i × (1 − γ ) (10)

where γ is the random coefficient and r0ffs1
i and r0ffs2

i
are the offsprings of the parameter ri.
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2) Structure Crossover: It is also known as one-point
crossover. Randomly select one cut point and swap the
CRJ components after the cut point. The two crossover
operations are performed randomly in implementation.

2) Mutation: A gene is first selected randomly, then a
Gaussian noise N (0, σ ) is added to the gene’s original value

rmutant
i = ri + N

(
0, σri

)
. (11)

σri is the standard deviation of the Gaussian noise for parame-
ter ri. Similarly, the other genes are mutated in a similar way.
Note that if the mutation results in ||ρ|| ≥ 1, then rc and rj

have to be regenerated to guarantee echo state property (see
Section III-A).

As the termination condition for the evolution, we set a
threshold value for each objective. The threshold values for
RC, SC, and RS are set as 10−3, 10−3, and 14 in this paper.
This decision is made based on some preliminary experiments
and not meant to be optimal. When the difference between the
best fitness values of parent population and the offspring falls
below the threshold, the evolution ends; otherwise, continue.
The maximum iteration number is set as 200.

When the algorithm terminates, a final population has been
generated. The first front contains nondominated solutions
with different tradeoffs among objectives. We select an effi-
cient solution in the nondominated front by tenfold CV to
maximize the classification performance of an SVM classi-
fier. More specifically, for solution selection, the training set
is partitioned into ten folds randomly. The SVM classifier is
tested on each fold after training on the remaining nine folds.
The parameters of SVM are provided in the experiment. The
final solution is selected as the solution with the least average
error over ten folds. After obtaining the solution, the SVM is
retrained on the training data before applying it to test data. We
also consider some alternative solution selection strategies and
compare them with the CV-based strategy in Section IV-E1.

The MOMM algorithm is summarized in Algorithm 1.

IV. EXPERIMENTAL STUDIES

In this section, we evaluate the MOMM method in order to
demonstrate the following.

1) The effect of different objectives for time series classi-
fication (Section IV-B).

2) The influence of the network size optimization and dis-
tance metric learning on the solution searching process
(Section IV-C).

3) The effectiveness of MOMM on time series clas-
sification in comparison with the state-of-the-art
(Section IV-D).

4) The effectiveness of solution selection from the nondom-
inated front and the convergence (Section IV-E).

Before that, we first detail our experimental setup.

A. Experimental Setup

1) Compared Methods: The compared methods include
DTW [7], TSBF [10], Fisher kernel5 [12], RV [13], and

4The number of neurons in the reservoir is unchanged.
5http://homepage.tudelft.nl/19j49/fisher/Fisher_Kernel_Learning.html

Algorithm 1 MOMM Learning
Initialization Let i = 1, create an initial population of CRJ
reservoir networks randomly. The network parameters are
uniformly generated (see Table I for the parameter range).
Objective Evaluation Train initial CRJ network population
and then compute RC (Equation 4), SC (Equation 7) and
RS (Equation 9) for each individual. The distance metric
is learned using gradient descent as a plug-in procedure
(Equation 8) when evaluating SC.
Non-dominated Ranking and clustering Sort the popu-
lation by non-domination sorting and assign fitness. Then
partition each front by the k-means clustering algorithm.
repeat

Crossover operations are repeated for desired times to
generate a sub-population Pcrossover

i . Two clusters are first
selected randomly. Then parents are selected by binary
tournament from the two clusters, respectively.
Mutation operations are repeated for desired times to
generate a sub-population Pmutation

i . The parent is ran-
domly generated by binary tournament selection.
Keep elites as ∀q ∈ Pcrossover

i ∪Pmutation
i ,if �x ∈ Pi, x ≺ q,

then Pi = (Pi −{x′|q ≺ x′})∪{q}, where ≺ is domination
operator. Calculate fitness for Pi and keep the top Npop

solutions as new population Pi+1. Let i = i + 1.
until Iteration reaches the maximum or the termination
condition is met.
Output Solution Select one solution in the final non-
dominated front by 10-fold cross-validation as the output.

