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BiRank: Towards Ranking on Bipartite Graphs

Xiangnan He, Ming Gao, Member, IEEE, Min-Yen Kan, Member, IEEE, and Dingxian Wang

Abstract—The bipartite graph is a ubiquitous data structure that can model the relationship between two entity types: for instance,
users and items, queries and webpages. In this paper, we study the problem of ranking vertices of a bipartite graph, based on the
graph’s link structure as well as prior information about vertices (which we term a query vector). We present a new solution, BiRank,
which iteratively assigns scores to vertices and finally converges to a unique stationary ranking. In contrast to the traditional random
walk-based methods, BiRank iterates towards optimizing a regularization function, which smooths the graph under the guidance of the
query vector. Importantly, we establish how BiRank relates to the Bayesian methodology, enabling the future extension in a probabilistic
way. To show the rationale and extendability of the ranking methodology, we further extend it to rank for the more generic n-partite
graphs. BiRank’s generic modeling of both the graph structure and vertex features enables it to model various ranking hypotheses
flexibly. To illustrate its functionality, we apply the BiRank and TriRank (ranking for tripartite graphs) algorithms to two

real-world applications: a general ranking scenario that predicts the future popularity of items, and a personalized ranking scenario that
recommends items of interest to users. Extensive experiments on both synthetic and real-world datasets demonstrate BiRank’s
soundness (fast convergence), efficiency (linear in the number of graph edges), and effectiveness (achieving state-of-the-art in the two

real-world tasks).

Index Terms—Bipartite graph ranking, graph regularization, n-partite graphs, popularity prediction, personalized recommendation

1 INTRODUCTION

RAPHS provide a universal language to represent rela-

tionships between entities. In real-world applications,
not only should the relationships between entities of the
same type be considered, but the relationships between dif-
ferent types of entities should also be modeled. Such rela-
tionships naturally form a bipartite graph, containing rich
information to be mined from. For example, in YouTube,
the videos and users form a bipartite relationship where
edges indicate a viewing action; in Web search, the relation-
ships between queries and search engine result pages are
user actions (“clicks”), which provide important relevance
judgments from the user’s perspective.

A fundamental task in the mining of bipartite graphs is to
rank vertices against a specific criterion. Depending on the
setting, assigning each vertex a ranking score can be used for
many tasks, including the estimation of vertex importance
(popularity prediction) and the inference of similar vertices
to a target vertex (similarity search), and edge suggestion for
connecting a target vertex (link prediction and recommenda-
tion). Existing work on graph ranking have largely focused
on unipartite graphs, including PageRank [2], HITS [3],' and

1. Note that although HITS does handle bipartite graphs, the algo-
rithm was designed for ranking on unipartite graphs by treating verti-
ces with two roles—hub and authority.

e X. Heand M.-Y. Kan are with the Web IR/NLP Group, School of Comput-
ing, National University of Singapore, Singapore 11907.
E-mail: xiangnanhe@gmail.com, kanmy@comp.nus.edu.sg.

o M. Gao is with the Software Engineering Institute, East China Normal
University, Shanghai 200062, China. E-mail: mgao@sei.ecnu.edu.cn.

o D. Wang is with the Ranking team, Search Science Department, eBay Inc.,
Shanghai 200040, China. E-mail: diwang@ebay.com.

Manuscript received 27 Jan. 2016; revised 19 Aug. 2016; accepted 13 Sept.
2016. Date of publication 20 Sept. 2016, date of current version 5 Dec. 2016.
Recommended for acceptance by Y. Chang.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2016.2611584

many of their variants [4], [5], [6], [7]. Although several
works [8], [9], [10] have considered ranking on bipartite
graphs, they have either focused on a specific application or
adapted existing algorithms to handle the bipartite case. In
our opinion, the work up to the current time, lacks a thor-
ough theoretical analysis.

In this paper, we focus on the problem of ranking verti-
ces of bipartite graphs. We formulate the ranking problem
in a generic manner—accounting for both the graph’s struc-
tural information and the proper incorporation of any prior
information for vertices, where such vertex priors can be
used to encode any features of vertices. The main contribu-
tions of this paper are summarized as follows:

e We develop a new algorithm—BiRank—for address-
ing the ranking problem on bipartite graphs, and
show its convergence to a unique stationary point;

e We analyze BiRank through the formalism of graph
regularization, and present a complementary Bayesian
view. These two views enable future extensions to be
grounded and compelling from a theoretically princi-
pled way (either algebraically or probabilistically).

e We deploy BiRank to the general ranking scenario of
item popularity prediction, illustrating how to param-
eterize it to encode several ranking hypotheses;

e We extend the methodology to rank on the more
generic n-partite graphs, and employ it for a person-
alized ranking scenario by mining tripartite graphs.

e  We conduct extensive experiments to justify our meth-
ods for the two real-world ranking scenarios of popu-
larity prediction and personalized recommendation.

The paper is organized as follows. After reviewing

related works in Section 2, we formalize the problem in Sec-
tion 3. Then we describe the BiRank algorithm in Section 4,
and interpret it from two views in Section 5. In Section 6, we
discuss how to apply BiRank to popularity prediction and
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personalized recommendation. We conduct experiments in
Section 7, before concluding the paper in Section 8.

2 RELATED WORK

BiRank, which ranks vertices of a bipartite graph, can be cat-
egorized as a link-based object ranking method under the
paradigm of link mining [11]. In this section, we focus on
related work that contribute in the ranking method, and
omit discussion of other relevant issues such as efficiency
and evolving graphs. We then review work that can benefit
from such bipartite graph ranking, forming the potential
downstream applications of BiRank.

2.1 Graph Ranking Methods

In the context of web graph ranking, PageRank [2] and
HITS [3] are the most prominent methods. PageRank esti-
mates the importance score of vertices as the stationary dis-
tribution of a random walk process—starting from a vertex,
the surfer randomly jumps to a neighbor vertex according
to the edge weight. HITS assumes each vertex has two roles:
hub and authority, transforming the graph to a bipartite
graph. A vertex has a high authority score if it is linked by
many vertices with hub score, and a vertex has a high hub
score if it links to many authoritative vertices.

Many variants start from the basic themes of PageRank
and HITS. Ng et al. [12] studied the stability of the two algo-
rithms, finding HITS more sensitive to small perturbations
in the graph structure under certain situations. They pro-
posed two variants—Randomized HITS and Subspace
HITS—that yield more stable rankings. Similarly, Lempel
et al. [5] found that applying HITS on graphs with
TKCs (tightly knit communities, i.e., small but highly inter-
connected set of vertices) fails to identify meaningful
authority vertices. They devised SALSA as a stochastic vari-
ant of HITS, for alleviating the TKC effect. Haveliwala [4]
proposed topic-sensitive PageRank (also known as personal-
ized PageRank) by replacing the uniform teleportation vector
with a non-uniform vector that encodes each vertex’s topic
score (cf. query vector in our BiRank context). Later on,
Ding et al. [13] unified HITS and PageRank under a normal-
ized ranking framework. Inspired by the discrete-time Mar-
kov process explanation of PageRank, Liu et al. [6] also
proposed BrowseRank based on continuous time Markov
process, exploiting user behavior data for page importance
ranking. To incorporate side information on vertices and
edges into ranking, Gao et al. [7] extended PageRank in a
semi-supervised way by learning the transition matrix
based on the features on vertices and edges.

Along a separate line of work—ranking on graphs based
on regularization theory [14], [15], [16]—has gained popu-
larity within the machine learning community. These works
mainly consider the problem of labeling vertices of a graph
from partially known labels, also termed semi-supervised
learning or manifold learning on graphs. Smola et al. [15] sum-
marized early works on graph kernels (e.g., Diffusion ker-
nels), and formulated a family of regularization operators
on graphs to encompass such kernels. Inspired by it, Zhou
et al. [14] developed a regularization framework consisting
of two constraints: smoothness and fitting, proposing an
iterative algorithm [17] for optimizing the regularization
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function. Later on, they et al. supplemented the regulariza-
tion framework by developing a discrete analytic theory of
graphs [18] and extending it to cover directed graphs [19].
Agarwal [16] further extended the regularization frame-
work by replacing the fitting term (i.e.,, sum of squared
errors) to the hinge ranking loss, proposing an algorithm
with similarities to solving support vector machine to opti-
mize the regularization function.

