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Abstract—Outlier detection acts as one of the most important analysis tasks for trajectory stream. In stream scenarios, such properties

as unlimitedness, time-varying evolutionary, sparsity, and skewness distribution of trajectories pose new challenges to outlier detection

technique. Trajectory outlier detection techniques mainly focus on finding trajectory that is dissimilar to the majority of the others, which

is based on the hypothesis that they are probably generated by a different mechanism. Most distance-based methods tend to utilize a

function (e.g., weighted linear sum) to measure the similarity of two arbitrary objects provided that representative features have been

extracted in advance. However, this kind of method is not tailored to identify the outlier which is close to its neighbors according to some

features, but behaves significantly different from its neighbors in terms of the other features. To address this issue, we propose a

feature grouping-based mechanism that divides all the features into two groups, where the first group (Similarity Feature) is used to find

close neighbors and the second group (Difference Feature) is used to find outliers within the similar neighborhood. According to the

feature differences among local adjacent objects in one or more time intervals, we present two outlier definitions, including local

anomaly trajectory fragment (TF-outlier) and evolutionary anomaly moving object (MO-outlier). We devise a basic solution and then an

optimized algorithm to detect both types of outliers. Experimental results show that our proposal is both effective and efficient to detect

outliers upon trajectory data streams.

Index Terms—Feature grouping, trajectory stream, local anomaly trajectory fragment, evolutionary anomaly moving object

Ç

1 INTRODUCTION

WITH the vigorous development of modern mobile
devices and location acquisition technologies, the

positions of moving objects are acquired instantaneously
and collected continuously in a streaming manner. For
instance, the taxis equippedwithGPS sensors relay their loca-
tion information to a central server at intervals like 60 seconds,
so that the taxi-company is capable of processing taxi-hailing
requests efficiently. Such a data stream is essentially a contin-
uous, infinite sequence of positions accompanied and ordered
by explicit timestamps. Effective analysis on streaming trajec-
tories fosters a broad range of critical applications, such as
route planning and recommendation [1], [2], [3], [4], intelli-
gent transportationmanagement [5], road infrastructure opti-
mization [6], etc. In this paper we are primarily concerned
with outlier detection upon trajectory streams.

Hawkins intuitively defines outlier as an observation
that deviates so much from other observations as to arouse

suspicion that it was generated by a different mechanism [7].
Barnett states that an outlier is an observation (or subset of
observations) which appears to be inconsistent with the
remainder of that set of data [8]. To some extent, the phrase
“deviates from other observations” or “inconsistent with the
remainder of that set of data” is subjective and context-based.
Trajectory outlier is usually regarded as an abnormal trajec-
tory that is obviously distinct from the majority of trajectories
according to a certain similarity criterion, such as the vessels
whose movement behaviors are significantly different from
others in the same area of ocean [9], the hurricanes that sud-
denly changewind direction [10], the taxiswith detour behav-
iors [11], [12], and unexpected road changes [13], [14], etc.

Considerable efforts have been invested toward defining
an appropriate similarity criterion to measure the closeness
among trajectories. First of all, an indispensable step is to
extract representative features of each trajectory, based on
which a function is utilized to measure the pairwise similar-
ity (or distance) among them. Although the weighted linear
sum of the distances for all features is widely adopted as
the overall function [10], [15], it is insensitive to the situation
where trajectories are similar in some features, but signifi-
cantly different in the rest.

Fig. 1a illustrates a small example of three trajectories
derived by taxis at some time interval, denoted as Tr1, Tr2
and Tr3 respectively. They are close to one another, among
which Tr2 (in red) with speed of 7 km=h is most likely to be
an outlier, because the average speed of its neighbors Tr1
and Tr3 is about 44 km=h. Such an outlier may indicate a
traffic jam. However, whether it is an outlier or not in the
traditional way depends on the weight of speed feature. It
won’t be identified as an outlier accurately if the weight of
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speed feature is small and the weighted linear sum of the
distances for all the features is not large enough to make it
different from most of the other trajectories.

Similarly, in hurricane landfall forecast scenario, as
depicted in Fig. 1b, Tr4 (in red) locates in very dense region,
but the moving direction of it is opposite to its neighbors
(move from east to west). Tr4 is an outlier, indicating a hurri-
cane whose wind direction changes suddenly. But in the tra-
ditional way, whether Tr4 is an outlier or not depends on the
weight setting of direction feature. Only when the weight of
direction feature is large and the weighted linear sum of the
distances for all the features is large enough tomake it distinct
frommost of the others, Tr4 would be identified as an outlier.

In order to address the aforementioned issue, we put for-
ward a novel feature grouping-based mechanism, where all
the features are divided into two groups, and the goal is to
find outliers from a set of objects which are close to one
another by the first group of features, but obviously differ-
ent by the rest of features. According to the new scenario,
Tr2 and Tr4 are regarded as outliers, because Tr2 is close to
its neighbors (Tr1 and Tr3) by spatial proximity but with dif-
ferent speed, Tr4 is close to its neighbors by spatial proxim-
ity but different in the direction feature.

It is challenging to detect outliers upon trajectory data
streams due to strict time—.and space—complexities. Aside
from the aforementioned problem of feature selection, other
key considerations could and should be taken into account
when devising outlier detection method for trajectory
stream. To deal with a stream of infinite positional point
series, outlier detection technique must satisfy the require-
ments such as real-time response, lightweight execution,
noise-tolerant and tracking the evolutionary property of
outlier. Specifically, first, trajectory position information is
transient. An outlier should be determined immediately
once it occurs, which requires to handle the streaming data
efficiently. Second, noise that is alike to outlier becomes the
barrier of anomaly detection, and thus outlier detection
technique should discern noise from true anomaly to
improve detection precision. Finally, trajectory stream may
evolve dynamically, and abnormal moving property of tra-
jectory evolves gradually. Therefore, outlier detection tech-
nique should have ability to identify the evolutionary
trajectory outlier as soon as possible.

Although there exist considerable researches on trajectory
outlier detection, relatively few researches have worked on
the streaming scenarios [16], [17]. Bu et al. [16] presented an
abnormal trajectory segment detection technique according
to the dissimilar property between one trajectory segment
and most segments adjacent to it in time. However, the local
continuity characteristic presented in [16] does not fit for
abnormal moving object detection in massive-scale trajectory
stream populated with numerous objects. Yu et al. [17]

proposed aMinimal EXamination (MEX) framework to detect
neighbor-basedmoving object outlier based on the neighbour
relationship among moving objects. Nevertheless, none of
them considers feature grouping, so that the trajectory out-
liers in Fig. 1 cannot be detected effectively.

In this paper, we introduce a novel framework to identify
local anomaly trajectory fragment and evolutionary anom-
aly moving object in streaming scenarios. It is comprised of
two components, including trajectory simplification phase,
and outlier detection phase. During the simplification
phase, appropriate fragments of raw trajectories at each
timebin (including m timestamps, m � 1) are derived and
the features of trajectory fragments are classified into two
groups. During the detection phase, to estimate the degree
of outlierness for trajectory fragments with regard to their
neighboring fragments at each timebin, we first search local
neighbors for each trajectory fragment by computing the
similarity in the first group of features. Subsequently, we
assign a local anomaly factor for every trajectory fragment
in terms of the difference in the second group of features
between its neighbors and itself, and identify local anomaly
trajectory fragments by comparing with a given local anom-
aly threshold. Finally, considering the evolving nature of
streaming trajectories, the local anomaly factor of moving
object’s trajectory fragment at each timebin is accumulated
with historical local anomaly factor of its older trajectory
fragments multiplied by a decay function, to generate its
evolving anomaly factor. When the evolving anomaly factor
of a moving object exceeds a given evolutionary anomaly
threshold, it is regarded as a moving object outlier. Specifi-
cally, the contributions of this paper are summarized below.

� We propose a feature grouping-based mechanism to
detect outliers upon trajectory streams, where the
outlier is a trajectory fragment or an object that is
close to its neighbors by some features, but signifi-
cantly different from vicinities by the rest of features.
To the best of our knowledge, there exists no prior
work on this mechanism.

� We present two trajectory outlier definitions, TF-out-
lier and MO-outlier, to characterize local trajectory
fragment outlier and evolutionary moving object
outlier respectively.

