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Abstract—Causal feature selection has achieved much atten-1

tion in recent years, which discovers a Markov boundary (MB)2

of the class attribute. The MB of the class attribute implies local3

causal relations between the class attribute and the features,4

thus leading to more interpretable and robust prediction mod-5

els than the features selected by the traditional feature selection6

algorithms. Many causal feature selection methods have been7

proposed, and almost all of them employ conditional indepen-8

dence (CI) tests to identify MBs. However, many datasets from9

real-world applications may suffer from incorrect CI tests due10

to noise or small-sized samples, resulting in lower MB discovery11

accuracy for these existing algorithms. To tackle this issue, in12

this article, we first introduce a new concept of PCMasking to13

explain a type of incorrect CI tests in the MB discovery, then14

propose a cross-check and complement MB discovery (CCMB)15

algorithm to repair this type of incorrect CI tests for accurate16

MB discovery. To improve the efficiency of CCMB, we further17

design a pipeline machine-based CCMB (PM-CCMB) algorithm.18

Using benchmark Bayesian network datasets, the experiments19

demonstrate that both CCMB and PM-CCMB achieve signif-20

icant improvements on the MB discovery accuracy compared21

with the existing methods, and PM-CCMB further improves the22

computational efficiency. The empirical study in the real-world23

datasets validates the effectiveness of CCMB and PM-CCMB24

against the state-of-the-art causal and traditional feature selection25

algorithms.26

Index Terms—Bayesian network (BN), causal feature selection,27

Markov boundary (MB), PCMasking.28

I. INTRODUCTION29

CAUSAL feature selection is to identify a Markov bound-30

ary (MB) of a class attribute for building accurate31

prediction models. The MB was first defined and discussed by32

Pearl in a Bayesian network (BN) [1]. Under the faithfulness33
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assumption (refer to Definition 5 in Section III), the MB of a 34

variable in a BN consists of its parents, children, and spouses 35

(the other parents of the children of the variable), and given 36

the MB of a variable, all other variables will be independent 37

of this variable [1]. Thus, the MB provides a complete picture 38

of the local causal structure around a variable [2]. In addition, 39

in theory, the MB of the class attribute is the optimal solution 40

of the feature selection problem [3], [4]. 41

Recent years have witnessed the proliferation of the causal 42

feature selection methods since they can select features not 43

only predictive but also causal informative. Existing algo- 44

rithms can be roughly divided into two different types. The 45

first type is to directly discover the MB of a target vari- 46

able of interest, which sacrifices the MB discovery accuracy 47

to improve the computational efficiency. The early causal 48

feature selection methods, such as the growth and shrink algo- 49

rithm (GS) [5] and the Koller–Sahami (KS) [6] algorithms, 50

belong to the first type. The later methods, incremental asso- 51

ciation MB (IAMB) and its variants [7], improve the GS 52

by reordering the variables each time the MB set changes. 53

However, IAMB and its variants require large amount of 54

data to guarantee the accuracy. To solve this problem, the 55

second type of algorithms is proposed by employing a divide- 56

and-conquer strategy to improve the MB discovery accuracy. 57

Min–max MB (MMMB) [8] is the first divide-and-conquer- 58

based method, later algorithms, such as HITON-MB [9] and 59

parents–children-based MB (PCMB) [10], are improved on 60

MMMB, which first find the parents and children (PC) of 61

a target, and then identify the spouse (SP) of the target. 62

MBOR [11] combines the two types of methods, which 63

employs the first type of method to obtain an initial MB first 64

and then finds more MB variables with the divide-and-conquer 65

strategy. 66

To improve the MB discovery accuracy, the existing causal 67

feature selection algorithms mainly focus on how to remove 68

the false positives during the MB search process, but rarely 69

consider the true positives discarded due to incorrect condi- 70

tional independence (CI) tests, leading to low true positive 71

discovery accuracy, especially in the presence of insufficient 72

or noise data samples. For example in Fig. 1, by conducting the 73

experiment on a benchmark Alarm BN with different sample 74

sizes, we found that the recall of the existing causal fea- 75

ture selection algorithms is much smaller than their precision. 76

Specifically, given 1000 samples, the average precision of 77

these algorithms is 0.92, but the average recall is only 0.81 (a 78

more detailed comparison on accuracy can be found in Fig. 5 79

of Section VI). The low recall value makes the existing causal 80
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(a) (b) (d)

(c)

Fig. 1. Existing causal feature selection algorithms have higher precision but lower recall. A series of experiments was conducted on Alarm BN with different
sample scale and averaging over several state-of-the-art algorithms (IAMB, PCMB, MBOR, and STMB). (a) Average precision and recall variation curves
with respect to the number of samples. (b)–(d) Take a DAG as an example to illustrate the higher precision and lower recall of MB discovery when there
exists the PCMasking phenomenon. (b) Correct result and highlight the true MB of T in blue, that is, parents A and B, child C, and spouse D. (c) and (d) The
two wrong cases where the PCMasking phenomenon occurs. The wrong MBs of T in (c) and (d) are highlighted in blue, and the red “X” symbol denotes
the independence relations between T and its parents or children.

