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Accurate Markov Boundary Discovery for
Causal Feature Selection
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Abstract—Causal feature selection has achieved much atten-
tion in recent years, which discovers a Markov boundary (MB)
of the class attribute. The MB of the class attribute implies local
causal relations between the class attribute and the features,
thus leading to more interpretable and robust prediction mod-
els than the features selected by the traditional feature selection
algorithms. Many causal feature selection methods have been
proposed, and almost all of them employ conditional indepen-
dence (CI) tests to identify MBs. However, many datasets from
real-world applications may suffer from incorrect CI tests due
to noise or small-sized samples, resulting in lower MB discovery
accuracy for these existing algorithms. To tackle this issue, in
this article, we first introduce a new concept of PCMasking to
explain a type of incorrect CI tests in the MB discovery, then
propose a cross-check and complement MB discovery (CCMB)
algorithm to repair this type of incorrect CI tests for accurate
MB discovery. To improve the efficiency of CCMB, we further
design a pipeline machine-based CCMB (PM-CCMB) algorithm.
Using benchmark Bayesian network datasets, the experiments
demonstrate that both CCMB and PM-CCMB achieve signif-
icant improvements on the MB discovery accuracy compared
with the existing methods, and PM-CCMB further improves the
computational efficiency. The empirical study in the real-world
datasets validates the effectiveness of CCMB and PM-CCMB
against the state-of-the-art causal and traditional feature selection
algorithms.

Index Terms—Bayesian network (BN), causal feature selection,
Markov boundary (MB), PCMasking.

I. INTRODUCTION

AUSAL feature selection is to identify a Markov bound-
ary (MB) of a class attribute for building accurate
prediction models. The MB was first defined and discussed by
Pearl in a Bayesian network (BN) [1]. Under the faithfulness
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assumption (refer to Definition 5 in Section III), the MB of a
variable in a BN consists of its parents, children, and spouses
(the other parents of the children of the variable), and given
the MB of a variable, all other variables will be independent
of this variable [1]. Thus, the MB provides a complete picture
of the local causal structure around a variable [2]. In addition,
in theory, the MB of the class attribute is the optimal solution
of the feature selection problem [3], [4].

Recent years have witnessed the proliferation of the causal
feature selection methods since they can select features not
only predictive but also causal informative. Existing algo-
rithms can be roughly divided into two different types. The
first type is to directly discover the MB of a target vari-
able of interest, which sacrifices the MB discovery accuracy
to improve the computational efficiency. The early causal
feature selection methods, such as the growth and shrink algo-
rithm (GS) [5] and the Koller—Sahami (KS) [6] algorithms,
belong to the first type. The later methods, incremental asso-
ciation MB (IAMB) and its variants [7], improve the GS
by reordering the variables each time the MB set changes.
However, IAMB and its variants require large amount of
data to guarantee the accuracy. To solve this problem, the
second type of algorithms is proposed by employing a divide-
and-conquer strategy to improve the MB discovery accuracy.
Min-max MB (MMMB) [8] is the first divide-and-conquer-
based method, later algorithms, such as HITON-MB [9] and
parents—children-based MB (PCMB) [10], are improved on
MMMB, which first find the parents and children (PC) of
a target, and then identify the spouse (SP) of the target.
MBOR [11] combines the two types of methods, which
employs the first type of method to obtain an initial MB first
and then finds more MB variables with the divide-and-conquer
strategy.

To improve the MB discovery accuracy, the existing causal
feature selection algorithms mainly focus on how to remove
the false positives during the MB search process, but rarely
consider the true positives discarded due to incorrect condi-
tional independence (CI) tests, leading to low true positive
discovery accuracy, especially in the presence of insufficient
or noise data samples. For example in Fig. 1, by conducting the
experiment on a benchmark Alarm BN with different sample
sizes, we found that the recall of the existing causal fea-
ture selection algorithms is much smaller than their precision.
Specifically, given 1000 samples, the average precision of
these algorithms is 0.92, but the average recall is only 0.81 (a
more detailed comparison on accuracy can be found in Fig. 5
of Section VI). The low recall value makes the existing causal
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Precision: 1.00 -
Recall: 0.50 |
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Precision: 1.00 -
o ° Recall: 0.50 |
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(b) (d

Existing causal feature selection algorithms have higher precision but lower recall. A series of experiments was conducted on Alarm BN with different

sample scale and averaging over several state-of-the-art algorithms (JAMB, PCMB, MBOR, and STMB). (a) Average precision and recall variation curves
with respect to the number of samples. (b)—(d) Take a DAG as an example to illustrate the higher precision and lower recall of MB discovery when there
exists the PCMasking phenomenon. (b) Correct result and highlight the true MB of T in blue, that is, parents A and B, child C, and spouse D. (c) and (d) The
two wrong cases where the PCMasking phenomenon occurs. The wrong MBs of T in (c) and (d) are highlighted in blue, and the red “X” symbol denotes

the independence relations between 7" and its parents or children.

feature selection algorithms ineffective for accurate prediction
in practical applications.

Motivated by the above issue, we experimented on different
benchmark BN datasets using existing causal feature selection
algorithms to explore why some true positives are discarded.
We found a type of incorrect CI tests that makes PC of a tar-
get mask each other, and we call it PCMasking. Specifically,
PCMasking denotes a target and its children may be indepen-
dent conditioning on its parents and vice-versa. For example,
we use a directed acyclic graph (DAG) in Fig. 1(b) to illustrate
the PCMasking phenomenon. Assuming that the target 7 and
its parents {A, B} are independent conditioning on its child C
[as Fig. 1(c)] and, meanwhile, T and C are independent condi-
tioning on {A, B} [as Fig. 1(d)]. The incorrect tests will make
{A, B} or C not be added to the final output of the existing
algorithms. In Fig. 1(b), the MB of T should be {A, B, C, D}.
However, if we apply existing algorithms to the dataset and
the type of incorrect CI tests occurs, the output of the algo-
rithms is {A, B} [as highlighted in Fig. 1(c)] or {C, D} [as
highlighted in Fig. 1(d)] due to the PCMasking phenomenon
[highlighted with red “x™ in Fig. 1(c) and (d)].

Besides empirical analysis, we also analyze the mecha-
nism of the PCMasking phenomenon from the perspective
of information theory, and further find that PCMasking phe-
nomenon breaks the symmetry between the PC variables,
which leads to some true PC variables discarded by the exist-
ing algorithms. Therefore, if there is no extra strategy to deal
with the PCMasking phenomenon, then the MB discovery
methods will ignore some direct causes (parents) and direct
effects (children), resulting in the performance degradation.
Furthermore, since the algorithms complete the PC discov-
ery first and then search for the spouses based on the PC
set, incomplete PC set will cause cascading errors in the SP
discovery. However, the PCMasking phenomenon has attracted
little attention, resulting in ineffectiveness of the existing
causal feature selection algorithms on real-world datasets. To

tackle this issue, the main contributions of this article are
summarized as follows.

1) We formally present a new concept, called PCMasking,
to describe a type of incorrect CI tests in the MB dis-
covery process, and theoretically analyze the mechanism
behind this type of CI tests.

Based on the theoretical analyses, we propose the
cross-check and complement MB discovery (CCMB)
algorithm to tackle the PCMasking phenomenon and
improve the true-positive discovery accuracy. Moreover,
to improve the computational efficiency of CCMB, we
further design a PM-CCMB algorithm, which is more
accurate and efficient compared with all other MB
discovery algorithms.

We conduct a series of experiments on synthetic and
real-world datasets, to validate the effectiveness and
efficiency of the proposed algorithms against the state-
of-the-art causal and traditional feature selection algo-
rithms.

The remainder of this article is organized as follows.
Section II reviews the related work and Section III intro-
duces the basic notations and definitions. In Section IV, we
propose the new concept of PCMasking and explain its mech-
anism. The proposed CCMB and PM-CCMB algorithms are
described in Sections V. The experimental results and analy-
ses are presented in Section VI. Finally, Section VII concludes
this article and describes possible future work direction.