� We propose a two-phase trajectory outlier detection
framework, and then present two outlier detection
approaches upon trajectory stream (denoted as
TODS and OTODS respectively), to identify both
types of trajectory outliers.

� We conduct a comprehensive series of experiments
on three real data sets to manifest the efficiency and
the effectiveness of our proposal, as well as the supe-
riority to other congeneric approach.

The remainder of this paper is structured as follows.
Section 2 reviews the related work in literature. In Section 3,
the preliminary concepts are introduced and the problem is
defined formally. In Section 4, we outline the scheme and
elaborate the details of TODS and OTODS algorithms. In
Section 5, a series of experiments are conducted on three
data sets to evaluate our proposal. Finally, in the last
section, we succinctly conclude the whole article and point
out future directions.

Fig. 1. Examples of trajectory outliers.
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2 RELATED WORK

Trajectory data analysis enables us to understand the mov-
ing behaviors of moving objects [18], [19], [20], [21]. Trajec-
tory outlier detection is one of the most valuable analysis
tasks. In different scenarios, trajectory outlier has been
characterized as diverse notions, such as abnormal sub-
trajectory [10], abnormal trajectory [22], [23], [24], abnormal
moving object [17], abnormal road segment [25], [26], [27],
[28], and abnormal event [28], etc. Existing detection techni-
ques [29] involve classification-based approach [30], [31],
historical similarity based approach [9], [11], [12], [25], [26],
[27], [28], distance-based approach [10], [16], [17], [22], [23],
[24], [32], direction—and density-based approach[33],
isolation-based approach [34], [35], [36], etc.

Anomaly Detection in Static Trajectory Data Set. The most
intuitive trajectory outlier detection technique is to build a
classification model based on a labeled data set to differenti-
ate outlier from normal data [30], [31]. Nevertheless, it is dif-
ficult to obtain a good training data set for training and
validating the anomaly detection model. Since the classifica-
tion-based approach requires high computational stages to
train and rebuild the classifier periodically, such approach is
not tailored to detect outliers upon streaming trajectories.
The historical similarity based approach attempts to con-
struct a global feature model to detect outliers by mining fre-
quent patterns on historical trajectories. Such a global feature
model can attain higher detection precision if ignoring the
evolutionary property in streaming context [9], [11], [12],
[25], [26], [27], [28], [33]. Nevertheless, the detection models
built upon historical trajectories are still unable to identify
new abnormal behaviors in trajectory streams. With no need
of any prior distributional assumptions, the distance-based
outlier detection approaches define outliers as the trajecto-
ries far from most of other trajectories. Knorr et al. regarded
object’s whole trajectory as the basic unit and attempted to
find abnormal trajectory that the majority of the trajectories
stand apart from it [22], [23], [24]. In order to detect the
abnormal sub-trajectory, Lee et al. proposed a partition-and-
detect framework (TRAOD method) that integrates the dis-
tance-based and density-based approaches [10]. Before
detecting trajectory outlier, they partitioned the trajectories
into line segments using an approximate method based on
minimum description length ðMDLÞ principle [15]. Due to
OðnÞ time complexity of this approximate method, we adapt
it to simplify trajectory stream data, as illustrated in Section
4.1. But TRAOD algorithm still focuses on discovering a few
objects that are distant from most of the other objects. Addi-
tionally, the execution overhead of distance-based approach
is at least quadratic with respect to the number of trajectories,
so that it is unsuitable for streaming trajectories.

Anomaly Detection in Trajectory Stream. The aforemen-
tioned approaches require to scan the data set multiple
times, whereas the streaming outlier detection algorithms
tend to run in one-pass manner. Due to huge volume, rapid
updating, sparsity and skewed distribution of streaming
trajectories, there exist relatively few researches on outlier
detection upon trajectory streams [16], [17], [35]. By compar-
ing the difference between historical trajectories and an
ongoing trajectory, Chen et al. presented iBOAT algorithm
to detect anomalous sub-trajectory in real time [35]. Bu et al.
proposed a local clustering-based approach for identifying an

outlying trajectory segment of single moving object [16]. To
reduce the computation and memory costs in outlier detec-
tion, [16] utilizes local cluster, a piecewise VP-tree based index
structure and aminimum heap as pruning mechanism. How-
ever, this approach is not well suited for the trajectory stream,
which is populated with voluminous objects and the moving
patterns get more complex and dynamic. Aiming at discover-
ing the abnormal moving objects over high-volume trajectory
streams, Yu et al. presented neighbor-based trajectory outlier
definitions (point neighbor based outlier and trajectory neigh-
bor based outlier) [17], which consider the spatial similarity
among objects and the duration of spatial similarity over
time. Then they proposed a MEX framework equipped with
three fundamental optimization principles (minimal support
examination, time-aware examination, and lifetime-triggered
detection) for detecting both kinds of outliers.

Nevertheless, the above approaches determine the out-
lierness based solely on spatial proximity among trajecto-
ries. They fail to consider the difference of moving behavior
property among trajectories with respect to their local
neighborhood. While such behavior difference indicates
semantic spatial relationship, and it can be more valuable
than spatial proximity in determining the cause of the out-
lierness. Moreover, the aforementioned methods scarcely
consider the evolutionary nature of trajectory outlier. There-
fore, they cannot be directly applied to solve our proposed
outlier detection problem in Section 1. In order to detect
local outliers and evolving outliers with respect to their
neighbors without influence of noise disturbance, a feature
grouping-based outlier detection technique is required to
capture the behavior difference (or outlierness) among each
trajectory and its local neighbors in real-time, and obtain
the evolving outlierness of each trajectory by accumulating
its historical outlierness and instant outlierness.

3 PROBLEM DEFINITION

In this section, we introduce some preliminary concepts,
and formalize the problem of outlier detection upon trajec-
tory streams. Table 1 summarizes major notations used in
the rest of this paper.

Definition 1 (Trajectory Stream). A trajectory stream refers
to sequences of positional records of multiple moving objects,

which is denoted as S ¼ fpð1Þ1 ; p
ð2Þ
1 ; . . . ; p

ð1Þ
2 ; p

ð2Þ
2 ; . . .g, where

p
ðjÞ
i is the location of an object oðjÞ at timestamp ti in 2-D space,

i.e., p
ðjÞ
i ¼ ðxðjÞi ; y

ðjÞ
i Þ.

TABLE 1
List of Notations

Notation Definition

S the trajectory stream
Tc the current timebin in trajectory stream
N the window size
pi the location of an object at the timestamp ti
tf a trajectory fragment
TFc the set of trajectory fragments at current timebin
M the number of features per trajectory
d the distance threshold
da the ally threshold
r the local outlier threshold
i the evolutionary anomaly threshold
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Due to different sampling rates of various moving
objects, to guarantee each moving object report its location
at least once in a time interval, we utilize the term “timebin”
(denoted as T ) to describe a basic time interval. One timebin
includes m timestamps (m � 1). Correspondingly, a trajec-
tory stream is regarded as an infinite sequence of trajectory
points ordered by timebins. In order to limit the infinite tra-
jectory stream to a specified finite set of records within a
given time horizon, we employ the concept of time-based
sliding window. It can be the stream elements that arrived
within the most recent timebins, e.g., an hour. It is com-
monly used for discounting obsolete data as new ones come
in, which keeps the window fresh. Let N represent the win-
dow size. Whenever the window slides forward, it moves
forward by 1 timebin, as shown in Fig. 2.

Definition 2 (Trajectory). The trajectory of an object o, denoted
as Tro ¼ fðp1; t1Þ; ðp2; t2Þ; . . . ðpn; tnÞg, is a sub-sequence of S
affiliated to o. Such records arrive in chronological order, where
pi is the location of o at timestamp ti, 8i < j, ti < tj.

It is space-efficient to summarize each trajectory by
reserving a small number of samples. For example, fp1;
p2; . . . ; p100g can be summarized by fp1; p11; p21; . . . p91g.
How to select appropriate samples is challenging. We pro-
vide a trajectory simplification method in this paper (see
Section 4.1 later), where each trajectory is simplified by a set
of characteristic points, and every two consecutive charac-
teristic points are connected into a trajectory fragment.