The above discussed works have all focused on ranking
for homogeneous graphs, where vertices are of the same
type. Our proposed BiRank targets the task of ranking for
bipartite graphs, where vertices are of two different types.
Separately handling the two vertex types is very important
for ranking in bipartite graphs for many applications, a
claim we validate through our experiments later. Inspired
by the graph regularization framework [18], we develop the
BiRank algorithm, which can be seen an extension of the
manifold ranking algorithm [17] on bipartite graphs.

2.2 Ranking on Bipartite Graphs

There are other algorithms developed for bipartite graph
ranking that target specific applications. As a natural way to
represent relationship between two types of entities, bipar-
tite graphs have been widely used across domains. As a
consequence, ranking on bipartite graph data have been
explored to address many applications. For example, in
Web search, Deng et al. [8] modeled queries and URLs for
query suggestion, Cao et al. [20] considered the co-occur-
rence between entities and queries for entity ranking, Li
et al. [10] modeled users and their search sessions for detect-
ing click spam, and Rui et al. [21] mined visual features and
the surrounding texts for Web image annotation. In practi-
cal recommender systems, bipartite graphs methods have
been used for Twitter user recommendation [22] and You-
Tube video recommendation [23]. In the domain of natural
language processing, Parveen et al. [24] generated multi-
document summarization based on the relationship of sen-
tences and lexical entities.

In terms of the ranking technique, these works share the
same cornerstone—they all rank by iteratively propagating
scores on the graph; either through a PageRank-like random
walk or a HITS-like iterative process—which is adjusted for
use on bipartite graphs. The prominent advantage of such
propagation-based methods is that the global structure of
the graph can be implicitly considered, which is an effective
way to deal with the data sparsity and make use of the
graph structure. Similar to their ranking algorithms, our
proposed BiRank is also a propagation-based method; how-
ever, the main difference lies in the normalization strategy
used in the iterative process. The symmetric normalization
used in BiRank normalizes an edge weight by both of its
vertex ends, which accords a smoothing on the graph that
can be explained by the regularization theory [18]. As a
result, extensions to the algorithm, such as incorporating
more features about vertices and edges, can be achieved in
a theoretically principled way. More importantly, we
believe such a bridge with the graph regularization theory
and Bayesian framework allows BiRank a broader algorith-
mic extensions that are difficult to achieve by PageRank,
HITS and their variants. For example, we can adjust the
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Fig. 1. Bipartite user-item structure.

score propagation process to use a different ranking-based
objective (Section 5.1.2), and learn the combination parame-
ters in an automatic way (Section 5.2). We will study these
algorithmic extensions of BiRank in the future.

3 PROBLEM FORMULATION

We first present the bipartite graph model and then give the
notation convention used. We then formalize the ranking
problem that we address in this paper.

Notations. Let G = (U U P, E) be a bipartite graph, where
U and P represent the vertex sets of the two entity types
respectively, and E represents the edge set (n.b., bipartite
graphs have edges only between vertices of the two differ-
ent types). Fig. 1 shows an example of the bipartite
structure.

We use u; to denote the ith vertex in U, and p; to denote
the jth vertex in P, where 1 <i < |U| and 1 < j < |P|; set
cardinality |U| denotes number of elements in U. Edges
carry non-negative weights w;;, modeling the relationship
strength between the connected vertices w; and p; (Gf wu;
and p; are not connected, their edge weight w;; is zero). As
such, we can represent all edge weights of the graph as a
|U| x |P| matrix W = [w;;]. For each vertex u;, we denote
its weighted degree (i.e., sum of connected edges’ weights)
as d;, and use a diagonal matrix D, to denote the weighted
degrees of all vertices in U such that (D,);, = d;; and simi-
larly, for d; and D,. Note that in this paper, we deal with
undirected bipartite graphs, i.e., we do not model any
directionality in the edges.

Problem Definition. In a nutshell, the general graph rank-
ing problem is to assign each vertex a score s.t.a given
expectation is satisfied. For example, PageRank [2] infers an
importance score for each vertex to capture the intuition
that an important vertex should be linked by many other
important vertices. As in many applications, a ranking sim-
ply based on the graph structure is insufficient; often, there
also exists some prior information (or features) on the verti-
ces. For example, in webpage ranking, we already know
some webpages are important (e.g., official sites), and wish
to incorporate this knowledge into the ranking process; in
the application of recommendation, we need to consider a
user’s historical actions as the prior knowledge of the user’s
preference. We term such prior knowledge as a query vector,
which encodes the prior belief of the score of vertices with
respect to the ranking criterion. In this paper, we study the
bipartite graph ranking problem where a query vector is
given, formally defined as:

Input: A bipartite graph G = (U U P, E) with its weight
matrix W. A query vector u’, p® encodes the prior belief
concerning the vertices in U and P, respectively, with
respect to the ranking criterion.
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Output: A function f: PUU — R, which maps each vertex
in G to a real number.

The function value f(u;) and f(p;) form the ranking score
of vertex u; and pj, respectively. To keep the notation sim-
ple, we also use u; and p; to denote the ranking score, and
represent the final ranking score of all vertices as two rank-
ing vectors u = [u;] and p = [p;].

4 ITERATIVE BIRANK

With the preliminaries settled, we now detail the iterative
paradigm of the BiRank algorithm. We first describe how
we design the ranking algorithm, analyzing its time com-
plexity. Then we study its convergence properties in theory.
Finally we discuss the connection of BiRank with other simi-
larly-styled iterative bipartite graph ranking algorithms.

4.1 BiRank’s Design

To rank vertices based on the graph structure, seminal algo-
rithms like PageRank and HITS have been proposed. Moti-
vated from their design, our intuition for bipartite graph
ranking is that the scores of vertices should follow a
smoothness convention, namely that: a vertex (from one side)
should be ranked high if it is connected to higher-ranked vertices
(from the other side). This rule defines a mutually-reinforcing
relationship, which is naturally implemented as an iterative
process that refines each vertex’s score as the sum of the
contribution from its connected vertices

U] |P|

p; = E Wi jUis = E WijPyj-
i=1 =1

As it is an additive update rule, normalization is necessary
to ensure the convergence and stability. Two strategies have
been widely adopted in previous work: 1) a PageRank-style
that normalizes W (and W7) to a stochastic matrix, leading
to a probabilistic random walk explanation; and 2) a HITS-
style method that normalizes the ranking scores of vertices
after each iteration. In our BiRank method, we adopt the
symmetric normalization scheme, which is inspired from
Zhou et al.’s work [14] addressing semi-supervised learning
on graphs. The idea is to smooth an edge weight by the
degree of its two connected vertices simultaneously

14 wij 7| wi; W
R SN

where d; and d; are the weighted degrees of vertices u; and
p;, respectively. The use of symmetric normalization is a
key characteristic of BiRank, allowing edges connected to a
high-degree vertex to be suppressed through normalization,
lessening the contribution of high-degree vertices. This has
the beneficial effect of toning down the dependence of top
rankings on high-degree vertices, a known defect of the ran-
dom walk-based diffusion methods [23]. This gives rise to
better quality results.

To account for the query vector p’ and u’ that encode
the prior belief on the importance of the vertices, one
can either opt for 1) incorporating the graph ranking
results for combination in post-processing (a.k.a late
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fusion), or 2) factoring the query vector directly into the
ranking process. The first way of post-processing yields
a ranking that is a compromise between two rankings;
for scenarios that the query vector defines a full ranking
of vertices, this ensemble approach might be suitable.
However, when the query vector only provides partial
information—i.e., only a small proportion of vertices
have a prior score while most other vertices have no
prior information—this method fails to identify an opti-
mal ranking. For example, in the application of personal-
ized recommendation (see Section 6.2), the aim is to rank
unconsumed items for a user; the query vector encodes
the user’s known preference, which is a sparse vector
with the consumed items as non-zeros. In this case, sim-
ply combining the ranking from graph structure and
query vector via post processing does not work, since
the ranking of unconsumed items will solely depend on
the graph structure. As such, in BiRank we opt for the
second way that factors the query vector directly into
the ranking process, which has the advantage of using
the query vector to guide the ranking process

U]

gt

[P
ﬂz G fp] - Bu

where « and B are hyper-parameters to weight the impor-
tance of the graph structure and the prior query vector, to
be set between [0, 1]. To keep notation simple, we can also
express the iteration in its equivalent matrix form

1 —a)pl;

(2)
0
7, )

p=aSu+(1-a)p”;

3
u=pSp+ (1 - p)u’, ()

where S = D,*WD, %, the symmetric normalization of
weight matrix . We call this set of update rules the BiRank
iteration, which forms the core of the iterative BiRank algo-
rithm. In a nutshell, BiRank first randomly initializes the
ranking vector, and then iteratively executes the BiRank
iteration until convergence (summarized in Algorithm 1).