2)

3)

II. RELATED WORK

As a dimensionality reduction technique, feature selection
algorithms try to find a lower-dimensional representation of
data via removing irrelevant features without altering the
original feature space [12]-[17]. Traditional feature selec-
tion methods can be grouped into three categories, that is,
filter, wrapper, and embedded approaches. Filter approaches
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rank the features with correlation coefficients first and then
select the most suitable features. Peng er al. proposed a mini-
mal redundancy and maximal relevance [18] algorithm, which
selects relevant features and simultaneously removes redun-
dant features according to the mutual information. Another
filter method, fast correlation-based filter [19], exploits sym-
metrical uncertainty for feature selection. Wrapper approaches
apply a heuristic search strategy to determine feature subsets
and evaluate them based on the classification performance.
For example, Maldonado and Weber [20] proposed a wrap-
per method for feature selection problems using support
vector machines (SVMs). The feature selection process and
classification model are separated and independent in the fil-
ter and wrapper methods, and the wrapper methods might
suffer from high computational complexity especially for
high-dimensional data [21]. Embedded methods combine the
advantages of the filter and wrapper methods, which perform
the feature selection as part of its classicization process and
obtain the feature subsets by optimizing the objective function,
such as a sparse Bayesian-based feature selection method [16].
More recently, an evolutionary-computation-based [22] self-
adaptive particle swarm optimization algorithm was proposed
for large-scale feature selection problem [23].

However, most of the traditional feature selection algo-
rithms ignore the cause-effect relationships between features
and the class attribute, and thus do not lend themselves to make
predictions of the results of actions or interventions [24], [25].
To build better interpretability for data and robustness against
noise, causal feature selection methods were proposed, which
discover the MB of a target [1]. Pellet and Elisseeff [26] the-
oretically proved that MB is the optimal solution for feature
selection problem under the faithfulness condition. Therefore,
causal feature selection methods based on MB have attracted
more and more attention in recent years.

The first MB discovery algorithm for feature selection is the
KS [6] algorithm proposed by Margaritis and Thrun [5] KS
discovers MBs by minimizing the cross-entropy loss without
theoretical guarantees to soundness. The GS [5] was the first
sound MB discovery algorithm, whose framework with the
growing phase and shrinking phase has become the basic strat-
egy for the following algorithms. Tsamardinos et al. proposed
IAMB [7] to improve the GS by reordering the variables
in each iteration, which significantly improves the accuracy.
Based on IAMB, many variants have been developed, includ-
ing inter-IAMB [7], fast-IAMB [27], and KIAMB [10]. These
algorithms are time efficient but require the number of sam-
ples to be exponential to the size of the MB, which means that
insufficient samples will result in the performance degradation.

To improve the data efficiency while maintaining a reason-
able time cost, a divide-and-conquer strategy for MB discovery
is proposed, that is, first finding the PC of a target, then
identifying spouses of the target. The MMMB [8] adopts the
divide-and-conquer strategy to search MBs, in which the data
requirement is dependent on the topological structure rather
than the size of a variable set. Another early method, HITON-
MB [9], interweaves the growing phase and the shrinking
phase in the PC discovery process, so that the false PC vari-
ables can be excluded as early as possible. Pena ef al. pointed

out some errors in the PC discovery in the MMMB and
HITON-MB and, then, they added the double check strategy
to the MMMB framework and presented the PCMB [10] algo-
rithm. Based on PCMB, iterative parent—child-based search of
MB (IPCMB) [28] improves the time efficiency by connecting
target to all other variables and removing the false variables
in each iteration. De Morais and Aussem [11] proposed the
MBOR, which uses a weak MB learner (a fast but data-
inefficiency algorithm) to obtain the initial MB first and then
corrects the MB through a divide-and-conquer search, which
further improves the accuracy and data efficiency of the MB
discovery. Recently, Gao and Ji [29] discovered the coex-
istence of the spouses and the false parent—child variables,
and proposed a relatively efficient algorithm, simultaneous
MB (STMB), which improves the time efficiency of the MB
discovery.

Although existing causal feature selection algorithms
improve the data efficiency and accuracy, there are still sev-
eral true positives that cannot be identified, especially, with
the noise or small-sized samples [12], [30]. In this article, we
will focus on a type of incorrect CI tests occurred in the MB
discovery, and further improve the accuracy of MB discovery
through tackling this problem.

III. NOTATIONS AND DEFINITIONS

In this article, the capital letters (such as X, Y) represent
the random variables and the lowercase letters (such as x, y)
represent their values, the capital bold italic letters (such as
U, Z) denote variable sets. Specifically, let 7 denote the target
variable, and U denote the (discrete random) variable set.

Definition 1 (CI): Variables X and Y are conditionally inde-
pendent given a variable set Z if P(X, Y|Z) = P(X|Z2)P(Y|Z),
denoting as X 1 Y|Z. Similarly, X & Y|Z represents that X
and Y are conditionally dependent given a variable set Z.

Existing MB discovery algorithms use the G?-test [2] to
implement the CI test. In this article, we use the symbol
dep(X, Y|Z) to represent the degree of the dependence between
X and Y conditioned on Z.

Definition 2 (Bayesian Network) [1]: Let P denote the joint
probability distribution over a variable set U of a DAG G.
The triplet (U, G, P) constitutes a BN, if (U, G, P) satisfies
the Markov condition: every variable is independent of any
subset including its nondescendant variables given its parents
in G. In (U, G, P), the joint probability IP can be decomposed
into a product of conditional probabilities as follows:

PU) = [ | PxX|Pa(X))
XeU
in which Pa(X) denotes the parents of X.

Some terms in the BN need to be declared here. If there
exists an edge from a variable (or node) X to Y, for example,
X — Y, then X is a parent of ¥ and Y is a child of X. A
variable X is a spouse of Y if they share common child. In
this article, we denote by PC(X), the set of parent—child vari-
ables of X, and SP(X), the set of spouse variables of X. For
convenience, we will abbreviate parent—child and spouse as
PC and SP, sometimes. Based on the definition of BN, some
basic definitions in BN will be presented in the following.
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Definition 3 (Blocked Path) [1]: A path w from variable A
to B is blocked by a variable set Z iff: 1) 7 contains a chain

26 A — X — B or A <— X — B with the middle variable X € Z
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and 2) 7 contains a collider A —» X «— B with X ¢ Z.

Definition 4 (d-Separation) [1]: In a DAG G, variable set
Z c U d-separates variables X and Y iff Z blocks every path
from X to Y, denoting as d-sep(X, Y|Z).

With Definitions 3 and 4, we give the definition of faithful-
ness condition.

Definition 5 (Faithfulness) [2]: Given a BN (U, G, P), P
is faithful to G when for any X,Y € U and Z < U — {X, Y},
X L Y|Z in P iff d-sep(X, Y|Z) in G.

Definition 5 shows that CI and d-separation are equivalent
if the dataset and its underlying BN are faithful to each other.
Thus, we have Theorem 1 as follows.

Theorem 1: In BN (U, G, P), for X, T € U, there is an edge
between X and T iff X & T|Z for VZ < U — {X, T}.

Theorem 1 illustrates that if X is a PC variable of T, X and T
are conditionally dependent for VZ < U — {X, T'}. Theorem 1
will help us to design the algorithm to discover the PC vari-
ables. With Definition 5, we give the definition (Definition 6)
and property (Theorem 2) of MB in a faithful BN.

Definition 6 (Markov Boundary) [1]: In a faithful BN
(U, G, P), the MB of a target variable T in G is unique and
consists of its parents, children, and spouses.

Theorem 2 [1]: Given the MB(T), X is independent of T
for any X e U — MB(T) — {T}, that is, X L T/MB(T).

According to Definition 6, for each variable, its MB can be
easily “read” from the structure of the corresponding faithful
BN. To understand the intuition in the perspective of causal
learning, we consider that the MB includes the direct causes
(parents), direct effects (children), and other direct causes of
direct effects (spouses) of the class attribute [24].

Theorem 3 [3], [4]: The MB is the optimal solution for the
feature selection problem.

Theorem 3 presents the significance of MB research, which
confirms that we can transfer the feature selection problem
into the MB discovery of the class attribute in a faithful BN.

IV. PCMASKING: TYPE OF INCORRECT CI-TESTS IN
MARKOV BOUNDARY DISCOVERY

In this section, we focus on analyzing the three follow-
ing questions: 1) Which variables are false negatives? 2) Why
are these variables discarded? and 3) Can we seek a theoret-
ical solution to support the improvement of the algorithm?
To answer these questions, we first give two examples of
the PCMasking phenomenon using the existing algorithms in
Section IV-A, and then analyze the mechanism behind the
PCMasking phenomenon in Section IV-B. And finally, we ana-
lyze the effect of the phenomenon on existing causal feature
selection algorithms in Section I'V-C.