Definition 3 (Trajectory Fragment). The fragment of a tra-
jectory Tro, denoted as tf ¼ fðpi; tiÞ; ðpj; tjÞg (i < j), is a line
segment connecting two consecutive characteristic points
ðpi; pjÞ.
Henceforth, we use TFcðtf1; tf2; . . .Þ to represent the set of

trajectory fragments derived by simplifying the trajectory
stream at current timebin. Let F ¼ f1; . . . ; fM denote M fea-
tures of a trajectory fragment. We divide all features into
two groups. The first group (f1; . . . ; fb), called as Similarity
Feature (or, simply, SF), is used to find the spatial neighbors
of each trajectory fragment, and the second group (fbþ1; . . . ;
fM ), called as Difference Feature (or, simply, DF), is used to
identify the trajectory fragment which is obviously distinct
from its spatial neighbors.

For instance, in hurricane landfall forecast application,
track information of hurricane involves the hurricane’s posi-
tion in latitude and longitude, maximum surface wind
speed, and minimum central pressure within a certain
period. To discover the abnormal behaviors of hurricanes
that are significantly different from their neighboring trajec-
tories with respect to wind speed and central pressure, we
regard latitude and longitude as SF, and choose maximum
surface wind speed and minimum central pressure as DF.

Let w1; . . . ; wM denote the weight of each feature respec-
tively,

PM
l¼1 wl ¼ 1, and dislðtfi; tfjÞ denote the distance

between two trajectory fragments (tfi and tfj) by feature fl.
Note that dislðtfi; tfjÞ can be any typical distance metric,
such as Euclidean distance, DTW distance and Hausdorff
distance, etc. Furthermore, Diff1 and Diff2 denote the dis-
tance between tfi and tfj by SF orDF , respectively.

Diff1ðtfi; tfjÞ¼
Xb

l¼1
wl � dislðtfi; tfjÞ (1)

Diff2ðtfi; tfjÞ¼
XM
l¼bþ1

wl � dislðtfi; tfjÞ (2)

To identify anomaly trajectory fragment at each timebin,
we search neighbors for each trajectory fragment in terms of
SF , and then estimate the anomaly degree of each trajectory
fragment within its similar neighborhood according toDF .

Definition 4 (Neighborhood of Trajectory Fragment).
Given a threshold d, the neighborhood of trajectory fragment
tfi at timebin Tc contains all the fragments whose distances
from tfi are not larger than d by SF , i.e.,

NTcðtfiÞ ¼ ftfj 2 TFcjDiff1ðtfi; tfjÞ � dg

We adopt the idea of Local Outlier Factor (LOF) [37] to
measure the outlierness of trajectory fragment. LOF, a
density-based outlier detection technique by considering
the neighborhood density of each element relative to that of
its nearest neighbors, does not need to learn data distribu-
tion in advance, and is capable of detecting outliers with
respect to the density of their local neighbors. Based on the
idea of LOF, we introduce the concept of the local difference
density to measure the difference in DF between each tra-
jectory fragment and its adjacent trajectory fragments, and
local anomaly factor (LAF ) to estimate the anomaly degree
of a trajectory fragment.

Definition 5 (Local Difference Density). The local differ-
ence density of tfi at timebin Tc is defined as

lddTcðtfiÞ ¼
jNTcðtfiÞjP

tfj2NTc ðtfiÞDiff2ðtfi; tfjÞ :

Definition 6 (Local Anomaly Factor). The local anomaly
factor of a trajectory fragment tfi at timebin Tc is defined as

LAFTcðtfiÞ ¼
P

tfj2NTc ðtfiÞ
lddTc ðtfjÞ
lddTc ðtfiÞ

jNTcðtfiÞj
:

In general, a larger LAF indicates that a trajectory frag-
ment is more likely to be an outlier candidate. Therefore, a
local anomaly trajectory fragment is a trajectory fragment
with LAF above a given threshold, see the definition below.

Definition 7 (Local Anomaly Trajectory Fragment).
Given a local outlier threshold r, trajectory fragment tfi at
timebin Tc is called a local anomaly trajectory fragment, or in
short, TF-outlier, iff LAFTcðtfiÞ > r.

TF-outlier is a fragment with DF significantly different
from its neighborhood at current timebin. For instance,

Fig. 2. Example of a sliding window with size ofN timestamps.
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reconsidering that trajectory (tr2) with a velocity of 7 km=h
in Fig. 1, it is obviously a local outlier with regard to its
neighbors in other roads with average velocity of 44 km=h.

However, due to noise disturbance, a trajectory fragment
with a larger LAF may be false TF-outlier if not given an
appropriate local anomaly threshold. We take into account
evolving nature of trajectory stream in solving this problem.
The moving behaviors of objects keep evolving in streaming
scenarios. An object which has normal trajectory fragment
at current timebin may evolve into an outlier in the future.
Distinct from anomaly detection of trajectory fragments at
each timebin, we shall continuously capture the evolving
trajectory outlier from the beginning of the trajectory stream
via an evolving outlierness measurement. Notice that this
evolving outlierness measurement should not only consider
the local anomaly factor of the object’s trajectory fragment
at current timebin, but also take into account the influence
of historical outlierness of object’s older trajectory fragment.

That the sliding window model completely eliminates
the historical data is undesirable for this issue. An alterna-
tive approach is to employ an idea of time decay to reduce
the importance of historical outlierness. Specifically, for
each moving object at per timebin, we accumulate the prod-
ucts of all the local anomaly factor of its historical trajectory
fragments and a forward time decay function [38], and add
the local anomaly factor of its trajectory fragment at current
timebin, to obtain its evolutionary anomaly factor. The for-
ward decay is computed on the amount of time between the
arrival timebin of each historical trajectory fragment of
object and a landmark, where the arrival timebin of the old-
est trajectory fragment of each object, denoted as Ts, is used
as the landmark for each object.

Definition 8 (Evolutionary Anomaly Factor). Given the
oldest timebin Ts, the current timebin Tc (Ts � Tc), and a
monotone non-decreasing function g, the evolutionary anomaly
factor of a moving object o is defined as

EAFTcðoÞ ¼
XTc
Tk¼Ts

gðTk � TsÞLAFTkðtfiÞ
gðTc � TsÞ :

Definition 9 (Evolutionary Anomaly Moving Object).
Given an evolutionary anomaly threshold i, a moving object o
at timebin Tc is an outlier, or in short, (MO-outlier), iff
EAFTcðoÞ > i.

Finally, we summarize the problem definition below.
Problem Statement. Given local outlier threshold r and

evolutionary anomaly threshold i, our goal is to continu-
ously discover all the local anomaly trajectory fragments
(TF-outlier) and the evolutionary anomaly moving objects
(MO-outlier) upon trajectory streams.

3.1 Special Cases

3.1.1 Driving in Reverse

A vehicle that drives in reverse reflects in its trajectory
whose moving direction is opposite to its vicinities. As
exemplified in Fig. 3, the direction of trajectory Tr2 is oppo-
site to its neighbors (Tr1 and Tr3) at current timebin. To find
the behavior of driving in reverse, we choose latitude and
longitude as SF , and direction (calculated by latitude and
longitude) as DF . Based on SF , we first lookup for the
neighbors of each trajectory fragment using Diff1, which is
the weighted sum of the center point distance (denoted as
dcen) and the parallel distance (denoted as dk). For any two
trajectory fragments tfx and tfy shown in Fig. 4, tfy is longer

than tfx, without loss of generality, where dcen ¼k cenx �
ceny k ; dk ¼ dk1þdk2

2 . Then we use Diff2 (Euclidean distance)

to measure the local difference density as well as the local

anomaly degree of each trajectory fragment on DF between

its neighbors and it. Here, Diff2 refers to the angle distance

(denoted as du) computed on DF . Let k tfx k denote the

length of tfx, we assign u the smaller intersecting angle

between tfx and tfy, then du is defined as follows.

du ¼ k tfx k �sinðuÞ; 0� � u < 90�

k tfx k; 90� � u < 180�

�

Finally, we identify TF-outlier Tr2 at current timebin, as
illustrated in Fig. 3, which indicates a car is driving along
the wrong way.

