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Sparse Bayesian learning is a state-of-the-art supervised learning algorithm that can choose a subset of relevant
samples from the input data and make reliable probabilistic predictions. However, in the presence of high-
dimensional data with irrelevant features, traditional sparse Bayesian classifiers suffer from performance
degradation and low efficiency by failing to eliminate irrelevant features. To tackle this problem, we propose
a novel sparse Bayesian embedded feature selection method that adopts truncated Gaussian distributions as
both sample and feature priors. The proposed method, called probabilistic feature selection and classification
vector machine (PFCVMLP ), is able to simultaneously select relevant features and samples for classification
tasks. In order to derive the analytical solutions, Laplace approximation is applied to compute approximate
posteriors and marginal likelihoods. Finally, parameters and hyperparameters are optimized by the type-II
maximum likelihood method. Experiments on three datasets validate the performance of PFCVMLP along
two dimensions: classification performance and effectiveness for feature selection. Finally, we analyze the
generalization performance and derive a generalization error bound for PFCVMLP . By tightening the bound,
the importance of feature selection is demonstrated.
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learning, supervised learning, EEG emotion recognition

1 INTRODUCTION
In supervised learning, we are given input feature vectors x = {xi ∈ RM }Ni=1 and corresponding
labels y = {yi }Ni=1.1 The goal is to predict the label of a new datum x̂ based on the training dataset
S = {x, y} together with other prior knowledge. For regression, we are given continuous labels
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y ∈ R, while for classification we are given discrete labels. In this paper, we focus on the binary
classification case, in which y ∈ {−1,+1}.

Recently, learning sparseness from large-scale datasets has generated significant research inter-
est [9, 11, 19, 29, 33]. Among the methods proposed, the support vector machine (SVM) [11], which
is based on the kernel trick [45] to create a non-linear decision boundary with a small number of
support vectors, is the state-of-the-art algorithm. The prediction function of SVM is a combination
of basis functions:2

f (x̂ ; w) =
N∑
i=1

ϕ(x̂ ,xi )wi + b, (1)

where ϕ(·, ·) is the basis function, w = {wi }Ni=1 are sample weights, and b is the bias.
Similar to SVM, many sparse Bayesian classifiers also use Equation (1) as their decision function;

examples include the relevance vector machine (RVM) [44] and the probabilistic classification
vector machine (PCVM) [8]. Unlike SVM, whose weights are determined by maximizing the
decision margin and limited to hard binary classification, sparse Bayesian algorithms optimize the
parameters within a maximum likelihood framework and make predictions based on the average
of the prediction function over the posterior of parameters. For example, PCVM computes the
maximum a posteriori (MAP) estimation using the expectation-maximization (EM) algorithm; RVM
and efficient probabilistic classification vector machine (EPCVM) [9] compute the type-II maximum
likelihood [3] to estimate the distribution of the parameters. However, these algorithms have to deal
with different scales of features due to the failure to eliminate irrelevant features.

In addition to sparse Bayesian learning, parameter-free Bayesian methods that are based on the
class-conditional distributions, have been proposed to solve the classification task [18, 21, 27, 28].
Lanckriet et al. [28] proposed the minimax probability machine (MPM) to estimate the bound of
classification accuracy by minimizing the worst error rate. To efficiently exploit structural information
of data, Gu et al. [18] proposed a structural MPM (SMPM) that can produce the non-linear decision
hyperplane by using the kernel trick. To exploit structural information, SMPM adopts a clustering
algorithm to detect the clusters of each class and then calculates the mean and covariance matrix for
each cluster. However, selecting a proper number of clusters per class is difficult for the clustering
algorithm, and calculating the mean and covariance matrix for each cluster has a high computational
complexity for high-dimensional data. Therefore, SMPM cannot fit different scales of features and
might suffer from the instability and low efficiency especially for high-dimensional data.

In order to fit different scales of features, basis functions are always controlled by basis parameters
(or kernel parameters). For example, in LIBSVM [7] with Gaussian radial basis functions (RBF)
ϕ(x , z) = exp(−ϑ ∥x − z∥2), the default ϑ is set relatively small for high-dimensional datasets and
large for low-dimensional datasets. Although the use of basis parameters may help to address the
curse of dimensionality [2], the performance might be degraded when there are lots of irrelevant
and/or redundant features [26, 29, 36]. Parameterized basis functions are designed to deal with this
problem. There are two popular basis functions that can incorporate feature parameters easily:

Gaussian RBF

ϕθ (x , z) = exp (−
M∑
k=1

θk (xk − zk )2), (2)

2In the rest of this paper, we prefer to use the term of basis function instead of kernel function, because, except for SVM, the
basis functions used in this paper are free of Mercer’s condition.
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Pth order polynomial:

ϕθ (x , z) = (1 +
M∑
k=1

θkx
kzk )P , (3)

where the subscript denotes the corresponding index of features, and θ ∈ RM are feature parameters
(also called feature weights). Once a feature weight θk → 0,3 the corresponding feature will not
contribute to the classification.

Feature selection, as a dimensionality reduction technique, has been extensively studied in machine
learning and data mining, and various feature selection methods have been proposed [5, 26, 29, 34,
36–38, 40, 47, 48, 50, 52–57]. Feature selection methods can be divided into three groups: filter
methods [20, 37, 38, 40], wrapper methods [50], and embedded methods [5, 26, 29, 33, 34, 36]. Filter
methods independently select the subset of features from the classifier learning. Wrapper methods
consider all possible feature subsets and then select a specific subset based on its predictive power.
Therefore, the feature selection stage and classification model are separated and independent in
the filter and wrapper methods, and the wrapper methods might suffer from high computational
complexity especially for high-dimensional data [33]. Embedded methods embed feature selection in
the training process, which aims to combine the advantages of the filter and wrapper methods. As to
filter methods, Peng et al. [40] proposed a minimum redundancy and maximum relevance (mRMR)
method, which selects relevant features and simultaneously removes redundant features according
to the mutual information. To avoid evaluating the score for each feature individually like Fisher
Score [14], a filter method, trace ratio criterion (TRC) [38] was designed to find the globally optimal
feature subset by maximizing the subset level score. Recently, sparsity regularization in feature space
has been widely applied to feature selection tasks. In [5], Bradley and Mangasarian proposed an
embedded method, L1SVM, that uses the L1 norm to yield a sparse solution. However, the number
of features selected by L1SVM is upper bounded by the number of training samples, which limits
its application on high-dimensional data. Nie et al. [37] employed joint L21 norm minimization on
both loss function and regularization to propose a filter method, FSNM. Based on the basis functions
mentioned above, Nguyen and De la Torre [36] designed an embedded feature selection model,
Weight SVM (WSVM), that can jointly perform feature selection and classifier construction for
non-linear SVMs. However, filter methods are not able to adaptively select relevant features, i.e.,
they require a predefined number of selected features.

For Bayesian feature selection approaches, a joint classifier and feature optimization algorithm
(JCFO) is proposed in [26]; the authors adopt a sparse Bayesian model to simultaneously perform
classifier learning and feature selection. To select relevant features, JCFO introduces hierarchical
sparseness promoting priors on feature weights and then employs EM and gradient-based methods
to optimize the feature weights. In order to simultaneously select relevance samples and features,
Mohsenzadeh et al. [34] extend the standard RVM and then design the relevance sample feature ma-
chine (RSFM) and an incrementally learning version (IRSFM) [33], that scales the basis parameters
in RVM to a vector and applies zero-mean Gaussian priors on feature weights to generate sparsity in
the feature space. Li and Chen [29] propose an EM algorithm based joint feature selection strategy
for PCVM (denoted as PFCVMEM ), in which they add truncated Gaussian priors to features to enable
PCVM to jointly select relevant samples and features. However, JCFO, PFCVMEM , and RSFM
use an EM algorithm to calculate a maximum a posteriori point estimate of the sample and feature
parameters. As pointed out by Chen et al. [9], the EM algorithm has the following limitations: first, it
is sensitive to the starting points and cannot guarantee convergence to global maxima or minima;

3Practically, lots of feature weights θk → 0. When a certain θk is smaller than a threshold, we will set it 0.
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second, the EM algorithm results in a MAP point estimate, which limits to the Bayes estimator with
the 0-1 loss function and cannot represent all advantages of the Bayesian framework.