312 A. Motivation

315

316

317

By running existing causal feature selection algorithms
(PCMB, MBOR, and STMB) using the benchmark BN
datasets with 1000 samples, we analyzed the incorrect CI tests
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Example 1 Example 2

Network

Independ- X15 L X16/{Xo0, X13} X13 L X12/{X4, X, X7}
ence test Xi5 L {Xo, X13}1X16 X12 L {X4, X6, X7}1X13
MaskingPC {X16} and {Xo, X13} {X13} and {X4, X4, X7}
When X, is included by PC(Xys) ‘th;'C‘()}((‘" ))(6‘.““‘1 }}(‘7 ar?"“;f'“de‘i
i i i y 12) first, X3 will be
Errorsin | first, Xq and X3 will be ignored. ignored. When X« are included
Algorithm | When X and X3 are included by 8! y 13

by PC(X 1) first, X4, X¢ and X,

PC(Xys) first, X;6 will be ignored. will be ignored.

Fig. 2. Examples: two subnetworks of Alarm BN to demonstrate the incorrect
CI tests using the existing algorithms. The figure shows the correspond-
ing DAG with targets highlighted in green, the errors in the CI tests, the
MaskingPC, and the errors in the algorithm caused by PCMasking.

in the discovered PC sets. We found that most of the false neg-
atives (undetected PC variables) are independent of the target
conditioning on other variables which have a strong corre-
lation with the target (e.g., other PC variables). To further
demonstrate this phenomenon, we take two subnetworks in
the benchmark Alarm BN [31] as examples as follows.

Consider Example 1 in Fig. 2 and take X;5 as the tar-
get, then X6, X9, and X3 are PC variables. According to
Theorem 1, X16 £ X15|{X9,X13} and {X9,X13} & X15|X16
hold. However, in our experiments, we have found that the
target Xjs is independent of its parent Xj¢ conditioning on its
children {Xo, X3}, and the target X5 is independent of its
children {Xo, X;3} conditioning on its parent Xjg.

Using the other benchmark BN datasets, we also find many
similar phenomenons in the experiments. Therefore, if we do
not tackle the type of incorrect CI tests, many true PC variables
may be discarded, leading to a low true positive discovery
accuracy. Furthermore, since the second type of causal feature
selection algorithms identifies the PC variables first, and then
finds the SP variables, this type of incorrect CI tests will lead
to the cascading errors during the SP discovery. Thus, it is
important to address the problem to improve the true positive
discovery accuracy. Before addressing this phenomenon, we
first give a formal definition as follows.

Definition 7 (PCMasking): In a variable set U, let PC(T)
denote the parent—child set for the target 7. PCs; and PCs»
are the subsets of PC(T), and PCs; n PCsy = &. PCs) and
PCg, are PCMasking for T if the following conditions hold:

T 1L PCy; |PC52, T | PCs|PCs;.

We call PCs and PCs, as MaskingPCs.

Note that PCs; and PCgs; in Definition 7 can not only be
single variables but also be sets with several variables. The
definition of PCMasking describes the results of the CI tests
rather than the mechanism shown in the BN, that is to say, if
the CI tests of an MB algorithm obtain the above independent
relationship, then there exists the PCMasking phenomenon.
For example, in Fig. 2, {Xi¢} and {X9, X;3} are PCMasking
for Xi5, and {X;3} and {X4, X, X7} are PCMasking for X;;.
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B. Mechanism Analysis

This section focuses on explaining the mechanism of
PCMasking. The direct reason for PCMasking is the complete
dependence between variables which can be mathematically
described as P(X = x|Y = y) = 1. Obviously, com-
plete dependence is a sufficient condition for PCMasking,
which can be intuitively understood from an example. For
Example 1 in Fig. 2, P(X;5 = 0|Xj¢ = 0) = 1.0 and
P(Xo = 0,X13 = 1|Xj5 = 0) = 1.0, then {Xj6} and {Xo, X3}
are PCMasking for X5 according to Definition 7. In the fol-
lowing, we prove that complete dependence is a necessary and
sufficient condition for PCMasking.

Theorem 4: In a dataset with variable set U, variable set
X,Y € U are the subsets of PC(T), and X n Y = &. X and
Y are PCMasking for 7T if and only if dx,y, r (values of X,
Y, T) such that P(X =x|T =1t) =PY =y|T =1) =1or
PT=0X=x)=PT=tY =y)=1.

Proof: First, we prove the sufficiency of the condition. Since
Ix,y,tst. PX =x|T =1) = P(Y =y|T =1t) =1, then
X 1L T and Y L T by Definition 1. Due to the complete
dependence between X and 7, T is independent with any oth-
ers given a variable set X. Therefore, Y 1 T|X. And X 1 T|Y
can be proved in the same way. Consequently, X and Y are
PCMasking for T. Similarly, we can prove that if 3x,y, ¢ s.t.
P(T = tX =x) = P(T = 1Y =y) = 1, then we have
X1T|YadY L TX.

Second, we utilize the concept of entropy in information
theory to prove the necessity of the condition. Let H(X) denote
the information entropy of X. Since X L T|Y and Y 1 T|X,
then the conditional information entropy can be simplified as
follows:

{H(X, T|Y) = H(X|Y) + H(T|Y) (1)

H(Y,TX)=HY|X)+ H(T|X).
According to the additivity of the information entropy, we have

{ H(X,Y.T)— H(Y) = HX,Y) — H(Y) + H(T|Y)

H(X.Y.T) — H(X) = HX, Y) — HX) + H(T|X). ©

By solving the simultaneous equations in (2), we immediately
obtain

H(T|X) = H(T|Y). 3)

Obviously, there exist two cases that satisfy (3).

1) H(T|X) = H(T|Y) # 0: Since information entropy is
based on a complete probability distribution, we suppose
that P(T = t,'|X = Xj) = Dij, P(T = l‘,“Y = yk) = qik,
and P(T = ;|X = x;,Y =y;) = hj (i € [1,|T]],j €
[1, |X[], k € [1,]Y]]), where |X| denotes the domain of
X. We try to solve A via equation set

Y
S i = i 4
i “)
Zj:] hijk = ik
where p4s and gus are used as the parameters. Note
that there are (|T — 1|)(|X| + |Y|) equations and (|7 —
1))(|X])(]Y|) dependent variables. Therefore, the solu-
tion of (4) can be obtained iff H(T|X) = H(T|Y) = 0,
contradicting the condition of the case. Consequently,

Case A B C
1 0 1 0
2 0 1 0
3 0 1 0
4 0 1 0 Training
5 1 0 1 Samples
6 1 0 1
7 1 0 1
8 1 0 1
9 0 (1) 0 Missing
10 1 1 0 Samples

Fig. 3. Example of crucial samples: when the last two samples in the dataset
are missing (highlighted in blue), the dependency between A and B (C) will
change from an uncertain relationship to a deterministic relationship.

there exists no P(T = t;|X) and P(T = 1;|Y) satisfying
the condition. As a result, case 1) does not hold true.
H(T|X) = H(T|Y) = 0: Since the condition of H(X) =
0 is that there exists x s.t. P(X = x) = 1, then we
can conclude that 3x,y,7 s.t. P(T = #(X =x) = | and
P(T = t|Y = y) = 1. According to the symmetry of
the complete dependence, we can further conclude that
PX=x|T=1f=1and P(Y =y|T=1)=1.

Summarizing: Theorem 4 is true. (Q.E.D.) [ |

Theorem 4 shows that if there exists PCMasking phe-
nomenon, then it must be due to the complete dependence
between variables. Note that standard BN datasets (e.g.,
Alarm) all satisfy the faithfulness condition, which makes the
complete dependence not allowed in the original probability
distribution in BN. The question will be, why does PCMasking
phenomenon exist in the standard BN datasets?