3.1.2 Overspeeding

Overspeeding is a severe road traffic violation action, and
easily leads to the occurrence of heavy traffic accidents. As
illustrated in Fig. 3, the overspeeding behavior of vehicle
can be depicted as a trajectory Tr8 with high speed
(85 km=h), whereas its neighbors (Tr6 and Tr7) keep slow
speed (35 km=h). To find the overspeeding behavior, we
choose latitude, longitude and direction (calculated by lati-
tude and longitude) as SF , and then the speed as DF . To
begin, we find neighboring trajectories with the same direc-
tion by using Diff1 on SF , which is the weighted sum of
dcen, dk and du (in Fig. 4). Then we use Diff2 (Euclidean dis-
tance) to measure the local difference density and the local
anomaly degree of each trajectory fragment on DF between
its neighbors and it, based on which TF-outlier (Tr8) is

Fig. 3. Illustration of special cases.

Fig. 4. Difference measurement of direction-based outlier.
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identified. Over the next several timebins, we proceed to
measure the local anomaly degree and the evolutionary
anomaly factor of trajectory fragments. When the evolution-
ary anomaly factor of the moving object that Tr8 belongs to
exceeds i, we detect it as the MO-outlier, which indicates
that it is a speeding car.

4 FRAMEWORK: LOCAL AND EVOLUTIONARY

OUTLIER DETECTION IN TRAJECTORY STREAM

In this section, we propose a framework to continuously
identify local anomaly trajectory fragments and evolution-
ary anomaly moving objects upon streaming trajectories. In
our framework, each incoming trajectory will be split into
a set of consecutive trajectory fragments. As illustrated in
Algorithm 1, our framework is comprised of two phases,
including trajectory simplification phase (at lines 1.1-1.4)
and outlier detection phase (at lines 1.5-1.7). During the
first phase, appropriate fragments of raw trajectories at
each timebin are derived, the pseudocode of trajectory sim-
plification function is presented in Algorithm 2. During the
second phase, at each timebin, local anomaly factor and
evolutionary anomaly factor of each trajectory fragment
are computed, and based on which local anomaly trajec-
tory fragments as well as evolutionary anomaly moving
objects are detected.

Algorithm 1. Local and Evolutionary Outlier Detection
upon Trajectory Stream

Input: S: a trajectory stream
Output: (1)Ast: a set of local anomaly trajectory fragments;

(2)Ao: a set of evolutionary anomaly moving objects;
1: foreach trajectory Tr at incoming timebin Tc of S do
2: Trsimp  TraSimpðTrÞ;
3: Trall  Trall [ Trsimp;
4: Generate sets of trajectory fragments from Trall;
5: foreach set of trajectory fragments TFc at incoming timebin

Tc of S do
6: ðAst; AoÞ  TODSðTFcÞ (or

ðAst; AoÞ  OTODSðTFcÞ);
7: return Ast and Ao;

4.1 Trajectory Simplification

To accelerate trajectory outlier detection, each trajectory is
simplified into a small number of characteristic points with
least information loss. Specifically, when the behavior of
one positional point is quite different from its previous
points, this point is determined as a characteristic point. For
a trajectory Tr ¼ fp1; p2; . . . png, it can be simplified with k
characteristic points, namely, Trsimp ¼ fpl1; pl2; . . . plkg (1 �
l1 < l2 < � � � < lk � n). Each two adjacent characteristics
points are connected to form a trajectory fragment (denoted
as tfðpli; pliþ1Þ; 1 � i < k). Fig. 5 illustrates an example tra-
jectory Tr ¼ fp1; p2; . . . p10g and its characteristic points
(highlighted in red) after simplification, i.e., Trsimp ¼ fp1;
p3; p5; p9; p10g. An appropriate simplification method must
ensure that the number of characteristic points is as little as
possible (conciseness), and the difference between the origi-
nal trajectory and its simplified edition is as small as possi-
ble (preciseness). However, conciseness and preciseness are

conflicting properties. This needs to seek an optimal trade-
off between them.

Algorithm 2. TraSimp (Trajectory Simplification)

Input: Tr: a trajectory fp1; p2; . . . png in trajectory stream;
Output: Trsimp: a set of all extracted characteristic points;
1: Trsimp  fp1g; s 1;
2: /*s denotes the starting index and c denotes the current

index*/;
3: len 1; Dmax  0; Imax  s;
4: /*len denotes the length of trajectory fragment*/;
5: while ðsþ len � nÞ do
6: c sþ len;
7: DIFF  MDLnpðps; pcÞ �MDLpðps; pcÞ;
8: ifDIFF > Dmax then
9: Dmax  DIFF ;
10: Imax  c;
11: ifDIFF < 0 then
12: Trsimp  Trsimp [ fpImaxg;
13: s Imax þ 1;
14: len 1; Dmax  0; Imax  s;
15: else
16: len lenþ 1;
17: Trsimp  Trsimp [ fpng;
18: return Trsimp;

Trajectory simplification (or segmentation) techniques
include temporal interval based method [39], distance based
method [40], representativeness based method [41] and tra-
jectory shape based method [15]. In our trajectory simplifi-
cation phase, we employ MDL principle and adapt the
approximate method in [15]. The cost of MDL is repre-
sented as the sum of LðHÞ and LðDjHÞ (both encoded in
bits), where LðHÞ (conciseness measurement) denotes the
sum of the length of all trajectory fragments, and
LðDjHÞ(preciseness measurement) represents the sum of
the differences between a trajectory and its derived trajec-
tory fragments. We utilize Diff1 by SF (i.e., coordinate
information of positional point) to measure the difference,

formally, we have LðHÞ ¼ Pm�1
j¼1 log 2ðDiff1ðpljpljþ1ÞÞ,

LðDjHÞ ¼Pm�1
j¼1

Pljþ1�1
k¼lj log 2ðDiff1ðpljpljþ1; pkpkþ1ÞÞ An opti-

mal simplification is achieved by minimizing the cost of
MDL. In [15], an approximate solution is to achieve local
optima on MDL cost of each trajectory fragment. Let
MDLnpðpi; pjÞ denote theMDL cost when there is no simpli-
fication between pi and pj, and MDLpðpi; pjÞ denote the
MDL cost when treating pi and pj as two characteristic
points, then MDLpðpi; pjÞ ¼ LðHÞ þ LðDjHÞ and MDLnpðpi;
pjÞ ¼ LðHÞ. Intuitively, the goal of local optimum is to find
a long trajectory fragment (pi; pj). It ensures that no point

Fig. 5. A trajectory and its characteristic points.
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(e.g., pk) between pi and pj satisfies MDLpðpi; pkÞ �
MDLnpðpi; pkÞ. If MDLpðpi; pjþ1Þ �MDLnpðpi; pjþ1Þ, point
pj is chosen as a characteristic point. Though this character-
istic selection method guarantees good time complexity,
it cannot ensure pj is the point to minimize the cost ofMDL.

In view of this, as shown in Algorithm 2, when we calcu-
late MDLp and MDLnp for each point in a trajectory, we
record two values: the maximal difference (denoted as
Dmax) between MDLp and MDLnp, and the index of that
point (denoted as Imax) with maximal difference in the tra-
versed points so far (at lines 2.5-2.10). Each time a point is tra-
versed, we compare the difference (denoted as DIFF )
between its MDLp and MDLnp with Dmax, and set Dmax to
whichever is larger, and then update the value of Imax. When
DIFF < 0, we choose pImax rather than the immediately pre-
vious point as a characteristic point, and lookup for the next
characteristic point start with pImaxþ1 (at lines 2.11-2.14).

Example 4.1. Let’s consider a trajectory Tr of 10 points in
Fig. 5. When we traverse point p5 in Tr, because
MDLpðp1; p5Þ �MDLnpðp1; p5Þ, p4 (the previous point of
p5) is chosen as a characteristic point by [15]. Distinct
from that, because the difference between MDLnpðp1; p4Þ
and MDLpðp1; p4Þ is 1.17, the difference between
MDLnpðp1; p2Þ and MDLpðp1; p2Þ is 0, the difference
between MDLnpðp1; p3Þ and MDLpðp1; p3Þ is 3.03, Dmax ¼
3:03, Imax ¼ 3. So we choose p3 instead of p4 as a charac-
teristic point. In this way, we simplify the rest points of
Tr. This characteristic point selecting method can achieve
a local optima better, which is demonstrated in Section 5
(as shown in Fig. 7).

