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Abstract— Negative correlation learning (NCL) is an ensemble
learning algorithm that introduces a correlation penalty term
to the cost function of each individual ensemble member. Each
ensemble member minimizes its mean square error and its error
correlation with the rest of the ensemble. This paper analyzes
NCL and reveals that adopting a negative correlation term for
unlabeled data is beneficial to improving the model performance
in the semisupervised learning (SSL) setting. We then propose
a novel SSL algorithm, Semisupervised NCL (SemiNCL) algo-
rithm. The algorithm considers the negative correlation terms for
both labeled and unlabeled data for the semisupervised problems.
In order to reduce the computational and memory complexity,
an accelerated SemiNCL is derived from the distributed least
square algorithm. In addition, we have derived a bound for two
parameters in SemiNCL based on an analysis of the Hessian
matrix of the error function. The new algorithm is evaluated
by extensive experiments with various ratios of labeled and
unlabeled training data. Comparisons with other state-of-the-art
supervised and semisupervised algorithms confirm that SemiNCL
achieves the best overall performance.

Index Terms— Committee machines, ensemble learning, mul-
tiple classifiers, negative correlation learning, semi-supervised
learning.

I. INTRODUCTION

EVERAL machine learning paradigms have been devel-
S oped for incorporating unlabeled examples into the super-
vised learning process, such as semisupervised learning
(SSL) [52], transductive learning [31], etc. Both the SSL
and transductive learning attempt to directly exploit unlabeled
examples. While in SSL the unlabeled examples are typically
different from the test examples, the unlabeled examples are
exactly the same as the test examples in transductive learning.

Ensembles can improve the generalization performance
when compared with a single learner in both supervised
[34] and SSL [14], [48], [50]. In this paper, we propose
a novel semisupervised algorithm, semisupervised negative
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correlation learning (SemiNCL), by generating a group of
diverse learners from the same input space. This algorithm
is based on NCL [34], [35], which is a specific ensemble
training algorithm by managing the tradeoff between accuracy
and diversity among base learners [36], [47].

It is well acknowledged that the generalization of an ensem-
ble is related to the accuracy (measured by the training error)
of the base learners and the diversity among them [9], [46].
Generally, a higher average accuracy of base learners and
a larger diversity among base learners can lead to a better
ensemble [9], [48]. However, it is a dilemma to simultaneously
optimize both the accuracy and diversity in an ensemble.
For example, a higher accuracy of base learners means most
of ensemble members perform correctly on labeled data,
therefore, a higher diversity is difficult to achieve. Fortunately,
unlabeled data can be employed to promote diversity without
degrading accuracy on the labeled data. Therefore, a better
generalization could be achieved [50].

SemiNCL is based on this idea by promoting diversity utiliz-
ing both the labeled and unlabeled data. SemiNCL introduces
a correlation penalty term on both labeled and unlabeled data
into the cost function of each ensemble member, so that each
ensemble member minimizes its mean square error (MSE) and
the error correlation with other ensemble members. To reduce
its computational complexity, a new distributed SemiNCL is
proposed and experimentally evaluated in this paper.

This paper makes several contributions to the field of
ensemble learning and SSL, which are as follows.

1) It proposes a new solution to the effective use of
unlabeled data to encourage diversity in an ensemble
without sacrificing the accuracy on labeled data. The
proposed method does not make strong assumptions
about the data distribution, which proves to be beneficial
to the performance.

2) The bounds on two penalty coefficients have been
derived based on the analysis of the Hessian matrices.

3) We propose a closed-form distributed least square solu-
tion to accelerate SemiNCL. The computational and
memory complexity have been analyzed, and the empiri-
cal evaluation on relatively large data sets has confirmed
the accuracy and efficiency of the proposed approach.

NCL [34], [35] has proven to be an effective learning
paradigm for classification and regression. However, NCL has
only been applied to supervised learning problems, which
cannot make use of rich unlabeled data. Moreover, the tradi-
tional NCL is optimized by conjugate gradient, which requires
additional computational time. In this paper, we address
both the problems by introducing the negative correlation
term to exploit unlabeled data to promote ensemble diversity
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without sacrificing the accuracy on labeled data, and using
the distributed least square algorithm to accelerate SemiNCL.
In particular, the accelerated SemiNCL scales linearly with the
total number of labeled and unlabeled samples, and makes a
few assumptions about the data distribution, which is more
practical for SSL tasks.

The rest of this paper is organized as follows. After the
background in Section II, the proposed algorithm is described
in Section III. Experimental results and discussions are pre-
sented in Section IV. Finally, Section V concludes this paper.

II. RELATED WORK

The idea of considering unlabeled data in supervised train-
ing can be traced back to the Shahshahani and Landgrebe’s
work [44], which showed that the classification performance
can be enhanced using unlabeled data. With the rapid devel-
opment of machine learning, various kinds of SSL algo-
rithms have been developed, e.g., self-learning [41], [43] and
generative models [25], [32], co-training [3] and multiview
learning [4], [6], graph-based algorithms [1], [28], [49],
cluster-based algorithms [31], [33], [42], [45], etc.

The self-learning algorithm [41], [43] uses its own pre-
dictions to teach itself. However, the self-learning algorithms
usually make “hard” labels for unlabeled data, and the initial
misclassifications in self-learning could lead to suboptimal per-
formance. To alleviate this problem, the generative model and
expectation-maximization approach have been proposed [25].
Instead of making a “hard” label as in self-learning, the
generative model assigns probabilities to labels on unlabeled
data, which can be viewed as a kind of “soft” self-training.
Still, the initial misclassifications on unlabeled data with soft
labels might propagate in the learning process.

The co-training algorithm [3] generates two classifiers using
two sufficient and redundant subfeature sets, and then exploits
the most confident predictions of each classifier on unlabeled
data to “teach” another classifier. Multiview learning [5], [6]
generalizes co-training by generating a number of classifiers
and let them ‘“teach” each other. The co-training/multiview
algorithms are initialized by generating classifiers from differ-
ent input spaces, which are usually implemented by splitting
the features into different subsets, i.e., different views. Then
these algorithms iteratively retrain on boosted pseudo-labeled
sets, based on high-confidence predictions on the unlabeled
data. The training follows a greedy agreement-maximization
process. The framework is based on two assumptions, namely,
the compatibility assumption and the independence assump-
tion. The compatibility assumption imposes that the estimated
functions in different views agree on labels in most samples.
This assumption will reduce the complexity of the learning
problem by only searching over compatible functions. The
independence assumption assumes the views to be indepen-
dent. However, these assumptions, especially the independence
assumption, often cannot be satisfied in real-world applica-
tions, e.g., when there are no redundant features in the data.
In this case, the co-training/multiview learning algorithm may
not work well.

The graph-based algorithms directly employ both the
labeled and unlabeled data to construct a graph, where the
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nodes are the labeled and unlabeled samples, and the (possi-
bly weighted) edges reflect “similarity” between the samples.
The typical graph-based methods are manifold regularization
[11, [27], [28], low-density separation [10], Gaussian fields,
and harmonic functions [53]. These methods estimate soft
labels, and simultaneously try to impose smoothness on the
graph, which can be seen as a smooth function estimator.
However, graph-based algorithms make strong assumptions
about the data distribution, and suffer from high computational
and memory cost since they need to manipulate the graph
defined on all labeled and unlabeled data [30], [39].

The cluster-based algorithms try to make the decision
boundary pass through the low-density region and simultane-
ously maximize the margins between different clusters [30].
Some successful semisupervised cluster algorithms, such as
TSVM [31], MeanS3VM [33], and ClusterReg [45], follow
this paradigm. TSVM uses unlabeled samples to regularize
the decision boundary and then seeks the maximum margins.
However, the objective function of TSVM is nonconvex,
and its performance is sensitive to the initialization [15].
MeanS3VM estimates the label means for all unlabeled sam-
ples and then maximizes the margins between these label
means. MeanS3VM requires a number of iterations, which
limits its efficiencies. ClusterReg uses posterior probabilities
generated by a clustering algorithm in its regularization mech-
anism. When the cluster assumption holds, this algorithm is
capable of delivering good performance in the presence of
overlapping classes. However, ClusterReg also makes strong
assumption about the data distribution, and has to tune more
than five parameters. Also, it could generate decision bound-
aries in the wrong gap between clusters. Such a shortcoming
might be avoided with the use of multiple clusters to represent
a single class. In this sense, ensemble algorithms can alleviate
such an issue by employing several classifiers to overcome
potentially incorrect decision boundaries and generate a more
robust classifier.

There are several streams of research that generalize the
ensemble methods from supervised learning to SSL, for
example, ASSEMBLE [2] and semisupervised MarginBoost
(MCSSB) [18]. Both the methods work in a greedy manner
and maximize the pseudo-margin using boosting method.
Recently, SemiBoost [37] has been proposed to use unla-
beled samples to improve performance with two regularization
terms. UDEED [50], a semisupervised ensemble learning
method, proposes to use unlabeled samples to augment the
diversity among base learners while maximizing the accuracy
of base learners on labeled samples. However, it has difficulty
in coping with relatively large-scale data sets due to square
computational and memory complexity. RegBoost [14] pro-
posed by Chen and Wang, integrates multiple semisupervised
assumptions, including low-density assumption, smoothness
assumption, and manifold assumption [11], into the mar-
gin cost function and optimized the function using boost-
ing methods. This method achieved comparable classification
performance compared with other SSL methods. However,
as combining three assumptions, it will take more efforts
to optimize several parameters relating to the cost function.
If overlapping high-density regions are present, RegBoost
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might not establish a good separation between these regions.
Moreover, RegBoost requires a square memory complexity,
which might be prohibitive for relatively large data sets.