feature selection algorithms ineffective for accurate prediction81

in practical applications.82

Motivated by the above issue, we experimented on different83

benchmark BN datasets using existing causal feature selection84

algorithms to explore why some true positives are discarded.85

We found a type of incorrect CI tests that makes PC of a tar-86

get mask each other, and we call it PCMasking. Specifically,87

PCMasking denotes a target and its children may be indepen-88

dent conditioning on its parents and vice-versa. For example,89

we use a directed acyclic graph (DAG) in Fig. 1(b) to illustrate90

the PCMasking phenomenon. Assuming that the target T and91

its parents tA, Bu are independent conditioning on its child C92

[as Fig. 1(c)] and, meanwhile, T and C are independent condi-93

tioning on tA, Bu [as Fig. 1(d)]. The incorrect tests will make94

tA, Bu or C not be added to the final output of the existing95

algorithms. In Fig. 1(b), the MB of T should be tA, B, C, Du.96

However, if we apply existing algorithms to the dataset and97

the type of incorrect CI tests occurs, the output of the algo-98

rithms is tA, Bu [as highlighted in Fig. 1(c)] or tC, Du [as99

highlighted in Fig. 1(d)] due to the PCMasking phenomenon100

[highlighted with red “x” in Fig. 1(c) and (d)].101

Besides empirical analysis, we also analyze the mecha-102

nism of the PCMasking phenomenon from the perspective103

of information theory, and further find that PCMasking phe-104

nomenon breaks the symmetry between the PC variables,105

which leads to some true PC variables discarded by the exist-106

ing algorithms. Therefore, if there is no extra strategy to deal107

with the PCMasking phenomenon, then the MB discovery108

methods will ignore some direct causes (parents) and direct109

effects (children), resulting in the performance degradation.110

Furthermore, since the algorithms complete the PC discov-111

ery first and then search for the spouses based on the PC112

set, incomplete PC set will cause cascading errors in the SP113

discovery. However, the PCMasking phenomenon has attracted114

little attention, resulting in ineffectiveness of the existing115

causal feature selection algorithms on real-world datasets. To116

tackle this issue, the main contributions of this article are 117

summarized as follows. 118

1) We formally present a new concept, called PCMasking, 119

to describe a type of incorrect CI tests in the MB dis- 120

covery process, and theoretically analyze the mechanism 121

behind this type of CI tests. 122

2) Based on the theoretical analyses, we propose the 123

cross-check and complement MB discovery (CCMB) 124

algorithm to tackle the PCMasking phenomenon and 125

improve the true-positive discovery accuracy. Moreover, 126

to improve the computational efficiency of CCMB, we 127

further design a PM-CCMB algorithm, which is more 128

accurate and efficient compared with all other MB 129

discovery algorithms. 130

3) We conduct a series of experiments on synthetic and 131

real-world datasets, to validate the effectiveness and 132

efficiency of the proposed algorithms against the state- 133

of-the-art causal and traditional feature selection algo- 134

rithms. 135

The remainder of this article is organized as follows. 136

Section II reviews the related work and Section III intro- 137

duces the basic notations and definitions. In Section IV, we 138

propose the new concept of PCMasking and explain its mech- 139

anism. The proposed CCMB and PM-CCMB algorithms are 140

described in Sections V. The experimental results and analy- 141

ses are presented in Section VI. Finally, Section VII concludes 142

this article and describes possible future work direction. 143

II. RELATED WORK 144

As a dimensionality reduction technique, feature selection 145

algorithms try to find a lower-dimensional representation of 146

data via removing irrelevant features without altering the 147

original feature space [12]–[17]. Traditional feature selec- 148

tion methods can be grouped into three categories, that is, 149

filter, wrapper, and embedded approaches. Filter approaches 150
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rank the features with correlation coefficients first and then151

select the most suitable features. Peng et al. proposed a mini-152

mal redundancy and maximal relevance [18] algorithm, which153

selects relevant features and simultaneously removes redun-154

dant features according to the mutual information. Another155

filter method, fast correlation-based filter [19], exploits sym-156

metrical uncertainty for feature selection. Wrapper approaches157

apply a heuristic search strategy to determine feature subsets158

and evaluate them based on the classification performance.159

For example, Maldonado and Weber [20] proposed a wrap-160

per method for feature selection problems using support161

vector machines (SVMs). The feature selection process and162

classification model are separated and independent in the fil-163

ter and wrapper methods, and the wrapper methods might164

suffer from high computational complexity especially for165

high-dimensional data [21]. Embedded methods combine the166

advantages of the filter and wrapper methods, which perform167

the feature selection as part of its classicization process and168

obtain the feature subsets by optimizing the objective function,169

such as a sparse Bayesian-based feature selection method [16].170

More recently, an evolutionary-computation-based [22] self-171

adaptive particle swarm optimization algorithm was proposed172

for large-scale feature selection problem [23].173

However, most of the traditional feature selection algo-174

rithms ignore the cause-effect relationships between features175

and the class attribute, and thus do not lend themselves to make176

predictions of the results of actions or interventions [24], [25].177

To build better interpretability for data and robustness against178

noise, causal feature selection methods were proposed, which179

discover the MB of a target [1]. Pellet and Elisseeff [26] the-180

oretically proved that MB is the optimal solution for feature181

selection problem under the faithfulness condition. Therefore,182

causal feature selection methods based on MB have attracted183

more and more attention in recent years.184

The first MB discovery algorithm for feature selection is the185

KS [6] algorithm proposed by Margaritis and Thrun [5] KS186

discovers MBs by minimizing the cross-entropy loss without187

theoretical guarantees to soundness. The GS [5] was the first188

sound MB discovery algorithm, whose framework with the189

growing phase and shrinking phase has become the basic strat-190

egy for the following algorithms. Tsamardinos et al. proposed191

IAMB [7] to improve the GS by reordering the variables192

in each iteration, which significantly improves the accuracy.193

Based on IAMB, many variants have been developed, includ-194

ing inter-IAMB [7], fast-IAMB [27], and KIAMB [10]. These195

algorithms are time efficient but require the number of sam-196

ples to be exponential to the size of the MB, which means that197

insufficient samples will result in the performance degradation.198

To improve the data efficiency while maintaining a reason-199

able time cost, a divide-and-conquer strategy for MB discovery200

is proposed, that is, first finding the PC of a target, then201

identifying spouses of the target. The MMMB [8] adopts the202

divide-and-conquer strategy to search MBs, in which the data203

requirement is dependent on the topological structure rather204

than the size of a variable set. Another early method, HITON-205

MB [9], interweaves the growing phase and the shrinking206

phase in the PC discovery process, so that the false PC vari-207

ables can be excluded as early as possible. Pena et al. pointed208

out some errors in the PC discovery in the MMMB and 209

HITON-MB and, then, they added the double check strategy 210

to the MMMB framework and presented the PCMB [10] algo- 211

rithm. Based on PCMB, iterative parent–child-based search of 212

MB (IPCMB) [28] improves the time efficiency by connecting 213

target to all other variables and removing the false variables 214

in each iteration. De Morais and Aussem [11] proposed the 215

MBOR, which uses a weak MB learner (a fast but data- 216

inefficiency algorithm) to obtain the initial MB first and then 217

corrects the MB through a divide-and-conquer search, which 218

further improves the accuracy and data efficiency of the MB 219

discovery. Recently, Gao and Ji [29] discovered the coex- 220

istence of the spouses and the false parent–child variables, 221

and proposed a relatively efficient algorithm, simultaneous 222

MB (STMB), which improves the time efficiency of the MB 223

discovery. 224

Although existing causal feature selection algorithms 225

improve the data efficiency and accuracy, there are still sev- 226

eral true positives that cannot be identified, especially, with 227

the noise or small-sized samples [12], [30]. In this article, we 228

will focus on a type of incorrect CI tests occurred in the MB 229

discovery, and further improve the accuracy of MB discovery 230

through tackling this problem. 231

III. NOTATIONS AND DEFINITIONS 232

In this article, the capital letters (such as X, Y) represent 233

the random variables and the lowercase letters (such as x, y) 234

represent their values, the capital bold italic letters (such as 235

U, Z) denote variable sets. Specifically, let T denote the target 236

variable, and U denote the (discrete random) variable set. 237

Definition 1 (CI): Variables X and Y are conditionally inde- 238

pendent given a variable set Z if PpX, Y|Zq “ PpX|ZqPpY|Zq, 239

denoting as X K Y|Z. Similarly, X M Y|Z represents that X 240

and Y are conditionally dependent given a variable set Z. 241

Existing MB discovery algorithms use the G2-test [2] to 242

implement the CI test. In this article, we use the symbol 243

deppX, Y|Zq to represent the degree of the dependence between 244

X and Y conditioned on Z. 245

Definition 2 (Bayesian Network) [1]: Let P denote the joint 246

probability distribution over a variable set U of a DAG G. 247

The triplet xU,G,Py constitutes a BN, if xU,G,Py satisfies 248

the Markov condition: every variable is independent of any 249

subset including its nondescendant variables given its parents 250

in G. In xU,G,Py, the joint probability P can be decomposed 251

into a product of conditional probabilities as follows: 252

PpUq “
ź

XPU

PpX|PapXqq 253

in which PapXq denotes the parents of X. 254

Some terms in the BN need to be declared here. If there 255

exists an edge from a variable (or node) X to Y , for example, 256

X Ñ Y , then X is a parent of Y and Y is a child of X. A 257

variable X is a spouse of Y if they share common child. In 258

this article, we denote by PC(X), the set of parent–child vari- 259

ables of X, and SP(X), the set of spouse variables of X. For 260

convenience, we will abbreviate parent–child and spouse as 261

PC and SP, sometimes. Based on the definition of BN, some 262

basic definitions in BN will be presented in the following. 263
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Definition 3 (Blocked Path) [1]: A path π from variable A264