4.2 TF-Outlier and MO-Outlier Detection

After the trajectory fragments are obtained by trajectory
simplification at per timebin, we need to identify TF-outlier
and MO-outlier with respect to their local neighborhood.
The detailed description of TODS (short for TF-outlier and
MO-outlier Detection upon Trajectory Stream) algorithm is
presented in Algorithm 3.

At each timebin, the neighborhood of each trajectory
fragment is determined by a distance threshold d (Defini-
tion 4). However, a fixed value of d is not well suited for
searching neighbors in the regions of different density. The
intuition is that the trajectory fragments are closer to each
other in dense region, but depart from each other in sparse
region. Therefore, setting a smaller distance threshold

empower the trajectory fragments have no neighbors in
sparse regions. To solve this problem, we take density into
account in distance threshold setting. The density of a trajec-
tory fragment at Tc is determined by the amount of trajec-
tory fragments within the distance from it, and such a
distance can be calculated by the standard deviation
(denoted as s) of pairwise distances between trajectory frag-
ments arrived at Tc, i.e., DensityTcðtfiÞ ¼ jNTcðtfiÞj in terms
of distance s. Accordingly, the value of d can be adjusted
by multiplying with the ratio of average density of trajec-
tory fragments arrived at Tc to its local density, namely,

d �
1
jTFc j

P
tfj2TFc DensityTc ðtfjÞ
DensityTc ðtfiÞ . Through adaptive adjustment of d,

the value of d rises in the sparse region, and decrements in a
dense region. In this way, we guarantee that the trajectory
fragments have neighbors in sparse regions and they will
not miss outlier detection.

Algorithm 3. TODS (TF-outlier and MO-outlier Detection
upon Trajectory Stream)

Input: TFc: a set of trajectory fragments at timebin Tc;
Output: (1)Ast: a set of local anomaly trajectory fragments;

(2)Ao: a set of evolutionary anomaly moving objects;
1: for each trajectory fragment tfi of each object o at TFc do
2: find the local neighborsNTcðtfiÞ for tfi;

3: LAFTc ðtfiÞ  
P

tfj2NTc ðtfiÞ
lddTc ðtfjÞ
lddTc ðtfiÞ

jNTc ðtfiÞj ;

4: if LAFTcðtfiÞ > r then
5: Ast  Ast [ ftfig;
6: EAFTcðoÞ EAFTc�1ðoÞgðTc�1�TsÞgðTc�TsÞ þ LAFTcðtfiÞ;
7: if EAFTcðoÞ > i then
8: Ao  Ao [ fog;
9: return Ast and Ao;

Subsequently, to identify TF-outliers at Tc, we compute
local difference density and local anomaly factor for each
trajectory fragment (at line 3.3). Through comparing the dif-
ference of DF between each trajectory fragment and its
vicinity, we derive the local anomaly degree of each element
at Tc. Generally, if a trajectory fragment has great difference
from its neighbors on DF , the local anomaly factor attains a
higher value. Trajectory fragments are identified as TF-out-
liers when their local anomaly factors exceed a given local
anomaly threshold r (at lines 3.4-3.5).

A trajectory fragment is identified as a TF-outlier at one
timebin according to the difference of DF between it and its
adjacent elements. But due to the disturbance of noise data,
it is difficult to specify an appropriate local outlier threshold
to identify TF-outlier accurately and reduce the false alarms.
In addition, with the evolution of trajectories, the phenome-
non that a moving object has anomaly trajectory fragments

Fig. 7. Outlier detection result for BestTrack.

Fig. 6. One Local Micro-cluster and its Ally Fragments.
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in multiple timebins (maybe discontinuous) indicates the
exceptional behaviors of this moving object. Thus, an effec-
tive detection approach is desirable to capture the evolving
abnormal behaviors of moving objects. Through employing
the idea of strengthening the influence of newly arrived tra-
jectory data while lessening the influence of outdated data
(may be noisy data), we derive the evolving anomaly factor
of each moving object based on the local anomaly factors of
its trajectory fragments at different timebins.

Since the evolving outlierness of a moving object has
been more affected by the recent abnormal behaviors than
historical abnormal behaviors, a decay function is utilized
to calculate the evolutionary anomaly factor (Definition 8).
To be specific, LAFs of trajectory fragments of each moving
object at the previous timebins are multiplied by a decay
function, and accumulated with LAF at current timebin to
derive the evolutionary anomaly factor. Because backward
decay mechanism require calculating the age of each item
with respect to current timebin, which is varying over time.
Additionally, every item must be revisited to compute its
contribution for decayed LAF computation. As a result, we
adopt the notion of forward time decay [38] based on mea-
suring forward from a previous fixed point in time (called
as landmark). To attain a slower decay on historical abnor-
mality, we apply polynomial decay, specifically, gðnÞ ¼ n2.
According to Definition 8, we have

EAFTcðoÞ ¼
XTc
Tk¼Ts

gðTk � TsÞLAFTkðtfiÞ
gðTc � TsÞ

¼
XTc�1
Tk¼Ts

gðTk � TsÞLAFTkðtfiÞ
gðTc � TsÞ þ LAFTcðtfiÞ

¼ EAFTc�1ðoÞ
gðTc�1 � TsÞ
gðTc � TsÞ þ LAFTcðtfiÞ

Hence, the value of EAFTcðoÞ can be calculated by multi-
plying EAFTc�1ðoÞ with the ratio of gðTc�1 � TsÞ to
gðTc � TsÞ, and adding it with LAFTcðtfiÞ (at line 3.6). When
the evolving anomaly factor of the moving object o grows
beyond threshold i, o would be reported as an evolutionary
anomaly moving object (at lines 3.7-3.8).

Time Complexity Analysis. For the trajectory fragments
arrived at current timebin, the time complexity of TODS
algorithm is Oðn lognÞ using STR-tree index technique,
here, n is the maximum number of trajectory fragments
arrived at current timebin. Therefore, after insertion of t
timebins, the total time complexity of iterated TODS algo-
rithm is Oðtn lognÞ.

Actually, trajectory data arrive very rapidly, search-
ing neighbors for each trajectory fragment at each
timebin intrinsically becomes the computational bottle-
neck. Accordingly, whenever receiving new trajectory
data at every timebin, both local outlier factor calculation
and evolutionary anomaly factor calculation are required
executing iteratively for each trajectory fragment. This
involves comparatively high computational overhead espe-
cially when massive amount of trajectory data arrive at one
timebin. To further improve efficiency of TODS algorithm,
a high-quality but significantly less costly technique is

desirable to accelerate neighbor searching and reduce the
amount of updates.

4.3 Optimized TF-Outlier and MO-Outlier Detection

Although trajectories are time-varying evolutionary in
streaming scenario, it is observed that the neighbor rela-
tionship among trajectory fragments may be retained for
one or more timebins. Motivated by this, we combine
with the clustering technique, and exploit a new structure
to store and maintain the neighbor relationship of trajec-
tory fragments along the trajectory stream. To be specific,
we characterize a micro-group of trajectory fragments
within a specified proximity threshold, as Ally Fragment
(AF for short). Here, we utilize a representative trajectory
fragment (denoted as AFrp) to depict the overall charac-
teristic of an Ally Fragment.

Definition 10 (Ally Fragment). Given an ally proximity
threshold da (da < d), an ally fragment AF is defined as a set
of trajectory fragments such that: for any trajectory fragment
tfi 2 AF , the distance between tfi and AFrp by SF is not more
than da, i.e.,Diff1ðtfi; AFrpÞ � da.