JCFO, RSFM, and IRSFM adopt a zero-mean Gaussian prior distribution over sample weights,
and RSFM and IRSFM also use this prior distribution over feature weights. As a result of adopting
a zero-mean Gaussian prior over samples, some training samples that belong to the positive class
(yi = +1) will receive negative weights and vice versa; this may result in instability and degeneration
in solutions [8]. Also, for RSFM and IRSFM, zero-mean Gaussian feature priors will lead to negative
feature weights, which reduces the value of kernel functions for two samples when the similarity
in the corresponding features is increased [26]. Finally, RSFM and IRSFM have to construct an
N ×M kernel matrix for each sample, which yields a space complexity of at least O(N 2M) to store
the designed kernel matrices.

We propose a complete sparse Bayesian method, i.e., a Laplace approximation based feature
selection method PCVM (PFCVMLP ), that uses the type-II maximum likelihood method to arrive
at a fully Bayesian estimation. In contrast to the filter methods such as mRMR [40], FSNM [37]
and TRC [38], and the embedded methods such as JCFO [26], L1SVM [5] and WSVM [36], the
proposed PFCVMLP method can adaptively select informative and relevant samples and features
with probabilistic predictions. Moreover, PFCVMLP adopts truncated Gaussian priors as both sample
and feature priors, which obtains a more stable solution and avoids the negative values for sample
and feature weights. We summarize the main contributions as follows:

• Unlike traditional sparse Bayesian classifiers, like PCVM and RVM, the proposed algorithm
simultaneously selects the relevant features and samples, which leads to a robust classifier for
high-dimensional data sets.

• Compared with PFCVMEM [29], JCFO [26] and RSFM [34], PFCVMLP adopts the type-II
maximum likelihood [44] approach to approximate a fully Bayesian estimate, which achieves
a more stable solution and might avoid the limitations caused by the EM algorithm.

• PFCVMLP is extensively evaluated and compared with state-of-the-art feature selection meth-
ods on different real-world datasets. The results validate the performances of PFCVMLP .

• We derive a generalization bound for PFCVMLP . By analyzing the bound, we demonstrate the
significance of feature selection and introduce a way of choosing the initial values.

The rest of the paper is structured as follows. Background knowledge of sparse Bayesian learning
is introduced in Section 2. Section 3 details the implementation of simultaneously optimizing sample
and feature weights of PFCVMLP . In Section 4 experiments are designed to evaluate both the accuracy
of classification and the effectiveness of feature selection. Analyses of sparsity and generalization for
PFCVMLP are presented in Section 5. We conclude in Section 6.

2 SPARSE BAYESIAN LEARNING FRAMEWORK
In the sparse Bayesian learning framework, we usually use the Laplace distribution and/or the
student’s-t distribution as the sparseness-promoting prior. In binary classification problems, we choose
a Bernoulli distribution as the likelihood function. Together with the proper marginal likelihood, we
can compute the parameters’ distribution (posterior distribution) either by MAP point estimation or
by a complete Bayesian estimation approximated by type-II-maximum likelihood. Below, we detail
the implementation of this framework.

2.1 Model specification
We concentrate on a linear combination of basis functions. To simplify our notation, the decision
function is defined as:

f (x; w,θ ) = Φθ (x)w, (4)

Manuscript submitted ACM Transactions on Knowledge Discovery from Data.
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where w denotes the N +1-dimensional sample weights;w0 denotes the bias; Φθ (x) is an N ×(N +1)
basis function matrix, except for the first column ϕθ,0(x) = [1, . . . , 1]T , other component ϕθ,i j =
ϕθ (xi ,x j ) × yj ,4 and θ ∈ RM is the feature weights.

As probabilistic outputs are continuous values in [0, 1], we need a link function to obtain a smooth
transformation from [−∞,+∞] to [0, 1]. Here, we use a sigmoid function σ (z) = 1

1+e−z to map
Equation (4) to [0, 1]. Then, we combine this mapping with a Bernoulli distribution to compute the
following likelihood function:

p(t | w,θ , S) =
N∏
i=1

σ tii (1 − σi )(1−ti ),

where ti = (yi + 1)/2 denotes the probabilistic target of the i-th sample and σi denotes the sigmoid
mapping for the i-th sample: σi = σ (f (xi ; w,θ )). The vector t = (t1, . . . , tN )T consists of the
probabilistic targets of all training samples and S = {x, y} is the training set.

2.2 Priors over weights and features
According to Chen et al. [8], a truncated Gaussian prior may result in the proper sparseness to
sample weights. Following this idea, we introduce a non-negative left-truncated Gaussian prior
Nt (wi | 0,α−1

i ) to each sample weight wi :

p(wi | αi ) =
{

2N(wi | 0,α−1
i ) if wi ≥ 0

0 otherwise

= 2N(wi | 0,α−1
i ) · 1wi ≥0(wi ), (5)

where αi (precision) is a hyperparameter, which is equal to the inverse of variance, and 1x ≥0(x) is
an indicator function that returns 1 for each x ≥ 0 and 0 otherwise. For the bias w0, we introduce a
zero-mean Gaussian prior N(w0 | 0,α−1

0 ):

p(w0 | α0) = N(w0 | 0,α−1
0 ). (6)

Assuming that the sample weights are independent and identically distributed (i.i.d.), we can compute
the priors over sample weights as follows:

p(w|α ) =
N∏
i=0

p(wi |αi ) = N(w0 |0,α−1
0 )

N∏
i=1

Nt (wi |0,α−1
i ), (7)

where α = (α0, . . . ,αN )T and Nt (wi | 0,α−1
i ) denotes the left truncated Gaussian distribution.

Feature weights indicate the importance of features. For important features, the corresponding
weights are set to relatively large values and vice versa. For irrelevant and/or redundant features, the
weights are set to 0. Following [26], we should not allow negative values for feature weights. Based
on these discussions, we introduce left truncated Gaussian priors for feature weights. Under the i.i.d.
assumption, the prior over features is computed as follows:

p(θ | β) =
M∏
k=1

p(θk | βk ) =
M∏
k=1

Nt (θk | 0, β−1
k ),

4We assume that each sample weight has the same sign as the corresponding label. So by multiplying the basis vector with the
corresponding label, we can assume that all sample weights are non-negative.

Manuscript submitted ACM Transactions on Knowledge Discovery from Data.
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where β = (β1, . . . , βM )T are hyperparameters of feature weights. Each prior is formalized as follows:

p(θk | βk ) =
{

2N(θk | 0, β−1
k ) if θk ≥ 0,

0 otherwise,

= 2N(θk | 0, β−1
k ) · 1θk>0(θk ). (8)

For both kinds of priors, we introduce Gamma distributions for αi and βk as hyperpriors. The
truncated Gaussian priors will work together with the flat Gamma hyperpriors and result in truncated
hierarchical Student’s-t priors over weights. These hierarchical priors, which are similar to Laplace
priors, work as L1 regularization and lead to sparse solutions [8, 26].

2.3 Computing posteriors
The posterior in a Bayesian framework contains the distribution of all parameters. Computing
parameters boils down to updating posteriors. Having priors and likelihood, posteriors can be
computed with the following formula:

p(w,θ | t,α , β) = p(t | w,θ , S)p(w | α )p(θ |β)
p(t | α , β , S) . (9)

Some methods, such as PCVM, PFCVMEM , and JCFO, overlook information in the marginal
likelihood and use the EM algorithm to obtain a MAP point estimation of parameters. Although
an efficient estimation might be obtained by the EM algorithm, it overlooks the information in the
marginal likelihood and is not regarded as a complete Bayesian estimation. Other methods, such as
RVM and EPCVM, retain the marginal likelihood. They compute the type-II maximum likelihood
and obtain a complete Bayesian solution.

The predicted distribution for the new datum x̂ is computed as follows:

p(ŷ | x̂ , t,α , β) =
∫

p(ŷ | x̂ ,w,θ )p(w,θ | t,α , β)dwdθ .

If both terms in the integral are Gaussian distributions, it is easy to compute this integral analytically.
We will detail the implementation of PFCVMLP in the next section.

3 PROBABILISTIC FEATURE SELECTION CLASSIFICATION VECTOR MACHINE
Details of computing sample weights and sample hyperparameters were reported by Chen et al. [9].
In this section, we mainly focus on computing parameters and hyperparameters for features.

3.1 Approximations for posterior distributions
Since the indicator function in Equation (8) is not differentiable, an approximate function is required
to smoothly approximate the indicator function. Here, we use a parameterized sigmoid assumption.
Fig. 1 shows the approximation of an indicator function made by a sigmoid function σ (λx). As
depicted in Fig. 1, the larger λ is, the more accurate approximation a sigmoid function will make. In
PFCVMLP , we choose σ (5x) as the approximation function.