Algorithm 1. The Iterative BiRank Algorithm

Input: Weight matrix W, query vector p’,u’, and hyper-
parameters «, f8;

Output: Ranking vectors p, u;

1: Symmetrically normalize W:S = D, ZWDp 2,

2: Randomly initialize p and u;

3: while Stopping criteria is not met do

4 p—aSTu+(1-a)p%

5.

6

7

u— BSp + (1 - p)u’;
: end
: return p and u

For convergence, one can either monitor the change of
ranking vectors p, u across iterations, or rely on a held-out
validation data to prevent overfitting. Moreover, the numer-
ical convergence of BiRank is theoretically guaranteed, dis-
cussed later in Section 4.2.
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4.1.1  Time Complexity Analysis

It is easy to show that a direct implementation of BiRank
iteration in Eq. (3) has a time complexity of O(|P|-|UJ),
mainly due to the multiplication of S"u and Sp. How-
ever, note that in real-world applications, the matrix S is
typically very sparse; for example in recommender sys-
tems, the user-item matrix to model is always over 99
percent sparse (e.g., Netflix challenge dataset). In this
case, a representation of sparse matrix only needs to
account for non-zero entries (which correspond to the
edges of the bipartite graph), instead of all |P|-|U]
entries. As such, the real-time cost needed for BiRank is
O(c|E|), where ¢ denotes the number of iterations exe-
cuted to converge, and |E| denotes number of edges in
the graph. Thus, BiRank is linear with respect to number
of edges, ensuring good scalability to large-scale graphs.
Moreover, our empirical experience show that BiRank
has a very fast convergence rate—10 iterations are usu-
ally enough for convergence. One reason is that it can be
seen as optimizing a convex function effectively using
alternating optimization, discussed later in Section 5.

4.2 Convergence Analysis of BiRank

We show that BiRank can converge to a stationary and
unique solution regardless of the initialization, followed by
a theoretical analysis of the convergence speed.

4.2.1 Proof of Convergence

It is clear that the behavior of BiRank depends on the hyper-
parameters o and B, which are in the range [0, 1]. To make a
through analysis, we need to carefully consider the bound-
ary conditions. Considering the two boundaries 0 and 1, we
divide the proof into the following three cases:

Proof. 1. « =0 or = 0. When « = 0, the vector p = p° is
unchanged across iterations. Thus u, which depends on p
and u’, will also be unchanged after the first iteration.
Similarly for the case of g = 0.

2.« =1 and g =1. In this case, the query vectors do
not have any impact on the ranking, and the ranking is
solely determined by the graph structure. The iterative
update rule then reduces to Eq. (1), whose matrix form is
p = STu,u = Sp. By further reducing this, we obtain

p# = (§TS)p*1 = ...
(k) _ (SST) (k=1) _

= (s79)"p",

4
= (S8")"a), W
where k denotes the number of iterations, and p®, u®
denote the initial ranking scores for vertices. Note that
matrix STS and SST are both symmetric matrices.
According to a lemma in standard linear algebra [25]. O

Lemma 1. If M is a symmetric matrix, and v is a vector not
orthogonal to the principle eigenvector of M, then the limit of
MP*v (after scaling to a unit vector) converges to the principle
eigenvector of M with k increasing without bound.

By the lemma, we can see that with reasonable initializa-
tion, the iterative process will converge to a stationary solu-
tion p* and u*, which are the principle eigenvector of
matrix STS and SST, respectively.
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3. Normal cases. We now consider the normal ranking sce-
narios that « and f are in the range of (0,1), or one of «, B is
1, meaning that both the graph structure and query vectors
can affect the ranking process. Without loss of generality,
we prove the convergence of p.

First, we eliminate u in p’s update rule

p=af(S"S)p+a(l - g)STu’ + (1 - a)p’. ®)

Let matrix M be «aB(STS) and vector z, be
a(1 — B)STu’ + (1 — @)p®, which are both invariant across
iterations. Then, we have

k-1
p® = MpFY 425 =... = M*p¥ + ZMtZO’ (6)
=0

where k denotes the number of iterations, and p(”) denotes
the initial ranking vector of p. Assuming M’s eigenvalues
are in the range of (-1, 1), we can obtain

k—1
lim M*p©® = d L M = (- M)"?
fimg M = 0.and fimg B M= (1= M)

where I denotes the identity matrix. In this case, we can
derive the stationary solution of p as

p = (I — M) 'z. (7

However, the above stationary solution is derived based
on the assumption that A’s eigenvalues are in the range
(—1,1). Next, we prove the correctness of this assumption.

Theorem 1. M'’s eigenvalues are in the range [—a B, af].

Proof. Recall that M is defined as
a4 Nt
M =ap(STS) = ap <Du2WDp2) (DUZWDP 2)
_1 _1
=af (Dp ‘W'D 'WD, 2) .

To see M’s eigenvalues are bounded by «f, we first con-
struct a variant M, that has the same eigenvalues® as M

1 1
M, = DiMD,* = ap(W'D,'"WD;").

Note that matrix W" D, 'WD, " is a stochastic matrix in
which the entries of each column sum to 1. By standard
linear algebra [25], for a stochastic matrix, its largest
absolute value of the eigenvalues is always 1. Thus, the
eigenvalues of M, are in the range [—«f, 2f], and same
must hold for M as they have exactly the same eigenval-
ues. The proof of M's eigenvalues is finished. ]

As M'’s eigenvalues are theoretically guaranteed in the
range [—af, «f] and in the normal cases «, 8 are in the range
(0,1), the assumption that M’s eigenvalues are in the range
(—1,1) holds. Therefore, we conclude that Eq. (7) indeed

2. The equality of the eigenvalues is easily shown by using determi-
nants, denoted as |- |. Let the eigenvalues of M, be \,, then we have
1 _1 1 1
|M, — AI| = [DE(M — A\,I)Dy2| = D3| - |M — M| - |D,2| = |M — A | =0,
meaning that \, are also M’s eigenvalues.
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forms the stationary solution of p. To round out the proof,
we give the stationary solution of BiRank as follows:

p' = (I —aps"s) a(l - B)S"u’ + (1 - a)p],

- (®)
u' = (I —aBSST) Bl —a)Sp’ + (1 — p)u’).

The convergence proof of BiRank is finished.

This convergence proof gives an elegant closed-form solu-
tion—for any non-trivial initializations, the iterative algo-
rithm of BiRank will converge to Eq. (8). As such, an
alternative method to our iterative BiRank is to direct calcu-
late the closed-form stationary solution. Even so, we suggest
the practitioners following the iterative procedure for two rea-
sons. First, in real-world practice, when there is a large num-
ber of vertices to rank, the matrix inversion operation is very
expensive, making the calculation of the closed-form solution
inefficient. More specifically, matrix inversion is usually
assumed to take O(N?) time [26]; thus the time complexity of
directly calculating the stationary solution is O(|P|* + |U]*),
which even can be much higher than the upper bound of the
iterative solution O(c|P||U|). Second, the iterative process
emphasizes the underlying motivation that reinforcing a
vertex’s importance from its neighbors and the query vector.
As such, one does not have to run the iterations until conver-
gence; instead, one can compute the scores by starting from
any initialization and performing a fixed number of iterations.

4.2.2 Speed of Convergence

Since the behavior of BiRank depends on the graph struc-
ture, query vector and hyper-parameters «, 8, we analyze
how do these factors impact BiRank’s convergence speed.

In each BiRank iteration, the score of a vertex comes from
both its neighbors and the query vector. Since the query vec-
tor is static that remains unchanged across iterations, it can-
not contribute to any form of divergence in the rankings;
thus the main uncertainty for convergence stems from the
part of the score diffusion from neighbors. As such, the
number of iterations required to converge will increase as o
and g increase (the empirical evidence in Fig. 6 also verifies
this property). Clearly, the slowest convergence is when o
and g are set to 1, where the effect of query vector is elimi-
nated. When both « and f are set to 1, the update of p at the
iteration & can be written as: p®) = (S7S)p*~1), which
essentially can be seen as the power method for the sym-
metric eigenvalue problem (Chapter 8.2 of [25]). It is known
that the convergence of power method is determined by the
second dominant eigenvalue of the transition matrix. In
spite of the slight difference that the power iteration
requires an additional L, normalization on the ranking vec-
tor (while our BiRank does not), we point out that BiRank
shares the same property of convergence speed.