The trajectory fragments in one ally fragment are tightly
close to one another. The maintenance of ally fragment is
triggered only when inserting newly arrived trajectory frag-
ments or deleting the obsolete trajectory fragments. Based
on the structure of ally fragment, we present an optimized
TODS algorithm, denoted as OTODS. The detailed algorith-
mic description of OTODS is given in Algorithm 4. Initially,
randomly selecting a trajectory fragment from newly
arrived ones as seed, then merging it with its nearest trajec-
tory fragments to generate one ally fragment in terms of ally
threshold da (at lines 4.2-4.4). If its nearest ally fragment can-
not be found, a new ally fragment will be created for it (at
lines 4.7-4.8). This select-and-merge process iterates until all
the arrived trajectory fragments at one timebin are absorbed
into different ally fragments. For all the ally fragments, it is
required to derive the representative trajectory fragment
(computing method is similar to [21]). Also, with the pro-
gression of stream, it is critical to eliminate the influence of
obsolete trajectory fragments from the existing ally frag-
ments. It mainly involves the updates of representative tra-
jectory fragments for influenced ally fragments with the
insertion and deletion of trajectory fragments. That we
regard ally fragment instead of trajectory fragment as basic
unit when calculating ldd and LAF , can drastically reduce
the amount of calculation.

To further reduce the cost of local anomaly factor calcula-
tion, our solution builds Local Micro-cluster (LC for short)
on ally fragments via hierarchical clustering (at line 4.9),
instead of searching neighbors for each ally fragment. As
illustrated in Fig. 6, four ally fragments (denoted as AF1,
AF2, AF3, and AF4 respectively) are clustered into a Local
Micro-cluster (denoted as LC1). The representative trajec-
tory fragment of AF2 is AFrp. Local Micro-cluster is distinct
from temporal partitioning (defined as Local cluster) over
trajectory stream in [16], it intuitively extends the neighbor
relationship of ally fragments. According to Definition 10,
the trajectory fragments in an ally fragment are tightly close
to each other, and thus local anomaly factors of the trajec-
tory fragments in an ally fragment are approximately the
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same. Henceforth, evaluating local anomaly factor for each
trajectory fragment is transformed into estimating local
anomaly factor of ally fragment in local micro-cluster. The
structure of ally fragment simply stores the neighbor rela-
tionship between objects rather than their spatial coordi-
nates. The size of Ally Fragment is much smaller than that
of Local Micro-cluster. Therefore, the structures of Ally
Fragment and Local Micro-cluster can significantly acceler-
ate the execution of TODS algorithm.

Essentially, insertion of new trajectory fragments or elimi-
nation of obsolete trajectory fragments only influences the
updates of LAFs for the relevant elements, including (1) the
ally fragments which newly inserted trajectory fragments
belong to, (2) the ally fragments that outdated trajectory frag-
ments deleted from, and (3) the other ally fragments in the
local micro-clusters that newly inserted or deleted trajectory
fragments belong to. We use ZINF to denote the influenced
set of ally fragments on insertion or deletion of trajectory
fragments (at line 4.5, 4.8, 4.11). So the updates of LAFs after
per insertion or elimination are limited on ally fragments in
ZINF and do not require recalculating LAFs for all of the ally
fragments (at lines 4.14-4.15). In the following we proceed
with describing the details of updating LAF when inserting
or eliminating trajectory fragments as time goes by.

Algorithm 4. OTODS (Optimized TF-outlier and MO-
outlier Detection upon Trajectory Stream)

Input: TFc: a set of newly arrived trajectory fragments at
timebin Tc;

Output: (1)Ast: a set of local anomaly trajectory fragments;
(2)Ao: a set of evolutionary anomaly moving objects;

1: Initialize the set of ally fragments Z;
2: foreach trajectory fragment tfi of object o in TFc do
3: if 9AF ,Diff1ðtfi; AF Þ � da then
4: Insert tfi into AF ;
5: ZINF  ZINF [ fAFg;
6: /*ZINF denotes the influenced set of ally fragments on

insertion or deletion of new trajectories*/;
7: else
8: Create AFnew for tfi; Update Z and ZINF ;
9: Assign the closest micro-cluster to AFnew using cluster-

ing method;
10: foreach outdated trajectory fragment tfe do
11: Remove tfe from the corresponding AF ; Update Z and

ZINF ;
12: foreach ally fragment AF in ZINF do
13: Find the influenced local micro-cluster LCm for AF ;
14: foreach ally fragment AFj in LCm do

15: LAFTcðAFjÞ  
P

AFy2LCm

lddTc ðAFyÞ
lddTc ðAFjÞ

jLCmj ;

16: if ðLAFTcðAFjÞ > rÞ then
17: foreach fragment tfi in AFj do
18: Ast  Ast [ ftfig;
19: foreach fragment tfi in AFj do

20: EAFTcðoÞ EAFTc�1ðoÞgðTc�1�TsÞgðTc�TsÞ þLAFTcðtfiÞ;
21: if EAFTcðoÞ > i then
22: Ao  Ao [ fog;
23: return Ast and Ao;

Insertion of New Trajectory Fragments. The main work for
inserting new trajectory fragments involves the updates of

ldds, LAFs and EAFs for newly inserted ally fragments as
well as affected existing ones. On the one hand, whenever
new trajectory fragments are absorbed into existing or
newly created ally fragments, ldds, LAFs and EAFs need to
be calculated for the new records. On the other hand, with
the insertion of new records into existing ally fragments, the
other ally fragments in the same local micro-cluster that
new records belong to, shall accordingly update their ldds.
In addition, new records and affected records need to reas-
sign the degree of outlierness for each element, i.e., LAF
and EAF (at lines 4.14-4.22).

Elimination of Obsolete Trajectory Fragments. A certain
amount of trajectory fragments will be eliminated due to
their obsoleteness of each timebin, which even leads to
some ally fragments need to be deleted. Similar to the inser-
tion of new records, ldds, LAFs and EAFs of the affected
trajectory fragments are required to be updated. Mean-
while, for all the local micro-clusters that deleted trajectory
fragments belong to, ldds, LAFs and EAFs of the other ally
fragments in the same local micro-cluster must be updated
correspondingly.

Time Complexity Analysis. After insertion of t timebins,
the time complexity of OTODS algorithm is Oðn lognþ ðt�
1ÞnA lognAÞ using STR-tree index technique, where n is the
maximum number of arrived trajectory fragments at a time-
bin, nA is maximum number of ally fragments, and nA 	 n.
Thereby, the efficiency of OTODS algorithm is significantly
improved as compared to TODS algorithm.

5 EXPERIMENTAL STUDY

In this section, we conduct extensive experiments to assess
the effectiveness and efficiency of TODS and OTODS. Ini-
tially, to evaluate the effectiveness of TODS on the static tra-
jectory data set, we utilize TRAOD [10] as the baseline
approach to compare against TODS based upon the real
data set. Further, we execute TODS and OTODS algorithms
on two real data sets, to verify effectiveness of both algo-
rithms over streaming trajectories. Finally, we compare the
efficiency of TODS and OTODS algorithms on real data set,
and then evaluate the influence of the key parameters on
each algorithm.

TRAOD is the most effective distance-based trajectory
outlier detection algorithm reported so far for static trajec-
tory data set. It partitions each trajectory into a set of line
segments (denoted as t-partition), and then detects outlying
t-partitions and trajectory outliers. In detection phase,
TRAOD determines the abnormity of a t-partition according
to its insufficient amount of close trajectories relative to the
whole trajectory data set. Note that a close trajectory defined
in [10] not only needs to meet a given distance threshold,
but also ensures that sufficient portions of it are close to a
t-partition. Namely, the length of close portion of a close tra-
jectory is not less than that of comparing t-partition. Addi-
tionally, TRAOD identifies the trajectory outliers according
to the ratio of the sum of its outlying t-partitions’ lengths to
its total length. As a result, outlying t-partitions and trajec-
tory outliers detected by TRAOD are probably very long.
Distinct from TRAOD, our proposal aims to detect TF-
outlier and MO-outlier. We initially find similar neighbor-
hood for each trajectory fragment in terms of the specified
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distance threshold rather than length limit of close trajec-
tory. Then, we detect outliers within their local neighbor-
hood. The rationale is that finding outliers locally is more
accurate than doing so globally.

All codes, written in Java, are conducted on a PC with
Intel Core CPU 3.6 GHz Intel i7 processor and 16 GB RAM.
The operating system is Windows 10. Unless mentioned
otherwise, the parameters are set below, the window size
N ¼ 30minutes, timebin ¼ 2minutes.