In this paper, we propose a novel semisupervised ensem-
ble learning algorithm, SemiNCL, by generating a group of
diverse learners from the same input space without making
strong assumptions about the data distribution. SemiNCL
is based on the implementation of NCL [34], [35], which
emphasizes the interaction and cooperation among individual
base learners in the ensemble. NCL uses a penalty term to
generate biased learners whose errors tend to be negatively
correlated. This stabilizes the function estimation in sparsely
sampled regions of the input space. NCL has been shown to
perform well on a number of applications, including regression
[9], [47] and classification problems [29], [36]. It has also
been successfully used in learning classifier systems [19]. The
theoretical analysis of NCL was conducted by Brown et al.
[9]. Chen and Yao [12], [13] proposed a regularized NCL
(RNCL) for noisy data by including an additional regulariza-
tion term and solved RNCL by Bayesian inference [12] and
multiobjective optimization [13], respectively.

III. SEMISUPERVISED NEGATIVE
CORRELATION LEARNING

This section first presents a formulation of negative correla-
tion learning. Then SemiNCL is introduced. An accelerated
training algorithm for SemiNCL, as well as a theoretical
analysis of the bound for the negative correlation imposing
parameter in SemiNCL are given.

A. Negative Correlation Learning

NCL [34], [35] introduces a correlation penalty term into the
error function of each individual network in the ensemble, so
that all the networks can be trained interactively on the same
training set. Given a training set {xX,, v }Y_ ., NCL combines

n=1>
M neural networks f;(x) to form an ensemble

1 M
Sens(Xn) = — Si(xn).
P2

To train network f;, the cost function e; for network i is
defined by

1 & 1
e = N;(ﬁ(xn) — yn)? + AP (1)

where 4 > 0 is a weighting parameter on the penalty term p;

N
pi = Z
n=1

(fi(%n) = fens (%)) - D (5 (%n) = fens(Xn))
J#

N
= — > (fi®n) = fens(xn))”. )

n=1
The first term on the right-hand side of (1) is the empirical
training error of network i. The second term p; is a correlation
penalty function. It is to negatively correlate each network’s

error with errors for the rest of the ensemble by minimiz-
ing p;. The parameter A manages the tradeoff between the
penalty term and the training error term. When 1 = 0, the
individual ensemble member is trained independently. When
A increases, more and more emphasis is placed on minimizing
the correlation-based penalty.

B. Formulation of SemiNCL

In the semisupervised setting, the learner is trained on
both the labeled sample set D; = {(x1, y1),..., Xn, YN)}
with N labeled examples and the unlabeled sample set
D, = {XN+1,...,Xny+v ]} with V unlabeled points. Let D =
{D;, D,} represents a training set. The ith individual network
fi in SemiNCL is assumed to be a linear combination of K
nonlinear basis functions

K
fi=D wiidi = O] w; 3)

k=1

where w; = (w1;, ..., wg;)T and ®; = (¢1;, ..., pxi) denote
the weight vector and basis functions vector in the ith network,
respectively.

For instance, multilayer perceptions with linear output
nodes, polynomial neural networks, and radial basis functions
(RBF) networks [16] are potential estimators in this class.
In this paper, we will employ RBF as the base learners.

In order to exploit the unlabeled data in the training process,
we include unlabeled data in the error function of f;

R i 2
e = - 2 (fiG) = yu)? = 55 D (fil%n) = fens (%0)
n=1 n=I

/12 N+V
— 5 2 i) — S’ @)
n=N+1

Comparing this error function with the cost function of
NCL (1), SemiNCL employs both the labeled and unlabeled
data to calculate the negative correlation term. It has been
shown both theoretically and empirically that diversity is
beneficial to ensemble learning [8], [46]. By considering
both the labeled and unlabeled negative correlation terms in
SemiNCL, diversity can be promoted in unlabeled area, and
the generalization, which is the tradeoff between accuracy and
diversity, could be improved.

Note that no labels are needed for the correlation calcula-
tions in the penalty terms of (4). Similar to the original NCL,
the requirement of a certain degree of negative correlation
among the ensemble members on both the labeled and unla-
beled data (controlled by 11 and A;, respectively) can lead to
a more robust and smoother function estimates over the input
regions containing samples without labels.

The scaled conjugate gradient (SCG) [38] algorithm can
be employed to optimize SemiNCL. According to (4), the
minimization of the error function can be achieved by mini-
mizing the error functions of each individual network. In this
way, SemiNCLgcg decomposes the learning task into a num-
ber of subtasks for each individual member. However, the
computational complexity of gradient training is high due to
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the calculation of gradients and objectives values. To reduce
the computational complexity, an accelerated SemiNCL is
presented in the following section.

C. Accelerated SemiNCL

In this section, we propose a closed-form solution! to
SemiNCL based on least square optimization and analyze its
runtime complexity.

Assume that for each RBF network i € {1,..., M}, the
matrices L; € R">*N and U; € Rhi*V represent the network
outputs for the labeled and unlabeled data, respectively, where
h; is the number of hidden nodes in the ith RBF network.

For fixed As, the training of SemiNCL minimizes”

| M A P 2
E = M—Ngll ||LlTWl —YH - M—Ngll ”LlTWl _fé’”“

A2 A T eu |2
_M_VEHUi wi—te " ®)

over w = (WlT,...,W;])T € RM x... thM,whereye RN
is the column vector of training labels

| M
) T
for s = — El L; w;
i=

is the ensemble output vector for labeled data and

is the output vector of the ensemble for unlabeled data.
The solution to this quadratic optimization problem can be
obtained by setting (0E/(0w;)) = 0, that is

N
(LiLiT — L pLL] — v /MzUiUl-T) w;
M
2 N
+ > (MlLiLJT + szUiUJT) w;=Lly (6)
=L
where f =1 — (1/M). Let

N
G, = L,L] — 2 pLL] — szU,-UZ

and
j~1 T N T . .
The equation can be written as
G Gpp .- Wi Ly
Gau G2 ] W)=

Loy

1Tt does not suffer from local minima as the case for gradient descent. The
closed-form solution derived in this section is applicable to RBF networks.
The similar derivations could be made to multilayer perceptions with linear
output nodes and polynomial neural networks as well.

2Boldface and capital letters refer to matrices, and the subscript stands
for the indexed number, e.g., L; is the output matrix of RBF nodes in the
ith ensemble member. Boldface and lower-case letters refer to vectors, and
subscript stands for the indexed number, e.g., w; is the weight vector of the
ith ensemble member.
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The solution to w thus can be obtained by solving the above
linear equations.

The complexity of evaluating the G matrix is
O(M?>H?*(N + V)) and the complexity of inverting the
G matrix is 0(W3), where H is the average number of
weights in w;, i.e., the average number of hidden nodes
in each RBF network, and W (W = MH) is the total
number of weights in w. This computational complexity
O(W?(N 4 V) + W?) is high for large data sets with large
ensembles.

To reduce the complexity, the algorithm can be implemented
by an iterative, distributed algorithm that shares the predictions
of labeled and unlabeled data. Since the gradient (0 E/(0w;))
(6) can be expressed in the following form:

0E N
p (LiLiT — JpLL! — V/sziUiT) W
l
M
Ve N
+ Z (MLifj' + mizUif?) —Liy
J=Lj#

where f! = Lij and f% = UTWJ‘ are the predictions

of ensemble member j on the labeled and unlabeled data,
respectively, the global minimum can be achieved by set-
ting the block gradient to zero using the block coordinate
descent [5], [24] over each member i

M A N
L. v — R g U
wi =G; Liy | Z '(ML,fj + MV/IzU,fj)
Jj=1j#

By employing the block coordinate descent algorithm [24],
the total complexity including evaluating matrix/vector G;,
L;y—(1t/M) Z?’IZLJ-#(L,T; —+—U,-f}‘) and inverting G; can be
reduced to O(W(H + M)(N + V) + WH?). The accelerated
SemiNCLg;s is summarized in Fig. 1.

D. Bound on the Penalty Coefficients

The parameters (11, 42) are essential for the generalization
performance. The two parameters should be neither negative
nor too large. With negative parameters, the learners will be
positively correlated; with large positive values, the Hessian
matrix H = ((6%¢;)/(ow;ow 7)) will be nonpositive definite
(non-PD), such that useful gradient information is lost from
our original objective function. More specifically, the non-PD
Hessian will cause the weight divergence as there will be no
minimum to converge to. In that case, it would be difficult
to obtain a good generalization. This section will derive the
conditions under which the Hessian will be non-PD [9].

A necessary condition to ensure that the Hessian is PD is
that all elements on the leading diagonal should be positively
valued. Specifically, the diagonal elements of the Hessian
matrix can be written as

02 1\? 1
=2(1-2(1—=) —h(——=)|¢2 (7
where, for RBF network, wy; and ¢; are the combinational

weight and the output for the kth basis function in the ith
network, respectively.
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e For each ensemble member from i =1,2,---, M do:

WwW; =

£l =

share f! and f}'

Given: the number of predictors M, a labeled training set D; = {(x1,v1), -, (xn,yn)} with N labeled examples and
an unlabelled sample set D, = {xn+1," - ,Xn+v } with V unlabeled points, the parameters A1, A2 and a.

Begin: Construct matrix L;, G; and U; (i = 1,--- , M) as defined in Section III.C. The predictions of f} and f* are
initialled to zero vectors. Initialize parameters A1, A2, a, and t = N/(N + V).

M

J=L#i

LT w; and f* = Ul'w;

e Repeat for a desired number of iterations or until convergence.

Moo N
Mg Y oue) |
<M SR vinad f))

Fig. 1.

The entire Hessian matrix is guaranteed to be non-PD
when (7) is nonpositive, i.e., the following inequality holds:
2,.
07e; <0

i

M 2
A A —) .
1+ 22(M_1)

When A; or Ay is varied beyond this lower bound, the
Hessian matrix is guaranteed to be non-PD. In other words,
this result leads to a upper bound for PD Hessian matrix. When
the size of ensemble M increases, the upper bound converges
to 1.

Note that the bound is a conservative one since there is a
probability that the leading diagonal is all positive, yet the
entire matrix is still non-PD. It could be possible to define a
tighter bound. However, the advantage of this bound is that it
is independent of any network parameters except for the size
of ensemble.