Theorem 2. The convergence rate of BiRank depends on the sec-
ond largest eigenvalue of the matrix ST.S in magnitude.

Proof. As 57 S is a symmetric matrix, it is guaranteed to have n
eigenvalues which are real numbers (n = | P|). Let its eigen-
values be A1, Ag, ..., Ay, where [\| > |Xo] >,..., > |\,|, and
vectors xi,X»,...,X, be the corresponding Eigenvectors.
Then, the starting vector p(” can be expressed as:
p¥ =377 | ¢:x;, where {c;} are constant coefficients. Then
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TABLE 1
Transition Matrices (i.e., S and ST in Eq. (3)) of Different
Bipartite Graph Ranking Algorithms

Method Definition of Transition Matrices
HITS (Kleinberg [3]) S=w;sT =

Co-HITS (Dengetal. [8)) 5 =WD,; ST WTD !

BGER (Cao et al. [20]) S =D, ,1W ST =D, DT

BGRM (Rui et al. [21]) §=D,'WD, ;8" = D 'W'D,!

BiRank (our proposal) g— D;%WD;%; o7 — D;%WT o

Note that ST here denotes a matrix, rather than just the transpose of S.

the update of p(*) can be written as

p(k) = Cl(STS)kxl + ¢ (STS)kXQ +o+ Cn(STS)an

= eMf(@ + Y a(h/M) ).

=2

9)

Here we use the fact that (S7S9)x; = \;x;. Hence, we
see that the non-essential quantities decay at a rate of
approximately |As/A;|. As we have shown in Theorem 1,
STS has the same eigenvalues with a variant stochastic
matrix, thus we have |\;| = 1. The proof is finished. 0

To summarize, the convergence rate of BiRank depends
on the normalized adjacency matrix S and parameters o, f.
Analytically, larger « and g will lead to slower convergence;
theoretically, smaller magnitude of the second dominant
eigenvalue of ST'S will result in faster convergence. In many
applications, for high dimensional but sparse relational data
(e.g., user behaviors, documents), S is usually of low rank.
As a result, |X;| is a small number, leading to a fast conver-
gence of our BiRank algorithm.

4.3 Connection with Other Algorithms

There are some bipartite graph ranking algorithms [8], [20],
[21] that share a similar spirit with BiRank, though origi-
nally developed for specific applications with varying rank-
ing targets. Specifically, in terms of the iterative ranking
process, they have the same update rule form as Eq. (3); the
main difference is in how to generate the transition matrices
(S and S7 for updating u and p, respectively). It is instruc-
tive to clarify the difference with these algorithms.

Table 1 summarizes the ways of constructing transition
matrices using our symbol notation. From a high-level view,
these algorithms differ in how they utilize the vertex degree
to normalize each edge weight (except that HITS does not
account for the query vector). HITS, the earliest proposed
algorithm, uses the original weight matrix W as-is; although
the convergence can be guaranteed in theory, HITS is sensi-
tive to outliers in graph [12] and suffers from the tightly knit
communities phenomenon [5]. Co-HITS [8] normalizes each
column of W (and W7) stochastically, having an explanation
of simulating random walks on the graph. However, random
walk methods can be biased towards the high-degree verti-
ces [23]. While BGER [20] avoids this defect by normalizing
each row of W (and W7) stochastically, yielding an effect of
suppressing the scores of high-degree vertices. However, the
one-side normalization of BGER does not account the
degrees of p vertices when updating u, allowing high-degree
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p vertices to exert a stronger impact in the diffusion process;
and vice versa. Similar with our proposed BiRank, BGRM
also applies a symmetric normalization on W, while the level
of normalization differs (the sum of normalization exponents
is —2 and —1 for BGRM and BiRank, respectively). Although
it is difficult to tell which way between them is more advan-
tageous, we point out that BiRank employs the matrix S7 S in
a similar fashion to a stochastic matrix (the same eigenvalues,
see Theorem 1) and corresponds to a regularization frame-
work, both of which are nice properties that BGRM lacks.

5 FOUNDATIONS OF BIRANK

In contrast to the traditional graph ranking algorithms (e.g.,
PageRank and HITS), BiRank iterations are implicitly optimiz-
ing an objective function. This is analogous to the manifold
ranking algorithm on graphs [14]. In what follows, we investi-
gate the regularization framework for BiRank and present a
Bayesian explanation of the ranking algorithm. These
two views shed important insight into the basis of
BiRank, allowing future extensions in a theoretically princi-
pled way. To show its extendability, we finally generalize the
methodology to rank for the more general n-partite graphs.

5.1 Regularization Framework

Inspired from the discrete graph theory [18], we construct
the regularization function as follows:

[Pl U] ) N2
w; ( pj W )
E ij =
=1 i=1 vV dj d;

R(u,p) =
(10)

where y and 7 are the regularization parameters to combine
different components (they are constants corresponding to
o and B in BiRank). Next, we first show that optimizing
Eq. (10) leads to the iterative BiRank algorithm, and then
interpret the meaning of the regularization function.

5.1.1 Relationship with BiRank

Eq. (10) defines an objective function with the ranking
scores as model parameters. To optimize the objective func-
tion, a common strategy is performing the coordinate
descent [27]. Let us first calculate its first-order derivatives
with respect to each model parameter

|U]
oR W iU;
— =242y -2yt —2) =
" (2 +2y)p; — 2v1) ; NN
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R w; -pj
— = (24 2n)u; — 2nu) — 2 L
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Setting the derivatives to 0, we can obtain
U y
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-
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which exactly recovers the BiRank iteration Eq. (2) by plug-
gingy =1¢% 5= % into the equation. As such, we see that
BiRank is actually iterating towards optimizing the regulari-
zation function Eq. (10).

As we have shown BiRank converges to a stationary
solution in Section 4.2.1. Now a question arises: does the
solution found by BiRank lead to the regularization
function’s global optimum? In fact it does, as the regulariza-
tion function is strictly convex in both p; and ;.

Theorem 3. The reqularization function R(u,p) defined by
Eq. (10) is strictly convex and only one global minimum exists.

Proof. According to convex optimization theory, a contin-
uous, twice differentiable function is strictly convex if
and only if its Hessian matrix is positive definite. As
R(u,p) is a continuous function, we now prove it is
twice differentiable and that its Hessian matrix is posi-
tive definite.

The second order derivative of R(u, p) is

*R *R

’R —wj;
=2+ 2y; J
Bpjap]-

=2 .
Ipjdu; /di\/d;

We can see R(u, p) is twice differentiable.

Let matrix A be the (|U| + |P|) x (U] + |P|) weighted
adjacency matrix of the bipartite graph. Then the Hessian
of R(u,p) can be written as: 2(I — D*%AD*%) + 2B,
where D is a diagonal matrix where each entry Dy
denotes the weighted degree of kth vertex (can be of
either side); B is a diagonal matrix that each entry By, is
y or 1, dependant on the choice of origin (side) for the
kth vertex.

Note that the matrix (I — D’]?AD’%) is the normalized
Laplacian matrix of the graph. By spectral graph theory,
the normalized Laplacian matrix of a graph is positive
semi-definite. Meanwhile, B is also positive definite
because its eigenvalues are all positive (eigenvalues of a
diagonal matrix are its diagonal values). Finally, accord-
ing to the standard linear algebra, the addition of a posi-
tive semi-definite matrix and positive definite matrix is
also positive definite. Thus, we reach the conclusion that
the Hessian matrix must be positive definite. The proof is
finished. O

=242
Buiauz- +an

5.1.2 Interpretation of Regularization

It is instructive to interpret the meaning of the regulariza-
tion function and see how it is constructed. First, it can be
seen as enforcing two constraints in assigning the ranking
scores on the vertices: A smoothness constraint that implies
structural consistency—that nearby vertices should not
vary much in their ranking scores; and a fitting constraint
which encodes the query vector—that the ranking should
not overly deviate from prior belief.