to B is blocked by a variable set Z iff: 1) π contains a chain265

A Ñ X Ñ B or A Ð X Ñ B with the middle variable X P Z266

and 2) π contains a collider A Ñ X Ð B with X R Z.267

Definition 4 (d-Separation) [1]: In a DAG G, variable set268

Z Ă U d-separates variables X and Y iff Z blocks every path269

from X to Y , denoting as d-seppX, Y|Zq.270

With Definitions 3 and 4, we give the definition of faithful-271

ness condition.272

Definition 5 (Faithfulness) [2]: Given a BN xU,G,Py, P273

is faithful to G when for any X, Y P U and Z Ď U ´ tX, Yu,274

X K Y|Z in P iff d-seppX, Y|Zq in G.275

Definition 5 shows that CI and d-separation are equivalent276

if the dataset and its underlying BN are faithful to each other.277

Thus, we have Theorem 1 as follows.278

Theorem 1: In BN xU,G,Py, for X, T P U, there is an edge279

between X and T iff X M T|Z for @Z Ď U ´ tX, Tu.280

Theorem 1 illustrates that if X is a PC variable of T , X and T281

are conditionally dependent for @Z Ď U ´ tX, Tu. Theorem 1282

will help us to design the algorithm to discover the PC vari-283

ables. With Definition 5, we give the definition (Definition 6)284

and property (Theorem 2) of MB in a faithful BN.285

Definition 6 (Markov Boundary) [1]: In a faithful BN286

xU,G,Py, the MB of a target variable T in G is unique and287

consists of its parents, children, and spouses.288

Theorem 2 [1]: Given the MBpTq, X is independent of T289

for any X P U ´ MBpTq ´ tTu, that is, X K T|MBpTq.290

According to Definition 6, for each variable, its MB can be291

easily “read” from the structure of the corresponding faithful292

BN. To understand the intuition in the perspective of causal293

learning, we consider that the MB includes the direct causes294

(parents), direct effects (children), and other direct causes of295

direct effects (spouses) of the class attribute [24].296

Theorem 3 [3], [4]: The MB is the optimal solution for the297

feature selection problem.298

Theorem 3 presents the significance of MB research, which299

confirms that we can transfer the feature selection problem300

into the MB discovery of the class attribute in a faithful BN.301

IV. PCMASKING: TYPE OF INCORRECT CI-TESTS IN302

MARKOV BOUNDARY DISCOVERY303

In this section, we focus on analyzing the three follow-304

ing questions: 1) Which variables are false negatives? 2) Why305

are these variables discarded? and 3) Can we seek a theoret-306

ical solution to support the improvement of the algorithm?307

To answer these questions, we first give two examples of308

the PCMasking phenomenon using the existing algorithms in309

Section IV-A, and then analyze the mechanism behind the310

PCMasking phenomenon in Section IV-B. And finally, we ana-311

lyze the effect of the phenomenon on existing causal feature312

selection algorithms in Section IV-C.313

A. Motivation314

By running existing causal feature selection algorithms315

(PCMB, MBOR, and STMB) using the benchmark BN316

datasets with 1000 samples, we analyzed the incorrect CI tests317

Fig. 2. Examples: two subnetworks of Alarm BN to demonstrate the incorrect
CI tests using the existing algorithms. The figure shows the correspond-
ing DAG with targets highlighted in green, the errors in the CI tests, the
MaskingPC, and the errors in the algorithm caused by PCMasking.

in the discovered PC sets. We found that most of the false neg- 318

atives (undetected PC variables) are independent of the target 319

conditioning on other variables which have a strong corre- 320

lation with the target (e.g., other PC variables). To further 321

demonstrate this phenomenon, we take two subnetworks in 322

the benchmark Alarm BN [31] as examples as follows. 323

Consider Example 1 in Fig. 2 and take X15 as the tar- 324

get, then X16, X9, and X13 are PC variables. According to 325

Theorem 1, X16 M X15|tX9, X13u and tX9, X13u M X15|X16 326

hold. However, in our experiments, we have found that the 327

target X15 is independent of its parent X16 conditioning on its 328

children tX9, X13u, and the target X15 is independent of its 329

children tX9, X13u conditioning on its parent X16. 330

Using the other benchmark BN datasets, we also find many 331

similar phenomenons in the experiments. Therefore, if we do 332

not tackle the type of incorrect CI tests, many true PC variables 333

may be discarded, leading to a low true positive discovery 334

accuracy. Furthermore, since the second type of causal feature 335

selection algorithms identifies the PC variables first, and then 336

finds the SP variables, this type of incorrect CI tests will lead 337

to the cascading errors during the SP discovery. Thus, it is 338

important to address the problem to improve the true positive 339

discovery accuracy. Before addressing this phenomenon, we 340

first give a formal definition as follows. 341

Definition 7 (PCMasking): In a variable set U, let PCpTq 342

denote the parent–child set for the target T . PCS1 and PCS2 343

are the subsets of PCpTq, and PCS1 X PCS2 “ ∅. PCS1 and 344

PCS2 are PCMasking for T if the following conditions hold: 345

T K PCS1|PCS2, T K PCS2|PCS1. 346

We call PCS1 and PCS2 as MaskingPCs. 347

Note that PCS1 and PCS2 in Definition 7 can not only be 348

single variables but also be sets with several variables. The 349

definition of PCMasking describes the results of the CI tests 350

rather than the mechanism shown in the BN, that is to say, if 351

the CI tests of an MB algorithm obtain the above independent 352

relationship, then there exists the PCMasking phenomenon. 353

For example, in Fig. 2, tX16u and tX9, X13u are PCMasking 354

for X15, and tX13u and tX4, X6, X7u are PCMasking for X12. 355
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B. Mechanism Analysis356

This section focuses on explaining the mechanism of357

PCMasking. The direct reason for PCMasking is the complete358

dependence between variables which can be mathematically359

described as PpX “ x|Y “ yq “ 1. Obviously, com-360

plete dependence is a sufficient condition for PCMasking,361

which can be intuitively understood from an example. For362

Example 1 in Fig. 2, PpX15 “ 0|X16 “ 0q “ 1.0 and363

PpX9 “ 0, X13 “ 1|X15 “ 0q “ 1.0, then tX16u and tX9, X13u364

are PCMasking for X15 according to Definition 7. In the fol-365

lowing, we prove that complete dependence is a necessary and366

sufficient condition for PCMasking.367

Theorem 4: In a dataset with variable set U, variable set368

X, Y Ď U are the subsets of PCpTq, and X X Y “ ∅. X and369

Y are PCMasking for T if and only if Dx, y, t (values of X,370

Y, T) such that PpX “ x|T “ tq “ PpY “ y|T “ tq “ 1 or371

PpT “ t|X “ xq “ PpT “ t|Y “ yq “ 1.372

Proof: First, we prove the sufficiency of the condition. Since373

Dx, y, t s.t. PpX “ x|T “ tq “ PpY “ y|T “ tq “ 1, then374

X K T and Y K T by Definition 1. Due to the complete375

dependence between X and T , T is independent with any oth-376

ers given a variable set X. Therefore, Y K T|X. And X K T|Y377

can be proved in the same way. Consequently, X and Y are378

PCMasking for T . Similarly, we can prove that if Dx, y, t s.t.379

PpT “ t|X “ xq “ PpT “ t|Y “ yq “ 1, then we have380

X K T|Y and Y K T|X.381

Second, we utilize the concept of entropy in information382

theory to prove the necessity of the condition. Let HpXq denote383

the information entropy of X. Since X K T|Y and Y K T|X,384

then the conditional information entropy can be simplified as385

follows:386

"
HpX, T|Yq “ HpX|Yq ` HpT|Yq
HpY, T|Xq “ HpY|Xq ` HpT|Xq. (1)387

According to the additivity of the information entropy, we have388

"
HpX, Y, Tq ´ HpYq “ HpX, Yq ´ HpYq ` HpT|Yq
HpX, Y, Tq ´ HpXq “ HpX, Yq ´ HpXq ` HpT|Xq. (2)389