Wy

IV. EXPERIMENTAL STUDIES

This section presents experimental results of SemiNCL.
First, experimental results of SemiNCL on synthetic data
sets are presented to help understand its mechanics. Then,
extensive experiments on UCI data sets are carried out to
compare SemiNCL with other semisupervised and supervised
algorithms, on regression and classification tasks, respectively.
After that, statistical analyses are reported, demonstrating
the competitiveness of SemiNCL. Finally, we evaluate the
scalability of the compared algorithms using several relatively
large data sets and analyze the computational and memory
complexity of different algorithms.

A. Experimental Settings

In our experiments, RBF networks are employed as individ-
ual ensemble members in SemiNCL. We use [22] to initially
select the basis functions for RBF networks.? The training
of RBF network can be separated into two steps. In the first
step, the RBF centers are initialized with randomly selected
data points from the training data and the kernel widths are

3The source code for basis function selection can be downloaded from Yaki
Engel’s Homepage: http://visl.technion.ac.il/"yaki/c_sources/krls.cc.

SemiNCL implemented by the block coordinate descent algorithm SemiNCLg;s.

determined as the Euclidean distance between each centers
and its closest centers. Then, in the second step, we perform
gradient descent to tune the centers and widths according to
the regularized error function [13], [16], [26]. The maximum
number of RBF centers is restricted to 200 for SemiNCL. We
use 25 RBF networks to generate the ensemble of SemiNCL.

The parameters (A1, A7) in SemiNCL are optimized by
fivefold cross validation grid search. The search range for
both parameters is within {0,0.1,...,0.5}. As described in
Section III-D, the bound of A1 + Ay < (M/M —1)? =
1.09 (M = 25 in this paper). However, the bound of these
parameters is a conservative one and the Hessian matrix might
become non-PD even within the bound. In this case, we use a
tighter bound 41 + A, < 1 instead of 11 + 4y < (M/M — 1)2
to avoid the unstable situation. Following [36], the number of
hidden nodes in the ith RBF network, h;, can be specified
by the users. In our experiments, the value of h; is randomly
selected but restricted in the range of 4—-10 [13], and thus, the
average number of hidden nodes H is about 7.

B. Synthetic Data Set

In order to facilitate the understanding of SemiNCL, we use
a synthetic data set for regression to illustrate the effect of
unlabeled data in Fig. 2.

The synthetic regression data are generated by sinc func-
tion sin(x)/x within [—4x,...,4x] with Gaussian white
noise standard derivations 0.2 and in order to illustrate the
effect of unlabeled data using SemiNCL, we have removed
some labeled data points within [z,...,3.57] in the right-
hand tail of the sinc function. A total of 400 labeled
training points are generated by uniformly sampling within
[—4rz,...,7,3.5%,...,4x], while 2000 unlabeled points
are generated by uniformly sampling within [z, ...,3.57].
In addition, 4000 test points are generated in the range
[—4m,...,4%].

We also showed two decomposition terms, i.e., the aver-
age individual accuracy, measured by the training error
[Z?il (fi (Xp) — yn)?, pentagram] and the sum of labeled and
unlabeled diversity (triangle)* among ensemble members.

“In order to show the two terms clearly in Fig. 2, we omit the average
coefficient (1/M) in both accuracy and diversity calculation.
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SemiNCL on Sinc with Various Unlabelled Data
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Fig. 2. Illustrations of SemiNCL (red solid line) on sinc data set. (a) SemiNCL without unlabelled data. (b) SemiNCL with 2000 unlabelled points. (c)

SemiNCL with different unlabelled data. Some labeled data points are removed. The (c) presents the performance of SemiNCL with various numbers of

unlabelled data on this sinc data set.

 class 1

Test Error

°
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TABLE I
SUMMARY OF 14 REGRESSION DATA SETS

Name autoMPG | no2 | stock | quake | strike | census | sarcos

Size 398 500 950 2178 625 20459 | 48933

#Attributes 7 7 9 3 6 119 27

— Name socmob | delta | housing | pollen | concrete | kin40Ok | adult

Size 1156 | 9517 | 506 3848 1030 | 40000 | 45222

0B 00 e e 2O 00 #Attributes 5 6 13 5 8 8 14

(b)

Fig. 3. Illustrations of SemiNCL on the classification synthetic data set.
SemiNCL can make use of unlabeled data to generalize much better than
NCL (which only considers labeled data) is shown. (a) SemiNCL versus NCL.
(b) Test error of SemiNCL.

Fig. 2(a) reports the result of SemiNCL using only labeled
data of the sinc function, i.e., NCL. Not surprisingly, the
training error is quite large in the unlabeled area. As diversity
for unlabeled data is not encouraged in this figure (4, is set to
zero), the total diversity is significantly lower than the average
individual accuracy. Therefore, the ensemble error (5), i.e., the
difference between accuracy and diversity, is largely biased.

Fig. 2(b) shows the result of SemiNCL incorporating
2000 unlabeled data points. The predictions of SemiNCL in
the right-hand tail are quite accurate, compared with Fig. 2(a).
Although the average individual training error is large in unla-
beled area and in the boundary of labeled and unlabeled area,’
the diversity is well managed to compensate the increased
training error due to the negative correlation term. As a result,
the ensemble error (5) is smaller.

In Fig. 2(c), we present the MSE of SemiNCL with various
numbers of unlabeled data on this sinc data set. As the amount
of unlabeled data increases, the performance improves,6 This
is an intuitive example to illustrate that SemiNCL uses both
the labeled and unlabeled data to encourage diversity and thus
improves the generalization performance.

SThe accuracy and diversity often change before reaching the boundary of
labeled and unlabeled area. When SemiNCL enters the labeled area from
unlabeled area, the increased tendency of accuracy/diversity needs a buffer to
change to the decreased tendency (refer to the high diversity peak in right-
hand side of sinc function) due to smooth regularization.

5The parameters are chosen without optimization. Better performance could
be achieved with a careful selection of these two parameters.

In Fig. 3, we present the performance of SemiNCL with
(red) and without (green) unlabeled data on one classification
synthetic data set. This synthetic data is generated by eight
Gaussians.” The first four Gaussians belong to one class and
the other four for the other class. The fourth and eighth
Gaussians are treated as unlabeled, and the others are treated
as labeled. We sample 500 points from each Gaussian. Of
them, 184 is used as training or unlabeled points. The left 316
is employed as test points. Therefore, we have a data set with
1104 training, 368 unlabeled, and 2528 test points.

In Fig. 3(a), the decision boundaries of SemiNCL and NCL
are illustrated. It is obvious to observe that unlabeled data
regularizes the decision boundary in the unlabeled area. Hence,
SemiNCL manages to generate a better decision boundary than
NCL. Fig. 3(b) illustrates the test error versus the number of
unlabeled data points. The test error is reduced by considering
more unlabeled points. With more and more unlabeled data
being included, SemiNCL seems to converge.

C. UCI Data Sets

In this section, extensive experiments on UCI data sets
are presented. We compare SemiNCL with some state-of-
the-art semisupervised and supervised learning algorithms for
regression and classification, respectively.

1) Regression Problems: Test errors (Mean = stan-
dard deviation %) of SemiNCL and other semisuper-
vised/supervised algorithms with 5%, 10%, and 20% of

TThose centers are (2, 12), (3,10), (1,2), (1.5,5.5), (4,12), (5,10),
(3,2), (4,5.5), respectively. The covariance matrixes in MATLAB
notations are [0.625, —0.2165; —0.2165, 0.875], [0.25, 0; 0, 0.25],
[0.2241, —0.1368; —0.1368, 0.9759], [0.2375, 0.1516; 0.15160.4125],
[0.25, 0; 0, 0.25],[0.25, 0; 0, 0.25], [0.25, 0; 0, 0.25], [0.25, 0; 0, 0.25],
respectively.
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labeled data. The best result for each data set is illustrated
in boldface.

This paper uses 14 real-world regression data sets from
UCI [40], DELVE} Statlib,” and other sources'” in the
experimental study. In the census data set, the data points
with missing values are removed to facilitate the following
processing. As in [17], we convert the classification problem,
adult, to a regression problem by predicting +1 for examples
in class 1 and —1 for the other class. The characteristics of
these data sets are summarized in Table I. All data sets were
input-normalized dimension-wise to have zero mean and unit
standard deviation.

In the following experiments, we randomly partitioned each
data set into labeled/unlabeled/test data sets according to
different ratios. Specifically, 75% of the data are used as
the labeled/unlabeled training sets, whereas the remaining
25% of the data are left as test set. For each training set,
we partition the training set under different label rates. For
example, assuming that there are 1000 examples in the training
set, if the label rate is 10%, 100 examples with their labels are
selected for labeled sets, whereas the remaining 900 examples
are taken as unlabeled training set without labels.

In the experiments, we follow the methodology of [51] and
run each algorithm on each data set for 100 times with random
split of the labeled/unlabeled/test sets for each data set and
report the average MSE.

In order to further evaluate the performance of
SemiNCL, we compare SemiNCL with the three existing
semisupervised regression methods, namely, co-training
regressors (COREG) [51], manifold regularization for
regression [1], and co-regularized least squares regression
(CoLSR) [5]. We use these algorithms for benchmark
comparisons as they are typical representatives for
semisupervised regression algorithms.

The number of nearest neighbors £ for COREG [51] and
CoLSR [1] are selected by fivefold cross validation grid search
over k € {1,3,...,30}. The source code of COREG can be
obtained online.!! In manifold regularization [1], the Gaussian
kernel is used to construct the nearest neighbor set with the
kernel parameter setting to o = 1/(N + V)? lN ]J;VI lx; —
Xj 2. The number of nearest neighbors k and the other two
parameters, y4 and y;, are selected by fivefold cross validation
grid search, where y4 and y; correspond to the RKHS
norm regularization parameter and manifold regularization
parameter, respectively. The search ranges k € {1, ..., 10} and
YA, VI € (1072, ..., 1} are adopted. In CoLSR, we follow the
parameter setup in [5] and use a Gaussian kernel k(x;, x;) =
exp(—lxi —x;?/o) with o = 1/(N+V)? 32 i —x; |12

ij=1
The regularization parameter v is selected by cross validation
within the search range v € {0, 0.1, ..., 1}. Note that ¢ and v

depend only on the labeled examples. In the case of multiple
views, o, and v, are computed from the attributes in the
respective view v.

