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Abstract

With the increasing data dimensionality, feature selec-
tion has become a fundamental task to deal with high-
dimensional data. Semi-supervised feature selection fo-
cuses on the problem of how to learn a relevant fea-
ture subset in the case of abundant unlabeled data with
few labeled data. In recent years, many semi-supervised
feature selection algorithms have been proposed. How-
ever, these algorithms are implemented by separating
the processes of feature selection and classifier train-
ing, such that they cannot simultaneously select fea-
tures and learn a classifier with the selected features.
Moreover, they ignore the difference of reliability insid-
e unlabeled samples and directly use them in the train-
ing stage, which might cause performance degradation.
In this paper, we propose a joint semi-supervised fea-
ture selection and classification algorithm (JSFS) which
adopts a Bayesian approach to automatically select the
relevant features and simultaneously learn a classifier.
Instead of using all unlabeled samples indiscriminate-
ly, JSFS associates each unlabeled sample with a self-
adjusting weight to distinguish the difference between
them, which can effectively eliminate the irrelevant un-
labeled samples via introducing a left-truncated Gaus-
sian prior. Experiments on various datasets demonstrate
the effectiveness and superiority of JSFS.

Introduction
In many real-world applications, such as scene classifica-
tion, text categorization, gene expression data analysis, the
data dimensionality becomes larger and larger. Directly us-
ing these high-dimensional data might lead to lower time ef-
ficiency and performance deterioration due to the existence
of noisy or irrelevant features. As a dimensionality reduction
technique, feature selection tries to find a lower-dimensional
representation of data via removing irrelevant features with-
out altering the original feature space (Chandrashekar and
Sahin 2014). Due to its effective representation and bet-
ter interpretability for data, various feature selection al-
gorithms have been proposed (He, Cai, and Niyogi 2006;
Zhao and Liu 2007; Nie et al. 2010; Jiang et al. 2016).
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According to the availability of the class label, the ex-
isting feature selection algorithms can be divided into
three different groups: unsupervised, supervised and semi-
supervised (Sheikhpour et al. 2017). Without the guidance
of class label information, unsupervised algorithms cannot
select the features that effectively distinguish different class-
es. On the other hand, supervised algorithms can selec-
t discriminative features with sufficient labeled data. How-
ever, the labeled data is usually scarce since it is expen-
sive and time-consuming to collect them. Therefore, it is
of great practical significance to design the feature selec-
tion algorithm that can exploit both labeled and unlabeled
data simultaneously. Inspired by the semi-supervised learn-
ing (Chapelle, Schölkopf, and Zien 2006; Sakai et al. 2017;
Chen, Jiang, and Yao 2018), semi-supervised feature selec-
tion has been proposed, which can select features with the
help of the label information of labeled data and the struc-
ture information of unlabeled data.

To learn the relevant features in the case of abundant unla-
beled data with few labeled data, many state-of-the-art semi-
supervised feature selection algorithms have been proposed.
Most semi-supervised feature selection algorithms are filter-
based, which are implemented by ranking the features based
on their capability of maintaining the specific data structure
or some information criterion. For example, Zhao et al pro-
posed a locality sensitive discriminant algorithm (Zhao, Lu,
and He 2008), which selects the features that can maximize
the margin between different classes and simultaneously p-
reserve the similarity between data. Based on the trace ratio
criterion in supervised learning (Nie et al. 2008), Liu et al
designed a semi-supervised feature selection algorithm that
can avoid selecting the features with very small variance (Li-
u et al. 2013). However, the filter-based semi-supervised fea-
ture selection algorithms ignore the interaction between the
selection of feature and the learning tasks. Therefore, it is
difficult for them to select the features that are particularly
effective for a given learning algorithm (Xu et al. 2010).