By solving the simultaneous equations in (2), we immediately390

obtain391

HpT|Xq “ HpT|Yq. (3)392

Obviously, there exist two cases that satisfy (3).393

1) HpT|Xq “ HpT|Yq ‰ 0: Since information entropy is394

based on a complete probability distribution, we suppose395

that PpT “ ti|X “ xjq “ pij, PpT “ ti|Y “ ykq “ qik,396

and PpT “ ti|X “ xj, Y “ ykq “ hijk pi P r1, |T|s, j P397

r1, |X|s, k P r1, |Y|sq, where |X| denotes the domain of398

X. We try to solve hijk via equation set399

# ř|Y|
k“1 hijk “ pijř|X|
j“1 hijk “ qik

(4)400

where p˚˚ and q˚˚ are used as the parameters. Note401

that there are p|T ´ 1|qp|X| ` |Y|q equations and p|T ´402

1|qp|X|qp|Y|q dependent variables. Therefore, the solu-403

tion of (4) can be obtained iff HpT|Xq “ HpT|Yq “ 0,404

contradicting the condition of the case. Consequently,405

Fig. 3. Example of crucial samples: when the last two samples in the dataset
are missing (highlighted in blue), the dependency between A and B (C) will
change from an uncertain relationship to a deterministic relationship.

there exists no PpT “ ti|Xq and PpT “ ti|Yq satisfying 406

the condition. As a result, case 1) does not hold true. 407

2) HpT|Xq “ HpT|Yq “ 0: Since the condition of HpXq “ 408

0 is that there exists x s.t. PpX “ xq “ 1, then we 409

can conclude that Dx, y, t s.t. PpT “ t|X “ xq “ 1 and 410

PpT “ t|Y “ yq “ 1. According to the symmetry of 411

the complete dependence, we can further conclude that 412

PpX “ x|T “ tq “ 1 and PpY “ y|T “ tq “ 1. 413

Summarizing: Theorem 4 is true. (Q.E.D.) 414

Theorem 4 shows that if there exists PCMasking phe- 415

nomenon, then it must be due to the complete dependence 416

between variables. Note that standard BN datasets (e.g., 417

Alarm) all satisfy the faithfulness condition, which makes the 418

complete dependence not allowed in the original probability 419

distribution in BN. The question will be, why does PCMasking 420

phenomenon exist in the standard BN datasets? 421

Actually, the direct factor in determining the correctness of 422

CI test is the underlying probability distribution in the sam- 423

ples, instead of the original probability distribution in the BN, 424

we need to focus on the influence from the samples. Note 425

that the size of samples used in our experiments is 1000. 426

Although it is not small for the Alarm BN with 37 variables, 427

the lack of some crucial samples may cause a strong change 428

in the probability distribution of the variables, which makes 429

the datasets not satisfy the original distribution in the DAG. 430

The most significant change is that the dependency between 431

variables changes from an uncertain relationship to a deter- 432

ministic relationship. For example, suppose A, B, and C each 433

have space t0, 1u, and we have these samples in Fig. 3. We 434

can conclude from Fig. 3 that A and B (and C) are depen- 435

dent and the relationship between them is stochastic, that is, 436

given the value of A, we cannot determine the value of B or C. 437

However, when we suppose our sample contains the first eight 438

data items and the cases 9 and 10 (highlighted in blue) have 439

been lost, then variable dependency will become deterministic, 440

that is, PpB “ 1|A “ 0q “ 1 and PpC “ 1|B “ 0q “ 1. 441

Due to the loss of some crucial samples, the complete 442

dependence appears in the underlying probability distribu- 443

tion of the samples, leading to the PCMasking phenomenon. 444

Obviously, it will further interfere with the MB discovery as 445

we discussed above. Unfortunately, there is no efficient way to 446

test the complete dependence for MB discovery. Therefore, we 447

need to exploit a variable-relationship-based method to detect 448

the MaskingPCs, instead of a dependence-test-based way. 449
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C. Influence and Solution450

According to the examples analyzed above, the PCMasking451

phenomenon will interfere with the recognition of PC vari-452

ables, making existing methods discover false PC and SP453

sets. Given the problem of existing algorithms, we propose454

Theorem 5 to formalize the influence of PCMasking phe-455

nomenon on MB discovery and give an insight on how to456

detect the MaskingPCs in BN.457

Theorem 5: In variable set U, let PCRpAq Ă U denote the458

real parent–child variable set of variable A, and PCOpAq Ă459

U denote the parent–child variable set of variable A found460

by the MB algorithm �. If a variable Y P PCRpTq and a461

variable set X Ď PCRpYq are PCMasking for T , then: 1) T462

might be ignored by �, that is, there exists the situation that463

T R PCOpYq and 2) Y P PCOpTq.464

Proof: We first prove that there exists the situation that465

T R PCOpYq. X and Y are PCMasking for T , we have T K Y|X466

based on Definition 7. Since X Ď PCRpYq, when the variables467

in X are all selected into the PCOpYq before T , the existing468

algorithms will misjudge T as a non-PC variable of Y accord-469

ing to Theorem 1. Therefore, we prove that T R PCOpYq.470

Second, we prove Y P PCOpTq. Whatever order the vari-471

ables in PCRpTq are selected to PCOpTq, the variable Y will472

be added to PCOpTq and will not be deleted according to473

Theorem 1. Therefore, Y P PCOpTq.474

In Theorem 5, Proposition 1) shows that existing algo-475

rithms do not guarantee the correct output in the BN with476

PCMasking phenomenon. If the PC subset of target T is a477

MaskingPC, then existing algorithms may fail to discover the478

PC set of T under the influence of false CI tests. Taking479

Fig. 2 as an example. Due to the PCMasking, we have480

X16 K X15|tX9, X13u. According to Theorem 1 (criteria for481

identifying PC variables), when variables X9 and X13 are482

selected into PCOpTq in advance, X16 will not be included483

by PCOpTq since T K X16|tX9, X13u although X16 P PCRpTq.484

Proposition 2) describes that the MaskingPC will break the485

symmetry between the PC variables. Also taking Fig. 2 as an486

example. Since there is no PCMasking phenomenon, then we487

have X15 P PCOpX16q, while X16 R PCOpX15q according to the488

above analysis. Therefore, the symmetry between X15 and X16489

is broken in the output of the existing algorithms. Proposition490

2) shows the possibility that we can detect the MaskingPCs491

and simultaneously recover the discarded PC variables via the492

symmetry property, which would be used for the improvement493

of MB discovery algorithm.494

V. CCMB AND PM-CCMB ALGORITHMS495

This section presents the proposed MB discovery algo-496

rithms, CCMB in Section V-A and PM-CCMB in Section V-B.497

A. CCMB498

This section focuses on the specific design of the CCMB499

algorithm, including an innovative PC discovery process, in500

which there exists the handling of PCMasking phenomenon.501

The pseudocode of the CCMB is shown as Algorithm 1, which502

consists of three parts. In part 1 (line 3), CCMB discovers the503

PC variables using a subroutine called FindPC (detailed in504

Algorithm 1 CCMB(T): Discover the MB of T
1: Input: Target variable T , variables set U.
2: Initialize the PC variable set, SP variable set and

PCMasking table PC, SP, PCMTab Ð ∅.
{Part 1: Discover the PC variables.}

3: PC Ð FindPCpTq
{Part 2: Detect the MaskingPCs and eliminate the effect
of them.}

4: for each X P U ´ tTu do
5: if T P FindPCpXq and X R PC, then
6: PCMTab Ð PCMTab Y trT, Xsu
7: end if
8: end for
9: for each rT, Xs P PCMTab do

10: PC “ PC Y tXu.
11: end for

{Part 3: Discover the spouse variables.}
12: for each Y P PC do
13: for each X P PCY do
14: if X R PC, then
15: find Z s.t. T K X|Z and T, X R Z.
16: if T M X|Z Y tYu, then
17: SP Ð SP Y tXu.
18: end if
19: end if
20: end for
21: end for
22: Output: The Markov boundary of T , MB Ð PC Y SP.