Actually, the direct factor in determining the correctness of
CI test is the underlying probability distribution in the sam-
ples, instead of the original probability distribution in the BN,
we need to focus on the influence from the samples. Note
that the size of samples used in our experiments is 1000.
Although it is not small for the Alarm BN with 37 variables,
the lack of some crucial samples may cause a strong change
in the probability distribution of the variables, which makes
the datasets not satisfy the original distribution in the DAG.
The most significant change is that the dependency between
variables changes from an uncertain relationship to a deter-
ministic relationship. For example, suppose A, B, and C each
have space {0, 1}, and we have these samples in Fig. 3. We
can conclude from Fig. 3 that A and B (and C) are depen-
dent and the relationship between them is stochastic, that is,
given the value of A, we cannot determine the value of B or C.
However, when we suppose our sample contains the first eight
data items and the cases 9 and 10 (highlighted in blue) have
been lost, then variable dependency will become deterministic,
that is, PB=1/[A=0)=1and P(C=1|B=0) = 1.

Due to the loss of some crucial samples, the complete
dependence appears in the underlying probability distribu-
tion of the samples, leading to the PCMasking phenomenon.
Obviously, it will further interfere with the MB discovery as
we discussed above. Unfortunately, there is no efficient way to
test the complete dependence for MB discovery. Therefore, we
need to exploit a variable-relationship-based method to detect
the MaskingPCs, instead of a dependence-test-based way.
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C. Influence and Solution

According to the examples analyzed above, the PCMasking
phenomenon will interfere with the recognition of PC vari-
ables, making existing methods discover false PC and SP
sets. Given the problem of existing algorithms, we propose
Theorem 5 to formalize the influence of PCMasking phe-
nomenon on MB discovery and give an insight on how to
detect the MaskingPCs in BN.

Theorem 5: In variable set U, let PCr(A) < U denote the
real parent—child variable set of variable A, and PCo(A) <
U denote the parent—child variable set of variable A found
by the MB algorithm €. If a variable Y € PCg(T) and a
variable set X < PCgr(Y) are PCMasking for T, then: 1) T
might be ignored by €2, that is, there exists the situation that
T ¢ PCp(Y) and 2) Y € PCo(T).

Proof: We first prove that there exists the situation that
T ¢ PCo(Y). X and Y are PCMasking for 7, we have T | Y|X
based on Definition 7. Since X < PCg(Y), when the variables
in X are all selected into the PCo(Y) before T, the existing
algorithms will misjudge T as a non-PC variable of Y accord-
ing to Theorem 1. Therefore, we prove that T ¢ PCo(Y).
Second, we prove Y € PCq(T). Whatever order the vari-
ables in PCr(T) are selected to PCo(T), the variable Y will
be added to PCo(T) and will not be deleted according to
Theorem 1. Therefore, ¥ € PCo(T). [ |

In Theorem 5, Proposition 1) shows that existing algo-
rithms do not guarantee the correct output in the BN with
PCMasking phenomenon. If the PC subset of target T is a
MaskingPC, then existing algorithms may fail to discover the
PC set of T under the influence of false CI tests. Taking
Fig. 2 as an example. Due to the PCMasking, we have
Xi6 L Xi5/{Xo, X13}. According to Theorem 1 (criteria for
identifying PC variables), when variables X9 and X3 are
selected into PCo(T) in advance, Xj¢ will not be included
by PCo(T) since T L Xi6|{Xo9, X13} although Xi6 € PCr(T).
Proposition 2) describes that the MaskingPC will break the
symmetry between the PC variables. Also taking Fig. 2 as an
example. Since there is no PCMasking phenomenon, then we
have X5 € PCo(Xi¢), while X6 ¢ PCo(X;s) according to the
above analysis. Therefore, the symmetry between X5 and Xi¢
is broken in the output of the existing algorithms. Proposition
2) shows the possibility that we can detect the MaskingPCs
and simultaneously recover the discarded PC variables via the
symmetry property, which would be used for the improvement
of MB discovery algorithm.

V. CCMB AND PM-CCMB ALGORITHMS

This section presents the proposed MB discovery algo-
rithms, CCMB in Section V-A and PM-CCMB in Section V-B.

4w A. CCMB

499
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This section focuses on the specific design of the CCMB
algorithm, including an innovative PC discovery process, in
which there exists the handling of PCMasking phenomenon.
The pseudocode of the CCMB is shown as Algorithm 1, which
consists of three parts. In part 1 (line 3), CCMB discovers the
PC variables using a subroutine called FindPC (detailed in
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Algorithm 1 CCMB(T): Discover the MB of T
1: Input: Target variable T, variables set U.
2: Initialize the PC variable set, SP variable set and
PCMasking table PC, SP, PCMTab «— &.
{Part 1: Discover the PC variables.}
3: PC < FindPC(T)
{Part 2: Detect the MaskingPCs and eliminate the effect
of them.}
4: for each X e U — {T} do
5. if T € FindPC(X) and X ¢ PC, then
6: PCMTab — PCMTab u {|T, X]}
7.
8
9

end if

: end for

: for each [T, X] € PCMTab do
10: PC=PCu{X}.
11: end for

{Part 3: Discover the spouse variables.}

12: for each Y € PC do
13:  for each X € PCy do

14: if X ¢ PC, then

15: findZst. T LX|Zand T,X ¢ Z.
16: if T £ X|Z v {Y}, then

17: SP — SP uU {X}.

18: end if

19: end if

20:  end for

21: end for

22: Output: The Markov boundary of T, MB — PC U SP.

Algorithm 2). FindPC will find all the true positives except
the PC variables with PCMasking phenomenon. Part 2 (lines
4-11) in CCMB detects the MaskingPCs and recovers the dis-
carded variables. Based on the discovered PC sets in parts 1
and 2, CCMB calls part 3 (lines 12-21) to discover the SP set.

CCMB shares the same basic hypotheses with existing algo-
rithms, that is, faithfulness and causal sufficiency. They will
be used for each theorem and its proof without restatement.
In the following text, we will describe the process of CCMB
step by step, and give some theoretical analyses.

The part 1 in CCMB (Algorithm 1, line 3) identifies the PC
variables except the MaskingPCs, whose process is detailed in
Algorithm 2. FindPC consists of three steps in an iteration.

Step 1 (Lines 4-14 of Algorithm 2): Build a candidate PC
set CanPC. Different from the existing methods, we exploit
a two-phase process to remove the false PC variables from
the current candidate PC set CanPC, which could effectively
reduce the number of iteration. The method is extracted from
Theorem 1: given variable set Z, if X and T are conditionally
independent, then X will be removed from the CanPC. Phase 1
(lines 4-9) traverses the Z from current SPC. In line 5, Phase I
finds a conditioning set Sep[X] for each variable X, which can
minimize the conditional dependence between X and T, if X
and T are independent conditioned on Sep[X], then X will be
removed from the CanPC (lines 6-8). Phase II (lines 10-14)
selects the Z out of the SPC and specially considers a general
d-separation in BN, that is, the dependency is blocked by a
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Algorithm 2 FindPC(T): Search the PC Subset of T
1: Input: Target variable T, variables set U.
2: Initialize the PC variable subset SPC <« @, and the
candidate PC variable set CanPC — U — {T}.
3: while CanPC # @ do
{Step 1: Find the candidate PC variables.}

4 for each X € CanPC do

5 Sep[X| = argminggpc dep(T, X|Z).
6: if T L X|Sep[X], then

7: CanPC — CanPC — {X}.
8 end if

9: end for

10:  for each X, Y € CanPC do

11: if X£Yand T L X|Y, then
12: CanPC — CanPC — {X}.
13: end if

14:  end for

{Step 2: Score the candidates and select the best.}
15:  for each X € CanPC do
Score[X] = dep(T, X|Sep[X])
17:  end for
18: Y = arg maxyccgnpc Score[X].
190 SPC — SPC u {Y}, CanPC — CanPC — {Y}.
{Step 3: Delete the false variables.}

20:  for each X € SPC do

21: if 3Z < SPC — {X} s.t. T | X|Z, then
22: SPC — SPC — {X}.

23: end if

24:  end for

25: end while
26: Output: The PC subset SPC.

single variable, which is also dependent on the two variables
participating in CI test. In lines 11-13, Phase II removes vari-
able X from the CanPC if X and Y are dependent on each
other and Y blocks the dependency between T and X.

Theorem 6: Any true PC variable X € PCr(T) is included
in CanPC until it is added to SPC.