8http://www.cs.toronto.edu/ delve/data/data sets.html

9http://lib.stat.cmu.edu/data sets/

10http://ida.ﬁrst.fraunhofer.de/ anton/data/, http://www.gaussianprocess.org/
gpml/data/

Uhitp://cs.nju.edu.cn/zhouzh/zhouzh. files/publication/annex/COREG.htm

In order to compare our proposed algorithm with exist-
ing supervised learning algorithms, we also examine the
performance of the three supervised learning algorithms:
random forests (RF) [7], NCL [34], and a single RBF
network [13], [16]. In RE, 100 classification and regression
trees have been generated to construct the forests. In NCL,
we use the same ensemble size M = 25 and the parameter
4 is selected by fivefold cross validation from {0, 0.1, ..., 1}.
The parameters (411, 42) in SemiNCL are optimized by five-
fold cross validation grid search. The search range for both
parameters is within {0, 0.1, ...,0.5}.

Table II reports the results of these algorithms under dif-
ferent label rates. The lowest MSE among the compared
algorithms, under each label rate have been boldfaced. First,
let us consider the comparison between SemiNCL, Manifold,
COREG, and CoLSR. Table II shows that SemiNCL achieves
41 wins out of a total of 56 comparisons against all the
other compared algorithms. In contrast, manifold, COREG,
and CoLSR win in 1, 10, and 3 cases, respectively.12 COREG
performs better when the label rate increases, which means
that fewer misclassification propagates in the co-training stage.

Second, the result in Table II indicates that SemiNCL
achieves highly competitive performance in comparison with
the supervised learning algorithms. For example, SemiNCL
always wins against the RBF network on all data sets; Sem-
iNCL outperforms NCL except on the census data set where
they both achieve the same performance. RF only win twice
and tie twice with SemiNCL among 56 comparisons.

We also notice that with the increased label rate, the
difference between SemiNCL and NCL seems to decrease.
Recall that SemiNCL considers both the labeled and unlabeled
correlation terms, whereas NCL only considers the labeled cor-
relation term. When the label rate increases, fewer unlabeled
data are presented and the unlabeled correlation term plays
a less important role, which causes the difference between
SemiNCL and NCL to decrease.

2) Classification Problems: Here, we select 12 classification
data sets from the UCI machine learning repository [40]. The
characteristics of each data set are reported in Table III.

In the experiments, we follow the setting as in [14] and
run each algorithm on each data set for 20 times with random
split of the labeled/unlabeled/test instances for each data set,
in which 20% instances for testing. The average classification
error on test sets with different label ratios 5%, 10%, and
20%, are reported. The true class structure and the corre-
sponding assumption in semisupervised classification (SSC)
are unknown for these real-world data sets.

The proposed algorithm is compared with several
state-of-the-art semisuperivised algorithms that use different
assumptions: Manifold [1] and SS-ELM [28] with manifold
assumption; MeanS3VM [33] and ClusterReg [45] based on

12Since manifold learning and CoRLSR algorithms need to calculate the
kernel matrix using all labeled and unlabeled data, they could not be applied
to four relatively large data sets due to large memory requirements in our
computational environment. Therefore, we use the symbol “-” to indicate that
the memory is insufficient for the calculation. The JAMA matrix package
(http://math.nist.gov/javanumerics/jama/) used in the COREG algorithm can-
not invert the singular matrix generated by the census data set, and we denote
this as “-,’too.
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TABLE II

MSE AND STANDARD DEVIATION (CLASSIFICATION ERROR FOR ADULT DATA SET) OF SEMINCL AND OTHER SEMISUPERVISED/
SUPERVISED ALGORITHMS UNDER DIFFERENT LABEL RATIOS ON 14 REAL-WORLD DATA SETS.
THE BEST RESULT FOR EACH DATA SET IS ILLUSTRATED IN BOLDFACE

Label Rate Data sets SemiNCL Manifold COREG CoRLSR RF NCL RBF
autoMpg 0.187+0.050 0.23240.055 0.21440.071 0.22040.063 0.22440.047 0.2404-0.048 0.25240.054
no2 0.93810.082 1.019+0.084 1.103+0.091 1.003+0.074 1.020+0.111 1.043+0.083 1.076+0.135
stock 0.049+0.010 0.062+0.012 0.053+0.008 0.060+0.010 0.071+0.013 0.056+0.013 0.073+0.021
quake 0.915+0.074 1.042+0.083 1.096+0.081 0.999+0.071 1.107+0.088 1.078+0.098 1.114+0.109
strike 0.9231+0.441 0.965+0.529 1.086£0.492 0.957+0.458 1.032+0.517 1.054£0.531 1.220£0.635
socmob 0.407+0.167 0.461+0.186 0.435+0.155 0.441£0.180 0.499+0.196 0.448+0.186 0.6171+0.286
0.1 delta 0.359+0.016 0.4114+0.022 0.405+0.021 0.39140.019 0.392+0.020 0.377+0.016 0.4714+0.023
housing 0.36240.090 0.391+0.097 0.389+0.086 0.390+0.107 0.345+0.095 0.372+0.090 0.375+0.081
pollen 1.023+0.020 1.048+0.027 1.029+0.024 1.009+0.023 1.077+0.025 1.061+0.022 1.063+0.030
concrete 0.318+0.048 0.362+0.048 0.347+0.045 0.387+0.042 0.3811+0.042 0.331+0.042 0.369+0.039
census 0.007+0.002 - - - 0.008+0.002 0.009+0.003 0.013£0.002
sarcos 0.01540.001 - 0.014+0.001 - 0.016+0.001 0.016+0.001 0.02140.002
kin40k 0.026+0.006 - 0.029+0.007 - 0.028+0.007 0.029+0.006 0.033+0.012
adult 0.147+0.004 - 0.171£0.004 - 0.1544+0.003 0.161+0.004 0.199+0.008
autoMpg 0.150+0.036 0.209+0.063 0.181+0.051 0.19540.053 0.164+0.042 0.168+0.036 0.1694+0.038
no2 0.936+0.079 0.995+0.064 0.916+0.092 0.971+0.081 1.020£0.101 1.031£0.079 0.9451+0.063
stock 0.024+0.008 0.03340.009 0.02740.005 0.037+0.009 0.03540.007 0.038+0.010 0.049+0.019
quake 0.906+0.062 1.016+0.078 1.025+0.078 1.001£0.075 1.092+0.072 1.011£0.073 1.029+0.069
strike 0.846+0.508 0.857+0.502 0.862+0.515 0.837+0.429 0.915+0.547 0.950+0.528 1.072+0.444
socmob 0.356+0.116 0.351+0.105 0.339+0.093 0.410+0.119 0.415+0.164 0.397+0.137 0.4631+0.287
0.3 delta 0.353+0.013 0.37940.021 0.369+0.017 0.372£0.017 0.382+0.016 0.369+0.014 0.4631+0.021
housing 0.20510.062 0.236+0.081 0.219+0.063 0.22340.066 0.219+0.067 0.215+0.050 0.24240.080
pollen 0.91410.020 1.047+0.028 1.023£0.028 1.008+0.024 1.072+0.026 1.019£0.020 1.030+0.029
concrete 0.211+0.028 0.255+0.032 0.232+0.027 0.246+0.025 0.212+0.024 0.231+0.023 0.268+0.030
census 0.004+0.002 - - - 0.005+0.001 0.006+0.003 0.009+0.001
sarcos 0.009+0.000 - 0.0091+0.000 - 0.010£0.000 0.01010.000 0.013£0.001
kin40k 0.02140.005 - 0.020+0.007 - 0.022+0.005 0.023+0.004 0.02740.010
adult 0.1451+0.004 - 0.168+0.006 - 0.146+0.004 0.161+0.004 0.19240.006
autoMpg 0.1424+0.035 0.179+0.054 0.163+0.051 0.163+0.035 0.153+0.041 0.151+0.037 0.163+0.029
no2 0.849+0.041 0.922+0.045 0.938+0.042 0.92740.046 0.911+0.046 0.927+0.066 0.998+0.063
stock 0.02140.005 0.028+0.006 0.020+0.004 0.02610.006 0.0251+0.005 0.029+0.005 0.0431+0.016
quake 0.882+0.059 1.015+0.079 1.014£0.084 0.969+0.072 1.050+0.072 0.98240.075 1.010+0.078
strike 0.818+0.380 0.820+0.495 0.841+0.496 0.824+0.519 0.896+0.482 0.915+0.418 0.95440.396
socmob 0.349+0.101 0.348+0.102 0.354+0.089 0.37440.095 0.382+0.138 0.388+0.122 0.41440.258
0.5 delta 0.351+0.013 0.371+0.019 0.359+0.018 0.366+0.014 0.375+0.015 0.367£0.013 0.457+0.019
housing 0.190£0.063 0.19940.083 0.187+0.072 0.1931+0.071 0.1911+0.062 0.197+0.062 0.238+0.073
pollen 0.909+0.021 1.04540.029 1.021£0.031 1.010+0.024 1.06940.025 1.014£0.024 1.018+0.028
concrete 0.1531+0.024 0.193+0.031 0.215+0.026 0.213+0.026 0.1671+0.024 0.198+0.022 0.22440.028
census 0.004+0.001 - - - 0.004+0.001 0.004+0.002 0.009+0.002
sarcos 0.006+0.000 - 0.007+0.000 - 0.008+0.000 0.008+0.000 0.010+0.001
kind0k 0.016+0.003 - 0.018+0.004 - 0.019£0.003 0.020+0.004 0.021£0.008
adult 0.1451+0.003 - 0.152+0.004 - 0.146+0.003 0.161+0.003 0.189+0.003
autoMpg 0.120+0.024 0.15740.042 0.149+0.035 0.1534+0.039 0.13440.023 0.1284+0.019 0.14240.036
no2 0.82210.035 0.910+0.043 0.852+0.041 0.849+0.039 0.856+0.048 0.885+0.057 0.907+0.045
stock 0.0174+0.004 0.026+0.006 0.016+0.003 0.02440.005 0.020+0.003 0.027+0.004 0.030+0.013
quake 0.876+0.052 0.989+0.077 1.012+0.081 0.962+0.071 1.043£0.077 0.978+0.070 1.004+0.074
strike 0.81140.341 0.809+0.398 0.818+0.374 0.794+0.371 0.796+0.339 0.87440.389 0.939+0.326
socmob 0.340+0.084 0.342+0.092 0.336+0.078 0.3714+0.092 0.381+0.134 0.365+0.118 0.404+0.214
0.7 delta 0.347+0.012 0.368+0.015 0.356+0.015 0.364+0.013 0.370+0.014 0.368+0.012 0.4314+0.018
housing 0.153+0.059 0.186+0.078 0.163+0.071 0.164+0.072 0.143+0.053 0.170+0.060 0.207+0.059
pollen 0.906+0.021 1.043£0.023 1.021£0.028 1.003+0.023 1.065+0.023 1.013£0.024 1.018£0.028
concrete 0.126+0.022 0.146+0.031 0.145+0.024 0.14740.031 0.139+0.015 0.150+0.020 0.18140.026
census 0.003+0.001 - - - 0.003+0.001 0.003+0.002 0.009+0.001
sarcos 0.005+0.000 - 0.006+0.000 - 0.007+0.000 0.006+0.000 0.008+0.000
kin40k 0.013+0.001 - 0.012+0.001 - 0.016+0.001 0.016+0.001 0.019+0.009
adult 0.14210.003 - 0.14940.003 - 0.1451+0.003 0.162+0.003 0.18240.003