We calculate Equation (9) by the Laplace approximation, in which the Gaussian distributions5

N(uθ ,Σθ ) and N(uw,Σw), are used to approximate the unknown posteriors of feature and sample

5Because of the truncated prior assumption, we should take the positive quadrant part of the two Gaussian distributions, which
only have an extra normalization term. Fortunately, the normalization term is independent of w and θ . So, in the derivation,
we still use the Gaussian distributions.

Manuscript submitted ACM Transactions on Knowledge Discovery from Data.
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Fig. 1. Illustration of the indicator function and the sigmoid function.

weights, respectively. We start with the logarithm of Equation (9) by the following formula:

Q(w,θ ) = log{p(t | w,θ , S)p(w | α )p(θ | β)} − logp(t | α , β , S)

=

N∑
n=1

[tn logσn + (1 − tn) log(1 − σn)] −
1
2

wT Aw − 1
2
θT Bθ

+

N∑
i=1

log 1wi ≥0(wi ) +
M∑
k=1

log 1θk ≥0(θk ) + const ,

where A = diag(α0, . . . ,αN ), B = diag(β1, . . . , βM ) and const is independent of w and θ .
Using the sigmoid approximation, we substitute 1x ≥0(x) by σ (λx) with λ = 5. We can compute

the derivative of the feature posterior function as follows:

∂Q(w,θ )
∂θ

= −Bθ + DT (t − σ ) + kθ ,

where kθ = [λ(1−σ (λθ1)), . . . , λ(1−σ (λθM ))]T is an M-dimensional vector, σ = [σ1, . . . ,σN ]T , and
D = ∂Φθ w

∂θ .

For Gaussian RBF:

Di,k = −
N∑
j=1

w jϕθ,i j (xki − xkj )2.

For P th order polynomial:

Di,k = Pxki

N∑
j=1

w jϕ
(P−1)/P
θ,i j xkj .

The mean uθ of the feature posterior distribution is calculated by setting ∂Q (w,θ )
∂θ = 0:

uθ = B−1
(
DT (t − σ ) + kθ

)
. (10)

Then we compute the second-order derivative of Q(w,θ ), the Hessian matrix:

∂2Q(w,θ )
∂θ 2 = −Oθ − B − DTCD + E,

Manuscript submitted ACM Transactions on Knowledge Discovery from Data.
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where Oθ = diag(λ2σ (λθ1)(1 − σ (λθ1)), . . . , λ2σ (λθM )(1 − σ (λθM ))) is an M ×M diagonal matrix,
and C is an N ×N diagonal matrix C = diag((1 − σ1)σ1, . . . , (1 − σN )σN ). E denotes ∂D

∂θ

T (t − σ ) and
is computed as follows:

For Gaussian RBF:

Ei,k =
N∑
p=1

[
(tp − σp )

N∑
j=1

ϕθ,pjw j (x ip − x ij )2 × (xkp − xkj )2
]
.

For P th order polynomial:

Ei,k =
N∑
p=1

[
(tp − σp )x ipxkp

N∑
j=1

ϕ(P−2)/P
θ,pj w jx

i
jx

k
j

]
× P(P − 1).

The covariance of this approximate posterior distribution equals the negative inverse of the Hessian
matrix:

Σθ =
(
DTCD + B + Oθ − E

)−1
. (11)

Practically, we use Cholesky decomposition to compute the robust inversion.
In the same way, we can obtain uw and Σw by computing the derivative of Q(w,θ ) with respect to

w:

uw = A−1
(
ΦT
θ (t − σ ) + kw

)
(12)

Σw =
(
ΦT
θ CΦθ + A + Ow

)−1
, (13)

where kw = [0, λ(1 − σ (λw1)), . . . , β(1 − σ (λwN ))]T is an (N + 1)-dimension vector, and Ow =

diag(0, λ2σ (λw1)(1 − σ (λw1)), . . . , λ2σ (λwN )(1 − σ (λwN ))) is an (N + 1) × (N + 1) diagonal matrix.
After the derivation, the indicator functions degenerate into vectors and matrices, kθ in Equation

(10), Oθ in Equation (11) for the feature posterior, and kw in Equation (12), and Ow in Equation (13)
for the sample posterior. These two matrices will hold the non-negative property of the sample and
feature weights, which is consistent with the prior assumption.

With the approximated posterior distributions, N(uθ , Σθ ) and N(uw, Σw), optimizing PFCVMLP
boils down to maximizing the posterior mode of the hyperparameters, which means maximizing
p(α , β | t) ∝ p(t | α , β , S)p(α )p(β) with respect to α and β . As we use flat Gamma distributions
over α and β , the maximization depends on the marginal likelihood p(t | α , β , S) [22, 44]. In the
next section, the optimal marginal likelihood is obtained through the type-II maximum likelihood
method.

3.2 Maximum marginal likelihood
In Bayesian models, the marginal likelihood function is computed as follows:

p(t | α , β , S) =
∫

p(t | w,θ , S)p(w | α )p(θ | β)dwdθ . (14)

However, when the likelihood function is a Bernoulli distribution and the priors are approximated
by Gaussian distributions, the maximization of Equation (14) cannot be derived in closed form.
Thus we introduce an iterative estimation solution. The details of the hyperparameter optimization
and the derivation of maximizing marginal likelihood, are specified in Appendix. Here, we use the

Manuscript submitted ACM Transactions on Knowledge Discovery from Data.
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methodology of Bayesian Occam’s razor [31]. The update formula of the feature hyperparameters is
rearranged and simplified as:

βnewk =
γk

u2
θ,k

, (15)

whereuθ,k is the k-th mean of feature weights in Equation (10), and we denote γk ≡ 1−βkΣkk , where
Σkk is the k-th diagonal covariance element in Equation (11) and βkΣkk works as Occam’s factor,
which can automatically find a balanced solution between complexity and accuracy of PFCVMLP .
The details of updating the sample hyperparameters αi are the same as for βk , and we omit them.

In the training step, we will eliminate a feature when the corresponding βk is larger than a specified
threshold. In this case, the feature weight θk is dominated by the prior distribution and restricted to a
small neighborhood around 0. Hence, this feature contributes little to the classification performance.
At the start of the iterative process, all samples and features are included in the model. As iterations
proceed, N and M are quickly reduced, which accelerates the speed of the iterations. Further analysis
of the complexity will be reported in Section 4.4. In the next subsection, we demonstrate how to
make predictions on new data.

3.3 Making predictions
When predicting the label of new sample x̂ , instead of making a hard binary decision, we prefer to
estimate the uncertainty in the decision, the posterior probability of the prediction p(ŷ = 1 | x̂ , S).
Incorporating the Bernoulli likelihood, the Bayesian model enables the sigmoid function σ (f (x̂))
to be regarded as a consistent estimate of p(ŷ = 1 | x̂ , S) [44]. We can compute the probability of
prediction in the following way:

p(ŷ = 1 | x̂ , S) =
∫

p(ŷ = 1 | w, x̂ , S)q(w)dw,

where p(ŷ = 1 | w, x̂ , S) = σ (uTwϕθ (x̂)) and q(w) denotes the posterior of sample weights. Employing
the posterior approximation in Section 3.1, we have q(w) ≈ N(w | uw, Σw). According to [4], we
have:

p(ŷ = 1 | x̂ , S) =
∫

σ (ϕT
θ (x̂)uw)N (w | uw, Σw)dw ≈ σ

(
κ(σ 2

x̂ )u
T
wϕθ (x̂)

)
,

where κ(σ 2
x̂ ) =

(
1+

π

8
ϕT
θ
(x̂)Σwϕθ (x̂)

)−1/2 is the variance of x̂ with the covariance of sample posterior
distribution Σw.

To arrive at a binary classification, we choose uTwϕθ (x̂) = 0 as the decision boundary, where we
have the probability p(ŷ = 1 | x̂ , S) = 0.5. Thus, computing the sign of uTwϕθ (x̂) will meet the case of
0-1 classification. Moreover, the likelihood of prediction provides the confidence of the prediction,
which is more important in unbalanced classification tasks.