Proof: According to Theorem 1, if X is a PC variable of
T, then T & X|Z given VZ < U — {X, T}. Let us assume that
variable X € PCg(T), and X is removed from CanPC at lines
4-9 or lines 10-14 in Algorithm 2, then 3Sep[X] such that
T 1 X|Sep[X]. Thus, we have X ¢ PCg(T), contradicting the
assumption. Therefore, any X € PCr(T) will not be removed
from CanPC until it is added to SPC. |

Step 2 (Lines 15-19 of Algorithm 2): Use scoring function
Score[X] to estimate the variables in CanPC. Score[X] is the
minimum of the conditional dependence between X and T,
which has been calculated in line 5 of step 1. The dependence
between X and T conditioned on Sep[X] can be used to score
the candidates in CanPC (line 16). We would select the vari-
able with the highest score and add it to the SPC (lines 18
and 19).

Step 3 (Lines 20-25 of Algorithm 2): Detect the false vari-
ables. As a heuristic method, the process above might intro-
duce some false positives into the SPC. Therefore, lines 20-24

will remove the false variables from the current SPC accord-
ing to Theorem 1, that is, if there exists Z < SPC — {X} such
that 7 L X|Z, then X is a false positive.

Theorem 7: For variable X € U — {T}: 1) if X € PCg(T)
and there exists a variable set S € PCg(T) such that X and
S are PCMasking for 7, then X € SPC or X ¢ SPC; 2) if
X € PCg(T) and there is no MaskingPCs for T, then X € SPC;
and 3) if X ¢ PCg(T), then X ¢ SPC.

Proof: According to 1) of Theorem 5, proposition 1) of
Theorem 7 is true. In proposition 2), since there is no
MaskingPCs, if X € PCg(T), then T + X|Z with VZ <
SPC —{X} according to Theorem 1. By Theorem 6, X will not
be removed until it is added to SPC. Therefore, proposition 2)
of Theorem 7 is true. In proposition 3), since X ¢ PCg(T), then
3Z < SPC—{X} such that T 1 X|Z. According to Theorem 6,
proposition 3) is also true. |

The Part 2 in CCMB (Algorithm 1, lines 4-11) is the
biggest improvement compared with other methods. Based
on the output of FindPC (Algorithm 2), CCMB performs the
cross-check and complement processes, which can shield the
PCMasking phenomenon and simultaneously find more true
positives. The cross-check process (lines 4-8) aims to detect
the MaskingPCs and record the variables with its correspond-
ing target into the PCMasking table PCMTab. This process
utilizes the property that the MaskingPCs could break the sym-
metry between the PC variables and the target (proposed in
Theorem 5). Specifically, if T is included in the PC set of
X while the PC set of T does not include X, then the cross-
check process can detect the MaskingPCs by the asymmetry
between X and T. After that, the complement process (lines
9-11) repairs the asymmetry and completes the PC set.

The Part 3 in CCMB (Algorithm 1, lines 12-21) discovers
the SP set. It uses the topology information of the BN to find
the colliders in the PC set of T. The spouses are selected from
the union of the PC sets of the PC variables of 7 (PCy in line
13 denotes the PC set of variable Y found by CCMB). To
illustrate the correctness of CCMB, Theorem 8 is proposed
and proved as follows.

Theorem 8: CCMB outputs the correct MB.

Proof: First, we prove that CCMB can output the correct
PC set. Based on proposition 3) of Theorem 7, CCMB can
delete all false PC variables. According to proposition 1) of
Theorem 7, some of the PCMasking variables may not be
included in SPC. Denoting one of them as X, then T € PC(X)
according to proposition 2) of Theorem 4. Therefore, the
PCMasking variables can also be correctly found by lines 4-11
of Algorithm 1. The remaining PC variables can be found
according to proposition 2) of Theorem 7. Second, we prove
that CCMB can find the correct SP set. For a variable X € SP,
X has a common child with 7, which can be found by lines
12-21 in Algorithm 1. Therefore, CCMB can find the correct
SP set. Summarizing, CCMB outputs the correct MB. |

To further explain the algorithm, we will take Fig. 2 as
an example and revisit the steps of CCMB that were given
in Algorithms 1 and 2. Initially, CanPC = {Xj¢, X9, X13} in
the first iteration and there is no variable removed from the
CanPC in lines 6-8 of Algorithm 2. Let us suppose a spe-
cial case to show the effect of detecting the MaskingPCs,
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that is, dep(Xo, X15) > dep(X13, X15) > dep(Xj¢, X15) and
dep(X13, X15/{Xo}) > dep(X16, X15|{Xo}). Then, variable Xi¢
will be selected into the SPC in the first iteration, and X9 and
X13 will be removed from the CanPC according to the lines
11-13 due to the PCMasking phenomenon as mentioned in
Section IV. We conclude that the outputs of Algorithm 2 are
SPC[X5] = {X16} and SPC[Xy] = {X15}, SPC[X13] = {X15}.
Note that, existing algorithms will take three iterations to finish
the PC discovery and obtain an incorrect result, while CCMB
discovers the PC efficiently in only one iteration and con-
tinues to select the undetected MaskingPCs. In Algorithm 1,
lines 4-8 traverse the outputs of Algorithm 2 and build the
PCMTab = {[Xis,Xo], [Xis5,X13]}, which means that the
symmetry between Xis and Xo (Xj3) are broken due to the
PCMasking phenomenon. Lines 9-11 repair the asymmetry
and the outputs of Algorithm 1 are SPC[T] = {Xo, X13, Xi6}-
Hence, our proposed CCMB obtains the expected outputs.

B. Pipeline Machine: Acceleration Strategy

As the second type of causal feature selection algorithms,
CCMB has better accuracy but lower efficiency. In this sec-
tion, we will propose an acceleration strategy to guarantee that
CCMB can be efficient in relatively large-scale datasets.

First, we point out the problems in the algorithms, and
take the pseudocodes in CCMB as examples to illustrate our
idea. The MB discovery algorithms are designed based on the
CI tests, implemented by G?-test, which is a time-consuming
process. We found that there are a large number of iterative
processes consisting of the same CI tests, which are executed
multiple times by the algorithm. For example, when search-
ing for the PC set of variable X, we need to perform CI tests
between Y and X conditioned on different Z, while the same
tests will be performed when searching for PC set of variable
Y. Lines 3-10 in Algorithm 1 are also the steps that need to be
performed only once between a pair of variables. The redun-
dant tests exist not only between different variables, but also
between different iterations of the same variable. Take lines
20-24 of Algorithm 2 as an example. SPC is similar between
adjacent iterations since only a small number of variables are
added or removed. Therefore, there are a large number of
duplicate CI tests. In addition, redundant tests also exist in the
same iteration. For example lines 6 and 21 in Algorithm 2.

Inspired by the problems above, we propose an acceleration
methodology for the MB discovery algorithm called pipeline
machine (PM). The main idea of PM is using a buffer to
organize the redundant CI test results involved in the MB dis-
covery process, so that more efficient search can be exploited
to replace the complex calculations.

The structure of PM is shown in Fig. 4. PM is essentially a
linked list consisting of several variable cells (in the red dashed
frame). Each variable cell points to a CI test Information Table
(in the blue dashed frame), which stores the new CI test results
involved in the iteration of the corresponding variable being
added to the MB. For the convenience of searching, the CI
test Information Table is organized into a two-level structure
in which CI tests with the same size of conditioning sets are
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(CI-test Information Table)

Fig. 4. PM for MB discovery algorithm. The skeletal structure is a linked list
consisting of several variable cells. The red dashed part denotes the variable
cell and the blue dashed part denotes the CI test Information Table which is
used to store the results of the CI tests that have been executed.

stored in an II-level Table, and the addresses of the II-level
Table are stored in the I-level Table.

When a new variable is added to the MB, the PM adds a
variable cell to the end of the linked list. Before executing
a CI test, the PM-algorithm first determines whether the CI
test is already in the PM via the linked list structure of the
PM. Specifically, if all the variables in the conditioning set
(of the CI test) are in the linked list of the PM, then the CI
test is in the PM, and its location is in the Cl-test Information
Table corresponding to the conditioning set variable closest
to the end of the linked list. For example, in the line 6 of
Algorithm 2, if all the variables in Sep[X] are in the linked
list of the PM, then the result of dep(X, T|Sep[X]) can be
obtained from the Cl-test Information Table corresponding to
the variable in the Sep[X] closest to the end of the linked
list. As can be seen from the mechanism, PM reduces the
computational cost of redundant CI test, thus improving the
efficiency of the algorithm.