The results are averaged over 100 runs. Since manifold learning and CoRLSR have to calculate the kernel matrix using all labeled and unlabeled data
and thus could not be applicable to the four relatively large data sets (i.e., census, sarcos,kin40k and adult). Therefore, we use “-” to indicate that the
memory is not enough for the calculation. The JAMA matrix package used in COREG algorithm cannot invert the singular matrix generated by census

«

data set, and we denote this as , t00.

cluster assumption; three successful semisupervised ensem-
ble classifiers, i.e., SemiBoost [37], UDEED [50], and Reg-
Boost [14], which based on multiple SSC assumptions.

Two  supervised ensemble learning  algorithms,
AdaBoost [23] and NCL [34] are used as baselines.
NCL uses the same ensemble size M = 25 and the parameter
A is selected by fivefold cross validation, where 4 is selected
from {0,0.1,...,1}. AdaBoost uses the default settings and
the number of weak learners is 25.

The parameter settings for Manifold are same as that
for regression problems, and y4, y; € {10’2,..., 102} are
adopted. In SS-ELM, the size of hidden neurons is fixed
as 100, and other parameters are tuned by adopting the
same settings as in Manifold. The parameter settings of
MeanS3VM follow the setup in [33]. The linear kernel is used
and the regularization parameters ci,c2 € { 107°2,..., 102}.
These parameters are selected by fivefold cross validation grid
search. ClusterReg [45] uses the partition information of a
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TABLE III
SUMMARY OF DATA SETS FOR CLASSIFICATION PROBLEMS

Name Australian | BUPA | German | Harberman Horse House
Size 690 345 1000 306 368 435
#Attributes 14 6 24 3 27 16

Name Tonosphere | Mass Pima SPECT Transfusion | WDBC
Size 351 961 768 267 748 569
#Attributes 34 5 8 22 4 30

clustering algorithm to regularize the decision boundary of a
classifier. The clustering algorithm in ClusterReg is chosen
from K-means, Gaussian mixture models, self-tuning spectral
clustering, and Fuzzy Gustafson Kessel; the number of clusters
was set as 1, 2, or 3 times the number of classes; the number
of neighbors is picked from {1; 10; 30}; and the parameter
that controls the steepness of the mapping from similarity to
penalization ¥ = {2;5;9; 12}. The tradeoff parameter 1 is
fixed at 0.2, the number of hidden nodes and epochs are 15 and
50, respectively. In SemiBoost, we follow [37] and the number
of iterations 7 is set to 20. UDEED [50] employs unlabeled
examples to measure the diversity. In UDEED, the ensemble
size is 25 and the cost parameter C is adjusted by fivefold
cross validation from {10_2, R 102}. In RegBoost, we fol-
low [14] and perform grid search for the best combination
of parameters. The number of neighbors is within {3, 4, 5, 6}.
The resampling rate in the iterations is in {0.1, 0.25, 0.5}.

Table IV reports the generalization error for the employed
algorithms on the presence of 5%, 10%, and 20% of labeled
data, respectively.

When compared to the state-of-the-art semisupervised
ensemble methods, i.e., SemiBoost, UDEED, and RegBoost,
SemiNCL is able to deliver better results under all amounts
of labeled data. SemiNCL shows significantly better results
against the supervised method AdaBoost and NCL with 5%,
10%, and 20% of labeled data. This fact indicates that Sem-
iNCL can effectively employ the unlabeled data to promote
the performance.

Then, let us compare SemiNCL with other SSL algorithms.
Table IV shows that SemiNCL achieves 17 wins against all the
other compared algorithms in the total of 36 comparisons. In
contrast, MeanS3VM wins over all other algorithms on three
experiments, Manifold wins on four experiments, and SS-ELM
wins on six experiments in a total of 36 comparisons. SS-ELM
performs better when the label rate increases, which means
that the graph-based algorithm used in SS-ELM makes fewer
misclassification with more labeled data.

According to the experimental results for regression
(Table II) and classification (Table IV), some SSL algorithms,
such as Manifold, CoRLSR for regression, and ClusterReg,
RegBoost for classification, can be slightly worse than super-
vised learning algorithms on some data sets, especially with
small label rates. However, such results do not mean that SSL
does not help. This is because different SSL algorithms rely
on different assumptions and when these assumptions are not
satisfied, these semisupervised algorithms will not work well.
Compared with these SSL algorithms, AdaBoost and NCL are
strong supervised algorithms with few assumptions on data.

SemiNCL utilizes unlabeled data to encourage diversity
within ensemble members, and the underlying assumption'3
is relatively weaker than that of the other semisupervised
algorithms, such as Manifold and ClusterReg. Therefore, Sem-
iNCL can achieve better performance than the supervised
algorithms on a wide range of different data sets.

The experimental results reveal that although using the
unlabeled data helps the generalization of SemiNCL, the large
improvement often occurs when dealing with relatively few
labeled and large unlabeled data.

D. Statistical Comparisons Over Multiple Data Sets

To compare the performance of the proposed method, we
perform Friedman tests [20], which is based on the ranks of
compared methods to compare multiple classifiers on multiple
data sets. The Friedman tests together with the Bonferroni-
Dunn test [21] were used as post-hoc tests when all estimators
are compared with the control estimator. The performance
of pairwise comparison is significantly different if the cor-
responding average ranks'® differ by at least the critical

difference
[iG+1)
CD = - 8
qo 6T )

where j is the number of algorithms, 7' is the number of data
sets, and critical values g, can be found in [20]. For example,
when j = 5, goos = 2.498, where the subscript 0.05 is the
significance level.

In this significant test, we would like to choose SemiNCL as
the control classifier to be compared with. For semisupervised
regression tasks, COREG [51], Manifold [1], CoLSR [5],
and NCL [34] will be compared with the control classifier
SemiNCL. Since Manifold and CoLSR could not deal with
relatively large data sets, we only consider the first 10 data
sets in the statistical study. For SSC tasks, UDEED [50],
Manifold [1], ClusterReg [45], and NCL [34] will be chosen.
We include NCL in this comparison since SemiNCL is an
extension of NCL.

Figs. 4 and 5 report the Friedman test results for regres-
sion and classification, respectively. Since we employ the
significance level 0.05, the critical difference for regression
is CD = 1.77 with j = 5 and T = 10, and the critical
difference for classification is CD = 1.61 with j = 5 and
T = 12. Several observations can be made from our results.

For regression tasks, the differences of SemiNCL versus
Manifold, SemiNCL versus CoLSR (except when the label
rate is 0.7), and SemiNCL versus NCL are greater than the
critical difference, so the differences are significant. It means
that SemiNCL is significantly better than Manifold, CoLSR
(except when label rate is 0.7), and NCL in these cases.

By encourage the diversity using unlabeled data, the unlabeled data should
follow the similar distribution/tendency of the labeled data, which is a kind
of “smoothness” in the data space. This is the underlying assumption of
SemiNCL.

14We rank these algorithms and record the ranking of each algorithm as 1,
2 and so on. Average ranks are assigned in case of ties. The average rank of
a single algorithm is obtained by averaging over all of data sets. Please refer
to Tables II and IV for the mean rank of these algorithms.
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TABLE IV

TEST ERRORS (MEAN &+ STANDARD DEVIATION %) OF SEMINCL AND OTHER SEMISUPERVISED/SUPERVISED ALGORITHMS WITH 5%, 10%, AND 20%
OF LABELED DATA ON 12 UCI DATA SETS. THE BEST RESULT FOR EACH DATA SET IS ILLUSTRATED IN BOLDFACE