More recently, the sparsity constraint combining with
the manifold regularization framework (Belkin, Niyogi, and
Sindhwani 2006) has been applied to design the embedded
algorithms. The embedded semi-supervised feature selec-
tion algorithms formulate an objective function to exploit the
discriminative information and the local geometric structure
of training data to learn a feature projection matrix. For ex-



ample, Ma et al. incorporated l21-norm constraint into man-
ifold regularization and proposed a structural feature selec-
tion algorithm. Luo et al. used l2q-norm (0 < q ≤ 1) con-
straint to replace the l21-norm and designed an insensitive
sparse regression algorithm (Luo et al. 2018). Unfortunate-
ly, this algorithm has at least four free parameters that need
to be tuned, which makes it difficult to be practical. Gener-
ally, although the embedded algorithms integrate the feature
selection process to the training, they are not able to adap-
tively select features and simultaneously learn a classifier
with the selected features. Concretely, they need to prede-
termine the number of selected features and then select fea-
tures according to the feature projection matrix. To validate
the effectiveness of selected features, an additional classi-
fier (usually SVM or KNN) is required to train a classifier
by using the selected features. Sometimes, they could stil-
l perform well by using a classifier with tuned parameters
even though including some irreverent features. Therefore,
it is hard to judge whether their promising performance is
attributed to the robust classifier or the selected features.

Moreover, the filter-based or embedded semi-supervised
feature selection algorithms mentioned above indiscrimi-
nately and directly use the labeled and unlabeled samples
to design the evaluation criterion or objective functions for
selecting features. In fact, the labeled samples are usually
more reliable while there might inevitably exist noisy unla-
beled samples since abundant unlabeled samples could be
collected from different resources. Therefore, using all un-
labeled samples indiscriminately could have an adverse im-
pact on the feature selection and even lead to performance
degradation. Although the semi-supervised feature selection
has been used to some applications, it fails to take the ro-
bustness to the noisy unlabeled samples into consideration.

To alleviate this issue, Chang et al. proposed a convex
semi-supervised feature selection algorithm (Chang et al.
2014), which preassigns different scores for labeled and un-
labeled samples. However, this algorithm lacks the ability to
capture the local geometric structure of unlabeled data. In
fact, the local geometric structure refers to the local neigh-
borhood relationship, which is very effective for feature s-
election especially when very few labeled samples with the
high-dimension feature are provided (Liu et al. 2014). More-
over, it determines the scores of labeled and unlabeled sam-
ples empirically, making it hard to be useful. Thus, it is of vi-
tal importance for semi-supervised feature selection to make
full use of unlabeled samples and simultaneously take an ef-
fective strategy to distinguish their difference of reliability.

Motivated by the aforementioned issues, we propose a
novel semi-supervised feature selection algorithm, called
joint semi-supervised feature selection and classification
through Bayesian approach (JSFS). The main contributions
of this paper are summarized as follows:
• Combining with a Bayesian approach, JSFS is able to

adaptively identify the relevant features and simultane-
ously learn a classifier with the selected features. Thus,
JSFS does not require the number of selected features to
be predetermined, nor an additional classifier to be adopt-
ed for training, which are two main limitations of the ex-
isting semi-supervised feature selection algorithms.

• To make better use of prior knowledge from labeled and
unlabeled samples, we define a prior on feature weight
to generate adaptive sparsity in the feature space and then
propose an alternative way to optimize the feature weight.

• Instead of using all unlabeled samples indiscriminately
and directly, we associate each unlabeled sample with
a self-adjusting weight first and then introduce a left-
truncated Gaussian prior on it. By this prior, JSFS can
eliminate the irrelevant unlabeled samples, improving the
robustness against noise.

• JSFS is compared with the state-of-the-art algorithms.
The experimental results on different real-world datasets
validate the effectiveness and superiority of JSFS.

The proposed algorithm
In this section, we will propose the joint semi-supervised
feature selection and classification algorithm in detail.

Notation and Model Specification
In semi-supervised learning, training data X consists of a
labeled dataset with l samples, Xl = {xi}li=1 associated
with class labels y = [y1, . . . , yl]

T , and an unlabeled dataset
with u samples, Xu = {xi}ni=l+1, where xi ∈ Rd and
n = l + u is the total number of training samples. This
paper studies the binary semi-supervised feature selection
problem, in which the class label yi ∈ {0, 1}. Given the
training data, the main aim is to learn a prediction model
based on the selected features, which can make an accurate
prediction for out-of-sample data.