5.1 Data Sets

We utilize three real trajectory data sets to evaluate our pro-
posed methods, including atlantic hurricane track data set
(hereafter termed BestTrack1), taxi operational data set of
2015 in Shanghai (hereafter termed TaxiShanghai15), and
taxi trajectory data set of 2013 in Shanghai (hereafter termed
TaxiShanghai13). The former data set is derived in Euclid-
ean space, and the latter two on restricted road network.

Best Track records awealth of hurricane’s track information
within the period between the year 1959 and 2010, containing
features such as the hurricane’s position in latitude and longi-
tude,maximum surfacewind speed, aswell asminimum cen-
tral pressure. We choose a portion (1990-2010) of the data set,
which involves 221 trajectories and 6541 points.

Taxi Shanghai15 contains about 410 k trajectories derived by
13,600 taxis of Shanghai in a period from Apr.1 to Apr.30,
2015. EachGPS log is received at the rate of around once every
minute. It has about 13,660 trajectories per day (about 114mil-
lion points) with six attributes of Vehicle ID, Time, Longitude
and Latitude, Speed, and Taxi Status (free/occupied), etc.

Taxi Shanghai13 contains about 4,800 k trajectories gener-
ated by 13,400 taxis of Shanghai for three months, from
October to December in 2013. We select a test area consists
of 19 road segments (from Wuzhou Avenue, through Shen-
jiang road and Jufeng Road, to North Zhang Yang Road),
and each road segment has one lane in each direction. It has
about 53,356 trajectories per day (about 107 million points)
with four attributes of timestamp, velocity, longitude and
latitude coordinates. These positional records experience
the periods of free-flow and congestion alternately through-
out a day, and compose a real-time trajectory stream. The
ground truth outlier set is manually verified through com-
parative velocity analysis for each trajectory fragment and
its neighbors at each timebin by the volunteers. It involves a
few trajectories with exceptional speed on some road seg-
ments, and the road segments that have obviously different
speed from their neighbors. The labeling of TF-outlier (or
MO-outlier) is determined by majority of volunteers’ voting.

5.2 Effectiveness Evaluation

Results for Best Track. To verify the accuracy of TODS on the
static data set, we implement TRAOD and TODS on
BestTrack first. We fit BestTrack in a time window, which
enables TODS to handle the static data set just like TRAOD.
Fig. 7 visualizes the detection results of TRAOD and TODS.
We choose latitude and longitude as SF , regard direction
(calculated by position information), minimum central pres-
sure and wind speed as DF . To detect angular outlier, in

the experiment of [10], more weights are put on the angular
distance. Accordingly, we put more weights on direction
feature and fewer weights on the other features in DF .
Parameters of TRAOD algorithm are set the same as [10],
and the parameters of TODS are empirically set as follows:
d ¼ 40, r ¼ 1:5, and i ¼ 1:276. As shown in Fig. 7, thin green
lines represent normal trajectory partitions (or fragments),
thick red lines represent anomaly trajectory t-partitions
(TRAOD) or TF-outliers (TODS), and thin red lines repre-
sent trajectory outliers (TRAOD) or MO-outliers (TODS).
Owing to the advantage of our improved simplified
method, trajectory simplification result of TODS is
smoother than that of TRAOD, as illustrated in Fig. 7.

As shown in Fig. 7a, a total of 6 trajectory outliers with
outlying t-partitions are detected by TRAOD. We can
observe that most of outlying t-partitions and trajectory out-
liers are quite long and do not behave obviously different
from their neighboring trajectories. As discussed earlier, the
main reason is that close trajectories of a t-partition are
determined by two issues [10], one is within the smallest
distance, and the other is that the length of close trajectory
must be larger than that of tested t-partition. If a t-partition
Li has not sufficient close trajectories with length greater
than that of Li, Li is regarded as an outlying t-partition.
Additionally, the trajectory outliers are identified according
to the ratio of the sum of its outlying t-partitions’ lengths to
its total length. We observe that long t-partitions in the
upper right region are identified as outlying t-partitions,
because they are distant from most of other trajectories and
few close t-partitions have a larger length than them. Corre-
spondingly, since the sum of lengths of these t-partitions
possesses a definite proportion relative to the trajectories
that they belong to, such trajectories are identified as trajec-
tory outliers even when the remainder portions of them are
similar with their surrounding trajectories.

Whereas TODS instead focuses on detecting TF-outlier
and MO-outlier that are significantly distinct from their
neighborhood according to DF . As illustrated in Fig. 7b,
there are 12 MO-outliers (their portions including TF-out-
liers) detected by TODS algorithm. Compared with trajec-
tory outliers detected by TRAOD, MO-outliers are not
always long trajectories. But we can see that the directions
of MO-outliers are significantly different from their local
neighborhood. Thus, the outlier detection result of TODS is
more reasonable than that of TRAOD.

Results for Taxi Shanghai15. We apply OTODS algorithm
on TaxiShanghai15 to detect traffic abnormal incidents in
urban road network of Shanghai during the interval [8:00-
8:30] onApril 14 and 15, 2015 respectively. Longitude and lati-
tude are chosen as SF , and speed is regarded as DF . We
regard the real-time average speed of each Ally Fragment as
the velocity of corresponding road segment. We choose a test
area (the road area surrounding the Middle Ring Road) to
visualize the outlier detection result ofOTODS algorithm. As
shown in Fig. 8, green lines represent the road segments
where normal motion traces of taxis locate on, yellow lines
represent TF-outliers (the lanes in a certain road segments)
within the interval [8:29-8:30], and red lines represent MO-
outliers (the lanes in a certain roads) within the interval [8:00-
8:30]. We observe that the speeds of most outliers (TF-outliers
and MO-outliers) are significantly higher than that of their1. http://weather.unisys.com/hurricane/atlantic/
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vicinities. High speed always implies traffic fluency on the
road. During peak hours, the information that the roads with
high speed is extremely useful and can be delivered to the
public for optimal route planning in real time.

Furthermore, as seen from Fig. 8a and b, although there is
no obvious difference between the traffic situations in the
same time period on two separate days (Apr 14th and 15th),
significant variations have emerged in the results of trajec-
tory outlier detection, including the number of TF-outliers
and MO-outliers, and the positions where outliers occur. In
comparison with traffic situation on April 14 (Fig. 8a), the
speeds of most of the roads (including the roads that outliers
locate on and general roads) on April 15 (Fig. 8b) are obvi-
ously higher, especially for the roads nearby the Middle
Ring Road. This case may be coincide with the execution of a
known traffic administration rules published by the Shang-
hai Public Security Bureau. It says that some elevated high-
ways (e.g., Middle Ring Road) extend the prohibited driving
time by one hour from April 15, 2015, which includes morn-
ing rush hour [7:00-10:00] and evening rush hour [16:00-
19:00]. This means that many vehicles are prohibited driving
on elevated highways for more time. Therefore, owing to the
reduction of vehicles, the velocities of two-way lanes in Mid-
dle Ring Road and small numbers of neighbor road segments

are accelerated within the interval [8:00-8:30], as illustrated
in Fig. 8b. This is tally with new traffic control policy. It dem-
onstrates that OTODS method can be used to effectively
identify traffic abnormal situation in real time.

Results for Taxi Shanghai13. For effectiveness validation
purpose, we also conduct TODS and OTODS algorithms on
TaxiShanghai13. We aim to continuously identify TF-outliers
and MO-outliers on TaxiShanghai13 according to velocity
feature. Similarly, we choose longitude and latitude coordi-
nate as SF , and regard velocity as DF . Take TF-outliers
detected by TODS for example, the portions of test area and
the outlier detection results (within [8:00-10:00] a.m. on
October 8) are visualized in Fig. 9. Fig. 9a shows the move-
ment distribution of taxis traces (in green). The average
speed of most roads is not beyond 20 km=h. The TF-outliers
(in red) detected by TODS is illustrated in Fig. 9b. Thin red
lines indicate that only a few abnormal trajectories (with
exceptional speed of 50� 60 km=h) occur on parts of roads.
TF-outliers represented by thick red lines indicate a road seg-
ment where taxis travel with the significantly different speed
from neighboring road segments. This outlier detection
result is coincide with the ground truth outliers.