Algorithm 2). FindPC will find all the true positives except 505

the PC variables with PCMasking phenomenon. Part 2 (lines 506

4–11) in CCMB detects the MaskingPCs and recovers the dis- 507

carded variables. Based on the discovered PC sets in parts 1 508

and 2, CCMB calls part 3 (lines 12–21) to discover the SP set. 509

CCMB shares the same basic hypotheses with existing algo- 510

rithms, that is, faithfulness and causal sufficiency. They will 511

be used for each theorem and its proof without restatement. 512

In the following text, we will describe the process of CCMB 513

step by step, and give some theoretical analyses. 514

The part 1 in CCMB (Algorithm 1, line 3) identifies the PC 515

variables except the MaskingPCs, whose process is detailed in 516

Algorithm 2. FindPC consists of three steps in an iteration. 517

Step 1 (Lines 4–14 of Algorithm 2): Build a candidate PC 518

set CanPC. Different from the existing methods, we exploit 519

a two-phase process to remove the false PC variables from 520

the current candidate PC set CanPC, which could effectively 521

reduce the number of iteration. The method is extracted from 522

Theorem 1: given variable set Z, if X and T are conditionally 523

independent, then X will be removed from the CanPC. Phase I 524

(lines 4–9) traverses the Z from current SPC. In line 5, Phase I 525

finds a conditioning set SeprXs for each variable X, which can 526

minimize the conditional dependence between X and T , if X 527

and T are independent conditioned on SeprXs, then X will be 528

removed from the CanPC (lines 6–8). Phase II (lines 10–14) 529

selects the Z out of the SPC and specially considers a general 530

d-separation in BN, that is, the dependency is blocked by a 531
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Algorithm 2 FindPC(T): Search the PC Subset of T
1: Input: Target variable T , variables set U.
2: Initialize the PC variable subset SPC Ð ∅, and the

candidate PC variable set CanPC Ð U ´ tTu.
3: while CanPC ‰ ∅ do

{Step 1: Find the candidate PC variables.}
4: for each X P CanPC do
5: SeprXs “ arg minZĎSPC deppT, X|Zq.
6: if T K X|SeprXs, then
7: CanPC Ð CanPC ´ tXu.
8: end if
9: end for

10: for each X, Y P CanPC do
11: if X M Y and T K X|Y , then
12: CanPC Ð CanPC ´ tXu.
13: end if
14: end for

{Step 2: Score the candidates and select the best.}
15: for each X P CanPC do
16: ScorerXs “ deppT, X|SeprXsq
17: end for
18: Y “ arg maxXPCanPC ScorerXs.
19: SPC Ð SPC Y tYu, CanPC Ð CanPC ´ tYu.

{Step 3: Delete the false variables.}
20: for each X P SPC do
21: if DZ Ď SPC ´ tXu s.t. T K X|Z, then
22: SPC Ð SPC ´ tXu.
23: end if
24: end for
25: end while
26: Output: The PC subset SPC.

single variable, which is also dependent on the two variables532

participating in CI test. In lines 11–13, Phase II removes vari-533

able X from the CanPC if X and Y are dependent on each534

other and Y blocks the dependency between T and X.535

Theorem 6: Any true PC variable X P PCRpTq is included536

in CanPC until it is added to SPC.537

Proof: According to Theorem 1, if X is a PC variable of538

T , then T M X|Z given @Z Ď U ´ tX, Tu. Let us assume that539

variable X P PCRpTq, and X is removed from CanPC at lines540

4–9 or lines 10–14 in Algorithm 2, then DSeprXs such that541

T K X|SeprXs. Thus, we have X R PCRpTq, contradicting the542

assumption. Therefore, any X P PCRpTq will not be removed543

from CanPC until it is added to SPC.544

Step 2 (Lines 15–19 of Algorithm 2): Use scoring function545

ScorerXs to estimate the variables in CanPC. ScorerXs is the546

minimum of the conditional dependence between X and T ,547

which has been calculated in line 5 of step 1. The dependence548

between X and T conditioned on SeprXs can be used to score549

the candidates in CanPC (line 16). We would select the vari-550

able with the highest score and add it to the SPC (lines 18551

and 19).552

Step 3 (Lines 20–25 of Algorithm 2): Detect the false vari-553

ables. As a heuristic method, the process above might intro-554

duce some false positives into the SPC. Therefore, lines 20–24555

will remove the false variables from the current SPC accord- 556

ing to Theorem 1, that is, if there exists Z Ď SPC ´ tXu such 557

that T K X|Z, then X is a false positive. 558

Theorem 7: For variable X P U ´ tTu: 1) if X P PCRpTq 559

and there exists a variable set S Ď PCRpTq such that X and 560

S are PCMasking for T , then X P SPC or X R SPC; 2) if 561

X P PCRpTq and there is no MaskingPCs for T , then X P SPC; 562

and 3) if X R PCRpTq, then X R SPC. 563

Proof: According to 1) of Theorem 5, proposition 1) of 564

Theorem 7 is true. In proposition 2), since there is no 565

MaskingPCs, if X P PCRpTq, then T M X|Z with @Z Ď 566

SPC´tXu according to Theorem 1. By Theorem 6, X will not 567

be removed until it is added to SPC. Therefore, proposition 2) 568

of Theorem 7 is true. In proposition 3), since X R PCRpTq, then 569

DZ Ď SPC´tXu such that T K X|Z. According to Theorem 6, 570

proposition 3) is also true. 571

The Part 2 in CCMB (Algorithm 1, lines 4–11) is the 572

biggest improvement compared with other methods. Based 573

on the output of FindPC (Algorithm 2), CCMB performs the 574

cross-check and complement processes, which can shield the 575

PCMasking phenomenon and simultaneously find more true 576

positives. The cross-check process (lines 4–8) aims to detect 577

the MaskingPCs and record the variables with its correspond- 578

ing target into the PCMasking table PCMTab. This process 579

utilizes the property that the MaskingPCs could break the sym- 580

metry between the PC variables and the target (proposed in 581

Theorem 5). Specifically, if T is included in the PC set of 582

X while the PC set of T does not include X, then the cross- 583

check process can detect the MaskingPCs by the asymmetry 584

between X and T . After that, the complement process (lines 585

9–11) repairs the asymmetry and completes the PC set. 586

The Part 3 in CCMB (Algorithm 1, lines 12–21) discovers 587

the SP set. It uses the topology information of the BN to find 588

the colliders in the PC set of T . The spouses are selected from 589

the union of the PC sets of the PC variables of T (PCY in line 590

13 denotes the PC set of variable Y found by CCMB). To 591

illustrate the correctness of CCMB, Theorem 8 is proposed 592

and proved as follows. 593

Theorem 8: CCMB outputs the correct MB. 594

Proof: First, we prove that CCMB can output the correct 595

PC set. Based on proposition 3) of Theorem 7, CCMB can 596

delete all false PC variables. According to proposition 1) of 597

Theorem 7, some of the PCMasking variables may not be 598

included in SPC. Denoting one of them as X, then T P PCOpXq 599

according to proposition 2) of Theorem 4. Therefore, the 600

PCMasking variables can also be correctly found by lines 4–11 601

of Algorithm 1. The remaining PC variables can be found 602

according to proposition 2) of Theorem 7. Second, we prove 603

that CCMB can find the correct SP set. For a variable X P SP, 604

X has a common child with T , which can be found by lines 605

12–21 in Algorithm 1. Therefore, CCMB can find the correct 606

SP set. Summarizing, CCMB outputs the correct MB. 607

To further explain the algorithm, we will take Fig. 2 as 608

an example and revisit the steps of CCMB that were given 609

in Algorithms 1 and 2. Initially, CanPC “ tX16, X9, X13u in 610

the first iteration and there is no variable removed from the 611

CanPC in lines 6–8 of Algorithm 2. Let us suppose a spe- 612

cial case to show the effect of detecting the MaskingPCs, 613
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that is, deppX9, X15q ą deppX13, X15q ą deppX16, X15q and614