The prediction model adopted by previous feature selec-
tion algorithms is a linear combination of all features, treat-
ing the labeled and unlabeled samples equally in the training
stage. This model is improper due to ignoring the quality
difference between labeled and unlabeled samples and the
difference between unlabeled samples themselves. To over-
come this limitation, we propose a separable linear model
from training data as:

f(X,w,Λ) = ΛXw, (1)

where X = [x1, · · · ,xn]T ∈ Rn×d denotes training sam-
ples, w = [w1, · · · , wd]T is the d-dimensional weight vec-
tor for the feature, and Λ = diag(λ1, . . . , λn) denotes an
n × n non-negative diagonal matrix, which consists of the
weights for training samples. In Eq. (1), each sample xi is
associated with a weight λi (λi ≥ 0), and the training sam-
ples are re-weighted via ΛX before combining with the fea-
tures weight vector w. The sample weights evaluate the im-
portance of samples, and their values reflect the difference
between training samples. In our algorithm, we care more
about the difference between unlabeled samples not that be-
tween labeled samples since labeled samples are scarce with
more reliable quality while unlabeled samples are abundan-
t with greatly varied properties. Thus, we assign the same
weight for labeled samples, e.g., λi = 1 (i = 1, . . . , l). Dif-
ferent from the predetermined scores for the unlabeled sam-
ples in (Chang et al. 2014), the weights of the unlabeled sam-
ple λj (j = l + 1, . . . , n) are adjustable parameters whose
values will be adaptively tuned in the training stage.



Priors over Weights of Features and Samples
In semi-supervised classification, the discriminant informa-
tion included in labeled samples is very limited. To exploit
abundant unlabeled samples, previous semi-supervised al-
gorithms define an additional regularizer to capture the local
geometric structure underlying the unlabeled samples. From
a Bayesian perspective, the regularizer is corresponding to
the prior knowledge (Bishop 2006; Jiang et al. 2017). To
make better use of few labeled and abundant unlabeled sam-
ples, a sparseness-promoting prior over above feature weight
vector w is designed as:

p(w|α) = (2π)−
d
2 |A+B| 12 exp

{
−1

2
wT (A+B)w

}
, (2)

whereα = [α1, . . . , αd] is a d-dimensional hyper-parameter
vector, and B = γXTLX , in which γ (γ ≥ 0) is a prede-
termined parameter that controls the use of local geometric
structure of training samples, and L is the graph Laplacian
that characterizes the intrinsic local structure. By combin-
ing matrix B with feature weight vector w, we can inte-
grate the local geometric structure into the prior and conduct
semi-supervised feature selection within a Bayesian frame-
work. Note that when the local structure is not obvious, the
γ will have a very small value, making matrix B possi-
bly singular. At this point, the prior in Eq. (2) is close to
a zero-mean Gaussian prior with the inverse covariance ma-
trix A = diag(α1, . . . , αd). Therefore, introducing a non-
negative diagonal matrix A that acts as a sparse regularizer,
could stabilize the prior especially whenB may be singular.

To capture the local neighborhood relationship of training
samples, the graph Laplacian matrix L = D−S is built. S
is an affinity matrix whose element Sij reflects the similarity
between samples xi and xj , and D denotes a diagonal ma-
trix with the diagonal element Dii =

∑
j Sij . To efficiently

compute the graph Laplacian, we use a k-nearest neighbor
graph to construct the affinity matrix S as follows:

Sij =


η if xi and xj have the same label,

1 if xi or xj is unlabeled

but xi ∈ kNN(xj) or xj ∈ kNN(xi),

0 otherwise

(3)

where kNN(xj) denotes the k nearest neighbors set of sam-
ple xj , and η is a constant which is set as 10 in this paper.
The affinity matrix S measures the neighborhood relation-
ship of training data while considering the difference be-
tween the samples with the same label and the unlabeled
samples that are sufficiently close to each other.

Sample weights reflect the importance of unlabeled sam-
ples. For important unlabeled samples, the corresponding
weights should have relatively large values and vice versa.
To avoid the indiscriminative use of unlabeled samples and
simultaneously ensure λj ≥ 0, a left truncated Gaussian pri-
or is introduced over unlabeled sample weights

p(λ|c) =

n∏
j=l+1

p(λj | cj) =

n∏
j=l+1

Nt(λj |0, c−1
j ), (4)

where λ = [λl+1, . . . , λn]T is the weight vector of unla-
beled samples, cj is the inverse of variance which is also

referred as a hyper-parameter, c is the corresponding hyper-
parameter vector andNt(λj |0, c−1

j ) denotes the left truncat-
ed Gaussian distribution. For each unlabeled sample weight
λj (j = l + 1, . . . , n), its prior is formalized as follows

p(λj | cj) =

{
2N (λj | 0, c−1

j ) if λj ≥ 0
0 otherwise

= 2N (λj | 0, c−1
j ) · δ(λj), (5)

where δ(λj) is an indicator function that returns 1 for each
λj ≥ 0 and 0 otherwise. According to (Chen, Tiňo, and
Yao 2009; 2014), this truncated Gaussian prior can gener-
ate adaptive sparseness in the estimation of λ.