In this article, we refer CCMB with PM as PM-CCMB, indi-
cating that it is an enhanced version based on PM. Note that
PM-CCMB could maintain the same accuracy with CCMB and
simultaneously improve the time efficiency through employing
the PM to store the repetitive computations, thus, PM-CCMB
need to require additional memory for the PM. We will discuss
the space complexity of PM-CCMB in the following. Assume
that the largest size of conditioning sets during the PC search
is m, then the size in the II-level Table (in Fig. 4) of variable
T is between 0 and max{m, |SPCr|}, where SPCt denotes the
current PC set after a certain iteration. Since there are |PCr|
II-level Tables, then there are Z!.i%ﬂ_l ;fg{m’l} (;) Cl-test
results need to be stored. Therefore, PM-CCMB needs to store

PCr|—1 max{m,i} /j
ZTEU Zl‘:oﬂ Zj=3{m i (]l) Cl-test results.

VI. EXPERIMENTAL STUDIES

In this section, we present the experimental studies
of the proposed algorithms, CCMB and PM-CCMB. In
Section VI-A, we first use the subnetworks of Alarm BN in
Fig. 2 to demonstrate the effectiveness of CCMB to detect the
MaskingPCs. Then, we perform experiments on 12 standard
BN datasets in Section VI-B to evaluate several performance
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aspects of the algorithms, including accuracy and time effi-
ciency. In order to validate the performance in feature selection
problem, extensive experiments and statistical analysis are per-
formed on a newly developed electroencephalography (EEG)
dataset, SEED [32], [33], to compare our algorithms with other
state-of-the-art methods in Section VI-C.

To illustrate the effectiveness of the proposed methods, the
four state-of-the-art MB discovery algorithms are compared.

1) IAMB [7]: TAMB is the first type of causal feature
selection algorithms, focusing on time efficiency.

2) PCMB [10]: PCMB is the second type of causal feature
selection algorithms, which aims to improve accuracy.

3) MBOR [11]: MBOR combines the idea of two types of
algorithms to improve accuracy.

STMB [29]: STMB is a recently proposed algorithm,
which incorporates the double check process of PCMB
into the SP discovery to improve the time efficiency.

In addition, we also select two well-established information-
theoretical-based feature selection algorithms as references in
the experiment of emotion recognition task.

1) FCBF [19]: A fast correlation-based filter, which
exploits the symmetrical uncertainty for feature selec-
tion.

2) mRMR [18]: An algorithm of removing redundant fea-
tures while ensuring maximum correlation.

To measure the strength of the conditional dependence
between variables, all the MB discovery algorithms use the
G?-test to implement the CI tests as previous work ([11], [29],
etc.) at a significance level of 0.01. All codes are implemented
in C++, and all experiments are conducted on a computer
with Inter i5-8500 3.00-GHz CPU and 16-GB memory.

4)
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MaskingPCs

The proposed CCMB has been proved to detect the
MaskingPCs and shield its impact. This experiment selects the
two subnetworks of Alarm BN in Fig. 2 to demonstrate the
effectiveness of CCMB to solve the PCMasking phenomenon.

The two examples in Fig. 2 take variables X5 and X1, as the
target, respectively. To validate the existence of PCMasking
phenomenon, we test the CI with 1000 samples and obtain
the results as follows:

X15 L Xi6/{Xo, X13}, X15 L {Xo, X13}|X16
X12 L X13|{X4, X6, X7}, X12 L {X4, X6, X7}|X13

which means that X6 and {Xo, X;3} are PCMasking for X;s,
and X3 and {X4, X, X7} are PCMasking for X;,. According to
Theorem 4, the existing algorithms cannot find out the correct
PC sets of X5 and Xi5. Table I provides the PC variables of
X15 and X2 found by our algorithm and other MB discovery
algorithms.

For Example 1 in Fig. 2, variables X9 and X3 have
stronger correlation with variable Xj5, such that they will
enter into PC(X;s) in advance and then prevent variable
Xi16. When using {Xo, X3} as the conditioning set, we have
dep(Xis, X16|{Xo, X13}) < —1.0. Therefore, X;¢ is misjudged
as a non-PC variable according to Theorem 1. This error will

TABLE I

SEARCHED PC VARIABLES ON ALARM SUBNETWORK
WITH PCMASKING PHENOMENON

Algorithms Results of Example 1 Results of Example 2

IAMB X16 € MB(X15) Xi13 ¢ MB(X12)
X15 EMB(XH;) X12 € MB(X13)

PCMB PC(X15) = {Xg.,XlS} PC(X12) = {X47 X61X7}
PC(X16) =g PC(X13) =g

MBOR PC(X15) = {Xo, X13} PC(X12) = {X4, X¢, X7}
PC(X16) = {X15} PC(X13) = {X12}

STMB PC(X15) = {Xo, X13} PC(X12) = {X4, X6, X7}
PC(Xl(;) =g PC(X13) =g

CCMB PC(X15) = {Xo,X13,X16} | PC(X12) = {X4, X6, X7,X3}
PC(X16) = {X15} PC(X13) = {X12}

TABLE II
STATISTICAL INFORMATION OF THE STANDARD BN DATASETS

Data set | Alarm | Alarm3 | Child | Child3 | Insurance | Insurance3
#Variables| 37 111 20 60 27 81
#Edges 46 149 25 79 52 163
Data set |Alarm5 | Alarm10 | Child5 | Child10|Insurance5 |Insurance10
#Variables| 185 370 100 200 135 270
#Edges 265 570 126 257 281 556

occur in all other existing algorithms. Moreover, STMB and
PCMB further misjudge that Xi5 is not a PC variable of Xj¢. In
contrast, our proposed CCMB achieves the complete PC sets
for variables X5 and X;¢ due to the cross-check and comple-
ment processes that can shield the influence of the PCMasking
for Xs. Similarly, when using {X4, X¢, X7} as the conditioning
set in Example 2, X13 will be misjudged as a non-PC variable
in all the existing algorithms while CCMB can avoid errors
on MaskingPCs.

B. Standard BN Datasets: The Accuracy and Time Efficiency
for MB Discovery

In this section, we conduct experiments on standard BN
datasets [34] to evaluate the performance of CCMB and
other algorithms. The standard BN data contains 12 network
datasets. Table II provides the statistical information of these
datasets, including the number of variables, the number of
edges, and the training size in the experiments. The experi-
ments consist of two parts, to verify the accuracy and time
efficiency of the proposed algorithms, respectively.

We run all the MB algorithms for each variable and repeat
these algorithms 20 times with different samples. The size
of training samples turns from {500, 1000, ..., 4000}, respec-
tively. We compare the accuracy and time efficiency of the
algorithms under the same sets of samples and analyze the
changes of the performance with increased training sample
scale.

Accuracy: The frequently used metrics Distance [7], [10],
[11], [29] is adapted to measure the accuracy of MB vari-
ables searching. The Distance measures the distance between
the detected MB and the true MB, calculated by: Distance =
/(1 — Precision)? + (1 — Recall)2, where the Precision is the
fraction of retrieved true positives over the total amount of
detected MB variables, and the Recall is the fraction of
retrieved true positives over the total amount of true MB vari-
ables. Thus, the lower Distance indicates the detected MB is
closer to the true MB.
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Fig. 5.

Results of the MB discovery experiments for the accuracy of CCMB and other algorithms on the 12 standard BN datasets. Note that the curves of

PM-CCMB and CCMB are identical since PM-CCMB only optimizes the algorithm structure of CCMB. Therefore, we do not make a distinction. (a) Alarm.
(b) Alarm3. (c) Alarm5. (d) Alarm10. (e) Child. (f) Child3. (g) Child5. (h) Child10. (i) Insurance. (j) Insurance3. (k) Insurance5. (1) InsurancelO.