3.4 Implementation
We detail the implementation of PFCVMLP step by step and provide pseudo-code in Algorithm 1.

Algorithm 1 consists of the following main steps.
(1) First, the values of w,θ ,α , β are initialized by INITVALUES and a parameter Index generated

to indicate the useful samples and features (line 3).
(2) At the beginning of each iteration, compute the matrix Φ according to Equation (3) (line 5).
(3) Based on Equation (9), use the new hyperparameters to re-estimate the posterior (line 6).
(4) Use the re-estimated parameters to maximize the logarithm of marginal likelihood and update

the hyperparameters according to Equation (14) (line 7).
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Algorithm 1 PFCVMLP algorithm

1: Input: Training data set: S; initial values: INITVALUES; threshold: THRESHOLD;
the maximum number of iterations: maxIts.

2: Output: Weights of model: WEIGHT; Hyperparameters: HYPERPARAMETER.
3: Initialization: [w,θ ,α , β]= INITVALUES; Index = generateIndex(α , β)
4: while i < maxItes do
5: Φ = updateBasisFunction(x,θ , Index)
6: [w,θ ] = updatePosterior(Φ,w,θ ,α , β ,Y)
7: [α , β] = maximumMarginal(Φ,w,θ ,α , β ,Y)
8: if αi or βk > THRESHOLD.maximum then
9: delete the ith sample or the kth feature

10: end if
11: Index = updateIndex(α , β)
12: marginal = calculateMarginal(Φ,w,θ ,α , β ,Y)
13: if ∆marginal < THRESHOLD.minimal then
14: break
15: end if
16: WEIGHT = [w,θ , Index]
17: HYPERPARAMETER = [α , β]
18: end while

(5) Prune irrelevant samples and useless features if the corresponding hyperparameters are larger
than a specified threshold (lines 8, 9, 10).

(6) Update the Index vector (line 11).
(7) Calculate the logarithm of the marginal likelihood (line 12).
(8) Convergence detection, if the change of marginal likelihood is relatively small, halt the iteration

(lines 13, 14, 15).
(9) Generate the output values. The vector WEIGHT consists of sample and feature weights and

the vector Index indicates the relevant samples and features (lines 16, 17).
We have now presented all details of PFCVMLP , including derivations of equations and pseudo-
code. Next, we evaluate the performance of PFCVMLP by comparing with other state-of-the-art
algorithms on a Waveform (UCI) dataset, EEG emotion recognition datasets, and high-dimensional
gene expression datasets.

4 EXPERIMENTAL RESULTS
In a series of experiments, we assess the performance of PFCVMLP . The first experiment aims to
evaluate the robustness and stability of PFCVMLP against noise features. Second, a set of experiments
are carried out on the emotional EEG datasets to assess the performance of classification and feature
selection. Then, experiments are designed on gene expression datasets, which contain lots of irrelevant
features. Finally, the computational and space complexity of PFCVMLP is analyzed.

4.1 Waveform dataset: Stability and robustness against noise
The Waveform dataset [35] contains a number of noise features and has been used to estimate the
robustness of feature selection methods. This dataset contains 5,000 samples with 3 classes of waves
(about 33% for each wave). Each sample has 40 continuous features, in which the first 21 features
are relevant for classification, whereas the latter 19 features are irrelevant noise with mean 0 and
variance 1. The presence of 19 noise features in the Waveform dataset increases the hardness of the
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classification problem. Ideal feature selection methods should select the relevant features (features
1–21) and simultaneously remove the irrelevant noise features (features 22–40). To evaluate the
stability and robustness of feature selection of PFCVMLP with noise features, we choose wave
1 vs. wave 2 from the Waveform as the experimental data, which includes 3,345 samples. In the
experiment, we randomly sample data examples to generate 100 distinct training and testing sets, in
which each training set includes 200 training samples for each class. Then we run PFCVMLP and
three embedded feature selection algorithms on each data partition.

First, to compare the stability of PFCVMLP against that of other algorithms, two indicators are
employed to measure the stability, i.e., the popular Jaccard index stability [23] and the recently
proposed Pearson’s correlation coefficient stability [39]. The stability in the output feature subsets is
a key evaluation metric for feature selection algorithms, which quantizes the sensitivity of a feature
selection procedure with different training sets. Assume F denotes the set of selected feature subsets,
si , sj ∈ F are two selected feature subsets. The Jaccard index between si , sj is defined as:

ψjaccard (si , sj) =
|si ∩ sj |
|si ∪ sj |

=
ri j

ri + r j − ri j
, (16)

where ri j denotes the number of common features in si and sj , and ri is the size of selected features
in si . Based on the Jaccard index in Equation (16), the Jaccard stability of F is computed as follows:

Ψjaccard (F ) = 2
R(R − 1)

R−1∑
i=1

R∑
j>i

ψjaccard (si , sj), (17)

in which R denotes the number of the selected feature in F . Ψjaccard (F ) ∈ [0, 1], where 0 means
there is no overlap between any two feature subsets, 1 means that all feature subsets in F are identical.

Following [39], the Pearson’s coefficient between si and sj can be redefined as follows:

ψpearson(si , sj) ==
M · ri j − ri · r j√

ri · r j (M − ri ) · (M − r j )
, (18)

where M is the number of sample features. Using Equation (18), the Pearson’s correlation coefficient
stability value of F is computed as follows:

Ψpearson(F ) = 2
R(R − 1)

R−1∑
i=1

R∑
j>i

ψpearson(si , sj). (19)

Ψpearson(F ) ∈ [−1, 1], in which −1 means that any two feature subsets are complementary, 0 means
there is no correlation between any two feature subsets, and 1 means that all feature subsets in F are
fully correlated.

In order to provide comprehensive results, three embedded feature method, WSVM, JCFO, and
PFCVMEM , and three supervised learning methods, SVM, PCVM and SMPM [18] using all features
are chosen for comparison. The experimental settings are the same as those in [8]. The experiments
are repeated 100 times with different training and test sets, and 100 feature subsets will be obtained.
Therefore, the stability performance of each method, measured by Jaccard index and Person’s
correlation coefficient, is listed in Table 1, and the classification accuracy is depicted in Fig. 2.

Table 1. The Jaccard and Pearson stability performances of PFCVMLP and other embedded feature
selection algorithms on Waveform dataset.

Algorithms PFCVMLP PFCVMEM WSVM JCFO

Jaccard 0.556±0.071 0.525±0.082 0.543±0.076 0.518±0.072
Pearson 0.662±0.016 0.610±0.026 0.646±0.019 0.603±0.017
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Fig. 3. The selected frequency of each feature. The first 21 features are actual features, and the latter
19 features are noise.

According to the stability definition in Equations (17) and (19), a high value of stability means
that the selected feature subsets do not significantly change with different training sets. From Table 1
and Fig. 2, we observe that PFCVMLP achieves the best stability performance in terms of both
Jaccard and Pearson index, and highly competitive accuracy in comparison with other algorithms.
The stability of WSVM is better than that of PFCVMEM and JCFO, which is attributed to the use
of the LIBSVM [7] and CVX [17] optimization toolbox. However, PFCVMEM and JCFO show
inferior stability scores, the reason being that they use the EM algorithm to a point estimate of feature
parameters, which suffers from the initialization and may converge to a local optimum [9]. Finally,
in Fig. 2 we also note that due to the lack of feature selection, SVM and SMPM perform poorly.

In order to demonstrate the robustness of PFCVMLP against the irrelevant noise features, the
selected frequency of each feature, P̂f , is shown in Fig. 3. From Fig. 3, we observe that PFCVMLP
shows comparative effectiveness to WSVM, JCFO and PFCVMEM on the first 21 actual features,
and the P̂f of features 5, 9, 10, 11, 12, 15, 16, 17, 18 are greater than 0.5. As shown in Fig. 2,
using these features, SVM achieves a 92.12% accuracy, an improvement over the result obtained by
using all features. To quantitatively evaluate the capability of eliminating noise features for these
embedded feature selection methods, the frequency of selecting the latter 19 noise features is used.
From Fig. 3, we note that the frequencies of selecting the noise features are all less than 0.2 in
PFCVMLP . However, there are 3, 1, 2 noise features with more than 0.2 selected frequencies for
WSVM, JCFO, and PFCVMEM , respectively. This result demonstrates that in the presence of noise
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features, PFCVMLP performs much better than other algorithms in terms of eliminating those noise
features.