In Bayesian research (Tipping 2001; Li and de Rijke
2018), the non-informative Gamma distribution is often in-
troduced as hyperpriors for hyper-parameters αi and cj ,
which can promote the sparsity of feature and unlabeled
sample space. Specifically, the posterior estimate of the pa-
rameter (wi or λj) will be very close to zero for a large value
of hyper-parameter, thus the corresponding feature or unla-
beled sample will be removed from the current model due to
less contribution.

Optimization
Based on the prediction model in Eq. (1), the posterior prob-
ability for sample xi belonging to positive class can be cal-
culated by applying a logistic sigmoid function σ(x) =
1/(1 + e−x) to its prediction, i.e., p(yi = 1|xi,w, λ) =
σ(λiw

Txi). Also, the posterior probability for negative
class, p(yi = 0|xi,w, λ) = 1 − σ(λiw

Txi). By providing
pseudo labels for unlabeled samples, the likelihood function
p(y|X,w,λ) can be decomposed as:

p(y|X,w,λ) = p(yl|X,w,λ) · r p(ỹu|X,w,λ) , (6)

where p(yl|X,w,λ) denotes the likelihood function on la-
beled samples with true label vector yl = [y1, . . . , yl]

T ,
p(ỹu|X,w,λ) denotes the likelihood function on unlabeled
samples with pseudo label vector ỹu = [ỹl+1, . . . , ỹn]T ,
and y = [yl, ỹu]T . To enlarge the label information, we in-
troduce pseudo labels ỹj for unlabeled samples, which can
be obtained by the label propagation algorithm (Zhou et al.
2004). The pseudo labels extend the definition of likelihood,
but also contain some false labels for unlabeled samples,
which affects the reliability of likelihood. Therefore, a trade-
off parameter r is introduced to balance p(yl|X,w,λ) and
p(ỹu|X,w,λ).

The MAP Estimates of Parameters w and λ: Having
the priors and likelihood, the posterior distribution over w
and λ can be computed by using the Bayesian rule:

p(w,λ|y,α, c) =
p(w|α)p(λ|c)p(y|X,w,λ)

p(y|X,α, c)
. (7)

Due to the non-Gaussian distribution of the likelihood,
p(y|X,α, c) =

∫ ∫
p(w|α) p(λ|c) p(y|X,w,λ)dw dλ

in Eq. (7) is intractable, and thus we cannot derive an ana-
lytical solution for p(w,λ|y,α, c). Adopting the Bernoulli
distribution for likelihood and putting the priors in Eqs. (2)



and (4) into the log of posterior p(w,λ|y,α, c), we have

Q(w,λ) = log p(w|α) + log p(λ|c) + log p(y|X,w,λ)

=

l∑
i=1

[yi log σi + (1− yi) log(1− σi)]

+ µ

n∑
j=l+1

[ỹj log σj + (1− ỹj) log(1− σj)]

− 1

2
wT (A+B)w − 1

2
λTCλ+

n∑
j=l+1

log δ(λj) ,

(8)

where σi = σ(λiw
Txi), µ = ln r (0 ≤ µ ≤ 1) is a param-

eter that controls the importance of the likelihood function
defined on unlabeled samples, and C=diag(cl+1, . . . , cn).
As the indicator function δ(λj) is not differentiable, we can
approximate it by a sigmoid function σ(βλj) with β = 5.
The maximum a posterior (MAP) estimates of w and λ can
be boiled down to how to maximize Q(w,λ). Due to the
non-convexity of the likelihood, it is difficult to maximize
Q(w,λ) with respect to parametersw and λ directly and si-
multaneously. To solve this maximization problem, we pro-
pose an alternative way to optimize Q(w,λ) with respect to
one parameter assuming the other to be fixed.