Smoothness. The first term of Eq. (10) implements the
smoothness constraint, which constrains a vertex’s normal-
ized score to be similar to the normalized scores of its con-
nected neighbors. Minimizing it leads to the simplified
BiRank algorithm devised in Eq. (1). Moreover, it can be
seen as the squared sum (L, distance) of edge derivatives on
the graph, as introduced in graph regularization theory [18]
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Fig. 2. Graphical model representation of BiRank.
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which measures the variation (or energy drop) of the rank-
ing function on edge ¢;;. That is, if two vertices are strongly
connected but exhibit a large difference in their scores, then
the magnitude of the variation will be large. Variants of our
vanilla BiRank can be derived by employing other methods
to combine the edge derivatives, e.g., the L; distance, which
can yield and model different effects for smoothness.

Fitting. The second and third term of the regularization
function gives the fitting constraint for the query vectors p’
and u’, respectively

of
de

|P| U

Ri(p) =Y (p;—p))* Rp(u) = (w—uf)*.

j=1 i=1

(13)

This fitting term is easy to understand: it regularizes the
value of each vertex’s score to be similar with its prior score,
i.e., its value in the query vector.

In our formulation of BiRank, we have chosen a
MSE (mean squared error) loss function form; other rank-
ing-oriented loss functions, such as the BPR-OPT [28], may
be more suited if one seeks to maintain the vertices’ relative
ordering in the query vector during the ranking process.
We leave this possibility for future work.

5.2 Bayesian Explanation
On the basis of the above regularization framework, we
now present a Bayesian explanation for BiRank.

Fig. 2 shows the graphical model representation of the
ranking method. We model the query vectors p” and u” as
observations, which are generated by the latent factors p
and u (distributions), serving as the importance scores of
the vertices; the weight matrix W forms the prior for gener-
ating the latent factors. The goal is to infer the latent factors
p and u that generate the observations p’ and u’.

The MAP (maximum a posteriori) estimation is given by

.‘:urgmaxp(u,p|u0,po7 w).
u,p

By Bayes’ rule and the conditional independence indi-
cated in the graphical model, we have

p(u’, p°lu, p) - p(u, p|W)
p(u’, p°)
o p(u’, p’Ju, p) - p(u, p|W)
o p(u’fu) - p(p°[p) - p(u, p|W).

p(u,plu’,p’, W) =
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Note that p and u are not conditionally independent with
each other given the prior W, as a vertex’s score is also influ-
enced by its neighbors’ scores. Taking the logarithm, MAP
estimation is then equivalent to

argmax{Inp(u, p|W) + Inp(u’u) + Inp(p’|p) }.
up

We then devise the conditional probabilities as follows:

L g (u,p)
e D
Zup (

1
p()|p) = 7€_ny<p)7

p(u,p|W) = 7
P

p(u0|u) _ _efr]Rf(u)7
u

where 7, Z, and Z, are normalization constants, and
where R,(u,p) is the smoothness term, and R;(p) and
R¢(u) are the fitting terms defined in Eq. (13). From this for-
malization, we can see that minimizing the regularization
function is equivalent to maximizing the posteriori proba-
bility of generating the query vector.

This shows the equivalence between BiRank’s ranking
process and a Bayesian network. We map the ranking
problem to probabilistic graphical modeling, allowing the
extension of BiRank in a probabilistic way, which is more
flexible and adaptable for different applications. For exam-
ple, if there is additional prior knowledge or context for
the vertices, we can model them as priors of p,u and use
the desired distributions; moreover, aside from MAP,
other inference techniques can also be applied to infer the
ranking scores, such as variational inference and MCMC
sampling.

5.3 Generalization to n-Partite Graph Ranking

Our proposed BiRank methodology is general and versa-
tile. Here, we generalize it to rank vertices of the more
general n-partite graphs. A n-partite graph is a graph
whose vertices can be partitioned into n different indepen-
dent sets. We represent it as G({ P, }; {Ey}), where P repre-
sents vertices, I represents edges, ¢ and [ represent the
indices of the independent vertex sets, satisfying
1<t i<n. Let the weight matrix of edges E; be Wy,
which is a || x |P| matrix. If the graph is undirected, we
have W;, = WI. The symmetrically normalized matrix is

defined as Sy = VD!'W,V/D!, where D' and D! represent
the diagonal degree matrix of vertices P, and P, respec-
tively. Let the ranking vector and query vector of vertices
in P, be p, and p), respectively. Then, the objective func-
tion for vertex ranking is defined by smoothing the con-
nected vertices (of pairwise vertex types) and fitting the
query vectors (of each vertex type)

R= Zmllpf Phl*+ > v Y (W),

( f pl) )
I#t i,] V D ZL A /D]
where y, and 75, are hyper-parameters that control the
importance of the corresponding component. Similar to BiR-
ank, this regularization function is strictly convex for all
model parameters. Thereby, the global minimum can be
achieved by alternating optimization, which leads to the
iterative update solution as
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P =Y auSup; + <1 - Zau) Py,

I£1 I£1
(14)

pP: = Zatlsﬂpl + (1 - Zaﬂ) P;],

I#t I#t

where the hyper-parameters oy are associated with y,; and
1y, indicating the weight of graph substructure Ej; in contrib-
uting to the final ranking. Iteratively executing the above
update rule until convergence, we obtain the ranking. We
call this algorithm n-partiteRank, as a generalization of BiR-
ank for n-partite graphs; it is easy to see when n = 2, the algo-
rithm exactly recovers the BiRank. Also, the time complexity
of the algorithm is linear to number of edges in the n-partite
graph, which is very efficient for large-scale heterogeneous
graphs in real-world applications. In Section 6.2, we demon-
strate how to utilize this generic algorithm to model user
reviews (n = 3, i.e., TriRank) for the application of personal-
ized recommendation [29].

6 APPLICATIONS

In this section, we demonstrate how to apply the BiRank
method to two real-world applications; namely, 1) predict-
ing the future popularity of items, and 2) recommending
items of interest to users. We choose to model user comment
data for addressing the relevant task, since it is a form of
explicit feedback that is easily accessible to both content
providers and external observers.’

6.1 Popularity Prediction

Predicting the popularity of web content has a wide range
of applications, such as online marketing [30] and recom-
mender system [26]. In what follows, we first briefly intro-
duce the task, and then show how to customize BiRank to
address the problem.

6.1.1 Task Introduction

A direct and objective metric to measure an item’s popularity
is the view count, which evaluates users’ attention on the
item. Thereby, previous works have primarily focused on
modeling the view histories of items [30], [31] and casted the
prediction as a regression task. However, for some external
services (who are not the content providers themselves),
items’ view histories are not easily accessible. Specifically,
most websites do not explicitly provide the view history for
an item. Even in the cases where a website like YouTube and
Flickr provides the current number of views, one will have to
repeatedly and periodically crawl the item pages to build
view histories, a very bandwidth intensive activity.

To assist external observers in predicting items’ popularity,
we are more interested in an alternative and more viable solu-
tion—modeling the affiliated user comments of items. In con-
trast to view count, the advantage of comments is the
exposure of users’ commenting activities up to the current
time—crawling once, one can get the previous history and

3. In contrast, implicit feedback—such as users’ clicks on webpages
and views on items—is only obtainable for the internal content pro-
viders. For external observers, such as the third-party services, implicit
feedback is usually difficult to access.
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perform the prediction directly. However, the key deficiency
is that the comment history can be much sparser than view
history, since a user viewing an item may not comment on it.
For example, it is common that two items have no comments
during the time interval, while they attract views at a different
rate. As such, existing view-based solutions [30], [31] (which
are mostly regression-based methods) can fail to leverage the
comment series to predict popularity accurately.

To tackle the sparsity issue in user comments for quality
prediction, we need to account for more popularity signals
in addition to the comment count. Here, we propose three
ranking hypotheses observed from user comments that we
wish to incorporate into our popularity prediction solution:

H1. Temporal Factor. If an item has received many com-
ments recently, it is more likely to be popular in the near
future. More recent comments are a salient signal that more
users focused on the item recently.

H2. User Social Influence. If the users commenting on an
item are more influential, the item is more likely to receive
more views in the future. This is enabled by the Web 2.0
social interfaces that propagate a user’s comments to friends
and followers.

H3. Item Current Popularity. If an item has already been
popular, it is likely to garner more views in the future. This
is partially effected by the existing visual interfaces of Web
2.0 systems: the more views an item has, the more likely it
will be promoted to users.

6.1.2 BiRank Customization

To customize BiRank for a certain ranking purpose, we need
to construct the weighted bipartite graph model and devise
the query vectors.