Fig. 5 shows the average Distance variation curves of
CCMB and other algorithms with respect to the number of
samples. From Fig. 5, we can observe that all the algorithms
trend to achieve a lower Distance with more samples, and
CCMB consistently performs better than others with differ-
ent scales of samples on 9 out of 12 datasets. Since CCMB
considers the influence of PCMasking phenomenon on MB
discovery, more true positives are detected, which improves the
recall, thereby, improves the accuracy of the algorithm. The
Distance of CCMB is similar with PCMB but also smaller
than other algorithms on the Child 10, Insurance 3, and
Insurance 10 with large-scale samples (#Variables > 1000).
This is because CCMB may introduce some false positives into
the MB while finding more true positives, which causes the
precision of CCMB to drop slightly, resulting in the accuracy
of CCMB similar to PCMB. We also note that CCMB consis-
tently outperforms the other four MB discovery algorithms on
all datasets under small-scale samples (#Variables < 1000),
which demonstrates the significant superiority of CCMB in
data efficiency. Especially, on the Child dataset, CCMB uses
fewer samples (500 samples) to achieve a small Distance while
other algorithms need 1500-2500 samples to achieve a similar
Distance. With fewer samples, CCMB can find more accu-
rate MBs, while other algorithms cause more errors due to
insufficient samples. When the sample size reaches a certain

scale, the existing algorithms can avoid some true positives
being ignored, making their accuracy close to our proposed
CCMB. Therefore, the significant superiority of CCMB under
small-scale samples reflects that our proposed CCMB is more
data-efficient. In general, CCMB can significantly improve the
accuracy in comparison to the state-of-the-art algorithms.

We recall that PM-CCMB only optimizes the executing pro-
cess of CCMB. Therefore, in the above experiments, the curves
of PM-CCMB and CCMB are identical so that we do not
make a distinction. In the following text, we will see the supe-
riority of PM-CCMB over CCMB and other state-of-the-art
algorithms.

Time Efficiency: We recorded the CPU time for each dataset
in the above experiments. Fig. 6 shows the logarithmic time
variation curves of CCMB, PM-CCMB, and other algorithms
with respect to the number of samples. From Fig. 6, we can
observe that the CPU time of CCMB is slightly higher than
PCMB and other algorithms, it is mainly because CCMB intro-
duces the cross-check and complement processes to find more
true variables, which is a time-consuming step. To improve the
time efficiency, we proposed the PM. Therefore, PM-CCMB
consistently performs better than others with different scales
of samples on 10 out of 12 datasets, which demonstrates that
PM can significantly improve the computational efficiency
of CCMB through organizing and storing the intermediate
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Fig. 6.

Results of the MB discovery experiments for the time efficiency of CCMB, PM-CCMB, and other algorithms on the 12 standard BN datasets. (a)

Alarm. (b) Alarm3. (c) Alarm5. (d) Alarm10. (e) Child (f). Child3. (g) Child5. (h) Child10. (i) Insurance. (j) Insurance3. (k) InsuranceS. (1) InsurancelO.

results. Especially, PM-CCMB is even faster than the most
time-efficient IAMB. We also note that PM-CCMB is similar
with or slightly higher than IAMB on the Child and Insurance.
Mainly because, it will take more time to build the PM; then,
the PM saves in some datasets with fewer variables (such as
Child and Insurance). Even so, PM is still an effective accel-
erator for MB discovery algorithms. In general, PM-CCMB
can significantly improve the time efficiency in spite of its
impressive accuracy.

C. Emotion Recognition: The Effectiveness for Solving
Feature Selection Problem

This section employs the proposed MB discovery algorithms
in feature selection task to solve the emotion recognition
problem. A newly developed EEG dataset, SEED [32], will be
used to evaluate the performance of PM-CCMB. The SEED
dataset contains the EEG signals of 15 subjects, which are
regarded as 15 datasets. Each subject watched 15 emotional
film clips while the EEG signals were recorded by 62-channel
symmetrical electrodes (shown in Fig. 7). The features are
extracted from five common frequency bands, namely, Delta
(1-3 Hz), Theta (4-7 Hz), Alpha (8-13 Hz), Beta (14-30 Hz),
and Gamma (31-50 Hz), and each frequency band has 62-
channel neural signatures. Therefore, there are 310 features in
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Fig. 7. Layout of 62 channel symmetrical electrodes on the EEG.

the SEED. The emotional labels (negative, neutral, and pos-
itive) of the film clips are used as the target. Each subject
performed the emotion experiments in three separate sessions
with an interval of about one week or longer, and each session
contains 3394 samples (1120 negative samples, 1104 neutral
samples, and 1170 positive samples).

In our experiments, the differential entropy (DE) features
are chosen for emotion recognition due to its better discrimina-
tion [32]. For each subject, we randomly choose 1000 samples
as the training set, and 500 samples as the test set. We compare
the emotion recognition and feature selection effectiveness of
PM-CCMB with other algorithms on the test set.

We adopt three classifiers, that is, linear SVM, AdaBoost,
and Naive Bayes to compute their classification accuracies
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TABLE III
CLASSIFICATION ACCURACIES (MEAN+STANDARD DEVIATION %) ON THE EEG DATASETS ACHIEVED BY USING THREE CLASSIFIERS WITH THE
FEATURES SELECTED BY DIFFERENT MB ALGORITHMS AND FEATURE SELECTION ALGORITHMS. THE BEST RESULTS FOR EACH
DATASETS ARE HIGHLIGHTED IN BOLDFACE

Classifier Subject IAMB PCMB MBOR STMB FCBF mRMR PM-CCMB

#1 87.06+5.30 92.87+3.98 87.87+6.22 90.58+4.31 97.37+2.62 92.07+1.25 99.91+0.22

#2 67.04+8.00 94.76+4.47 67.39+8.41 66.33+7.25 96.98+2.17 97.15+£0.93 99.99+0.01

#3 67.15+8.44 96.09+1.98 67.15+8.44 96.32+1.94 93.284+6.78 97.89+0.23 99.99+0.01

#4 69.01£5.54 91.45+3.42 69.18+6.45 90.20£1.97 98.56+0.37 96.99+1.36 100.00£0.00

#5 69.14+2.73 96.14+1.18 69.25+2.49 95.54+1.73 98.52+1.10 96.65+1.23 100.00+0.00

#6 72.36+2.50 94.88+3.75 72.3612.50 91.35+4.62 99.5040.32 99.89+0.11 100.00+0.00

#7 77.09+7.02 96.05+1.26 80.25+4.29 95.324+2.38 98.98+1.00 95.761+0.43 99.99+0.01

LibSVM #8 68.01+17.14 94.04+4.49 68.34+17.68 90.52+6.73 99.3540.61 98.354+0.46 100.00+0.00

#9 70.55410.20 88.50+4.86 65.79£13.70 84.32+3.74 82.28+7.83 94.74+1.15 99.90+0.10

#10 73.21+4.71 87.86+6.20 73.62+4.70 85.69+5.43 97.56+3.19 97.96+0.53 99.97+0.02

#11 82.744+6.48 91.03+8.41 83.1416.55 92.06+7.42 99.774£0.35 96.11+1.13 100.00£0.00

#12 65.24+9.98 87.25+3.41 66.35+8.13 85.26+4.74 98.7440.12 99.72+0.23 100.00+0.00

#13 54.85+4.23 88.39+6.08 55.27+4.48 85.67+5.32 99.28+0.49 98.42+0.59 100.00+0.00

#14 78.94+9.25 81.02+5.10 79.62+10.77 83.44+6.52 92.184+0.97 92.68+0.41 99.98+0.01

#15 58.48+10.44 97.45+3.19 58.70+10.24 98.19+1.14 99.70+0.30  100.00+0.00  100.00+0.00
average ranks 6.73 4.00 6.13 4.73 2.80 2.53 1.07

#1 82.15+8.97 84.60+7.64 83.82+6.71 82.12+6.99 86.94+7.25 90.10+1.18 98.08+1.26

#2 58.08+2.99 71.214£5.82 57.94+3.18 69.20+5.97 82.22+45.64 82.54+0.76 90.77+3.22