To find the MAP estimate ŵ, we first optimize Q(w,λ)
with respect to w when λ is fixed. We adopt the iteratively
re-weighted least squares method to update w as follows:

ŵnew = ŵ −H−1
w gw, (9)

where gw denotes the gradient vector of Q(w,λ) with re-
spect to w, and Hw is the Hessian matrix. When λ is fixed,
Q(w,λ) can be written as Q(w|λ). Therefore, the gradient
gw is given by:

gw =
∂Q(w|λ)

∂w
= XT Λ̃(y − σ)− (A+B)w, (10)

where Λ̃ is a diagonal matrix with Λ̃ii = 1 if xi is labeled
and Λ̃ii = µλi otherwise, and σ = [σ1, . . . , σn]T . The Hes-
sian matrix of w is given by:

Hw =
∂2Q(w|λ)

∂w2
= −(XTEX +A+B), (11)

where E is a d × d diagonal matrix with Eii = σi(1 − σi)
if xi is labeled and Eii = µλ2iσi(1− σi) otherwise.

Likewise, we update λ with fixed w as follows:

λ̂new = λ̂−H−1
λ gλ, (12)

where gλ denotes the gradient vector of λ, and Hλ is the
corresponding Hessian matrix. The gradient gλ is given by:

gλ =
∂Q(λ|w)

∂λ
= µP (ỹu − σu)−Cλ+ kλ, (13)

where kλ = [β(1 − σ(βλl+1)), . . . , β(1 − σ(βλn))]T and
σu = [σl+1, . . . , σn]T are u-dimensional vectors, P is an
u×u diagonal matrix with the i-th diagonal elements Pii =
wTxl+i. Then, the Hessian matrix of λ is given by:

Hλ =
∂2Q(λ|w)

∂λ2
= −(µP TEuP +C +O), (14)

where Eu and O are u × u diagonal matrices with their i-
th diagonal elements Eu,ii = σl+i(1 − σl+i), and Oii =
β2σ(βλl+i)(1− σ(βλl+i)).

Based on the above alternative update rules, the MAP es-
timates of feature weights w and unlabeled sample weights
λ can be obtained. Provided with the MAP estimates of pa-
rameters, we can update hyper-parameters α and c.

Algorithm 1 The proposed JSFS algorithm
1: Input: Training dataX ∈ Rn×d, parameters γ and µ.
2: Output: The selected feature indexes and their corre-

sponding weight vector w for the linear classifier.
3: Initialize wi, λj , αi, and cj for i = 1, . . . , d and j =
l + 1, . . . , n.

4: Construct the affinity matrix S and graph Laplacian L.
5: Obtain the pseudo label vector ỹu via label propagation.
6: While maxi |wnew

i − wold
i | > 10−3 do

7: If ‖gw‖/d < 10−3 then
8: Fix λ, compute gw andHw by Eqs . (10) and (11),

and update w ← w −H−1
w gw;

9: end if
10: Remove the i-th feature if |wi| < 10−3;
11: If ‖gλ‖/u < 10−3 then
12: Fix w, compute gλ andHλ by Eqs . (13) and (14),

and update λ← λ−H−1
λ gλ;

13: end if
14: Remove the j-th unlabeled sample if |λj | < 10−3;
15: Update α and c using Eqs. (18) and (20);
16: end while

Optimizing the Hyper-parameters α and c: Given the
MAP estimate of parameters w and λ, the learning objec-
tive becomes the optimization of hyper-parameters α and
c, which boils down to maximize the hyper-parameter pos-
terior, i.e., p(α, c|X,y) ∝ p(y|X,α, c)p(α)p(c). Due to
the noninformative hyperpriors over α and c, we need on-
ly maximize p(y|X,α, c), which is known as the marginal
likelihood. Therefore, we can update hyper-parameters by

(α̂, ĉ) = arg max
(α,c)

p(y|X,α, c)

= arg max
(α,c)

∫ ∫
p(y|X,w,λ) p(w|α) p(λ|c)dw dλ.