Bipartite Graph Construction. As we deal with users” com-
menting behaviors on items, we model their relationship as
a bipartite graph-users and items form the two sides of ver-
tices U and P, respectively, and edges E represent com-
ments. If and only if a user has commented on an item,
there is an edge between them. We use the edge weight to
model the respective comment’s contribution towards the
item’s future popularity. As the hypothesis H1 shows a
strong near-term correlation, we assign w based on tempo-
ral considerations. Specifically, recent (older) comments
should contribute more (less) to an item’s future popularity.
To achieve this, we choose a monotonically decreasing
exponential decay function
a(to—ti]‘)+b’

wy =8 (15)

where § is the decay parameter that controls the decay rate, ¢,
is the ranking time and ¢;; is the commenting time; a and b are
constants, to be tuned for the particular media and site. Time
units are arbitrary; they can be assigned as minutes, hours,
days, weeks or other units, depending on the temporal reso-
lution and the domain of the items to rank. If no edge exists
between u; and pj, then w;; is zero. In our empirical study,
we find a setting of § = 0.85,a = 1,b = 0 leads to good per-
formance, and thus use this setting across datasets. As we
focus on short-term popularity prediction, we set the time
unitas 1 day.

Query Vector Setup. We devise the user query vector u’
and item query vector p” to account for the hypotheses H2
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and H3, respectively. Intuitively, if a user has more friends,
his behavior is likely to influence more users. Thus we set a
user’s prior score in the query vector proportional to the log
value of his number of friends

W = log (1 + g;)
(A U )
S log (1+ g5)

where g; is user u;’s number of friends at the ranking time.
Note that we use add-1 smoothing to address the case
where a user has no friends.

H3 models the current popularity factor on items. As
such, the item query vector should encode our prior belief
on each item’s popularity prior to examining its recent com-
ments. We capture this potential “rich-get-richer” effect by
defining an item’s score in the query vector as

o= log v;
TS logur
where v; denotes the view count of item p; at ranking time.
After finalizing the edge weights and query vectors, the
rationale in our design can be more clearly seen by looking
into the BiRank iteration in Eq. (3). First, it captures
the mutual reinforcement between users and items—the
more recent the comments are by a user on an item, the higher
the popularity score the item will receive; and in return, the
popularity of the target item increases the user’s influence.
Second, the score of items and users is partially determined
by the original setting of the query vector. To sum up, BiRank
determines a user’s social influence based on two source of
evidence: his level of activity and his number of friends. Anal-
ogously, BiRank determines an item’s future popularity based
on four aspects: the frequency and recency of comments on it,
the influence of the users commenting on it, and its current
accumulated popularity. Thus, from a qualitative point of
view, we see that the formulation of BiRank can encode our
hypotheses on the ranking function.

6.2 Personalized Recommendation

In this section, we apply the generalized, n-partiteRank to
the application of personalized recommendation. This is a
more challenging task than popularity prediction, since it
needs to generate a personalized ranking of items for each
user. In what follows, we first show how to employ BiRank
to encode the well-known collaborative filtering (CF) effect
for recommendation. Then we use the TripartiteRank (short
for TriRank) to additionally model aspects (extracted from
comments’ texts) for enhanced recommendation.

6.2.1 Collaborative Filtering with BiRank

In recommendation systems, collaborative filtering is the
most successful and widely-used technique for personaliza-
tion. It exploits user—item interactions (e.g., ratings, click
histories) by assuming that users with similar interest con-
sume similar items. The core of a CF algorithm lies in how it
models the similarity among users and items. For example,
neighbor-based CF [32] directly estimates the similarity by
adopting statistical measure on the user—item matrix, while
latent factor-based CF [26] estimates the similarity by pro-
jecting items/users into a latent space. Under our BiRank
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Inputs:

<ul, p1, 5>
<u2, pl, 5>
<u2, p2, 4>
<u3, pl, 3>
<u3, p3, 2>

Fig. 3. A toy example of using BiRank to model the collaborative filtering
effect. The target user u; has previously rated item p; with a rating score
5 (in tail).

TABLE 2
Top Automatically Extracted Aspects

Yelp bar, salad, menu, chicken, sauce, restaurant, rice,
cheese, fries, bread, sandwich, drinks
Amazon camera, quality, sound, price, battery, pictures,

screen, size, memory, lens

paradigm, similarity is estimated by means of smoothing
the user—-item graph with the target user’s known prefer-
ence, embodied as a query vector. We use an example in
Fig. 3 to illustrate how the smoothness works.

Users and items represent the two types of vertices, and
edge weights denote the rating scores (here, a zero score
means the user did not rate the item; a missing value). Assume
we want to recommend items to the target user «;, who has
rated p; with a score of 5. We construct the query vector by set-
ting the prior of p; to 5 and other vertices to 0. Now, we con-
sider how the BiRank predicts u;’s preference (ie., the
similarity to other items) with this setting. As p; is connected
more strongly to uy than us, by the smoothness constraint, u,
will be given a higher score than us. This indicates that BiRank
treats us more similar with «; than ;3. Finally, since the edge
weights of < us,p» > and < wusz,p3 > are identical, BiRank
will assign p» a higher score than p3, meaning that p, is a more
suitable candidate to recommend for u; than p3;. From this
qualitative analysis, we see that by properly setting the query
vector’s values, smoothing the user—item relation results in a
collaborative filtering effect. More specifically, by setting the
query vector as the rated items of the target user, BiRank func-
tions similar to item-based CF [32] which represents a user by
his historical actions for personalization.

6.2.2 Modelling Aspects with TriRank

Aside from ratings, which form the basis for collaborative
filtering, most Web 2.0 systems also encourage users to pen
reviews. These reviews justify a user’s ratings, offering the
underlying reasons for the rating by discussing the specific
properties of the item. We term these specific properties as
aspects, which are nouns or noun phrases that represent the
features of items (see Table 2 as examples). Aspects are
well-suited as a complementary data source for CF, since a
mention of an aspect implies the user’s interest in the
aspect, which in turn reveals the user’s preference. In this
section, we model the aspects with TriRank to improve the
CF-based recommendation. Similar to the application of
BiRank to popularity prediction, we first show how to con-
struct the tripartite graph, and then design the query vectors
to implement the personalized ranking.

Tripartite Graph Construction. After extracting aspects
from user reviews, we construct a tripartite graph with
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ul pl
Inputs: p2
<ul, pl1, al> /
<u2, pl, a2> p3
<u2, p2,a2> items
<u3, pl, al> 4
<u3, p3, al>

Fig. 4. An example of the tripartite graph (the dashed line illustrates the
additional input < uy,p3,as >).

users, items and aspects as the three types of vertices. We
formalize the input as a list of triples, where each triple
< u;, pj,ap > denotes that user v; has rated item p; with a
review mentioning aspect a;, and is represented as a triangle
with edges e;j,es and ey, in the graph. Fig. 4 shows an
example of the tripartite graph.

Each edge carries a weight, which is crucial to determine
the meaning of smoothness and the behavior of TriRank.
The setting of user-item edge weights should encode the col-
laborative filtering effect: in cases with explicit feedback, it
can be the rating score (as illustrated previously in Section
6.2.1); for implicit feedback, it can denote whether the user
has interacted with or browsed the item (measured as either
a binary yes/no, or an integer view count). Our datasets
provide explicit user ratings, so we use these ratings as-is.
The setting of aspect connected edges should reflect the
aspect filtering effect: if a user is interested in an aspect,
then the system should rank the items that are good at this
aspect high. Thus, we set the edge weights of user—aspect
relation and item-aspect relation to connote the degree of
user interest (item specialty) with respect to the aspect.
Once aspects are identified in reviews, we use the review
frequency (i.e., number of reviews that mention the aspect)
within all a user’s (item’s) reviews as the edge weight. As is
done in general information retrieval, we take the logarithm
of the review frequency, to dampen the effect of aspects that
appear very frequently.

Query Vector Setup. The query vectors should encode the
target user’s prior preference on the vertices, which serve as
the gateway for personalization. Here we discuss how to set
the query vectors for target user u;.

For the item query vector py, an element takes a positive
value if the target user has interacted with the item; other-
wise, 0. Thus we adopt the ith row vector of the user—item
matrix as the p, for the target user v;. Similarly, the aspect
query vector a; is set as the respective row vector of the
user-aspect matrix, denoting the target user’s prior prefer-
ence on aspects. The user preference vector u, should
denote the target user’s similarity with other users. When
user’s social network is available, we can use her friends
information to initialize uy. Due to the lack of social infor-
mation in our dataset, we adopt a simple approach, setting
the target user herself as 1, and all other users as 0. Consid-
ering that the weight matrix is symmetrically normalized,
we also apply the L; norm on py, ay and u, respectively, for
a meaningful combination.