MMCL [19]. We include HV-MOTS6 and MESN [27] in order
to compare MOMM with multiobjective methods on time
series classification. To be fair, we also use the multiobjective
learning algorithm to optimize RV for comparison, denoted by
MRV. In MRV, we take the future prediction error and 1NN
classification error of leave-one-out CV as two objectives to
be minimized.

2) Parameter Setting: In our implementation, the global
constraint of DTW is optimized using leave-one-out CV [7].
The minimum subsequence length and minimum interval size
of TSBF are set following [10]. The number of hidden states of
HMM in Fisher kernel [12], the network weights in RV [13],
the tradeoff coefficient in MMCL [19], the ridge regression
parameter λ, etc. are set by tenfold CV on the training set. For
MESN, we set the population size as 200 and the rest parame-
ters are the same as [27]. All points on the nondominated front
are optimized to minimize the approximation error. We select
one solution by tenfold CV that minimizes the CV error [27].
The search ranges for all these parameters are presented in
Table II.

In MOMM, the population size is set as 200. The ratios for
crossover and mutation are set as 0.8 and 0.2, respectively.
The standard deviation of Gaussian noise in mutation is set as
20% of the range of the selected parameter (see Table I). The
first 1/3 points of a sequence are employed as the wash-out
part for the reservoir. We set k = 5 for k-means algorithm with

6http://repmus.ircam.fr/esling/hvmots-datasets.html
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TABLE II
PARAMETERS FOR COMPARED APPROACHES EMPLOYED IN THIS PAPER

random seeds. These parameters are determined arbitrarily and
may not be optimal for MOMM.

DTW employs 1NN classifier, which has been shown to
be competitive for time series classification. Other com-
pared methods employ SVM for classification. An exten-
sively acknowledged implementation of SVM—LIBSVM is
employed in the experiment [34]. We also perform tenfold
CV to determine the slack-weight regularization parame-
ter C ∈ {10−3, 10−2, . . . , 103} and kernel width γ ∈
{10−6, 10−5, . . . , 10} in SVM. For datasets that do not have
enough training samples for tenfold CV, such as ECG5, we
employ fivefold CV. As the default setup in LIBSVM, one-
versus-one strategy is adopted in multiclass classification.
After the model selection, the selected model is retrained on
all training data before evaluated on the test data.

3) Datasets: The experiments are performed on both uni-
variate and multivariate time series. We employ 23 univariate
datasets from the UCR Time Series Repository [9]. The
dataset information is presented in Table III. The datasets
are already divided into standard training and test sets.
These datasets include binary-class/multiclass classification,
short-/long-term series, image outline classification and sensor
reading classification tasks, etc. These characteristics moti-
vate us to select these datasets to evaluate the proposed
method.

We also evaluate the MOMM algorithm on three
multivariate time series datasets from UCI Machine Learning
Repository (http://archive.ics.uci.edu/ml), i.e., Brazilian sign
language (Libras), handwritten characters (Hand), and
Australian sign language signs (AUS). Note that Hand and
AUS are also variable lengths. Libras dataset contains video-
recorded 15 class of hand movement patterns. Each class has
24 instances. The centroid pixels of the hand are found in
45 evenly sampled frames and compose the movement curve
with 45 points. The Hand dataset contains 3-D pen tip velocity
trajectories. Each character is represented by 2-D coordinates
and pen tip force. The AUS dataset collects 95 video-recorded
Australian sign language signs from a native signer. There are
27 samples per sign. These datasets are divided into training
and test set randomly by 70%/30%.

B. Effect of Objectives on Time Series Classification

To study the relative influence of different objectives on
classification results, our strategy is to leave out one objective
to study its effect. In particular, we consider five situations.