deppX13, X15|tX9uq ą deppX16, X15|tX9uq. Then, variable X16615

will be selected into the SPC in the first iteration, and X9 and616

X13 will be removed from the CanPC according to the lines617

11–13 due to the PCMasking phenomenon as mentioned in618

Section IV. We conclude that the outputs of Algorithm 2 are619

SPCrX15s “ tX16u and SPCrX9s “ tX15u, SPCrX13s “ tX15u.620

Note that, existing algorithms will take three iterations to finish621

the PC discovery and obtain an incorrect result, while CCMB622

discovers the PC efficiently in only one iteration and con-623

tinues to select the undetected MaskingPCs. In Algorithm 1,624

lines 4–8 traverse the outputs of Algorithm 2 and build the625

PCMTab “ trX15, X9s, rX15, X13su, which means that the626

symmetry between X15 and X9 (X13) are broken due to the627

PCMasking phenomenon. Lines 9–11 repair the asymmetry628

and the outputs of Algorithm 1 are SPCrTs “ tX9, X13, X16u.629

Hence, our proposed CCMB obtains the expected outputs.630

B. Pipeline Machine: Acceleration Strategy631

As the second type of causal feature selection algorithms,632

CCMB has better accuracy but lower efficiency. In this sec-633

tion, we will propose an acceleration strategy to guarantee that634

CCMB can be efficient in relatively large-scale datasets.635

First, we point out the problems in the algorithms, and636

take the pseudocodes in CCMB as examples to illustrate our637

idea. The MB discovery algorithms are designed based on the638

CI tests, implemented by G2-test, which is a time-consuming639

process. We found that there are a large number of iterative640

processes consisting of the same CI tests, which are executed641

multiple times by the algorithm. For example, when search-642

ing for the PC set of variable X, we need to perform CI tests643

between Y and X conditioned on different Z, while the same644

tests will be performed when searching for PC set of variable645

Y . Lines 3–10 in Algorithm 1 are also the steps that need to be646

performed only once between a pair of variables. The redun-647

dant tests exist not only between different variables, but also648

between different iterations of the same variable. Take lines649

20–24 of Algorithm 2 as an example. SPC is similar between650

adjacent iterations since only a small number of variables are651

added or removed. Therefore, there are a large number of652

duplicate CI tests. In addition, redundant tests also exist in the653

same iteration. For example lines 6 and 21 in Algorithm 2.654

Inspired by the problems above, we propose an acceleration655

methodology for the MB discovery algorithm called pipeline656

machine (PM). The main idea of PM is using a buffer to657

organize the redundant CI test results involved in the MB dis-658

covery process, so that more efficient search can be exploited659

to replace the complex calculations.660

The structure of PM is shown in Fig. 4. PM is essentially a661

linked list consisting of several variable cells (in the red dashed662

frame). Each variable cell points to a CI test Information Table663

(in the blue dashed frame), which stores the new CI test results664

involved in the iteration of the corresponding variable being665

added to the MB. For the convenience of searching, the CI666

test Information Table is organized into a two-level structure667

in which CI tests with the same size of conditioning sets are668

Fig. 4. PM for MB discovery algorithm. The skeletal structure is a linked list
consisting of several variable cells. The red dashed part denotes the variable
cell and the blue dashed part denotes the CI test Information Table which is
used to store the results of the CI tests that have been executed.

stored in an II-level Table, and the addresses of the II-level 669

Table are stored in the I-level Table. 670

When a new variable is added to the MB, the PM adds a 671

variable cell to the end of the linked list. Before executing 672

a CI test, the PM-algorithm first determines whether the CI 673

test is already in the PM via the linked list structure of the 674

PM. Specifically, if all the variables in the conditioning set 675

(of the CI test) are in the linked list of the PM, then the CI 676

test is in the PM, and its location is in the CI-test Information 677

Table corresponding to the conditioning set variable closest 678

to the end of the linked list. For example, in the line 6 of 679

Algorithm 2, if all the variables in SeprXs are in the linked 680

list of the PM, then the result of deppX, T|SeprXsq can be 681

obtained from the CI-test Information Table corresponding to 682

the variable in the SeprXs closest to the end of the linked 683

list. As can be seen from the mechanism, PM reduces the 684

computational cost of redundant CI test, thus improving the 685

efficiency of the algorithm. 686

In this article, we refer CCMB with PM as PM-CCMB, indi- 687

cating that it is an enhanced version based on PM. Note that 688

PM-CCMB could maintain the same accuracy with CCMB and 689

simultaneously improve the time efficiency through employing 690

the PM to store the repetitive computations, thus, PM-CCMB 691

need to require additional memory for the PM. We will discuss 692

the space complexity of PM-CCMB in the following. Assume 693

that the largest size of conditioning sets during the PC search 694

is m, then the size in the II-level Table (in Fig. 4) of variable 695

T is between 0 and maxtm, |SPCT |u, where SPCT denotes the 696

current PC set after a certain iteration. Since there are |PCT | 697

II-level Tables, then there are
ř|PCT |´1

i“0

řmaxtm,iu
j“0

`i
j

˘
CI-test 698

results need to be stored. Therefore, PM-CCMB needs to store 699ř
TPU

ř|PCT |´1
i“0

řmaxtm,iu
j“0

`i
j

˘
CI-test results. 700

VI. EXPERIMENTAL STUDIES 701

In this section, we present the experimental studies 702

of the proposed algorithms, CCMB and PM-CCMB. In 703

Section VI-A, we first use the subnetworks of Alarm BN in 704

Fig. 2 to demonstrate the effectiveness of CCMB to detect the 705

MaskingPCs. Then, we perform experiments on 12 standard 706

BN datasets in Section VI-B to evaluate several performance 707
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aspects of the algorithms, including accuracy and time effi-708