(15)

Since the integral in Eq. (15) is intractable, the maximiza-
tion with respect to α and c cannot be simultaneously de-
rived. To update the hyper-parameters, we use an iterative
re-estimation method to alternately optimize the marginal
likelihood between α and c. First, we attempt to maximize
the marginal likelihood with respect to α assuming c to be
fixed. Then we have α̂ = arg maxα L(α), where

L(α) =

∫
p(y|X,w,λ) p(w|α)dw

≈ p(y|X, ŵ,λ)p(ŵ|α)(2π)
d
2 | −Hŵ|−

1
2 ,

(16)

where ŵ is the MAP estimate of w, and Hŵ is the Hes-
sian matrix computed at ŵ. Substituting w in the prior and



likelihood with ŵ, we have the log marginal likelihood

logL(α) ≈ log p(y|X, ŵ,λ)− 1

2
ŵTAŵ

+
1

2
log |A+B| − 1

2
log | −Hŵ| .

(17)

To find the α that can maximize this approximation of
log marginal likelihood, we set the first order derivative of
logL(α) to zero, and get the update rule

αnew
i =

1

ŵ2
i +Gii + Σw,ii

, (18)

where ŵi is the i-th element of ŵ, Gii is the i-th diagonal
element of the matrixG = A−1B(I+A−1B)−1A−1, and
Σw,ii denotes the i-th diagonal element of −H−1

ŵ .
Likewise, we maximize the marginal likelihood with re-

spect to c when α is fixed, i.e., ĉ = arg maxc L(c), where

L(c) ≈ p(y|X,w, λ̂)p(λ̂|c)(2π)
u
2 | −Hλ̂|

− 1
2 , (19)

where λ̂ is the MAP estimate of λ, and Hλ̂ is the Hessian
matrix computed at λ̂. Setting the first order derivative of
logL(c) to zero, we have

cnewj =
1

λ̂2j + Σλ,jj
, (20)

where λ̂j is the j-th element of λ̂, and Σλ,jj denotes the j-th
diagonal element of −H−1

λ̂
.

With the above update formulas, the pseudo code of
the proposed JSFS algorithm is provided as Algorithm 1.
Specifically, JCFS first finds the MAP estimator ŵ and λ̂
given the hyper-parameters αi and cj by iteratively using E-
qs. (9) and (12), and then updates the hyper-parameters by
Eqs. (18) and (20). During updating, we generally find that
most of wi and λj tend to zero, thus the corresponding ir-
relevant feature and unlabeled sample will be automatical-
ly removed from the current model through Bayesian auto-
matic relevance determination (Bishop 2006), which avoids
predetermining the number of selected features and simul-
taneously accelerates the training speed. Except for measur-
ing the importance of features, the feature weightsw can be
used to learn a direct classifier for the samples represented
by the selected features. For any unseen sample x̂, its label
ŷ = 1 whenever f(x̂,w) = wT x̂ ≥ 0, and ŷ = 0 when-
ever f(x̂,w) = wT x̂ < 0. Thus, JSFS does not require an
additional classifier to be adopted for training as well.

Experiments
In this section, we conduct a series of experiments to eval-
uate the effectiveness of JSFS. The first experiment aims to
validate the robustness of JSFS against noisy features and
unlabeled samples. Then, eight high-dimensional datasets
from various domains are used to verify the performance of
classification and feature selection of JSFS.
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Figure 1: Accuracies (in %) of different algorithms with the
increase of noisy features and unlabeled samples in data.

Experimental Setup
To illustrate the effectiveness and superiority of JSFS, it
is compared with some state-of-the-art feature selection al-
gorithms, including three embedded semi-supervised fea-
ture selection algorithms: semi-supervised feature selection
via insensitive sparse regression (ISR) (Luo et al. 2018),
structural feature selection with sparsity (SFSS) (Ma et al.
2012) and convex semi-supervised feature selection (CSFS)
(Chang et al. 2014), two filter-based semi-supervised feature
selection algorithm: locality sensitive discriminant feature
(LSDF) (Zhao, Lu, and He 2008) and semi-supervised fea-
ture selection with trace ratio criterion (TRCFS) (Liu et al.
2013), and one supervised feature selection algorithm: fisher
score (Fisher) (Bishop and others 1995).

For a fair comparison, the regularization or trade-off
parameters of all comparing algorithms are tuned from
{10−2, 10−1, · · · , 102} by grid search, the number of near-
est neighbor k is set as five for all algorithms, and parameters
µ and γ ∈ [0, 1] for JSFS. Since the comparing algorithm-
s are not able to select features and simultaneously learn a
classifier with the selected features. To evaluate the quali-
ty of selected features, the linear Support Vector Machine
(SVM) (Chang and Lin 2011) is adopted to compute their
classification accuracies. Specifically, we first apply these
feature selection algorithms to select features and then use
SVM to train a classifier with the selected features. For each
comparing algorithm, we report their best classification ac-
curacies on the test samples represented by the selected fea-
tures, employing the trained classifier.