Results for 5% of labeled data
Datasets AdaBoost NCL MeanS3VM ClusterReg Manifold SS-ELM UDEED SemiBoost RegBoost SemiNCL
Australian | 21.23 £6.67 | 26.65 £2.32 | 16.92+4.09 | 29.96 £12.93 | 14.93 £3.20 15.69 £3.11 16.56 +4.28 18.67+5.10 17.81 £5.34 | 15.87 £3.73
BUPA 43.07+7.60 45.574+2.33 | 42.97 £9.16 | 43.70 £8.28 | 45.14 £10.85 | 43.55 +£9.32 | 43.19 +8.30 | 44.67 +8.28 43.55 £7.92 | 41.30 +8.69
German 31.85 £2.96 | 36.28 +1.59 | 30.75 £3.92 | 30.05 £3.15 35.87 +£4.18 33.50 £3.71 | 30.32 +£3.28 | 30.34 +3.05 30.71 +£4.27 | 29.33 £3.52
Haberman | 33.69 £10.14 | 32.54 £2.90 | 25.98 £7.37 | 27.30 +11.25 | 28.69 £13.08 | 33.69 £11.56 | 25.49 £5.25 | 27.45 £10.58 | 31.37 £7.29 | 26.43 £7.94
Horse 38.09 £7.41 | 3521 £2.25 | 38.18 £7.98 | 36.62 £9.88 | 39.80 £7.18 | 39.26 +6.87 | 37.03 +6.08 | 38.14 £7.07 | 33.43 £4.47 | 36.59 £6.30
House 23.97 £8.67 | 19.43 £2.24 | 10.46 £4.25 | 18.39 £9.32 7.87 £2.77 7.36 £3.19 7.76 £2.53 5.82 £3.05 10.81 £4.47 | 7.59 £2.50
Tono 23.86 £9.05 | 18.11 £2.18 | 22.00 £7.39 | 33.36 £3.54 | 23.26 £9.61 | 21.71 £7.51 [ 2579 £7.22 | 21.21 £7.23 | 18.05 £7.76 | 18.71 £5.29
Mass 21.30 £3.67 | 25.77 £2.25 | 21.83 £3.38 | 2148 £3.13 | 21.22 £2.80 | 21.17 £2.38 | 21.72 +3.01 | 23.30 £6.28 | 2542 +4.94 | 25.12 +£8.93
Pima 31.56 £6.57 | 31.88 £2.06 | 27.44 +4.44 | 34.25 £3.83 | 28.77 £5.72 | 29.48 £4.79 [ 30.06 +£4.29 | 34.52 £3.30 | 31.72 +£4.48 | 31.04 £3.76
SPECT 31.13 £8.84 | 20.28 £5.91 | 20.94 £6.09 | 19.454+4.79 | 25.19 £12.25 | 23.68 £6.26 | 19.53 +£5.88 | 30.81 £9.31 | 20.70 +£8.59 | 18.92 +4.84
Transfusion | 26.63 £3.98 | 36.87 £2.82 | 24.17 £2.73 | 24.17 +2.69 30.17 +5.87 33.13 £4.79 | 24.00 +£2.87 | 24.34 +2.72 24.61 +£6.46 | 23.55 £2.79
WDBC 2439 +5.91 | 17.43 +£2.21 | 8.60 +4.70 13.16 +5.79 4.96 +1.98 5.48 +1.68 6.49 +2.92 12.11 +£2.98 6.85 +3.77 6.67 +3.79
Results for 10% of labeled data
Datasets AdaBoost NCL MeanS3VM ClusterReg Manifold SS-ELM UDEED SemiBoost RegBoost SemiNCL
Australian 16.52 +£3.32 | 27.17 £2.03 | 1448 £2.52 | 22.14 £10.08 | 14.17 £2.46 1431 £2.53 | 14.28 +£2.70 | 15.57 +£2.54 17.58 +3.54 14.68 +2.84
BUPA 40.20 £7.25 | 40.07 £2.32 | 39.71 £6.69 | 44.13 £9.11 4341 £5.79 41.09 £7.67 | 43.48 £9.66 | 41.71 £7.00 40.71 £5.41 | 39.42 +5.83
German 28.67 £2.61 | 35.10 £1.57 | 28.22 £2.77 | 30.05 £3.15 32.75£4.65 33.30 +£4.51 | 27.58 +£2.93 | 29.45 +2.87 29.50 +£4.25 | 27.44 12.66
Haberman 30.33 £7.26 | 32.34 £2.52 | 24.75 £4.96 | 24.59 £5.10 31.80 £8.78 37.05 £8.94 | 2543 +5.32 | 26.34 +5.44 30.44 +£7.64 | 24.51 £5.30
Horse 36.74 +£6.86 | 3531 +£2.32 | 3547 £5.24 | 34.26 £4.75 34.59 £5.47 35.68 £6.22 | 34.93 £6.05 | 34.28 +£4.91 35.04 +£5.65 | 33.82 £4.97
House 10.63 +7.41 | 19.45 +£2.46 | 9.31 +4.03 | 18.45 £11.20 6.78 £2.55 5.06 +£2.09 6.67 +2.32 5.43 +£1.96 7.56 +3.86 6.05 +£3.01
Tono 20.71 £6.05 | 17.93 £2.14 | 19.07 £4.80 | 34.21 £6.40 19.86 +8.38 15779 £6.43 | 22.00 £7.10 | 19.65 £5.23 17.65 +£6.95 | 14.39 £6.51
Mass 19.69 +£2.66 | 26.74 +£1.95 | 20.76 £3.94 | 20.76 +3.31 20.47 £3.32 19.45 £3.51 | 21.12 +3.00 | 20.24 +3.14 2111 +£2.72 | 20.83 £+3.28
Pima 26.79 £4.51 | 31.93 £1.68 | 25.65 +2.33 | 34.45 £3.86 | 26.17 £3.58 | 26.04 £4.00 | 27.69 +3.17 | 32.47 £3.64 | 27.73 +6.83 | 26.30 +£4.68
SPECT 22.08 £5.71 | 18.38 £4.14 | 18.02 £5.21 | 18.49 £5.89 | 22.55 £13.09 | 22.74 £4.48 | 17.83 +£6.07 | 24.46 £6.18 20.51+7.33 | 17.17 £5.43
Transfusion | 24.60 £3.05 | 37.38 £1.56 | 23.50 £3.01 | 24.17 £2.69 | 27.87 £4.29 | 32.50 £5.04 [ 23.90 +2.87 | 24.49 £2.53 | 23.78 +4.37 | 23.28 +2.72
WDBC 7.59 £7.56 | 17.89 £2.26 | 6.49 £3.88 | 12.02 +£5.56 4.82 £2.66 4.17 £1.39 5.96 £2.47 9.00 £2.86 5.98 £3.33 4.96 £2.43
Results for 20% of labeled data
Datasets AdaBoost NCL MeanS3VM ClusterReg Manifold SS-ELM UDEED SemiBoost RegBoost SemiNCL
Australian 16.23 +3.44 | 27.17 +£2.03 | 14.93 £3.08 | 21.09 £8.54 14.24 +2.65 14.13+2.68 14.42 +2.62 | 15.12 +3.88 17.37 +£5.21 | 14.10 £2.58
BUPA 3529 +5.47 | 36.89 +2.23 | 35.72 £5.93 | 40.87 £6.12 40.58 +6.73 35.22 +5.57 | 40.00 £6.14 | 39.76 £4.19 41.60 £7.58 | 36.88 £4.58
German 27.13 £1.76 | 35.09 +1.55 | 25.58 £2.45 | 30.05 £3.15 30.10 +4.23 28.35 +£1.73 | 24.10 £2.51 | 28.59 +2.92 26.80 +5.55 | 24.76 +2.40
Haberman 28.93 +5.61 | 32.38 +£2.48 | 24.67 £5.03 | 24.75 £4.96 | 28.28 £10.45 | 33.28 +£10.49 | 24.59 £5.16 | 27.00 £4.27 27.49 £7.56 | 24.39 £5.26
Horse 34.64 £4.74 | 33.34 £2.18 | 33.45 £5.71 | 34.26 £4.75 33.24 £5.32 34.12 +£5.86 | 33.45 +£5.99 | 27.03 +4.36 33.46 +£10.40 | 32.80 £5.22
House 523 +£1.65 19.34 £2.63 | 5.63 +2.76 15.17 +£8.86 4.89 £2.00 4.50 £1.55 4.83 +£2.19 4.52 £2.22 4.82 £3.32 4.37 £1.58
Tono 1579 £5.07 | 17.86 £2.63 | 17.29 £4.77 | 34.07 £6.39 17.79 £7.38 13.93 £5.26 | 18.07 £5.49 | 13.56 +4.95 13.10 +5.92 10.82+3.85
Mass 18.88 +£2.72 | 26.84 +£2.29 | 20.08 £3.07 | 20.52 £2.77 19.87 +£2.78 18.83 £3.19 | 20.73 +£2.73 | 19.68 +2.19 19.41 +£3.53 | 19.15 +2.55
Pima 25.81 £3.68 | 31.92 £1.86 | 23.96 £2.20 | 34.81 £3.32 | 23.54 £3.50 | 24.90 +2.87 [ 26.40 +3.51 | 29.90 £3.92 | 26.18 £7.76 | 23.91 £3.15
SPECT 19.06 £6.21 | 16.14 £2.67 | 18.02 £5.21 | 18.68 £4.82 | 20.47 £8.33 | 24.72 £6.95 | 16.79 +£5.42 | 19.79 £5.82 | 18.75 +3.58 | 15.66 +4.33
Transfusion | 22.40 £2.54 | 37.50 £1.20 | 23.67 £2.71 | 24.17 £2.69 | 24.83 £3.44 | 33.50 £4.05 | 23.37 +£3.06 | 24.29 £2.00 | 25.45 +4.65 | 22.18 £+3.65
WDBC 522 £2.66 | 17.72 £2.25 | 4.03 £2.46 | 12.19 +4.66 4.43 £2.02 4.14 £1.62 6.23 £2.13 9.15 £2.41 5.68 £2.92 4.96 £2.21
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Fig. 4. Result of the Friedman test for comparing the performance of SemiNCL on 10 regression data sets. The dots indicate the average ranks, the bars

indicate the critical difference with the Bonferroni-Dunn test at significance level 0.05, and the compared methods having nonoverlapped bars are significantly
different. (a) 10%. (b) 30%. (c) 50%. (d) 70%.
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Fig. 5. Result of the Friedman test for comparing the performance of SemiNCL on 12 classification data sets. The dots indicate the average ranks, the bars
indicate the critical difference with the Bonferroni-Dunn test at significance level 0.05, and the compared methods having nonoverlapped bars are significantly
different. (a) 5%. (b) 10%. (c) 20%.

For classification tasks, the differences of SemiNCL versus than the critical difference, so the differences are significant.
UDEED (except when the label rate is 5%), Manifold (only Thus, it means that SemiNCL is significantly better than
when the label rate is 20%), ClusterReg, and NCL are greater UDEED (except when label rate is 5%), Manifold (only when
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the label rate is 20%), ClusterReg, and NCL in these
cases.