Fig. 3. Left plot illustrates the performance of different objective combi-
nations. It demonstrates that two-objective optimization is less effective than
three-objective optimization significantly. The right table presents the pair-
wise comparison of RC, SC, and RS regarding two-objective classification
performance on eight univariate datasets. The numerical value in (i, j)th entry
means the number of wins of i in comparison with j. The result indicates the
relative effect of three objectives: RC> SC > RS.

1) RC+SC: Optimize two objectives RC and SC, no matter
how large reservoir it needs.

2) RC+RS: Optimize two objectives RC and RS. The
network is trained only for prediction and no label
information is exploited.

3) SC+RS: Optimize two objectives SC and RS. Only the
separation among sequence models is considered. Data
approximation is not considered.

4) No-Metric: Optimize all three objectives RC, SC and
RS. The distance metric Q is set as the identity matrix
and is not optimized.

5) MOMM: Optimize three objectives RC, SC, and RS.
1) Compare Three-Objective Optimization With Any Two-

Objective Optimization: Fig. 3 presents the average classi-
fication results on eight datasets. It is clear that optimizing
two objectives usually yields poorer results than three objec-
tives. Wilcoxon signed rank test is evaluated to see whether
the pairwise difference between the performance of any two
objectives and three objectives is significant. The p-values are
0.016/0.008/0.008/0.016, respectively, indicating the signifi-
cant difference. The result demonstrates that optimizing the
model space with three objectives indeed leads to significantly
better performance than optimizing any two objectives.

2) Comparison of Two-Objective Optimization: First, we
restrict our attention on the two-objective optimization cases,
i.e., RC+SC, RC+RS, and SC+RS. In particular, RC+SC
achieves the best performance on seven out of eight datasets.
SC+RS maintains the worst results on all eight datasets.
RC+RS achieves intermediate classification performance. It is
slightly better on Beef dataset than RC+SC and SC+RS. We
can make three main observations from Fig. 3.

1) Despite that the network is not constrained, it is observed
that RC+SC still has quite good performance. We
attribute this observation to the size range ([10, 100]) of
the CRJ reservoir in the experiment. When the poten-
tial reservoir size is set even larger than that in our
experiments, RS may become more critical to the over-
all performance. Because in that case, the reservoir size
is prone to grow large and tends to over-fit [28].

2) RC+RS achieves better performance than SC+RS but
worse than RC+SC. This result confirms that the
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TABLE III
GENERALIZATION ACCURACY OF MOMM AND COMPARED METHODS ON UNIVARIATE TIME SERIES DATASETS

model training only by prediction is important to
capture the generating mechanism of the sequence.
Whereas, it may not lead to the best representations for
classification.

3) SC+RS is not a good choice on all datasets. It pursues
SC of models on the training set. However, without con-
sidering the dynamic information in the data, SC+RS
generalizes poorly on the test set. Therefore, SC is an
ancillary objective that helps improve the classification
performance.

Let us take a step further. Actually, by comparing the classi-
fication performance of two-objective optimization, we obtain
the pairwise comparison of three objectives. For example,
when comparing the performance of RC+SC and RC+RS, we
indeed compare SC and RS. The right table of Fig. 3 presents
the pairwise comparison of three objectives. The result con-
firms the relative importance of RC, SC, and RS. First of all,
RC consistently achieves better performance than SC and RS.
This result reveals that RC is the primary objective and influ-
ences the classification results the most. As expected, without
understanding the nature of data, optimizing SC and RS may
not yield good generalization performance. Second, SC wins
on seven out of eight datasets than RS. This result indicates
that learning a distance metric is important to improve the
classification performance.

3) No-Metric: No-metric achieves three wins and two ties
than two objective combinations. Especially, no-metric wins
six out eight datasets than RC+RS. No-metric has one more
objective SC than RC+RS. RC+RS does not make use of
label information while no-metric does. Hence, this observa-
tion reveals that the label information is useful in training
models for classification.