#3 58.13+3.84 72.0445.50 58.13+3.84 73.06+5.60 78.67+1.37 88.37+0.96 87.31£0.95

#4 65.53+4.32 69.89+4.34 66.33+3.75 66.35+4.50 90.80+6.10 88.83+1.35 91.98+3.46

#5 67.29+2.70 77.49+2.36 67.03+2.97 78.25+2.26 82.94+8.71 81.77£0.96 93.13+£1.00

#6 75.41+£3.89 83.38+7.38 75.41+3.89 81.25+5.69 92.1742.65 94.83+2.62 95.40+0.66

#7 77.44+7.22 90.08+4.26 77.47+7.19 88.25+6.31 91.314+0.37 96.15+0.79 97.23+0.53

Adaboost #8 66.631+15.76 77.30+8.19 66.63+15.76 76.46+8.37 91.2642.65 93.69+1.12 94.07+2.04

#9 67.96+8.10 74.08+7.20 66.34+10.17 71.52+8.12 79.124+4.77 90.18+2.25 94.66+0.72

#10 65.6042.22 67.8315.81 65.831+2.56 63.261+4.32 82.10+£2.96 91.14+1.16 86.7910.97

#11 78.99+6.00 77.81+4.88 79.11+£5.95 76.42+5.23 91.56+1.28 90.53+0.51 93.66+0.99

#12 64.15+8.97 81.22+6.35 67.3249.63 80.79+4.53 88.74+1.12 89.48+0.92 91.26+1.35

#13 53.67+4.04 75.53+11.70 53.64+3.26 72.56+10.25  90.69+4.51 94.56+1.01 95.93+1.23

#14 61.724+9.43 73.59+5.32 61.28+10.52 75.26+6.48 91.254+0.74 88.95+2.74 96.73+1.95

#15 59.23+£13.37 95.45+2.64 59.42+13.19 96.424+2.76 98.53+0.29 97.51£0.63 99.5310.46
average ranks 6.20 4.40 6.27 5.13 2.67 220 1.13

#1 80.97+11.52 84.61+8.63 84.09+8.17 85.254+6.69 85.59+2.84 85.78+0.47 92.73+2.83

#2 54.54+6.71 76.57+8.54 54.6746.55 75.26+9.94 80.37+6.50 80.47+0.62 85.96+2.79

#3 60.09+5.22 76.82+5.31 60.09+5.23 74.36+7.10 75.78+1.61 85.37+1.12 78.22+3.41

#4 69.95+2.36 74.40£3.22 70.6142.40 72.22+4.85 92.74+5.58 90.99+1.22 92.684+1.92

#5 73.09+3.90 88.81+0.20 74.1943.43 85.12+42.23 87.90+5.28 90.13+0.81 95.30+0.96

#6 73.76+7.04 85.254+9.90 73.76+7.04 83.25+8.02 95.83+2.34 93.66+1.95 96.77+1.88

#7 82.57+4.76 89.60+3.15 81.30+5.87 84.59+4.77 94.14+1.19 91.24+0.96 97.30+0.23

Naive Bayes #8 72.97+17.34 83.77+6.15 73.39+17.96 81.69+3.26 94.06+1.93 86.22+0.42 100.00+0.00

#9 70.72£7.36 79.06+5.26 68.2949.56 80.15+4.83 78.12+1.86 81.99+1.74 85.76+1.62

#10 69.57+5.54 74.44+7.30 69.66+5.67 75.62+5.65 85.77+5.57 83.30+0.56 91.01+1.19

#11 81.274+5.08 78.2245.46 81.4245.10 77.42+6.72 89.59+2.02 81.74+1.16 91.75+1.08

#12 65.39+8.74 77.134+4.32 66.25+9.98 78.324+5.65 87.36+1.03 83.98+1.99 91.28+1.14

#13 60.40+4.48 83.09+9.27 60.22+4.27 84.15+6.74 93.70+4.88 92.56+1.32 99.20+0.56

#14 71.334+7.69 84.13+4.56 73.25+6.98 82.61+£3.42 87.35+0.61 85.46+2.85 89.15+1.36

#15 63.30+10.71 97.16+1.95 62.80+11.33 96.99+1.74 97.69+1.23 98.68+0.64 99.67+0.71
average ranks 6.47 4.27 6.27 4.73 2.60 2.53 1.13

achieved by using the selected feature subsets. In this experi-
ment, the regularization parameter of linear SVM is tuned from
{1072, ..., 10%} by the grid search strategy, and the number
of ensemble learning cycles is 50 in the AdaBoost. We first run
PM-CCMB and other algorithms to search its MB (or feature
subset) on the training samples, then use the selected feature
subset to train these classifiers on the training samples and,
finally, test the accuracy on the test samples. The experiments
are repeated 20 times with different training and test samples,
and the average classification accuracy of different classifiers
using the feature subsets selected by different algorithms are
given in Table III.

From Table III, we note that the classifiers using the fea-
tures selected by PM-CCMB achieve the highest or highly
competitive classification accuracy on most of the subjects,
which shows the effectiveness of PM-CCMB to select the rele-
vant features. Specifically, the features selected by PM-CCMB
can train a completely correct SVM classifier, while any other
algorithms cannot achieve the accuracy. Due to the influence

of the PCMasking phenomenon, the dependence between the
target and its relevant features may be blocked by other rel-
evant features. Therefore, existing MB discovery algorithms
may ignore some of the relevant features resulting in the low
accuracy of classification. By detecting the MaskingPCs, our
algorithm can find more relevant features and significantly
improve the accuracy of features selection. Through comparing
with two well-established feature selection algorithms, we can
conclude that PM-CCMB can achieve similar or even better
feature selection effectiveness.

To give a comprehensive performance comparison between
PM-CCMB and others, the Friedman test [36] combining with
the post-hoc tests at a 95% confidence level is used to make
a statistical comparison of different algorithms over multiple
datasets. The last row of each classifier in Table III shows
the average ranks. Note that the traditional feature selec-
tion algorithms have better performances against the causal
feature selection algorithms except PM-CCMB. It is mainly
because all the causal feature selection algorithms are under
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Fig. 8. Profiles of top-20 features selected by PM-CCMB on the (a) Beta and
(b) Gamma frequency bands, which is consistent with the previous findings
in [35].

the faithfulness assumption, which cannot be satisfied in the
real-world datasets. However, the proposed cross-check and
complement processes can not only avoid the PCMasking
phenomenon but also make the PM-CCMB more robust in
the unfaithful datasets. Therefore, with the three classifiers,
the overall classification accuracy of the proposed PM-CCMB
is significantly better than all other algorithms, including the
traditional feature selection methods.

Compared with the traditional feature selection methods,
PM-CCMB can select useful features and simultaneously
explain the causality between features and target. To illus-
trate the interpretability of PM-CCMB, we collect the features
selected by PM-CCMB in all datasets and select the top-
20 features with the highest frequency, whose positions are
illustrated in Fig. 8. As depicted in the figure, the top-
20 features are all from the Beta and Gamma frequency
bands and located at the lateral temporal area except one of
them, which is consistent with the previous findings in [35].
These results indicate that PM-CCMB can effectively select
the relevant channels containing discriminative information
and simultaneously eliminate irrelevant channels for emotion
recognition.

VII. CONCLUSION

This article introduces the concept of PCMasking to the
BN. Based on the PCMasking, we analyze the main reason
that causes the lower accuracy in the existing MB discov-
ery algorithms. To detect the MaskingPCs, we propose the
cross-check and complement processes, in which the cross-
check process can effectively detect the MaskingPCs and the
complement process can repair the symmetry (between PC
variables) broken by PCMasking phenomenon. On the basis
of the cross-check and complement processes, we propose
a topology-based MB discovery algorithm, CCMB, to find
more true variables. To simultaneously improve the time effi-
ciency, we propose an acceleration methodology for the MB
discovery algorithm called PM. Embedding CCMB into PM,
we propose PM-CCMB, which can maintain the same accu-
racy with CCMB and further improve the time efficiency.
PM-CCMB is extensively evaluated and compared with the
state-of-the-art MB discovery algorithms on different datasets.
The results validate that PM-CCMB can shield the influence
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of PCMasking phenomenon effectively and simultaneously
improve the accuracy and time efficiency of MB discovery.
In the future, there are three directions worth further investi-
gation. One is to relax the causal sufficiency assumptions [37]
and examine the validity of PM-CCMB when applied to real-
world feature selection situations. The second direction is to
extend PM-CCMB to BN structure learning, especially for
large dimensional problems and small samples. The third
direction is to develop a joint feature selection and classifi-
cation algorithm with some Bayesian methods [38], [39].
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