ciency. In order to validate the performance in feature selection709

problem, extensive experiments and statistical analysis are per-710

formed on a newly developed electroencephalography (EEG)711

dataset, SEED [32], [33], to compare our algorithms with other712

state-of-the-art methods in Section VI-C.713

To illustrate the effectiveness of the proposed methods, the714

four state-of-the-art MB discovery algorithms are compared.715

1) IAMB [7]: IAMB is the first type of causal feature716

selection algorithms, focusing on time efficiency.717

2) PCMB [10]: PCMB is the second type of causal feature718

selection algorithms, which aims to improve accuracy.719

3) MBOR [11]: MBOR combines the idea of two types of720

algorithms to improve accuracy.721

4) STMB [29]: STMB is a recently proposed algorithm,722

which incorporates the double check process of PCMB723

into the SP discovery to improve the time efficiency.724

In addition, we also select two well-established information-725

theoretical-based feature selection algorithms as references in726

the experiment of emotion recognition task.727

1) FCBF [19]: A fast correlation-based filter, which728

exploits the symmetrical uncertainty for feature selec-729

tion.730

2) mRMR [18]: An algorithm of removing redundant fea-731

tures while ensuring maximum correlation.732

To measure the strength of the conditional dependence733

between variables, all the MB discovery algorithms use the734

G2-test to implement the CI tests as previous work ([11], [29],735

etc.) at a significance level of 0.01. All codes are implemented736

in C``, and all experiments are conducted on a computer737

with Inter i5-8500 3.00-GHz CPU and 16-GB memory.738

A. Alarm Subnetwork: The Effectiveness for Detecting739

MaskingPCs740

The proposed CCMB has been proved to detect the741

MaskingPCs and shield its impact. This experiment selects the742

two subnetworks of Alarm BN in Fig. 2 to demonstrate the743

effectiveness of CCMB to solve the PCMasking phenomenon.744

The two examples in Fig. 2 take variables X15 and X12 as the745

target, respectively. To validate the existence of PCMasking746

phenomenon, we test the CI with 1000 samples and obtain747

the results as follows:748

X15 K X16|tX9, X13u, X15 K tX9, X13u|X16749

X12 K X13|tX4, X6, X7u, X12 K tX4, X6, X7u|X13750

which means that X16 and tX9, X13u are PCMasking for X15,751

and X13 and tX4, X6, X7u are PCMasking for X12. According to752

Theorem 4, the existing algorithms cannot find out the correct753

PC sets of X15 and X12. Table I provides the PC variables of754

X15 and X12 found by our algorithm and other MB discovery755

algorithms.756

For Example 1 in Fig. 2, variables X9 and X13 have757

stronger correlation with variable X15, such that they will758

enter into PCpX15q in advance and then prevent variable759

X16. When using tX9, X13u as the conditioning set, we have760

deppX15, X16|tX9, X13uq ă ´1.0. Therefore, X16 is misjudged761

as a non-PC variable according to Theorem 1. This error will762

TABLE I
SEARCHED PC VARIABLES ON ALARM SUBNETWORK

WITH PCMASKING PHENOMENON

TABLE II
STATISTICAL INFORMATION OF THE STANDARD BN DATASETS

occur in all other existing algorithms. Moreover, STMB and 763

PCMB further misjudge that X15 is not a PC variable of X16. In 764

contrast, our proposed CCMB achieves the complete PC sets 765

for variables X15 and X16 due to the cross-check and comple- 766

ment processes that can shield the influence of the PCMasking 767

for X15. Similarly, when using tX4, X6, X7u as the conditioning 768

set in Example 2, X13 will be misjudged as a non-PC variable 769

in all the existing algorithms while CCMB can avoid errors 770

on MaskingPCs. 771

B. Standard BN Datasets: The Accuracy and Time Efficiency 772

for MB Discovery 773

In this section, we conduct experiments on standard BN 774

datasets [34] to evaluate the performance of CCMB and 775

other algorithms. The standard BN data contains 12 network 776

datasets. Table II provides the statistical information of these 777

datasets, including the number of variables, the number of 778

edges, and the training size in the experiments. The experi- 779

ments consist of two parts, to verify the accuracy and time 780

efficiency of the proposed algorithms, respectively. 781

We run all the MB algorithms for each variable and repeat 782

these algorithms 20 times with different samples. The size 783

of training samples turns from t500, 1000, . . . , 4000u, respec- 784

tively. We compare the accuracy and time efficiency of the 785

algorithms under the same sets of samples and analyze the 786

changes of the performance with increased training sample 787

scale. 788

Accuracy: The frequently used metrics Distance [7], [10], 789

[11], [29] is adapted to measure the accuracy of MB vari- 790

ables searching. The Distance measures the distance between 791

the detected MB and the true MB, calculated by: Distance “ 792ap1 ´ Precisionq2 ` p1 ´ Recallq2, where the Precision is the 793

fraction of retrieved true positives over the total amount of 794

detected MB variables, and the Recall is the fraction of 795

retrieved true positives over the total amount of true MB vari- 796

ables. Thus, the lower Distance indicates the detected MB is 797

closer to the true MB. 798



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON CYBERNETICS

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5. Results of the MB discovery experiments for the accuracy of CCMB and other algorithms on the 12 standard BN datasets. Note that the curves of
PM-CCMB and CCMB are identical since PM-CCMB only optimizes the algorithm structure of CCMB. Therefore, we do not make a distinction. (a) Alarm.
(b) Alarm3. (c) Alarm5. (d) Alarm10. (e) Child. (f) Child3. (g) Child5. (h) Child10. (i) Insurance. (j) Insurance3. (k) Insurance5. (l) Insurance10.

Fig. 5 shows the average Distance variation curves of799

CCMB and other algorithms with respect to the number of800

samples. From Fig. 5, we can observe that all the algorithms801

trend to achieve a lower Distance with more samples, and802

CCMB consistently performs better than others with differ-803

ent scales of samples on 9 out of 12 datasets. Since CCMB804

considers the influence of PCMasking phenomenon on MB805

discovery, more true positives are detected, which improves the806

recall, thereby, improves the accuracy of the algorithm. The807

Distance of CCMB is similar with PCMB but also smaller808

than other algorithms on the Child 10, Insurance 3, and809

Insurance 10 with large-scale samples (#Variables ą 1000).810

This is because CCMB may introduce some false positives into811

the MB while finding more true positives, which causes the812

precision of CCMB to drop slightly, resulting in the accuracy813

of CCMB similar to PCMB. We also note that CCMB consis-814

tently outperforms the other four MB discovery algorithms on815

all datasets under small-scale samples (#Variables ď 1000),816

which demonstrates the significant superiority of CCMB in817

data efficiency. Especially, on the Child dataset, CCMB uses818

fewer samples (500 samples) to achieve a small Distance while819

other algorithms need 1500–2500 samples to achieve a similar820

Distance. With fewer samples, CCMB can find more accu-821

rate MBs, while other algorithms cause more errors due to822

insufficient samples. When the sample size reaches a certain823

scale, the existing algorithms can avoid some true positives 824

being ignored, making their accuracy close to our proposed 825

CCMB. Therefore, the significant superiority of CCMB under 826

small-scale samples reflects that our proposed CCMB is more 827

data-efficient. In general, CCMB can significantly improve the 828

accuracy in comparison to the state-of-the-art algorithms. 829

We recall that PM-CCMB only optimizes the executing pro- 830

cess of CCMB. Therefore, in the above experiments, the curves 831

of PM-CCMB and CCMB are identical so that we do not 832

make a distinction. In the following text, we will see the supe- 833

riority of PM-CCMB over CCMB and other state-of-the-art 834

algorithms. 835

Time Efficiency: We recorded the CPU time for each dataset 836

in the above experiments. Fig. 6 shows the logarithmic time 837

variation curves of CCMB, PM-CCMB, and other algorithms 838

with respect to the number of samples. From Fig. 6, we can 839

observe that the CPU time of CCMB is slightly higher than 840

PCMB and other algorithms, it is mainly because CCMB intro- 841

duces the cross-check and complement processes to find more 842

true variables, which is a time-consuming step. To improve the 843

time efficiency, we proposed the PM. Therefore, PM-CCMB 844

consistently performs better than others with different scales 845

of samples on 10 out of 12 datasets, which demonstrates that 846

PM can significantly improve the computational efficiency 847

of CCMB through organizing and storing the intermediate 848
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6. Results of the MB discovery experiments for the time efficiency of CCMB, PM-CCMB, and other algorithms on the 12 standard BN datasets. (a)
Alarm. (b) Alarm3. (c) Alarm5. (d) Alarm10. (e) Child (f). Child3. (g) Child5. (h) Child10. (i) Insurance. (j) Insurance3. (k) Insurance5. (l) Insurance10.