4.2 Emotional EEG datasets: Emotion recognition and effectiveness for feature
selection

In this section, a newly developed emotion EEG dataset, SEED [58], will be used to evaluate the
performance of PFCVMLP . The SEED dataset contains the EEG signals of 15 subjects, which were
recorded while the subjects were watching 15 emotional film clips in the emotion experiment. The
subjects’ emotional reactions to the film clips are used as the emotional labels (−1 for negative, 0
for neutral and +1 for positive) of the corresponding film clips. The EEG signals were recorded by
62-channel symmetrical electrodes which are shown in Fig. 4. In our experiments, the differential
entropy (DE) features are chosen for emotion recognition due to its better discrimination [13]. The DE
features are extracted from 5 common frequency bands, namely Delta (1-3Hz), Theta (4-7Hz), Alpha
(8-13Hz), Beta (14-30Hz), and Gamma (31-50Hz). Therefore, each frequency band has 62-channel
symmetrical electrodes and there are totally 310 features for one sample. In order to investigate
neural signatures and stable patterns across sessions and individuals, each subject performed the
emotion experiment in three separate sessions with an interval of about one week or longer.

Fig. 4. The layout of 62-channel symmetrical electrodes on the EEG.

In this paper, we choose positive vs. negative samples from SEED as our experimental data, which
includes the signals of five positive and five negative film clips. In this experiment, the EEG signals
recorded from one subject is regarded as one dataset, and thus there are 15 datasets for 15 subjects
[59]. Each dataset has three sessions data, and each session contains 2, 290 samples (1, 120 negative
samples and 1, 170 positive samples) with 310 features. For each data, we choose 1, 376 samples
as the training set (recorded from three positive and three negative film clips), the remaining in the
same session as a test set. We compare the emotion recognition and feature selection effectiveness of
PFCVMLP with other algorithms on the testing data.

To evaluate the emotion recognition performance, we take four supervised learning methods (i.e.,
SVM, SMPM, RVM and PCVM) using all features as baselines and also compare PFCVMLP with
seven state-of-the-art feature selection algorithms: mRMR [40], TRC [38], FSNM [37], L1SVM [5],
WSVM [36], JCFO [26], and PFCVMEM [29]. Among the algorithms considered, mRMR, TRC and
FSNM are filter feature selection algorithms, L1SVM, WSVM, JCFO and PFCVMEM are embedded
feature selection algorithms. For mRMR, TRC, and FSNM, the PCVM classifier is used to evaluate
their emotion recognition performance by using the features selected by them. In these experiments,
the Gaussian RBF is used as the basis function. Two popular evaluation criteria, i.e., error rate (ERR6)

6ERR = 1 − classification accuracy = 1
N

∑N
i=1 1(yi , f (xi ; w, θ )).
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Table 2. The error rate and AUC (in %) of PFCVMLP compared to other algorithms on the emotional
EEG datasets. The best result for each dataset is illustrated in boldface.

Subject
The error rate (in %) of PFCVMLP and other algorithms

SVM SMPM RVM PCVM mRMR TRC FSNM L1SVM WSVM PFCVMEM JCFO PFCVMLP

#1 9.84 8.35 6.02 8.72 4.70 4.52 4.74 8.53 5.80 6.85 12.18 4.63
#2 13.60 23.30 12.78 13.42 20.05 22.43 19.66 18.09 13.38 17.72 19.11 11.85
#3 5.03 7.33 8.28 9.12 9.70 6.35 3.14 8.77 8.17 4.96 4.60 0.00
#4 19.74 20.45 18.07 19.77 17.02 17.68 16.65 17.28 16.45 17.43 19.31 16.12
#5 18.23 20.93 19.82 17.98 16.93 15.61 20.81 18.05 13.57 19.32 20.81 14.81
#6 12.31 14.30 9.09 9.22 7.95 10.44 10.83 16.45 15.75 8.01 11.77 6.16
#7 10.69 10.20 11.34 7.91 10.81 9.70 14.26 20.64 13.13 7.48 15.97 8.04
#8 8.90 5.93 8.93 7.35 8.75 4.47 4.52 3.00 5.29 5.85 0.00 2.15
#9 14.85 11.95 13.72 12.61 13.15 14.70 10.07 8.28 7.70 16.30 11.27 11.52

#10 14.33 7.04 12.50 11.59 8.49 10.89 9.23 9.34 16.74 6.55 5.27 3.06
#11 12.21 13.72 12.65 8.45 7.09 13.13 13.57 1.46 8.72 1.93 2.04 1.98
#12 14.81 12.74 10.95 12.69 12.06 10.69 11.71 6.08 9.32 12.15 5.58 7.99
#13 10.83 4.89 10.37 7.17 3.28 2.74 2.12 2.42 2.44 8.53 4.08 2.48
#14 15.46 14.64 15.40 18.78 17.79 15.43 19.69 13.82 19.77 12.73 13.62 13.27

Average 12.92 12.56 12.14 11.77 11.27 11.34 11.50 10.87 11.16 10.42 10.40 7.43

Subject
The AUC (in %) of PFCVMLP and other algorithms

SVM SMPM RVM PCVM mRMR TRC FSNM L1SVM WSVM PFCVMEM JCFO PFCVMLP

#1 98.37 97.47 98.56 97.54 99.64 99.70 99.18 96.42 98.04 96.29 94.88 99.54
#2 95.54 86.79 98.14 99.07 93.22 92.46 92.47 94.98 97.09 94.01 92.97 99.32
#3 98.35 97.75 96.92 99.84 94.15 99.90 99.95 95.80 94.43 99.76 99.67 100.00
#4 90.27 93.54 83.01 82.18 83.47 93.55 95.20 93.64 91.53 91.85 94.88 95.05
#5 89.36 82.42 89.01 93.62 92.87 87.02 84.60 84.41 93.91 88.57 84.76 93.74
#6 95.33 92.23 94.15 98.98 99.35 95.11 95.65 93.87 93.14 97.39 95.71 99.72
#7 96.68 95.23 97.27 99.23 99.12 99.17 95.72 83.06 96.19 99.57 91.96 99.17
#8 96.67 97.05 93.77 95.94 97.93 98.70 98.40 99.60 96.32 97.33 100.00 98.27
#9 94.61 93.10 92.00 94.90 94.51 95.30 95.20 95.46 97.06 94.34 96.68 96.54

#10 93.70 99.00 95.04 94.75 95.59 94.07 97.91 96.67 93.56 94.05 97.73 98.08
#11 92.48 89.82 88.68 88.08 91.23 91.91 92.61 100.00 97.73 99.28 98.74 98.88
#12 87.45 90.92 96.21 94.33 95.69 93.60 92.38 99.42 96.76 95.36 99.87 99.12
#13 98.88 99.78 99.18 97.84 99.53 99.65 100.00 99.80 99.85 96.31 99.33 99.91
#14 95.55 95.29 95.05 93.44 94.15 95.62 93.69 95.94 91.28 95.45 95.19 96.15

Average 94.52 93.60 94.07 94.98 95.03 95.41 95.21 94.93 95.49 95.68 95.88 98.11

and area under the curve of the receiver operating characteristic (AUC) are adopted for evaluation;
they represent a probability criterion and a threshold criterion, respectively [6].

We follow the procedure in [8] to choose the parameters. More precisely, the dataset for the 15th
subject is chosen for cross-validation, in which we train each algorithm with all parameter candidates
and then choose the parameters with the lowest median error rate on this dataset. We follow this
procedure to choose the optimal numbers of clusters for SMPM, the kernel parameter ϑ for RVM,
SMPM, PCVM and WSVM, and the regularization parameters for JCFO and L1SVM. For SVM, the
regularizationC and the kernel parameter ϑ are tuned by grid search, in which we train SVM with all
combinations of each candidate C and ϑ , then choose the combination with the lowest median error
rate. For mRMR, TRC, and FSNM, the proper sizes of feature subsets and the kernel parameter ϑ for
PCVM are chosen by a similar grid search. We also choose the proper starting points for PFCVMEM
and the initial hyperparameters for PFCVMLP .

For each subject, all algorithms are separately run on three sessions data, and the results are
averaged over the three sessions, which are reported in Table 2. In terms of the classification error rate,
PFCVMLP outperforms all the other methods on 5 out of 14 datasets and also achieves competitive
performance on the other datasets. Especially, on the subject 3 dataset, PFCVMLP achieves a 3.24%–
10.74% improvement compared over other methods. In terms of AUC, PFCVMLP outperforms others
on 5 datasets, JCFO, WSVM and, FSNM win on 2 datasets, respectively. PFCVMEM , L1SVM and
TRC only win on 1 dataset. We compute the average classification error rate and AUC over all
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Fig. 5. Results of the Friedman test for the performance of PFCVMLP and other algorithms on the
EEG datasets. The dots denote the average ranks, the bars indicate the critical differences CD, and
the algorithms having non-overlapped bars are significantly inferior to PFCVMLP .

datasets for each method. On average, PFCVMLP consistently outperforms all the other methods on
the emotional EEG datasets. Compared with the other methods, PFCVMLP obtains 3.32%–6.30%
and 2.33%–4.82% relative improvements for classification accuracy (1 − error rate) and AUC,
respectively.