No-metric is inferior to MOMM. The distance in the model
space is critical to the performance of learning algorithms.

This observation confirms that learning an elaborate distance
metric does lead to performance gains.

C. Effects of RS and the Distance Metric

Previous research mainly determines satisfactory reservoir
parameters [13], [31] by grid search or trial-and-error. Thus
it is useful to study the influence of objectives on the reser-
voir parameters. We conduct 30 repetitions for three cases:
1) MOMM; 2) RC+SC; and 3) no-metric, respectively, on the
Beef dataset, to see the effect of RS and the distance metric. In
particular, we store the up-till-now best SC values for different
parameters during evolution. This could be viewed as sampling
from the parameter space using evolution method [35]. The
result for sampling RC is omitted here because the variance
is too small to be identified for visualization. Fig. 4 demon-
strates the generalization performance of SC by sampling the
reservoir size N and rc tuples during the evolution process.
We can make three observations.

1) By comparing MOMM and RC+SC, we find that taking
the RS as an objective makes the search distribution in
the solution space focused on the region of small reser-
voir size [Fig. 4(a)]. Despite the smaller reservoir for the
MOMM, we observe better generalization of SC [com-
pare Fig. 4(a) and (b)]. The observation confirms that the
network size optimization is effective and is beneficial
to improving the generalization performance.

2) Unexpectedly, with the objective RS to minimize the
reservoir size, the cycle connection weight rc favors
large values comparing Fig. 4(a) and (c) to Fig. 4(b).
Note that in previous work [31], rc always varies in the
range [0, 1]. We presume that large reservoir size would
be required as a price for comparative performance in
case of limited rc.
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(a) (b) (c)

Fig. 4. Sampling objective values of SC on the test set with respect to different reservoir size and rc (×100) while evolution on Beef. The minus sign of
SC is omitted. The figure presents the result of (a) MOMM, (b) RC+SC, and (c) no-metric. We compare MOMM and RC+SC to reveal the effect of RS on
the reservoir and compare MOMM and no-metric to reveal the effect of the distance metric on the reservoir. We can make three main observations. First,
comparing MOMM and RC+SC [see (a) and (b)], the search for the reservoir size is successfully constrained in small size area (green box). Despite the small
reservoir of the MOMM, better generalization is observed when compared with RC+SC. Second, the cycle connection weight tends to grow large (yellow
box) when we restrict the reservoir size to be small [see (a) and (c)]. Third, the search area is more concentrated when the distance metric is learned [see (a)].
Whereas, without learning the distance metric, the algorithm tends to explore the parameter space more uniformly [see (c)].

3) By comparing MOMM and no-metric [Fig. 4(a) and (c)],
it is observed that with the distance metric the parame-
ter search is more concentrated and could help accelerate
convergence. This observation may be because the dis-
tance metric enlarges the difference of SC values for
different parameters. Hence, many areas in the parameter
space are not searched, leading to the quick convergence
of the MOMM (see Fig. 10).

D. Time Series Classification

1) Univariate Time Series: We compare the MOMM with
the state-of-the-art methods. Table III presents the average
classification accuracy over 30 times. The bottom row is the
mean performance gap between other methods and MOMM.
On the 23 datasets, the MOMM achieves the best classification
accuracy on 15 datasets, and comparative performance with the
best results on the other eight datasets. In particular, MOMM
gets 99.77% accuracy on ECG5, 90.5% accuracy on OSULeaf,
etc. which improves a lot compared to other approaches. We
observe that the MOMM works extremely well when the train-
ing samples are rare, e.g., DiatomSize, ECG5 and SonyRobot,
and SonyRobotII. In these datasets, the number of testing
samples is much larger than training samples, which easily
results in overfitting in classification. For example, ECG5 con-
tains only 23 training samples but 861 test samples. The good
performance of MOMM demonstrates that the co-evolution of
network performance and network size helps avoid the over-
fitting problem. The MRV often gets inferior performance to
RV. We presume this observation is because the flexibility of
MOEA leads to high risk of overfitting.