Robustness Against Noisy Features and Samples
The first experiment is to verify the robustness of JSFS a-
gainst the increasing scales of noise features and unlabeled
samples. We use G50C dataset (Chapelle and Zien 2005),
containing 550 samples with two classes, in which each
sample has 50 features generated by a 50-dimensional multi-
variate Gaussian distribution. G50C is randomly partitioned
by 350 samples for training and 200 for testing, in which the
training set includes 20 labeled samples for each class.

In this experiments, we gradually increase the numbers of
noise features and unlabeled samples to the data, in which
the noise is generated from independent and identically dis-
tributedN (0, 1). Each algorithm in independently run on 20
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(b) Results on Basehock data
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(c) Results on Gisette data
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(d) Results on Mnist2 data
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(e) Results on Coil202 data
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(f) Results on YaleB2 data
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(g) Results on Prostate data
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(h) Results on Colon data

Figure 2: Illustration of the accuracy of JSFS and other feature selection algorithms with different scales of selected features.

disparate data partitions, and the average classification accu-
racy on the test samples is used to evaluate them. The accura-
cy variation curves are illustrated in Figure 1, in which Fig-
ure 1(a) demonstrates the accuracies of seven feature selec-
tion algorithms against gradually increasing noise features,
and Figure 1(b) shows accuracies versus the increasing num-
ber of noisy unlabeled samples with 50 noise features. As
shown in Figure 1, all algorithms trend to achieve reduced
accuracy with the increase of the noise in data, and JSFS can
consistently outperform these state-of-the-art algorithms.

Furthermore, from Figures 1(a) and 1(b) we note that the
variation trend of accuracy with added noise features or un-
labeled samples is obviously different. Specifically, the ac-
curacies of comparing algorithms are slightly reduced with
increasing noise features in Figures 1(a). This result is rea-
sonable because they are feature selection algorithms and
largely immune to the noise features. However, their accura-
cies as depicted in Figure 1(b) are rapidly deteriorated with
the increase of unlabeled samples. The main reason is that
they directly use all available unlabeled samples and fail to
take the reliability of them into full consideration. Fortunate-
ly, except for selecting relevant features for classification,
our algorithm provides a selective mode to effectively ex-
ploit unlabeled samples via the adopted prior in unlabeled
sample space, which can automatically eliminate the noise
unlabeled samples. The results in Figure 1 demonstrate the
significant superiority of JSFS in terms of robustness against
the added noise in data, especially when there exist noise un-
labeled samples.

Performance on High-dimensional Datasets
To evaluate the effectiveness of our proposed joint semi-
supervised feature selection and classification learning algo-

rithm, 8 high-dimensional datasets that are collected from
different fields are used, including two text datasets: PA-
MAC and Basehock; four image datasets: Gisette, Mnist2,
Coil202 and YaleB2; and two biological datasets: Prostate
and Colon. Mnist2 is the most challenging binary version
of the MNIST dataset, which aims to separate digit 4 from
digit 9. Coil202 and YaleB2 denote the binary version of the
Coil20 and extended YaleB datasets, respectively. The goal
is to discriminate object 1 from object 2. The detailed char-
acteristics of the datasets are summarized in Table 1. Due to
different numbers of samples in training set, we randomly
sample 5, 5, 5, 5, 10, 20, 20, and 20 labeled samples each
class for Coil202, YaleB2, Colon, Prostate, Mnist2, Gisette,
Basehock and PCMAC, and the rest of samples in training
set are unlabeled.