In order to give a comprehensive performance comparison between PFCVMLP and other methods
with statistical significance, the Friedman test [12] combining with the post-hoc tests is used to make
statistical comparisons of multiple methods over multiple data sets. The performance of two methods
is significantly different if their average ranks on all datasets differ by at least the critical difference:

CD = qα

√
p(p + 1)

6N
, (20)

where p is the number of algorithms, N is the number of datasets, α is the significance level, and
qα denotes the critical value. According to the experimental results in Table 2, the better embedded
feature selection algorithms, JCFO and PFCVMEM , the better filter feature selection algorithms, TRC
and FSNM, and the important baseline, PCVM, are chosen to compare with PFCVMLP . Choosing
α = 0.05 and qα = 2.576 (p = 6), the critical difference becomes CD = 1.82.

Fig. 5 shows the Friedman test results on the EEG datasets. We observe that the differences
between PFCVMLP and PCVM, are significant (greater than CD). This observation is meaningful
because it demonstrates the effectiveness of simultaneously learning feature weights in terms of
improving performance. We note that the differences between PFCVMLP and PFCVMEM are greater
than CD, which indicates that fully Bayesian estimation approximated by the type-II maximum
likelihood approach works better than the EM algorithm based on MAP point estimation. Moreover,
PFCVMLP achieves a significant difference compared with other feature selection algorithms (i.e.,
TRC, FSNM and JCFO), which demonstrates the effectiveness and superiority of PFCVMLP for
selecting relevant features.

To quantitatively assess the reliability of our classification results, the kappa statistic [46] is adopted
to evaluate the consistency between the prediction of algorithms and the truth. The kappa statistic can
be used to measure the performance of classifiers, which is more robust than classification accuracy.
In this experiment, the kappa statistic of all classifiers ranges from 0 to 1, where 0 indicates the
chance agreement between the prediction and the truth, and 1 represents a perfect agreement between
them. Therefore, a larger kappa statistic value means that the corresponding classifier performs better.
Table 3 reports the kappa statistic for PFCVMLP and other methods on the emotional EEG datasets.
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Table 3. The Kappa statistic of PFCVMLP and other competing algorithms on the emotional EEG
datasets. The best result for each dataset is illustrated in boldface.

Subject SMPM PCVM mRMR TRC FSNM L1-SVM WSVM PFCVMEM JCFO PFCVMLP

#1 83.38 82.51 90.20* 90.93* 90.45* 82.92 89.75* 89.28* 74.82 90.35 ± 0.028
#2 48.75 72.80 47.18 54.08 59.98 63.15 74.47 71.97 68.25 78.55 ± 0.038
#3 85.06 81.34 81.26 87.09 93.67 85.96 87.08 92.56 93.28 100.00 ± 0.000
#4 62.49 62.90 46.96 45.07 78.79* 73.65 74.47 74.37 55.80 78.88 ± 0.031
#5 52.91 63.62 68.51 68.40 51.84 63.42 79.76* 74.76 66.73 78.78 ± 0.033
#6 66.55 84.58 90.63* 74.70 78.36 66.71 78.43 84.09 66.47 89.60 ± 0.026
#7 60.20 84.25* 78.65 80.75 71.86 58.94 80.79* 83.97* 80.25 83.99 ± 0.035
#8 90.10 82.13 78.41 92.85 92.77 94.25 92.02 86.39 100.00 96.90 ± 0.014
#9 75.18 75.22 74.23 70.34 79.82 86.43* 87.60* 75.97 83.91* 85.01 ± 0.027
#10 85.98 76.23 82.56 76.16 81.53 81.27 74.97 82.63 87.04* 90.32 ± 0.035
#11 92.53 82.76 67.81 73.89 72.90 95.09* 86.95 93.86* 93.29* 94.11 ± 0.027
#12 90.40* 74.47 77.59 78.57 76.41 91.78 86.42 80.16 92.50* 91.97 ± 0.018
#13 90.14 73.72 96.05* 94.51 95.75* 95.75* 96.39* 93.06 94.50 96.73 ± 0.013
#14 78.78* 60.88 63.01 69.32 60.38 72.52* 70.38 77.12* 74.40* 75.02 ± 0.041

The standard error interval with two-sided 95% confidence level of PFCVMLP is also reported in
Table 3, which constitutes the confidence interval with the kappa statistic. The kappa statistics of
other methods lying in the confidence interval of PFCVMLP are marked with *, which indicates that
they are not significantly worse or better than PFCVMLP . From Table 3, we observe that PFCVMLP
achieves the best kappa statistics on 5 out of 14 datasets. Although other methods achieve the best
kappa statistics on the rest datasets, they are not significantly better than PFCVMLP since the best
kappa statistics lie within the confidence interval of PFCVMLP except on the subject 8 dataset.
Overall, PFCVMLP is the most frequent winner in terms of kappa statistic.

(a) Beta band (b) Gamma band

Fig. 6. Profiles of top 20 features selected by PFCVMLP on the Beta and Gamma frequency bands.

According to Zheng and Lu [58], there are several irrelevant EEG channels in the SEED dataset,
which will introduce noise to emotion recognition, and degrade the performance of classifiers. To
illustrate the ability of PFCVMLP for selecting discriminative features and remove irrelevant features,
Fig. 6 illustrates the positions of the top 20 features selected by PFCVMLP . As depicted in the
figure, the top 20 features are all from the Beta and Gamma frequency bands and located at the
lateral temporal area, which is consistent with previous findings [58, 59]. This result indicates that
PFCVMLP can effectively select the relevant channels containing discriminative information and
simultaneously eliminate irrelevant channels for emotion recognition task.
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4.3 High-dimensional gene expression data: Performance in the presence of many
irrelevant features

Gene expression datasets contain lots of irrelevant features, which may degrade the performance
of classifiers [1, 16, 25]. In this experiment, three gene expression datasets: colon cancer [1], Duke
cancer [49], and ALLAML [16] are chosen to examine whether PFCVMLP is able to eliminate the
irrelevant features and make informative predictions for high-dimensional data. The colon cancer
dataset includes expression levels of 2, 000 gene features from 62 different samples, in which 40
samples are tumor colon and 22 normal colon tissues. The Duke cancer dataset contains expression
levels of 7, 129 genes from 42 tumor samples, in which 21 samples are estrogen receptor-positive
tumors and the rest of the samples are estrogen receptor-negative tumors. The ALLAML dataset
comes from 47 normal and 40 cancer tissues. The ALLAML dataset consists of 72 samples in two
classes, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), which have 47
and 25 instances, respectively. Each sample is represented by 7, 129 gene expression values.

Considering the relatively small numbers of samples versus the large numbers of features, in
this set of experiments, we use the leave one out cross validation (LOOCV) method: each time a
sample is left out to be diagnosed, and the classification model is trained to fit the remaining data.
So, we generate 62, 42 and 72 runs for the colon cancer dataset, the Duke cancer dataset, and the
ALLAML dataset, respectively. Following [42], in preprocessing each dataset is normalized in two
ways: sample-wise to follow a standard normal distribution and then dimension-wise to follow a
standard normal distribution.

We compare PFCVMLP with PCVM and three filter feature selection algorithms, including mRMR,
TRC and, FSNM, with PCVM as the classifier. As before, we also compare PFCVMLP with other
feature and classifier co-learning algorithms, i.e., L1SVM, WSVM, JCFO, and PFCVMEM . As the
dimensions of gene data are relatively high, we choose the inner product, i.e., the linear kernel, as the
metric. Finally, we report the averages of all runs on each dataset as the results, i.e., the averages of
62, 42 and 72 runs on the colon cancer, Duke cancer, and ALLAML datasets, respectively.
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Fig. 7. Accuracy curves of different algorithms with different scales of selected features.