The differences between SemiNCL and COREG under
the label ratios 0.3 and 0.7, the difference between Semi-
NCL and CoLSR under the label ratio 0.7, the difference
between SemiNCL and UDEED under the label ratio 0.05,
and the differences between SemiNCL and Manifold under
the label ratios 0.05 and 0.10, are below the critical differ-
ence, which means that the difference between SemiNCL and
COREG/CoLSR/UDEED/Manifold are not significant under
these label rates.

We propose two possible reasons why SemiNCL outper-
forms other semisupervised algorithms in most cases.

1) The assumption in SemiNCL is weaker than that of other
SSL algorithms. In the formulation of SemiNCL, we do
not explicitly specify any assumptions. The underlying
assumption of SemiNCL would be a kind of “smooth-
ness” in the data space, which encourages the diversity
using unlabeled data. The graph-based algorithms use
a stronger “smoothness” assumption to generate a data
graph, and they need to specify additional parameters,
such as the number of nearest neighbors and the RBF
kernel parameter, to construct a data graph, in addition
to the usual regularization parameter y4 and manifold
regularization parameter y;. This would lead to extra
efforts to search for a good combination of parameters
and sometimes this will result in suboptimal solutions.
In contrast, SemiNCL does not need to construct a data
graph and only assumes that the data space is relatively
smooth.

2) As the ensemble learner, NCL is a stronger regressor,
which was pointed out before [9], [34], [35] and vali-
dated by this paper (see Table II). After incorporating the
unlabeled data with a weak assumption of smooth data
space, SemiNCL could achieve a better performance
than NCL, especially when few labeled and many unla-
beled data are presented.

E. Scalability and Computational Complexity

This section presents a scalability study using SemiNCL
and other methods. First, we show the generalization error and
the computational time required for relatively large data sets.
Then, the computational and memory complexity are analyzed.

For regression problems, we compare the computational
time and generalization error of SemiNCL, Manifold [1],
COREG [51], and CoRLSR [5] using two relatively large
data sets: sarcos and kin40k. For classification problems, we
compare the computational time and generalization error of
SemiNCL, MCSSB [18], RegBoost [14], and ClusterReg [45].
Table V summarizes such data sets. We randomly selected
100 labeled instances for each data set.

Figs. 6 and 7 present generalization error and computational
time!> for sarcos, kindOk, secStr, and acoustic data sets,
respectively. For each step in these plots, new unlabeled

I5The computational environment is Linux with Intel 4 core 2.5-GB CPU
and 4-GB RAM.
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TABLE V
SUMMARY OF LARGE DATA SETS

Type Datasets # instances # attributes
Regression sarcos 48933 27
Regression kin40k 40000 8

Classification SecStr 83679 315
Classification Acoustic 98528 50

instances are randomly chosen and included in the previous
training set.

According to Fig. 6, the MSE obtained using a large
number of unlabeled samples tends to be lower than those
obtained using a small number of unlabeled instances given a
fixed number of labeled instances. These results confirm the
usefulness of unlabeled instances to improve the regression
performance when the unlabeled instances came from the same
input distribution as the labeled samples.

The running time of Manifold increases when a large
data set presents. Since the expensive computational part of
Manifold is the construction of the data graph, it consumes
similar time for data with different label rates. Since CoRLSR
is a kernel method that utilizes all the data points, it is sensitive
to the size of data set.

In Fig. 6, SemiNCL scales well with the increase of the
unlabeled data. While the Manifold approach costs the most
time and it will run out of memory with more unlabeled data.
CoRLSR also suffers from the huge memory consumption
problem and it will stop with more unlabeled data com-
ing. Although COREG is able to handle large data sets, it
cannot compete with SemiNCL in terms of generalization
performance. Based on these results, it is clear that SemiNCL
can obtain less generalization error with good scalability for
regression problems.

Similarly, in Fig. 7, the algorithms reduce their generaliza-
tion error with larger amounts of unlabeled data. However, as
depicted in Fig. 7, only SemiNCL was able to handle the full
data sets. According to Fig. 7, MCSSB, RegBoost, and Clus-
terReg fail with a few thousands of instances. MCSSB cannot
deliver comparable accuracy to other algorithms. MCSSB
updates each instance weight with the consideration of all
other unlabeled points, which means it uses all samples to
assign the pseudo-labels for the unlabeled data, which leads
to a quadratic growth of computational time with respect to
the number of unlabeled samples. Moreover, MCSSB stores a
S x S 16 similarity matrix. Such facts cause the algorithm to
fail due to either memory shortage or time usage. RegBoost
requires the computation of the exact nearest neighbors, which
involves the operation of an S x § distance matrix. As indicated
by Fig. 7, RegBoost starts to demand lots of memory with
only small amounts of data, which leads to a rapid increase in
computation time at each step of the graph. Therefore, similar
to MCSSB, with a certain large number of instances, RegBoost
fails due to infeasible running time and memory consumption.

As shown in Figs. 6 and 7, the time requirement of Semi-
NCL grows linearly with the number of unlabeled samples.

16g — N 4+ V is the total number of labeled and unlabeled samples.
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unlabeled data and 100 labeled points.

TABLE VI

COMPARISONS OF SEMINCL IN TERMS OF COMPUTATIONAL
COMPLEXITY AND MEMORY COMPLEXITY

Algorithm Computational Complexity Memory Complexity
MCSSB O(TS? + TR?) 0(S?)
RegBoost | O(VSlogS +TVS + TR?) 0(5?)
ClusterReg O(VSlogS+TVS) 0(5?)
SemiNCL O(W(H 4+ M)S + WH?) O(WS)

where 7" is the number of base learners, V' is the number of neighbors,
R is the number of resampling samples, H is the average number of
weights in each RBF network, M is the number of RBF networks, W
(W = M - H) is the total number of weights in all RBF networks, and
S is the total number of labeled and unlabeled samples.

In this sense, SemiNCL is suitable for (relatively) large-
scaled data sets, delivering good generalization efficiently
without compromising memory usage, which is attributed to
the approximation technique in Section III-C that improves the
computational efficiency and avoids the drawback of RegBoost
and MCSSB with respect to high memory consumption.'”

Table VI summarizes the computational and memory com-
plexity for SemiNCL, MCSSB, RegBoost, and ClusterReg.
From Table VI, we observe that the computational complexity
of SemiNCL is related to the values of M, H, and W.
According to the experimental settings in Section IV-A, the
value of M is fixed to 25, the average number of hidden
nodes H 7, thus W (W M - H) is a constant in
our experiments. Therefore, the values of M, H, and W are
constant and independent with S, and they have little effect on
the efficiency of SemiNCL especially for (relatively) large data
sets. It is easy to observe that the computational and memory
complexity of SemiNCL scale linearly with the number of
training samples, and SemiNCL is more efficient than other
algorithms.

~
~

7This drawback also has an impact on the execution time due to the
memory overload

V. CONCLUSION

In this paper, a semisupervised ensemble learning algorithm,
i.e., SemiNCL algorithm, has been proposed. By introducing
a negative correlation term for both labeled and unlabeled
data, SemiNCL can effectively exploit the unlabeled samples
to encourage ensemble diversity on unlabeled data without
sacrificing the accuracy on labeled data. The traditional NCL
is optimized by conjugate gradient, which requires additional
computational time. In this paper, an accelerated SemiNCL
is derived from the distributed least square algorithm, which
provides a closed-form solution and avoids expensive com-
putational and memory costs, making SemiNCL scalable for
relatively large-scaled data sets. We also provide the theo-
retical analysis of the negative correlation imposing parame-
ters, and derive a bound for the parameters based on the
analysis of Hessian matrices. State-of-the-art semisupervised
and supervised algorithms have been used to compare with
SemiNCL, and the experimental results on regression and
classification tasks demonstrate that SemiNCL performs very
well and outperforms others in general. We apply SemiNCL to
several relatively large data sets and analyze the computational
and memory complexity, and the results demonstrate the
effectiveness of SemiNCL on large data sets.

We discuss the underlying assumption of SemiNCL, i.e., the
unlabeled data should follow a similar distribution or tendency
with the labeled data, which is a kind of weak smoothness
assumption in the data space. By incorporating this weak
assumption, SemiNCL promotes the ensemble diversity and
achieves better performance in comparison with other SSL
algorithms across a number of different data sets, especially
when few labeled and many unlabeled data are presented.

REFERENCES

[1] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization:
A geometric framework for learning from labeled and unlabeled exam-
ples,” J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: SEMINCL

[2]

[3]

[4]

[5]

[6

)

[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

K. P. Bennett, A. Demiriz, and R. Maclin, “Exploiting unlabeled data
in ensemble methods,” in Proc. 8th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2002, pp. 289-296.

A. Blum and T. Mitchell, “Combining labeled and unlabeled data with
co-training,” in Proc. 11th Annu. Conf. Comput. Learn. Theory (COLT),
1998, pp. 92-100.

U. Brefeld, C. Biischer, and T. Scheffer, “Multi-view discriminative
sequential learning,” in Proc. 16th Eur. Conf. Mach. Learn. (ECML),
2005, pp. 60-71.

U. Brefeld, T. Girtner, T. Scheffer, and S. Wrobel, “Efficient co-
regularised least squares regression,” in Proc. 23rd Int. Conf. Mach.
Learn. (ICML), 2006, pp. 137-144.

U. Brefeld and T. Scheffer, “Semi-supervised learning for structured
output variables,” in Proc. 23rd Int. Conf. Mach. Learn. (ICML), 2006,
pp. 145-152.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation methods:
A survey and categorisation,” Inf. Fusion, vol. 6, no. 1, pp. 5-20, 2005.
G. Brown, J. L. Wyatt, and P. Tino, “Managing diversity in regression
ensembles,” J. Mach. Learn. Res., vol. 6, pp. 1621-1650, Dec. 2005.
O. Chapelle and A. Zien, “Semi-supervised classification by low density
separation,” in Proc. 10th Int. Workshop Artif. Intell. Statist. (AISTATS),
2005, pp. 57-64.

O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning.
Cambridge, MA, USA: MIT Press, 2006.