Our final recommendation solution works as follows.
After constructing the tripartite graph, we preform TriRank
with the personalized query vector for each target user. The
ranking process follows the iteration defined in Eq. (14).
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Fig. 5. Convergence status of two generated graphs.

After convergence (usually in 10 iterations), items with the
highest scores serve as the recommendations for the user,
and the aspect vertices with the highest scores can be used
as explanatory factors for the recommendations [29].

7 EXPERIMENTS

In this section, we empirically examine BiRank’s properties
and effectiveness. We first conduct experiments on synthetic
data to study BiRank’s convergence and time efficiency.
Then we perform experiments on real-world datasets to eval-
uate BiRank performance for the two applications of popu-
larity prediction and personalized recommendation.

7.1 Experiments on Synthetic Data
7.1.1 Datasets

We concern ourselves with two forms of generated graphs:

1. Synthetic Random Graphs. These random graphs are gen-
erated by sampling edges from a uniform distribution. We
control the density of generated bipartite graphs to simulate
real-world graph sparsity. Given the expected density of the
graph, we visit each potential edge and generate a uniformly
random number in the range (0, 1); if the number is less (or
equal) than the density value, we add the edge into the graph.

2. Synthetic Power-Law Graphs. Considering that many
real-world graphs follow a power-law distribution, such as
document-word and user-item graphs, we also generate the
power-law bipartite graphs. We adopt the power-law graph
generation algorithm in [33]: starting from an empty graph,
it follows two main steps: first it assigns a degree = to each
vertex v from the distribution p(d, = ) oc z™* where A > 1;
then, it sorts the vertices by degree in decreasing order, and
assigns neighbors to each vertex according to the degree.
We adjust the second step for generating bipartite graph—
sampling neighbors of a vertex only from the vertices of the
other side.

7.1.2 Convergence Study

There are two natural questions need to be answered empir-
ically regarding BiRank’s convergence®:

(1)  Will BiRank iterations converge to the optimal solu-
tion of the regularization function as analyzed
theoretically?

(2) How does the algorithm hyper-parameters (i.e., «
and B) influence BiRank’s convergence rate?

4. Note that due to the difficulty of controlling the eigenvalues of
generated graphs, we do not empirically study the impact of the second
dominant eigenvalue on convergence rate. While the impact has been
theoretically proved in Theorem 2.
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Since our findings were consistent across many settings,
we only report results with a set of representative settings.

1. Convergence to Optimum. Fig. 5 plots the convergence
status of each iteration on two representative synthetic
graphs (the random setting has a density of 1 percent; the
power-law graph sets A =2). The black line (Stationary)
benchmarks the optimal solution from the direct calculation
of the stationary solution Eq. (8). The blue line (Iterative)
shows the regularization function’s value after the update
of each iteration; the red line (Vector Diff, y-axis scale of the
right) shows the difference (i.e., squared sum) of the rank-
ing vector before and after the update of each iteration. As
we can see, BiRank successfully finds the optima of the reg-
ularization function in all four cases. Our further examina-
tion (not shown) validates that the ranking vector obtained
by BiRank iterations is actually same with the stationary
solution. This demonstrates BiRank’s ability in converging
to the unique and optimal solution of the regularization
function, regardless of the graph structure. Moreover, the
convergence rate is rather fast for these simulated prob-
lems—also usually within 10 iterations. Another finding is
that the deepest descents are in the early iterations, which
impose the most influence to the ranking.

2. Convergence Rate w.r.t. Algorithm Parameters. In BiRank,
o and B are the hyper-parameters to combine the score cal-
culated from the graph structure and query vector. They act
like the damping factor in PageRank, and are crucial to the
ranking results and convergence. We study the impact of
the two parameters on the convergence rate. The conver-
gence threshold is set as 0.0001 for Vector Diff, a strict con-
dition that guarantees a sufficient convergence. Fig. 6 plots
the number of iterations to converge on two graphs of size
10K x 20K. Both graphs show the same trend that BiRank
needs more iterations to converge with a larger o (and p).
This verifies our qualitative analysis in Section 4.2.2 that
smaller value of « (and p) leads to a larger effect of the static
query vectors, helpful in achieving quick convergence.

7.1.3 Time Efficiency

In Section 4.1.1, we analyzed the theoretic time complexity
of BiRank: O(n), in the number of graph edges. We now
empirically validate this property. We adopt sparse repre-
sentation for matrices, and implement BiRank in Java. The
experiments are run on a modern desktop (Intel 3.5 GHz
CPU with 16 GB RAM running on a single thread).

Fig. 7 shows the average time per iteration for graphs of
different settings. First, from each single line, we see that
the actual running time per iteration exhibits linearity w.r.t.
to number of edges in the graph. More specifically, each
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TABLE 3
Demographics of the Three Web 2.0 Datasets

Dataset Item# User# Comment# Avg C/I Crawled Date
YouTube 21,653 3,620,487 7,246,287  334.7 2012/8/9
Flickr 26,815 37,600 169,150 6.3 2012/9/3
Lastfm 16,284 77,996 530,237 32.6 2012/10/24

iteration takes about 0.9 seconds for graphs with 2 M edges,
steadily increasing to 9 seconds for graphs with 20 M edges.
This is rather efficient, given that we only run the algorithm
in a single thread; for large-scale graphs, one can easily scale
up the algorithm by parallelizing the matrix operations in
multiple threads. Comparing across lines, we find that
graphs of larger size take more time but still within the
same magnitude. As the edge count is the same, the addi-
tional time is due to traversing additional vertices in such
larger graphs when performing matrix operations.

7.2 Evaluation of Popularity Prediction
We now evaluate how does BiRank perform for the applica-
tion of comment-based popularity prediction.

7.2.1 Experimental Settings

Datasets and Metrics. Table 3 shows the demographics of the
three real-world datasets used in this evaluation. Each data-
set is constructed by the search results of some seed queries.
More details about the dataset are given in [1]. The evalua-
tion ground-truth (GT) is the number of views (note, not the
number of comments) received in the future three days after
the original crawl date (i.e., ranking date ¢).

Given a set of items, BiRank outputs a ranking list of the
items, indicating their predicted popularity. To assess the
quality of the predicted ranking with the GT ranking glob-
ally, we adopt the Spearman coefficient, which measures
the agreement between two rankings.

Baselines. We compare with the following six baselines:

1. View Count (VC): Rank based on the current view
count of items, corresponding to our Hypothesis H3
alone.

2. Comment Count in the Past (CCP): Rank based on the
number of comments received in the 3-day period
prior to ty, corresponding to our Hypothesis H1.

3. Multivariate Linear model (ML) [31]: A state-of-the-art
regression method for popularity prediction. We
apply this method on the comment series with the
time unit as 3 days. This baseline is to test the
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TABLE 4
Popularity Prediction Evaluated by Spearman Coefficient (%)
Method YouTube Flickr Last.fm
1.VC 73.39 58.42 67.31
2.CCp 83.35 59.43 67.21
3.ML 78.24 58.00 38.09
4. PageRank 80.72 28.15 10.24
5. Co-HITS 85.21 63.81 72.71*
6. BGER 84.10 63.17 68.94
7. BiRank (ours) 88.21* 64.76* 70.93

11

denotes the statistical significance for p < 0.01 judged by the one-sample
paired t-test.

traditional view-based methods when applied to
modeling comments.

4. PageRank [2]: This is the most widely used graph
ranking method. Since the bipartite nature can cause
the random walk to be non-stationary, we employ
the standard method to set a uniform self-transition
weight w;; = 1 for all nodes before converting to a
stochastic matrix.

5. Co-HITS [8]: This algorithm is devised for ranking on
bipartite graphs by interleaving two random walks.
To make a fair algorithmic comparison with BiRank,
we apply the same query vectors to Co-HITS and
tune the parameters in the same way.

6. BGER [20]: This is another algorithm designed for
ranking on bipartite graphs. Instead of simulating a
random walk, it normalizes the edge weights in a
different way and is analogously explained as heat
diffusion. We apply the same query vectors and
parameter search for this method.

To expedite parameter tuning, we randomly held out
10 percent of the dataset as the development set, and
employ grid search to find the optimal parameters. Then
the performance is evaluated on the remaining 90 percent
as the testing items.