results. Especially, PM-CCMB is even faster than the most849

time-efficient IAMB. We also note that PM-CCMB is similar850

with or slightly higher than IAMB on the Child and Insurance.851

Mainly because, it will take more time to build the PM; then,852

the PM saves in some datasets with fewer variables (such as853

Child and Insurance). Even so, PM is still an effective accel-854

erator for MB discovery algorithms. In general, PM-CCMB855

can significantly improve the time efficiency in spite of its856

impressive accuracy.857

C. Emotion Recognition: The Effectiveness for Solving858

Feature Selection Problem859

This section employs the proposed MB discovery algorithms860

in feature selection task to solve the emotion recognition861

problem. A newly developed EEG dataset, SEED [32], will be862

used to evaluate the performance of PM-CCMB. The SEED863

dataset contains the EEG signals of 15 subjects, which are864

regarded as 15 datasets. Each subject watched 15 emotional865

film clips while the EEG signals were recorded by 62-channel866

symmetrical electrodes (shown in Fig. 7). The features are867

extracted from five common frequency bands, namely, Delta868

(1–3 Hz), Theta (4–7 Hz), Alpha (8–13 Hz), Beta (14–30 Hz),869

and Gamma (31–50 Hz), and each frequency band has 62-870

channel neural signatures. Therefore, there are 310 features in871

Fig. 7. Layout of 62 channel symmetrical electrodes on the EEG.

the SEED. The emotional labels (negative, neutral, and pos- 872

itive) of the film clips are used as the target. Each subject 873

performed the emotion experiments in three separate sessions 874

with an interval of about one week or longer, and each session 875

contains 3394 samples (1120 negative samples, 1104 neutral 876

samples, and 1170 positive samples). 877

In our experiments, the differential entropy (DE) features 878

are chosen for emotion recognition due to its better discrimina- 879

tion [32]. For each subject, we randomly choose 1000 samples 880

as the training set, and 500 samples as the test set. We compare 881

the emotion recognition and feature selection effectiveness of 882

PM-CCMB with other algorithms on the test set. 883

We adopt three classifiers, that is, linear SVM, AdaBoost, 884

and Naive Bayes to compute their classification accuracies 885
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TABLE III
CLASSIFICATION ACCURACIES (MEAN˘STANDARD DEVIATION %) ON THE EEG DATASETS ACHIEVED BY USING THREE CLASSIFIERS WITH THE

FEATURES SELECTED BY DIFFERENT MB ALGORITHMS AND FEATURE SELECTION ALGORITHMS. THE BEST RESULTS FOR EACH

DATASETS ARE HIGHLIGHTED IN BOLDFACE

achieved by using the selected feature subsets. In this experi-886

ment, the regularization parameter of linear SVM is tuned from887

t10´2, . . . , 102u by the grid search strategy, and the number888

of ensemble learning cycles is 50 in the AdaBoost. We first run889

PM-CCMB and other algorithms to search its MB (or feature890

subset) on the training samples, then use the selected feature891

subset to train these classifiers on the training samples and,892

finally, test the accuracy on the test samples. The experiments893

are repeated 20 times with different training and test samples,894

and the average classification accuracy of different classifiers895

using the feature subsets selected by different algorithms are896

given in Table III.897

From Table III, we note that the classifiers using the fea-898

tures selected by PM-CCMB achieve the highest or highly899

competitive classification accuracy on most of the subjects,900

which shows the effectiveness of PM-CCMB to select the rele-901

vant features. Specifically, the features selected by PM-CCMB902

can train a completely correct SVM classifier, while any other903

algorithms cannot achieve the accuracy. Due to the influence904

of the PCMasking phenomenon, the dependence between the 905

target and its relevant features may be blocked by other rel- 906

evant features. Therefore, existing MB discovery algorithms 907

may ignore some of the relevant features resulting in the low 908

accuracy of classification. By detecting the MaskingPCs, our 909

algorithm can find more relevant features and significantly 910

improve the accuracy of features selection. Through comparing 911

with two well-established feature selection algorithms, we can 912

conclude that PM-CCMB can achieve similar or even better 913

feature selection effectiveness. 914

To give a comprehensive performance comparison between 915

PM-CCMB and others, the Friedman test [36] combining with 916

the post-hoc tests at a 95% confidence level is used to make 917

a statistical comparison of different algorithms over multiple 918

datasets. The last row of each classifier in Table III shows 919

the average ranks. Note that the traditional feature selec- 920

tion algorithms have better performances against the causal 921

feature selection algorithms except PM-CCMB. It is mainly 922

because all the causal feature selection algorithms are under 923
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(a) (b)

Fig. 8. Profiles of top-20 features selected by PM-CCMB on the (a) Beta and
(b) Gamma frequency bands, which is consistent with the previous findings
in [35].

the faithfulness assumption, which cannot be satisfied in the924

real-world datasets. However, the proposed cross-check and925

complement processes can not only avoid the PCMasking926

phenomenon but also make the PM-CCMB more robust in927

the unfaithful datasets. Therefore, with the three classifiers,928

the overall classification accuracy of the proposed PM-CCMB929

is significantly better than all other algorithms, including the930

traditional feature selection methods.931

Compared with the traditional feature selection methods,932

PM-CCMB can select useful features and simultaneously933

explain the causality between features and target. To illus-934

trate the interpretability of PM-CCMB, we collect the features935

selected by PM-CCMB in all datasets and select the top-936

20 features with the highest frequency, whose positions are937

illustrated in Fig. 8. As depicted in the figure, the top-938

20 features are all from the Beta and Gamma frequency939

bands and located at the lateral temporal area except one of940

them, which is consistent with the previous findings in [35].941

These results indicate that PM-CCMB can effectively select942

the relevant channels containing discriminative information943

and simultaneously eliminate irrelevant channels for emotion944

recognition.945

VII. CONCLUSION946

This article introduces the concept of PCMasking to the947

BN. Based on the PCMasking, we analyze the main reason948

that causes the lower accuracy in the existing MB discov-949

ery algorithms. To detect the MaskingPCs, we propose the950

cross-check and complement processes, in which the cross-951

check process can effectively detect the MaskingPCs and the952

complement process can repair the symmetry (between PC953

variables) broken by PCMasking phenomenon. On the basis954

of the cross-check and complement processes, we propose955

a topology-based MB discovery algorithm, CCMB, to find956

more true variables. To simultaneously improve the time effi-957

ciency, we propose an acceleration methodology for the MB958

discovery algorithm called PM. Embedding CCMB into PM,959

we propose PM-CCMB, which can maintain the same accu-960

racy with CCMB and further improve the time efficiency.961

PM-CCMB is extensively evaluated and compared with the962

state-of-the-art MB discovery algorithms on different datasets.963

The results validate that PM-CCMB can shield the influence964

of PCMasking phenomenon effectively and simultaneously 965

improve the accuracy and time efficiency of MB discovery. 966

In the future, there are three directions worth further investi- 967

gation. One is to relax the causal sufficiency assumptions [37] 968

and examine the validity of PM-CCMB when applied to real- 969

world feature selection situations. The second direction is to 970

extend PM-CCMB to BN structure learning, especially for 971

large dimensional problems and small samples. The third 972

direction is to develop a joint feature selection and classifi- 973

cation algorithm with some Bayesian methods [38], [39]. 974
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