Fig. 7 shows the accuracy curves of feature selection algorithms. For mRMR, TRC, and FSNM,
the span of the selected features is [10, 20, . . . , 80]. We train a PCVM with each number of selected
features and then plot the accuracy. Comparing our algorithms with others, from Fig. 7 we see that
PFCVMLP achieves the highest accuracies on 2 out of 3 datasets. Moreover, on average PFCVMLP
selects the smallest subsets of features on every dataset. In Fig. 8, we illustrate the cumulative number
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Fig. 8. Illustrations of selected features on gene expression datasets. The horizontal axis shows
the index of features and the vertical axis shows the cumulative number of occurrences for the
corresponding feature. The dashed line in each figure indicates the maximum cumulative number.
The figures at the top show the features selected by PFCVMLP ; those at the bottom show the features
selected by PFCVMEM .

of occurrences7 for each feature on each dataset with PFCVMLP and PFCVMEM . The number of
features selected by the two algorithms is similar on average, but from Fig. 8, we see that PFCVMLP
concentrates on smaller sets of relevant features than PFCVMEM . This result demonstrates that a
complete Bayesian solution approximated by the type-II maximum likelihood is more stable than a
solution based on the EM algorithm.

Table 4. Biological significance of the most frequently occurring genes in the colon cancer data set. #
denotes the number of occurrences for a feature in all runs.

Feature ID # GenBank ID Description [1]

1772 61 0H8393 Collagen alpha 2(XI) chain
1668 60 M82919 mRNA for GABAA receptor
1210 58 R55310 Mitochondrial processing peptidase
377 51 R39681 Eukaryotic initiation factor
1679 37 X53586 mRNA for integrin alpha 6

On the colon cancer dataset, PFCVMLP selects 4.94 features, on average. Among all 2, 000 genes,
5 of them are particularly important (occurring in more than half of the tests). The biological
explanations of these 5 genes are reported in Table 4 and 2 of them (No. 377 and No. 1772) are the
same genes selected by Li et al. [30]. On the Duke cancer dataset, PFCVMLP on average selects 2.14
features and 2 of them are selected in almost every run. On the ALLAML dataset, PFCVMLP selects
2.94 features on average, and 5 of the 7 most occurred genes are among the 50 genes most correlated
with the diagnosis [16]. The biological significance of these genes is reported in Table 5.

To analyze the usefulness of the selected feature subsets by PFCVMLP for other methods, we
run RVMPFCVMLP , SVMPFCVMLP and SMPMPFCVMLP with features selected by PFCVMLP and compare
7We use the phrase “cumulative number of occurrences” to refer to the number of times a feature is selected in the experiments,
e.g., if a feature is never selected in the experiments, its “cumulative number” is 0.
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Table 5. Biological significance of the most frequently occurring genes in the ALLAML data set. #
denotes the number of occurrences for a feature in all runs. The superscript ∗ denotes that these
genes are among the top 50 most important genes for diagnosing AML/ALL [16].

Feature ID # GenBank ID Relation Description [16]

4847∗ 70 X95735 AML Zyxin
4951 68 Y07604 N/A Nucleoside diphosphate
6169 11 M13690 AML Hereditary angioedema
3847∗ 6 U82759 AML HoxA9 mRNA
2354∗ 6 M92287 AML CCND3, Cyclin D3
4973∗ 5 Y08612 ALL Protein RABAPTIN-5
1834∗ 5 M23197 AML CD33 antigen

Table 6. Accuracy of diagnoses on gene expression datasets.
Accuracy (%) Colon Cancer Duke Cancer ALLAML

RVM 85.48 80.95 93.06
SVM 83.87 85.71 87.50
SMPM 75.81 80.95 76.39
RVMPFCVMLP 87.10 92.86 95.83
SVMPFCVMLP 85.48 97.62 95.83
SMPMPFCVMLP 86.26 90.48 94.44
PFCVMLP 96.77 95.24 98.61

them with the original RVM, SVM and SMPM. The results are reported in Table 6. According to
this table, using the selected features by PFCVMLP , RVMPFCVMLP , SVMPFCVMLP , and SMPMPFCVMLP

achieve better performances comparing to the original methods. Even to our surprise, SVMPFCVMLP

outperforms PFCVMLP and obtains the best prediction on the Duke cancer dataset. This improvement
demonstrates that the feature subsets selected by PFCVMLP also work well for other methods.

4.4 Complexity analysis
While computing the posterior covariance Σθ in Equation (11), we have to derive the negative inverse
of the Hessian matrix. This derivation does not guarantee a numerically accurate result, because of
the ill-condition of this Hessian matrix. Practically, we abandon the term E in Equation (11), so that
the calculation becomes:

Σθ = (DTCD + B + Oθ )−1. (21)
In Equation (21), B and Oθ are positive definite diagonal matrices and DTCD has a quadratic form.
Theoretically, the Hessian is a positive definite matrix. Nevertheless, because of machine precision,
ill-condition may still occur occasionally, especially when βk is very large.

In the case of large βk , especially when βk → ∞, the corresponding feature weight θk is restricted
to a small neighborhood around 0. So, during the iteration, we filter out this feature from our model.
Initially, all the features are contained in the model. The main computational cost is the Cholesky
decomposition in computing covariances of posteriors, Σθ and Σw, which is O(N 3 +M3). Thus the
computational complexity of PFCVMLP is the same as that of PFCVMEM , RSFM [34], and JCFO
[26].

As for the storage requirements for PFCVMLP , the basis function matrix Φθ needs O(N 2) for
storage, and in the initial training stage the covariance matrices Σθ and Σw require O(M2) and O(N 2)
storage, respectively. Therefore, the overall space complexity of PFCVMLP is O(N 2 +M2), which is
better than RSFM with aO(N 2M +M2) space complexity. As iterations proceed, N and M are rapidly
decreasing, resulting in O(N̄ 3 + M̄3) computational complexity and O(N̄ 2 + M̄2) space complexity,
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where N̄ ≪ N and M̄ ≪ M . In our experiments, N and M rapidly decrease to relatively small
numbers in the first few iterations and the training speed quickly accelerates.
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Fig. 9. Illustration of the rapid decrease in the size of features, samples and CPU time. In these
experiments, we choose subject 1 dataset as an example.

As illustrated in Fig. 9, during the first 40 iterations the size of features and samples decreases from
310 to 40 and from 1, 376 to 127, respectively, and the CPU time for each iteration step is decreased
to 2.7% of the first iteration.

5 GENERALIZATION AND SPARSITY
Both the emotional EEG and gene expression experiments indicate that the proposed classifier and
feature selection co-learning algorithm is capable of generating a sparse solution. In this section, we
first analyze the KL-divergence between the prior and posterior. Following this, we investigate the
entropic constraint Rademacher complexity [32] and derive a generalization bound for PFCVMLP .
By tightening the bound, we theoretically demonstrate the significance of the sparsity assumption
and introduce a method to choose the initial values for PFCVMLP .

5.1 KL-divergence between prior and posterior
In Bayesian learning, we use KL-Divergence to measure the information gain from prior to posterior.
As discussed in Section 3.1, the approximated posterior over feature parameters, denoted as q̃(θ ) =
N(θ | uθ , Σθ ), is a multivariate Gaussian distribution. However, as the feature prior is the left-
truncated Gaussian prior, the true posterior over feature parameters should be restricted to the positive
quadrant. In order to achieve this we first compute the probability mass of the posterior in this half,
Z0 =

∫ ∞
0 q̃(θ )dθ ; after that, we obtain a re-normalized version of the posterior: q(θ ) = q̃(θ )/Z0,

where θk ≥ 0.
We denote β0 = (β0,1, β0,2, . . . , β0,M ) as the initial prior and β = (β1, β2, . . . , βM ) as the optimized

prior. Following [9], we adopt the independent posterior assumption. We compute KLθ (q∥p)8 using
the following formula (the details are specified by [10]):

KLθ (q∥p) =
∫ ∞

0
q(θ ) lnq(θ )

lnp(θ | β0)
dθ =

∑
k,θk,0


1
2

[
β0,k
βk

− 1 + ln
(
βk
β0,k

)
+ β0,kθ

2
k

]
+

(2π βk )−1/2(β0,k+βk )θk
erfcx

(
− θi

√
βk /2

)
− ln

(
erfc

(
− θk βk

2

))

,

where erfc(z) = 2√
π

∫ ∞
z e−t

2
dt and erfcx(z) = ez

2 erfc(z).

8KLθ (q ∥p) denotes the KL-divergence between the posterior and prior in feature weights; p and q are short for p(θ | β ) and
q(θ ), respectively.
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Fig. 10. Illustration of the numerical contribution of θ and β to KLθ (q∥p). To evaluate this contribution
alone, we assume each sample weight wi = 1 and each sample hyperparameter αi = 1.