The MMCL obtains the best accuracy on four datasets.
However, MMCL needs to determine the combinational
coefficients explicitly by CV. It requires more efforts to
fine-tune the parameters in order to maintain compara-
tive performance with the MOMM. Note that MOMM has
the advantage of automatically tuning the network struc-
ture and tradeoffs according to the specific dataset. We
observe that TSBF achieves excellent performance on FISH
dataset. Fig. 7(f) exemplifies a typical time series in FISH
dataset [36]. To explain the reason, note that FISH dataset

(a) (b)

(c) (d)

Fig. 5. Mean objective values on the nondominated front of different genera-
tions. The iteration is indicated by gray scale. The arrows point from iterations
1 to 200. (a) Beef. (b) Coffee. (c) Car. (d) Lighting2.

contains sequences of fish shape contours and we find
that the sequences exhibit strong symmetric characteristics.
TSBF obtains statistical properties directly by sampling sub-
sequences. Therefore, TSBF may have more ability in finding
the class-predictive features from the local structure, such as
different parts of the fish. Hence, TSBF performs better than
model-based approaches.

Fig. 5 illustrates the evolution of the MOMM. It presents
the average objective values on the nondominated front of
each iteration. We observe that the algorithm automatically
determines the tradeoffs of the objective for different stages
of optimization. For Coffee dataset, the algorithm first pro-
duces more pressure to optimize the SC. This is because
the Coffee dataset contains two class of samples that can be
easily separated in the model space. When the improvement
on SC is saturated, the algorithm tends to put more empha-
sis on the RC and RS. For Lighting2 dataset, the MOMM
first provides more priority in optimizing RC and then turns
to SC.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Nondominated front achieved by MOMM. The axes indicate three
objective values. The color indicates the generalization performance. (a) Beef.
(b) and (f) Coffee. (c) Car. (d) Lighting2. (e) OSULeaf.

Fig. 6 demonstrates the nondominated solutions achieved
in the final generation of the MOMM. It is observed that the
nondominated solutions obtained in the final generation have a
good distribution in the objective space. The solutions with the
best generalization performance may occupy different regions
in the objective space. For Beef, Coffee, and Car, the best
solutions lie in the interior region of the nondominated front.
For Lighting2, the best solutions are achieved with only 13
neurons. It demonstrates the advantage of treating the reservoir
size as the optimizing objective. Fig. 6(f) demonstrates the
nondominated front of optimizing RC and SC, when RS is
fixed as 50. The satisfactory solutions have relatively low RC
and SC, which empirically shows the complementarity of RC
and SC.

By employing the MOMM, we are able to solve time
series classification and prediction in one time. To demon-
strate the prediction performance, we choose the network on
the nondominated front with the best RC value. Based on the
selected network, the sequence model for a randomly cho-
sen training sequence is learned. Then the trained sequence
model is used for predicting a randomly chosen test sequence.
The goal is to verify whether the temporal dynamics learned
from the training sequence could be faithfully represented
and generalize well on an unseen sequence. According to
Fig. 7, despite the diverse dynamic behaviors of the sequences,
the prediction results are quite satisfactory. For example, on
Lighting2 dataset, even though the training sequence and
test sequence show very broad and different dynamics, the

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Illustration of (a)–(e) prediction performance of the time series models
learned on top of the optimized CRJ network and (f) Fish series.

prediction performance is very promising. In our experiments,
we also notice that solutions trained on one dataset can be eas-
ily transferred to other datasets with promising performance.
The NMSE on Beef dataset is 0.056, while employing the
network learned from Coffee dataset also achieves 0.099
NMSE error. We also evaluate the prediction ability of mod-
els optimized by any two objectives. However, the prediction
results are usually worse than optimizing three objectives.
Besides, without treating RS as an objective, it is typical
to observe a nearly perfect approximation on the training
sequences, but suffers severe degradation on test sequences,
as shown in Fig. 7(e). This is because the networks become
too large and cause overfitting.