Table 1: Characteristics of 8 experimental data sets.
Data # features # training # test

PCMAC 3,289 1,000 943
Basehock 4,862 1,000 993

Gisette 5,000 3,500 3,500
Mnist2 784 3,782 1,0000
Coil202 1,024 100 144
YaleB2 1,024 100 28
Prostate 5,966 82 20
Colon 2,000 42 20

For these comparing feature selection algorithms, it is stil-
l hard to determine the optimal number of features. Thus,
we select various numbers of selected features for different
datasets since they have different dimensions of features. We
perform the experiments 10 times on 10 disparate training
and test sets to reduce the statistical variability. The average
classification accuracies on different datasets with respect to
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Figure 3: Variation curves of the number of features and unlabeled samples selected by our algorithm and the marginal likeli-
hood functions in Eqs. (17) and (19) on PCMAC dataset.

the number of selected features are shown in Figure 2. Dif-
ferent from other feature selection algorithms that require to
predetermine the number of selected features, our algorith-
m can adaptively select relevant features and simultaneously
remove out the features with less contribution, automatical-
ly determining number of selected features. Therefore, the
accuracy of JSFS does not vary with increasing number of
selected features in Figure 2. Table 2 presents the average
number of features selected by JSFS, which demonstrates
the sparsity of JSFS.

Table 2: The average number of features selected by JSFS.
Data PCMAC Basehock Gisette Mnist2
SF 39 117 90 72

Data Coil202 YaleB2 Prostate Colon
SF 19 28 30 125

* SF denotes the average number of selected features.

As shown in Figure 2, the semi-supervised feature selec-
tion algorithms achieve higher accuracies than the super-
vised algorithm (i.e., Fisher) in most of cases, which vali-
dates the usefulness of unlabeled samples for performance
improvement. Since our algorithm can perform feature se-
lection and simultaneously learn an optimal classifier with
the selected features, together with taking the difference of
importance between unlabeled samples into consideration.
From Figure 2, we observe that our algorithm outperforms
other algorithms on 4 out of 8 datasets and also achieves very
competitive accuracies on the remaining datasets in compar-
ison with the state-of-the-art algorithms.

Complexity and Convergence Analysis
In the initial training stage, our algorithm contains labeled
and all available unlabeled samples. The main computation-
al cost of our algorithm is to update the weights of feature
and unlabeled samples in Eqs. (9) and (12), which requires
to use the Cholesky decomposition to compute the inverse
of their corresponding Hessian matrices in Eqs. (11) and
(14). Therefore, the computational complexity of JSFS is
O(d3 +u3), in which d and u denote the number of features
and unlabeled samples, respectively.

Due to the adaptive sparsity in feature and unlabeled sam-
ple space, most of wi and λj will be restricted to a smal-

l neighborhood around 0 and then we remove their corre-
sponding features and unlabeled samples in future iterations.
As iteration goes on, d and u rapidly decrease to relatively s-
mall values in the first few iterations, resulting inO(ū3+d̄3)
computational complexity, where d̄� d and ū� u. In fact,
our proposed algorithm is efficient with fast convergence.
To illustrate the speed of convergence, Figure 3 provides
the variation curves of the number of features and unlabeled
samples selected by JSFS and their corresponding marginal
likelihoods on PCMAC dataset. From this figure, we can ob-
serve that our proposed algorithm can converge stably in the
first 40 iterations, which can accelerate the training speed
and guarantee the efficiency for practical applications.

Conclusion

In this paper, we proposed a novel semi-supervised feature
selection algorithm, called JSFS. JSFS adopts a Bayesian
approach to solve the problems existing in semi-supervised
feature selection, which is able to adaptively select a relevant
feature subset and simultaneously learn a classifier with the
selected features. To make full use of the unlabeled samples,
JSFS takes the local geometry structure underlying labeled
and unlabeled samples as an important knowledge and de-
fines a prior on feature weight. Instead of the indiscrimina-
tive use of all unlabeled samples, a left truncated Gaussian
prior is introduced on the unlabeled sample weight, which
can measure the importance of unlabeled sample and elim-
inate the outliers adaptively. These priors act as regulariza-
tion terms and jointly encourage the sparsity in the utiliza-
tion of both features and unlabeled samples. We conduct
experiments on different field datasets, and compare JSF-
S with the state-of-the-art supervised and semi-supervised
feature selection algorithms. The results demonstrate the su-
periority of JSFS over others in terms of the robustness a-
gainst noise and the effectiveness and efficiency on high-
dimensional data. Future work could study how to use the
incremental learning or online strategy (Jiang et al. 2017;
Mohsenzadeh, Sheikhzadeh, and Nazari 2016; Shivaswamy
and Joachims 2015) to further reduce the computational
complexity of JSFS. Additionally, it would be an important
direction to extend JSFS to solve the multi-class problems
for future research.
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