H. Chen and X. Yao, “Regularized negative correlation learning for
neural network ensembles,” IEEE Trans. Neural Netw., vol. 20, no. 12,
pp. 1962-1979, Dec. 2009.

H. Chen and X. Yao, “Multiobjective neural network ensembles based
on regularized negative correlation learning,” IEEE Trans. Knowl. Data
Eng., vol. 22, no. 12, pp. 1738-1751, Dec. 2010.

K. Chen and S. Wang, “Semi-supervised learning via regularized boost-
ing working on multiple semi-supervised assumptions,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 129-143, Jan. 2011.

L. Chen, I. W. Tsang, and D. Xu, “Laplacian embedded regression
for scalable manifold regularization,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 23, no. 6, pp. 902-915, Jun. 2012.

S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” [EEE Trans.
Neural Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.

R. Collobert and S. Bengio, “SVMTorch: Support vector machines
for large-scale regression problems,” J. Mach. Learn. Res., vol. 1,
pp. 143-160, Sep. 2001.

F. d’Alché-Buc, Y. Grandvalet, and C. Ambroise, “Semi-supervised
MarginBoost,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2002,
pp- 553-560.

H. H. Dam, H. A. Abbass, C. Lokan, and X. Yao, “Neural-based learning
classifier systems,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 1,
pp. 26-39, Jan. 2008.

J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.

O. J. Dunn, “Multiple comparisons among means,” J. Amer. Statist.
Assoc., vol. 56, no. 293, pp. 52-64, 1961.

Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares
algorithm,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275-2285,
Aug. 2004.

Y. Freund, R. E. Schapire, and N. Abe, “A short introduction to
boosting,” J. Japn. Soc. Artif. Intell., vol. 14, no. 5, pp. 771-780, 1999.
J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” J. Statist. Softw.,
vol. 33, no. 1, pp. 1-22, 2010.

A. Fujino, N. Ueda, and K. Saito, “Semisupervised learning for a hybrid
generative/discriminative classifier based on the maximum entropy
principle,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 3,
pp. 424-437, Mar. 2008.

J. B. Gomm and D. L. Yu, “Selecting radial basis function network
centers with recursive orthogonal least squares training,” IEEE Trans.
Neural Netw., vol. 11, no. 2, pp. 306-314, Mar. 2000.

C. Gong, T. Liu, D. Tao, K. Fu, E. Tu, and J. Yang, “Deformed
graph Laplacian for semisupervised learning,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 26, no. 10, pp. 2261-2274, Oct. 2015.

G. Huang, S. Song, J. N. D. Gupta, and C. Wu, “Semi-supervised and
unsupervised extreme learning machines,” IEEE Trans. Cybern., vol. 44,
no. 12, pp. 2405-2417, Dec. 2014.

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

13

M. M. Islam, X. Yao, and K. Murase, “A constructive algorithm for
training cooperative neural network ensembles,” IEEE Trans. Neural
Netw., vol. 14, no. 4, pp. 820-834, Jul. 2003.

B. Jiang, H. Chen, B. Yuan, and X. Yao, “Scalable graph-
based semi-supervised learning through sparse Bayesian model,”
IEEE Trans. Knowl. Data Eng., vol. 29, no. 12, pp. 2758-2771,
Dec. 2017.

T. Joachims, “Transductive inference for text classification using support
vector machines,” in Proc. 16th Int. Conf. Mach. Learn. (ICML), 1999,
pp. 200-209.

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-
supervised learning with deep generative models,” in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), 2014, pp. 3581-3589.

Y. Li, J. T. Kwok, and Z.-H. Zhou, “Semi-supervised learning using
label mean,” in Proc. 26nd Int. Conf. Mach. Learn. (ICML), 2009,
pp. 633-640.

Y. Liu and X. Yao, “Ensemble learning via negative correlation,” Neural
Netw., vol. 12, no. 10, pp. 1399-1404, Dec. 1999.

Y. Liu and X. Yao, “Simultaneous training of negatively correlated neural
networks in an ensemble,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 29, no. 6, pp. 716725, Dec. 1999.

Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles with nega-
tive correlation learning,” IEEE Trans. Evol. Comput., vol. 4, no. 4,
pp. 380-387, Nov. 2000.

P. K. Mallapragada, R. Jin, A. K. Jain, and Y. Liu, “SemiBoost: Boosting
for semi-supervised learning,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 31, no. 11, pp. 2000-2014, Nov. 2009.

M. F. Mgller, “A scaled conjugate gradient algorithm for fast
supervised learning,” Neural Netw., vol. 6, no. 4, pp. 525-533,
Nov. 1993.

B. Nadler, N. Srebro, and X. Zhou, “Semi-supervised learning with the
graph Laplacian: The limit of infinite unlabelled data,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2009, pp. 1330-1338.

M. Lichman, “UCI machine learning repository,” School Inf. Comput.
Sci., Univ. California, Irvine, CA, USA, 2003. [Online]. Available:
http://archive.ics.uci.edu/ml

E. Riloff, J. Wiebe, and T. Wilson, “Learning subjective nouns using
extraction pattern bootstrapping,” in Proc. 7th Conf. Natural Lang.
Learn. (CONNL), 2003, pp. 25-32.

R. G. F. Soares, H. Chen, and X. Yao, “A cluster-based semisupervised
ensemble for multiclass classification,” IEEE Trans. Emerg. Top. Com-
put. Intell., vol. 1, no. 6, pp. 408420, Dec. 2017.

C. Rosenberg, M. Hebert, and H. Schneiderman, “Semi-supervised self-
training of object detection models,” in Proc. 7th IEEE Workshops Appl.
Comput. Vis. (WACV), Jan. 2005, pp. 29-36.

B. M. Shahshahani and D. A. Landgrebe, “The effect of unlabeled
samples in reducing the small sample size problem and mitigating the
Hughes phenomenon,” IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5,
pp- 1087-1095, Sep. 1994.

R. G. F. Soares, H. Chen, and X. Yao, “Semisupervised classification
with cluster regularization,” [EEE Trans. Neural Netw. Learn. Syst.,
vol. 23, no. 11, pp. 1779-1792, Nov. 2012.

E. K. Tang, P. N. Suganthan, and X. Yao, “An analysis of diversity
measures,” Mach. Learn., vol. 65, no. 1, pp. 247-271, Oct. 2006.

X. Yao, M. Fischer, and G. Brown, “Neural network ensembles and their
application to traffic flow prediction in telecommunications networks,”
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2001, pp. 693—-698.
S. Zhai, T. Xia, Z. Li, and S. Wang, “A direct boosting approach
for semi-supervised classification,” in Proc. 24th Int. Conf. Artif.
Intell. (IJCAI), 2015, pp. 4025-4032.

K. Zhang, L. Lan, J. Kwok, S. Vucetic, and B. Parvin, “Scaling up
graph-based semisupervised learning via prototype vector machines,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 3, pp. 444-457,
Mar. 2015.

M.-L. Zhang and Z.-H. Zhou, “Exploiting unlabeled data to enhance
ensemble diversity,” Data Mining Knowl. Discovery, vol. 26, no. 1,
pp. 98-129, Jan. 2013.

Z. H. Zhou and M. Li, “Semisupervised regression with cotraining-
style algorithms,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 11,
pp. 1479-1493, Nov. 2007.

X. Zhu, “Semi-supervised learning literature survey,” Dept. Comput.
Sci., Univ. Wisconsin, Madison, WI, USA, Tech. Rep. TR 1530, 2007.
[Online]. Available: http://www.cs.wisc.edu/ jerryzhu/pub/ssl_survey.pdf
X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using
Gaussian fields and harmonic functions,” in Proc. 20th Int. Conf. Mach.
Learn. (ICML), 2003, pp. 912-919.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Huanhuan Chen (M’09-SM’16) received the B.Sc.
degree from the University of Science and Tech-
nology of China (USTC), Hefei, China, in 2004,
and the Ph.D. degree in computer science from
the University of Birmingham, Birmingham, U.K.,
in 2008.

He is currently a Full Professor with the School
of Computer Science and Technology, USTC. His
current research interests include neural networks,
Bayesian inference, and evolutionary computation.

Dr. Chen was a recipient of the 2015 International
Neural Network Society Young Investigator Award, the 2012 IEEE Com-
putational Intelligence Society Outstanding Ph.D. Dissertation Award, the
IEEE TRANSACTIONS ON NEURAL NETWORKS Outstanding Paper Award
(bestowed in 2011 and only one paper in 2009), and the 2009 British Computer
Society Distinguished Dissertations Award. He is an Associate Editor of the
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
and the IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL
INTELLIGENCE.

V.

Bingbing Jiang received the B.Sc. degree from the
Chonggqing University of Posts and Telecommunica-
tions, Chongging, China, in 2014. He is currently
pursuing the Ph.D. degree with the School of Com-
puter Science and Technology, University of Science
and Technology of China, Hefei, China.

His current research interests include Bayesian
learning, semisupervised learning, and feature
selection.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Xin Yao (F’03) received the B.Sc. degree from
the University of Science and Technology of China
(USTC), Hefei, China, in 1982, the M.Sc. degree
from the North China Institute of Computing Tech-
nology, Beijing, China, in 1985, and the Ph.D.
degree from USTC, in 1990.

He is currently a Chair Professor with the
Department of Computer Science and Engineering,
Southern University of Science and Technology,
Shenzhen, China, and a part-time Professor of com-
puter science at the University of Birmingham,
Birmingham, U.K. His current research interests include evolutionary compu-
tation and ensemble learning.

Dr. Yao was a recipient of the 2001 IEEE Donald G. Fink Prize Paper
Award, the 2010 and 2016 IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION Outstanding Paper Awards, the 2011 IEEE TRANSACTIONS
ON NEURAL NETWORKS Outstanding Paper Award, and several other Best
Paper Awards. He was the Editor-in-Chief (2003-2008) of the IEEE TRANS-
ACTIONS ON EVOLUTIONARY COMPUTATION and the President (2014-2015)
of the IEEE Computational Intelligence Society (CIS). He was a Distinguished
Lecturer in the IEEE CIS.