Note that Z0,k =
∫ ∞

0 q̃(θk )dθk = 1/2 erfc(−θk
√
βk/2), so we can calculate KLθ (q∥p) as:

KLθ (q∥p) =
∑

k,θk,0



1
2

[
β0,k
βk

− 1 + ln
(
βk
β0,k

)
+ β0,kθ

2
k

]
+

(2π βk )−1/2(β0,k+βk )θk
2 exp(βkθ 2

k /2) Z−1
0,k

− ln
(
Z0,k

)
+ ln

(
erfc

(
−θk

√
βk /2

)
2 erfc(−θk βk /2)

)

.

The KL-divergence is dominated by two parameters: θ and β . However, the sensitivity of KLθ (q∥p)
to these two parameters is different. As shown in Fig. 10, setting the initial hyperparameter β0,k = 0.5,
we see that when changing the value of θ , the curve of KLθ (q∥p) shows significant changes, while
this curve changes little when changing the optimized βk . Also, the minimum of KLθ (q∥p) is near
the θk = 0, where the corresponding feature is pruned.

5.2 Rademacher complexity bound
For a binary classification learning problem the goal is to learn a function f : RM → {−1,+1}
from a hypothesis class F , with the given dataset S = {xi ,yi }Ni=1 drawn i.i.d. from a distribution
D. We attempt to assess f by the expectation loss: L(f ) = E(x,y)∼Dl(y, f (x)), where l(y, f (x)) is a
loss function. Practically, D is unaccessible and we can only assess the empirical loss for the given
dataset S: Λ(f , S) = 1

N
∑N

i=1 l(yi , f (xi )). We adopt a 0-1 loss function: l0-1(y, f (x)) = I (y f (x) ≥ 0),
where I (·) is the indicator function. The loss function is dominated by the 1/c-Lipschitz function:
lc (a) = min(1,max(0, 1 − a/c)), namely l0-1(y, f (x)) ≤ lc (y f (x)). Then, we conclude the entropic
constraint Rademacher complexity bound in the following theorem:

THEOREM 1 ([9, 32]). Based on the posterior q(w,θ ) given in Section 3.1, we have the Bayesian
voting classifier:

ŷ = f (x ,q) = Eq(w,θ )[sign(Φθ (x)w)]. (22)

Define r > 0 and д > 0 as arbitrary parameters. For all f ∈ F , defined at the start of Section 5.2,
with probability at least 1 − δ , the bound for the generalization error of PFCVMLP on a given dataset
S holds:

P(y f (x) < 0) ≤ Λ(f , S) + 2
c

√
2д̃(q(w,θ ))

N
+

√
ln logr

r д̃(q(w,θ ))
д + 1

2 ln 1
δ

N
, (23)

where c is the 1/c-Lipschitz parameter, the empirical loss Λ(f , S) = 1
N

∑N
i=1 lc (yi f (xi )), and the

Rademacher entropic constraints д̃(q(w,θ )) = r · max{KL(Q ∥P),д}. KL(Q ∥P) is the KL-divergence
between the posteriors and priors in the sample and feature weights.
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According to Equation (23), we observe that with a constant training set, the generalization
error of PFCVMLP is mainly bounded by the empirical loss and д̃(q(w,θ )), in which the latter is
determined by KL(Q ∥P). Therefore, when the empirical loss is acceptable, a smaller KL(Q ∥P) could
lead to a tighter bound. The contribution of w (the sample weight) has been analyzed in [9]. In
order to analyze the effect of θ (the feature weight) alone, we can assume the w is a given constant
value ŵ . As a result, we have q(ŵ,θ ) = q(θ | ŵ) and thus KL(Q ∥P) = KLθ |ŵ (q∥p). As shown in
Fig. 10, the minimal KLθ |ŵ (q∥p) is near θk = 0. This is consistent with our prior assumption and
demonstrates that a truncated Gaussian (sparse) prior over features can benefit the generalization
performance by running as a regularization term and simultaneously encourage sparsity in feature
space. Furthermore, in our model, the posterior and marginal likelihood are maximized iteratively in
the training step. To accelerate the speed of convergence, we may choose proper starting points by
minimizing KLθ |w(q∥p), i.e., as indicated at the end of Section 5.1, we can use an optimal β instead
of β0 as initial hyperparameter.

6 CONCLUSION
We have proposed a joint classification and feature learning algorithm PFCVMLP . The proposed
algorithm adopts sparseness-promoting priors for both sample and feature weights to jointly learn
to select the informative samples and features. By using the Laplace approximation, we compute
a complete Bayesian estimation of PFCVMLP , which is more stable than previously considered
EM-based solutions. The performance of PFCVMLP has been examined according to two criteria: the
accuracy of its classification results and its ability to select features. Our experiments demonstrate
that the recognition performance of PFCVMLP on EEG emotion recognition datasets is either the
best or close to the best. On high-dimensional gene expression datasets, PFCVMLP performs more
accurately when compared to other approaches. A Rademacher complexity bound is derived for the
proposed method. By tightening this bound, we demonstrate the significance of feature selection and
introduce a way of finding proper initial values.

PFCVMLP jointly encourages sparsity to features and samples. However, in order to select features
for non-linear basis functions, we have to differentiate, which leads to high computational costs.
As future work, we plan to use incremental learning [9, 15] to reduce the computational costs. We
also plan to design an online strategy [43] for joint feature and classifier learning. Also, PFCVMLP
focuses on the supervised binary classification. It would be interesting to extend PFCVMLP to solve
multi-class problems [24, 41] and semi-supervised form [22]. Finally, we aim to use PFCVMLP in
other areas of research, such as in bioinformatics problems and clinical diagnoses [51].
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APPENDIXES
A. Hyperparameter Optimization
In order to compute a complete Bayesian classifier, feature and classifier co-learning includes
computing this formula:

(α , β) = arg max
(α ,β )

p(t | α , β , S)p(α )p(β), (24)

where we assume α and β are mutually independent. Equation (24) could be iteratively maximized
between α and β . The re-estimation rules of α have been derived by [9]. In this appendix, we
focus on deriving the re-estimating rules for β , which means that we need to compute the following
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equation:
β = arg max

β
p(t | α old, β , S)p(β). (25)

The hyperprior p(β) follows the Gamma distribution, p(β) = ΠM
k=1Gam(βk | c,d), where c and d are

the parameters of the Gamma distribution.
As discussed in Section 3.2, we calculating a closed form of the marginal likelihood is non-trivial.

Using Bayesian rules, the marginal likelihood is expanded as follows:

p(t | α old , β , S) = p(t | w,θ , S)p(w | α old)p(θ | β)
p(w,θ | t,α old, β)

. (26)

Applying approximate Gaussian distributions for the sample and feature posteriors, in Section 3.1,
we can obtain p(w,θ | t,α , β) ≈ N(uθ , Σθ ) ∗ N(uw,Σw). As a result, we maximize the logarithm of
Equation (25):

L = log
[
p(t | α old, β)p(β)

]
= logp(θ | β) − logN (uθ , Σθ ) + logp(β) + const

=
1
2
(ϵT B−1ϵ + log |B| − log |H + B|) +

M∑
k=1

(c log βk − dβk ) + const ,

where const is independent of β , ϵ = (DT (t − σ ) + kθ ) is an M-dimensional vector and H =
DT CD + Oθ − E is an M × M matrix. Practically, the latter two terms will disappear if we set
c = d = 0.

To compute the optimal β , we first differentiate Equation (27):

∂L

∂βk
= −1

2

(
ϵ2
k

β2
k

− 1
βk
+

1
βk + hk

− 2
c

βk
+ 2d

)
, (27)

where hk denotes the kth diagonal elements of H. Note that u2
θ,k =

ϵ 2
k
β 2
k

and Σθ,kk =
1

βk+hk
, shown in

Equations (10) and (11). So, setting Equation (27) equal to 0, we obtain the update formula for β :

βnew
k =

2c + 1
u2
θ,k + Σθ,kk + 2d

, (28)

which is the same formula as the EM-based solution established by [29], and guarantees a local
optimum. However, if using the methodology of Bayesian Occam’s razor reported by MacKay in
[31], we derive more efficient update rules as follows:

βnew
k =

γk + 2c
u2
θ,k + 2d

, (29)

where γk ≡ 1 − βkΣθ,kk .
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