Metrics. In order to conduct a comparative analysis of the
effectiveness for both algorithms, we use Precision, Recall
and F �measure as the criteria measurement. They are

defined as Precision ¼ jR
T

Dj
jDj , Recall ¼ jR

T
Dj

jRj , and F�
measure ¼ 2�Precision�Recall

PrecisionþRecall . where R denotes the manually
labeled outlier set, and D denotes the detected outlier set by
our proposal. Precision indicates how accurately the algo-
rithm detects outliers and Recall measures how completely
outliers are detected. To deeply understand how the param-
eters impact outlier detection, we compare the results of
both algorithms via Precision, Recall and F �measure by
utilizing different thresholds (d, da, r and i), as illustrated in
Figs. 10, 11 and Fig. 12. Note that d (or da) uses the variation
of latitude and longitude, the distance of 0.0001 is corre-
sponding to about 11 meters.

Fig. 8. Outlier detection result for TaxiShanghai15.

Fig. 9. Outlier detection result for TaxiShanghai13.

Fig. 10. Precision (TaxiShanghai13).
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First, we investigate the precision of both algorithms,
with the results under different distance threshold (d or da)
and anomaly threshold (r or i) plotted in Fig. 10. From
Figs. 10a and c, for TF-outlier, TODS and OTODS algo-
rithms have high precision when r � 2, because local anom-
aly factors of most TF-outliers reach about 2. While OTODS
uses a smaller da (da ¼ 0:0032) to attain the same Precision
as TODS with a larger d (d ¼ 0:0256), this is so because a
smaller da enables all the trajectory fragments in one ally
fragment closer to one another. Accordingly, LAF of such
ally fragment represents the outlierness of trajectory frag-
ments in it more precisely. In addition, comparing MO-out-
lier detected by TODS (Fig. 10b) with that by OTODS
(Fig. 10d), TODS has a higher precision than OTODS, and
OTODS obtains nearly the same precision as TODS when
i ¼ 6. This is in line with our intuition that anomaly evalua-
tion of trajectory fragments is transformed into that of ally
fragments, and the average outlierness of ally fragments
guarantees approximately the same high precision as origi-
nally trajectory fragments.

Second, we report the recall rate of both algorithms
under different distance threshold (d or da) and different
anomaly threshold (r or i), as shown in Fig. 11. It is
observed that TODS and OTODS algorithms have almost
the same recall rate. Meanwhile, the recall rate of both algo-
rithms gradually drops as anomaly threshold (r or i)
increases, and even further increasing the value of d or da

does not help any more. The reason is that almost all
the outliers (TF-outlier or MO-outlier) can be found when r
(or i) = 1 or 2. It’s worth mentioning that OTODS identifies
the outlierness of trajectory fragments by using ally frag-
ments, but the validity of ally fragment and local micro-
cluster structures ensures that OTODS detects almost all
the outliers, and thus achieves a quite high recall rate.

Third, we examine F -measure of TODS and OTODS
algorithms under different thresholds, as shown in Fig. 12.
We observe that both algorithms obtain the best F -measure
for TF-outlier detection when r ¼ 2 and d (or da)� 0:0032,
and for MO-outlier detection when i ¼ 2 and d (or da) =
0.0032. This is due to that the average pairwise distance of
trajectory fragments is about 0.0032 on TaxiShanghai13,
and at the same time LAFs of most TF-outliers and EAFs of
MO-outliers reach about 2. From the above results, we
conclude that our proposal can be tolerate to noisy distur-
bance and has a lower false alarm rate on account of evolu-
tionary anomaly assessment. Furthermore, OTODS can
attain almost the same effectiveness as TODS as long as the
thresholds are set appropriately.

5.3 Efficiency Evaluation

In this section we conduct a study to assess the efficiency of
our proposal by comparing TODS with OTODS when deal-
ing with streaming trajectories. The number of trajectories
gradually grows from 40 k to 280 k. Fig. 13a shows the

Fig. 11. Recall (TaxiShanghai13).

Fig. 12. F -measure (TaxiShanghai13).

Fig. 13. Execution time comparison over TaxiShanghai13.
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execution time comparison (expressed as seconds) between
TODS and OTODS upon TaxiShanghai13. The execution
time of both algorithms scale linearly with data size, and
OTODS keeps superior to that processed by TODS with the
progression of trajectory stream. The faster processing rate
of OTODS is contributed by the structures of ally fragment
and local micro-cluster. That is, we estimate local anomaly
factor of each ally fragment in each local micro-cluster
instead of evaluate local anomaly factor for each trajectory
fragment. More importantly, for OTODS algorithm, along
with the sliding forward of time window, whether insertion
of new fragment or elimination of obsolete fragment only
influences a small amount of ally fragments in certain local
micro-clusters. Therefore, OTODS algorithm significantly
outperforms TODS algorithm. This also demonstrates the
time-quality trade-off by comparing F -measure and execu-
tion time of both algorithms. OTODS algorithm is capable
of detecting the outliers upon streaming trajectories in a
promising efficiency.

Moreover, in order to further test the robustness of
TODS and OTODS algorithms, we study the sensitivity of
both algorithms under different parameter settings. We run
the comparative experiments by varying the values of d, N
and da respectively. 1)Varying d: Because d is the distance
threshold for determining the neighborhood of trajectory
fragment, it is important to investigate its effect on the per-
formance of TODS algorithm. Fig. 13b shows the processing
time comparison of TODS when varying d from 0.0064 to
0.1024. There is a little difference in the comparison results
of TODS with different values, and TODS attains the best
efficiency when d ¼ 0:0064. TODS is almost insensitive to
the value of d. The slight increase of execution time when
the value of d increases is due to that more neighbors can be
found within a larger d, and the computing costs of ldd and
LAF accordingly increase. 2)Varying N : Fig. 13c shows the
processing time comparison of OTODS when varying N
(N ¼ 120 s, 300 s and 600 s respectively), timebin is set as
30 s, 60 s and 120 s respectively. We observe that the proc-
essing time of OTODS algorithm increases as the trajectory
data continue to flow in, and it is modestly influenced by a
larger window size. It is based on the fact that a larger win-
dow size leads to more incoming trajectories need to be sim-
plified into fragments and then detected whether existing
outliers. Even so, the processing time of OTODS algorithm
is only 59 s when N ¼ 600 s. 3)Varying da: Fig. 13d shows
the processing time comparison of OTODS when varying
da from 0.0002 to 0.0032. With the increase of trajectory data,
the execution time increases accordingly, and OTODS
attains the best efficiency when da ¼ 0:0016. This is due to
the fact that a smaller da leads to substantial ally fragments,
which increases the cost of searching nearest ally fragment
for each incoming trajectory fragment and the computation
overhead of ldd and LAF . From the above experimental
results, we conclude that TODS and OTODS algorithms
can effectively identify outliers upon trajectory stream,
while OTODS is more efficient than TODS.

6 CONCLUSION AND FUTURE WORK

Existing outlier detection techniques on trajectory stream
determine the outlierness of trajectories based upon spatial
proximity relationship, they cannot discover the outliers

which have numerous close neighbors, while behaving dif-
ferently from their neighbors. In this paper, we first divide
the features of trajectory into two groups (Similarity Feature
and Difference Feature), and address the issue of online identi-
fying local and evolutionary trajectory outlier. On the basis of
that, we propose a framework to identify outliers upon
streaming trajectories. It consists of two components, includ-
ing trajectory simplification phase and outlier detection
phase. We present a basic algorithm (TODS), and an opti-
mized algorithm (OTODS) that incorporates a newdata struc-
ture (Ally Fragment) to detect both types of outliers. We
validate our proposal for effectiveness and efficiency by con-
ducting extensive experiments on three real data sets, and
show that our proposed algorithms are efficient in continu-
ously detecting both types of outliers upon trajectory streams.

Trajectory data in emerging big data applications is
more generally collected in a distributed fashion. With the
substantial increment of trajectory stream data, a highly
distributed trajectory outlier detection will become indis-
pensable solution. Recently, due to the scalability, flexibil-
ity and cost effectiveness, numerous distributed computing
platforms such as Spark and Storm have become prevalent.
Therefore, for future work, we would like to extend TODS
algorithm to a distributed solution based upon distributed
computing platform, to improve the efficiency of process-
ing streaming trajectories and provide more efficient out-
lier detection results.
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