7.2.2 Performance Comparison

Table 4 shows the performance of the methods on the three
datasets. First, we can see that the three bipartite graph
ranking methods (lines 5, 6, and 7) significantly outperform
other methods. This is because these methods model all the
three ranking hypotheses we proposed, while other meth-
ods only partially model the hypotheses. Among the three
bipartite ranking methods, BiRank achieves the best perfor-
mance in general (best on two datasets YouTube and Flickr),
followed by Co-HITS (best on Last.fm) and BGER. Further
experimentation of 10-fold cross validation shows that the
improvements of BiRank over Co-HITS and BGER on You-
Tube and Flickr datasets are consistent and statistically sig-
nificant (p < 0.01, via one-sample paired t-test). Moreover,
Co-HITS outperforms BGER consistently, although the ran-
dom walk treatments of Co-HITS are suspicious to bias the
high-degree vertices while BGER does not have this issue.
We suspect the reason of Co-HITS'’s strong performance
might be that the bias effect is diluted by the setting of query
vectors, which can regulate the random walks effectively.
Focusing on the result of PageRank (line 4), we see that it
performs very poorly for Flickr and Last.fm. This indicates
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TABLE 5
Statistics of Datasets in Evaluation
Dataset Review# Item# User# Aspect#
Yelp 114,316 4,043 3,835 6,025
Amazon 55,677 14,370 2,933 1,617

that just the centrality of an item in the user—item temporal
graph is insufficient for accurate popularity prediction. In
addition, the performance discrepancy between PageRank
and CoHITS (also a random walk-based method) highlights
the importance of separately handling the two vertex types
within the bipartite graph.

It is surprising that the regression approach ML under-
performs CCP, as ML leverages more information: com-
ments in the recent 30 days compared with CCP’s access to
only three days. We believe there are two reasons for this:
1) the nature of short-term prediction, and 2) the sparsity of
comments. As the prediction task is a short-term one, the
most recent data carries the most signal—“What happened
yesterday will happen tomorrow”; the performance score of
CCP verifies this point. Second, the sparsity in comment
series (e.g., some time units have zero count) can negatively
affect the regression process in an unexpected manner.

7.3 Evaluation of Personalized Recommendation
In this section, we study how do our BiRank and TriRank
perform for the task of personalized item recommendation.

7.3.1  Experimental Settings

Datasets. We experiment with two public review datasets:
Yelp® and Amazon Electronics.® We follow the common
practice in evaluating recommendation algorithms [26], [28]
that filters out users and items with fewer than 10 reviews.
We used the sentiment analysis tool developed by [34] for
extracting aspects from review texts. Table 5 summarizes
the statistics of the filtered datasets and Table 2 shows
examples of the top aspects extracted.

Baselines. We compare with the following methods that
are commonly used in top-K recommendation:

1. Popularity (ItemPop). Items are ranked by their popu-
larity judged by number of ratings. This non-person-
alized method benchmarks the performance of the
top-K task.

2. ItemKNN [32]. This is standard item-based CF. We
tested the method with different number of neigh-
bors, finding that using all neighbors works best.

3. PureSVD [35]. A state-of-the-art model-based CF
method for top-K recommendation, which performs
SVD on the whole matrix. We tuned the number of
latent factors.

4. PageRank [4]. This graph method has been widely
used for top-K recommendation, such as by [36]. For
a fair comparison, we set the personalized vector the
same with TriRank’s query vectors and tuned the
damping factor.

5. yelp.com/dataset_challenge. Downloaded on October 2014.
6. snap.stanford.edu/data/web-Amazon-links.html
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TABLE 6

Recommendation Performance (%) Evaluated at Rank 50
Dataset Yelp Amazon
Metric(%) HR NDCG HR NDCG
1. ItemPop 10.61 4.08 6.13 2.37
2. ItemKNN 15.72 6.37 12.69 10.15
3. PureSVD 14.94 6.16 14.94 10.55
4. BiRank (ours) 17.00* 6.90" 15.97* 11.16*
5. PageRank 15.90 6.52 17.49 11.78
6. TagRW 15.25 6.02 17.47 10.65
7. TriRank (ours) 18.58" 7.69° 18.44" 12.36*

BiRank outperforms CF-based methods (Lines 1, 2, and 3) and TriRank out-
performs all other methods.

5. TagRW [37]. A state-of-the-art tag-based recommen-
dation solution, which performs random walks on
the user-user and item-item similarity graph. Since
tags have a similar form with aspects, we feed aspect
as tags into the method.

For each user, we sort her reviews in chronological order.
The first 80 percent are used for training, followed by 10
percent as validation (for parameter tuning) and 10 percent
as test set (for evaluation). Given a test user, we assess the
ranked list of top-K items with Hit Ratio [28] and
NDCG [29].

7.3.2 Performance Comparison

Fig. 8 plots the performance of top-K recommendation
methods evaluated by NDCG from position 10 to 50. Perfor-
mance of hit ratio shows a similar trend with NDCG, and is
thus omitted for space. ItemPop performed very weakly on
the Amazon dataset, and is entirely omitted in Fig. 8b to bet-
ter highlight the performance of the other methods. As can
be seen, our TriRank consistently outperforms the baselines
with a large margin, and the one-sample paired t-test veri-
fies that the improvements over all baselines are statistically
significant with p < 0.01. For a more detailed discussion,
we further show the concrete scores obtained at the posi-
tion 50 in Table 6.

Focusing on Lines 1, 2, 3, and 4 that are all CF methods
that only model the user—item relationship, we see that our
BiRank achieves the best performance on both datasets; spe-
cifically, it improves over the competitive recommendation
methods ItemKNN and PureSVD with a relative improve-
ment about 8.3 percent. This is very encouraging, and gives
evidence of the merit of our specification of BiRank (in
Section 6.2.1) for collaborative filtering. [temKNN performs
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very well on the Yelp dataset (better than PureSVD), but
poorly on the Amazon one. One possible reason comes
from data sparsity: as in Table 5, each item of the Amazon
dataset only has 3.9 reviews on average. In such cases, the
statistical similarity measure may fail in neighbor-based CF.
In contrast, model-based methods are more robust to sparse
data by projecting users and items to the latent space.
Lastly, we see Item Popularity performs the worst, indicat-
ing the importance of modeling users personalized prefer-
ences, rather than just recommending popular items.
Moving to Lines 5, 6, and 7 of review-based methods, we
see that they generally improve over the methods that use CF
only, indicating the utility of reviews (more specifically, item
aspects) for uncovering users’ preference and complementing
with user ratings. Second, TriRank achieves the best perfor-
mance, further improving over BiRank with over a 10 percent
relative improvement and outperforming PageRank and
TagRW significantly. This verifies the effectiveness of our
TriRank in incorporating the aspects for enhanced recom-
mendation. Lastly, TagRW is inferior to PageRank in utilizing
the same aspect source. We believe the main reason comes
from TagRW’s transformation of the user-item-aspect graph
to user-user and item-item graphs, which can cause some sig-
nal loss especially when the original relationships are sparse.

8 CONCLUSION

We focus on the problem of ranking vertices of bipartite
graphs, and more generally, n-partite graphs. We devise a
new, generic algorithm—BiRank—which ranks vertices by
accounting for both the graph structure and prior knowl-
edge. BiRank is theoretically guaranteed to converge to a
stationary solution, and can be explained from both a regu-
larization view and a Bayesian view. This appealing feature
allows future extensions to BiRank to be grounded in a prin-
cipled way. To demonstrate the efficacy of our proposal, we
examine two ranking scenarios: a general ranking scenario
of item popularity prediction by modeling the user-item
binary relationship, and a personalized ranking scenario of
item recommendation by modeling the user-item-aspect ter-
nary relationship. By properly setting the graph’s edge
weights and query vectors, BiRank can be customized to
encode various ranking hypotheses. Extensive experiments
on both synthetic and real datasets demonstrate the effec-
tiveness of our method. In future, we will study how to opti-
mally learn the hyper-parameters of BiRank. Owing to the
two views of BiRank, two solutions can be explored—by
adapting the parameters based on the validation set [38], or
by integrating over the parameters under the Bayesian net-
work formalism. Moreover, we will explore how to inte-
grate the graph regularization framework with matrix
factorization methods, which have been shown to be very
effective for many tasks such as recommendation [26] and
clustering [39].
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