From the above results and supported by the previous sec-
tions, we could find: first, by optimizing the three objectives
simultaneously, we could obtain better prediction and classifi-
cation performance than optimizing the objectives individually.
This indicates that RC and SC could complement each other.
Second, the inclusion of RS as an objective indeed prevent the
network from getting too complex and overfitting in learning
sequence models. Third, by simultaneously optimizing three
objectives in MOEA, the tedious human interaction to tune the
combinational coefficient may be exempted, while satisfactory
generalization performance is obtained.

2) Multivariate Time Series: The average results over 30
repetitions are presented in Table IV. The MOMM achieves
the best accuracy on Libras and Hand, but slightly worse
on AUS. Presumably, the inferior result is due to the short
sequence length. Using a generative model to approximate the
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TABLE IV
EXPERIMENTAL RESULTS FOR MULTIVARIATE AND VARIABLE LENGTH TIME SERIES

sequences has an advantage in dealing with long sequences,
whereas this method may not be competent to capture the tran-
sient characteristics of this dataset. Therefore, in this situation,
methods directly operating on raw data, such as DTW, may
be more effective.

Up till now, the results of univariate and multivariate
time series classification have demonstrated that the MOMM
performs favorably in comparison with the state-of-the-art
methods. Three reasons are involved.

1) The network weights and topology in the general-
purpose reservoir network is critical to providing
dynamic features for both approximation and discrim-
ination. The network selection is usually a tedious
trial-and-error process by restarting or CV. This requires
a lot of user interactions and cannot guarantee to find
optimal solutions. More advanced gradient descent-
based MMCL may suffer from local optima or vanishing
gradient issues when training the network recurrently. In
the MOMM, the network optimization is automatically
determined using a Pareto-based evolutionary algorithm.
The parameters that need to be specified is the evolu-
tionary algorithm parameters, such as population size,
crossover, and mutation rates. These parameters are not
so sensitive to the classification performance.

2) The distance metric is taken into consideration explicitly
in the MOMM as an objective. This enables the network
to capture supervised similarity information. The learned
representations favor collapsing data in the same class
and separating data in different classes.

3) By using the MOEA, the tradeoffs among the various
objectives are effectively optimized without the need to
specify the combinational coefficients.

3) Statistical Test: Friedman test is to compare multiple
methods over multiple datasets. We first employ Friedman test
to test whether the compared algorithms are equivalent. The
p-value of Friedman test is 5 × 10−12, which means these
methods do behave differently. Then we conduct a post-hoc
test, i.e., Bonferroni–Dunn test [37], to see how the MOMM
is significantly different from other methods. For our case,
we compare MOMM with all other methods. The significance
level is set as 0.05. Fig. 8 demonstrates the mean rank of every
method and their CD. The figure illustrates that the MOMM
is significantly better than most state-of-the-art methods.

E. Discussion

1) Effectiveness of Solution Selection: How to exploit the
nondominated front returned by MOEAs to output the final
solution has been actively investigated [38], [39]. The most

Fig. 8. CD between the MOMM and the compared methods. The numerical
value above each line indicates the average rank of the corresponding method
over all univariate datasets. The result indicates that MOMM achieves the
best average rank. Most state-of-the-art methods are significantly different
from our method under the significance level 0.05. The CD is 2.1893 for this
case.

favorable solution on the nondominated front is usually deter-
mined by a decision maker. However, we note that for
selecting a solution, there have been many heuristic meth-
ods proposed, which are readily available to this paper, such
as trial-and-error [32], best-takes-all [3], [6], knee-based [40],
hypervolume-based [5], and ensemble-based methods [41]. In
our experiment, tenfold CV is used to select a solution with
the best class distribution in the model space. We have also
implemented three widely applied methods to compare the
results.

1) Hypervolume-based selection [5] selects a solution that
has the maximum dominance area on the nondominated
front.

2) Ensemble-based method [41] takes into consideration
all/a part of the nondominated solutions. In our method,
the predicted label of each solution is the prediction of
an SVM classifier trained on that solution. The final
prediction of the classification is obtained through voting
by all the solutions.

3) Best-takes-all [3], [6] selects the solution with the
best SC value since our task is classification. If
more than one solution has the same best SC value,
the solution with the best RC value among them
is selected.

Their results are compared with tenfold CV using boxplots
to evaluate whether the significant difference exists. Fig. 9
demonstrates that the compared methods are all inferior to
tenfold CV.

2) Generalization Ability: We set the stop condition as 300
iterations to observe the trend of objective values on test data.
Fig. 10 demonstrates the evolution trend of RC and SC on
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Fig. 9. Influence of different solution selection strategies. We perform ensem-
ble [41], hypervolume-based [5], and best-takes-all [6] strategies to justify the
result of the obtained nondominated front of each univariate dataset. These
methods are compared with tenfold CV. The medium improvements (red
line) of the three strategies are all below 0. p-value = 0.013/0.001/2.702e-05
for ensemble/hypervolume/best-takes-all in Wilcoxon signed rank test with
a significance level of 0.05. Ensemble, hypervolume, and best-takes-all are
significantly worse, which indicates that tenfold CV is an effective solution
selection strategy in this paper.

(a) (b)

Fig. 10. Objective values of RC and SC with respect to the number of genera-
tion on Adiac dataset. The RC and SC values of each generation are averages
of individuals on the nondominated front. It demonstrates that MOMM is
able to converge after a few iterations and maintains good generalization
performance.

the nondominated front of MOMM with respect to the num-
ber of the iteration. The generalization performance keeps
steady as the evolution proceeds and does not show a tendency
for overfitting. It also demonstrates that the MOMM algo-
rithm converges quickly. For example, the fitness values on
Adiac finish most of the improvement within 50 generations.
Experiments on other datasets show similar results.

V. CONCLUSION

This paper proposes a multiobjective learning algorithm
MOMM to classify time series in the model space. The
problem is solved by simultaneously optimizing the network
performance of time series prediction and the time series
model separation, and by determining the network size auto-
matically.

According to the experimental results, it is observed as
follows.

1) The experiments on both univariate and multivariate
time series datasets show that the MOMM algorithm
achieves superior performance in comparison with the
state-of-the-art time series classification methods.

2) Simultaneously optimizing the three objectives, i.e., the
network performance of representation, SC, and the
network size, demonstrates better performance than opti-
mizing any two objectives. By optimizing the three
objectives simultaneously, we could attain solutions for
sequence prediction and classification in one run. The

MOEA returns multiple solutions such that the user
could choose a suitable solution for the task at hand.

3) For time series classification, the three objectives have
different importance. Our result demonstrates that faith-
ful future prediction capacity is critical for good gener-
alization. The SC of learned models is also important
to exploit the label information for good classifica-
tion performance. The minimization of the network
size produces much pressure against large networks,
which helps reduce computational cost and improve the
generalization ability.

We try to explain why the MOMM perform well by three
main reasons.

1) The effective network structure and weight optimization
using the MOEA.

2) The incorporation of distance metric and the network
size when learning representations.

3) Effective tradeoffs among objectives by considering
them explicitly in a multiobjective learning algorithm.

Our methodology has a high computational complexity, as
other evolutionary algorithms do. However, it is balanced by
the fact of being able to search enormous parameter space
and superior performance in comparison with the state-of-
the-art methods. This would be important in applications
where the user concerns the accuracy more than time, such
as medical diagnosis [4]. The improvement in computational
efficiency will be made in the future. One way is to reduce
the number of fitness evaluation and comparisons by designing
more efficient MOEAs. It is also possible to achieve further
performance enhancement by explicitly considering diversity
as an optimization objective.
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