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Abstract. Automatic text generation is the generation of natural lan-
guage texts by computer. It has many applications, including automatic
report generation, online promotion, etc. However, the problem is still a
challenged task due to the lack of readability and coherence even there
are many existing works studied it. In this paper, we propose a two-
phase algorithm, which consists of text cleanup and text extraction, to
automatically generate text from multiple texts. In the first phase, we
generate paragraphs based on the topic modeling and clustering analy-
sis. In the second phase, we model the text extraction as a set covering
problem after we find the keywords in terms of the scores of TF-IDF, and
solve the problem via employing the tool of submodular. We conduct a
set of experiments to evaluate our proposed method and experimental
results demonstrate the effectiveness of our proposed method by com-
paring with some comparable baselines.

Keywords: Automatic text generation - Massive information
K-Means - Submodular

1 Introduction

Automatic text generation is the generation of natural language texts by com-
puter, which is a hot topic in both academia and industry. It can be applied to
intelligent Question-Answer System, news report and online promotion, etc.

There are many state-of-art methods in this area and most of them already
worked in the practice. Although great achievements have been made in this field,
for example, the Newsblaster system [1] is a successful system from Columbia
university, which is a news tracking tool to summarize the important news every
day, it is still a challenged task due to the some problems, such as readability,
coherence, a high-level complexity and so on.

We propose an automatic text generation algorithm, which consists of two
phases: text cleanup and text extraction. Inspired by Lin [3], we employ the
tool of submodular to solve the set covering problem. In summary, the main
contributions of this paper are threefold:
© Springer International Publishing AG 2017

S. Song et al. (Eds.): APWeb-WAIM 2017 Workshops, LNCS 10612, pp. 237-246, 2017.
https://doi.org/10.1007/978-3-319-69781-9_23



238 L. Ai et al.

e Based on topic model, we cluster documents into several clusters, which makes
the generated text more readable and accurate.

e We model text extraction as a set covering problem which is solved by the
tools of integer programming and submodular. Furthermore, we figure out
the lower bound of performance of our proposed algorithm.

e To illustrate the promising results of our algorithm, we conduct extensive
experiments on real data sets. Not only do experiments verify the feasibility
of our method, but also it reveals our method outperforms the baselines.

Moreover, we describe the related work and preliminaries in Sect. 2. Section 3
and Sect. 4 show the problem formulation and algorithms. Experimental results
are analysed in Sect. 5. Finally, we conclude the paper and discuss the future
work in Sect. 6.

2 Related Work and Preliminaries

2.1 Related Work

Automatic text generation has been an important research field in the past
few years. The methods of automatic text generation can be divided into four
categories: text-to-text generation [10-17], meaning-to-text generation [5], data-
to-text generation [6-8], image-to-text generation [9]. Text-to-text generation is
the major research method and in this paper, we propose a text-to-text method
to generate the new text.

Due to extracting the original sentences, text-to-text generation has a more
stable semantic and grammatical structure. Li [10] proposed a method which
generates new text by extracting sentences from original text, which has the
information redundancy problem. Mihalcea and Tarau [16] proposed a sorting
algorithm based on graphs, TextRank. They first build a graph associated with
the text, where the graph vertices are representative for the units to be ranked.
The sentences with high score are taken as the summary. In addition, submodular
function is also used in text generation. Lin [3] proposed a method that given
a set of objects V = vy,...,v, and a function F : 2¥ — R which returns a
real value for any subset S C V, this method is to find the subset of bounded
size |S| < k that maximizes the function, e.g., argmazgcy F(S). This method
is similar to MMR [4], which compute F(S) by sentence similarity. Although we
also address the problem by submodular function, our approach is different from
Lin [3]’s method since we compute F(S) by set-covering ratio.

2.2 Preliminaries

A set function that satisfies the rule of diminishing marginal efficiency is called
submodular function. For a set V = {vy, v, v3,...,v,} and a function f : 2V —
R ITACBCV andeeV — B, then:

f(AU{e}) = f(A) = f(BU{e}) — f(B) (1)
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For a submodular function f and a limit condition C', we need to find the set
S which satisfies the limit of C' and can maximize the value of f(S). The most
basic greedy algorithm [18] for this NP hard is to add the largest incremental
value which satisfies the conditional C' at each iteration, so in i-th iteration:

S; = Si—1 U {argmaz.Ae|S;—1)} (2)

In this equation, A(e|S;—1) = f(Si—1U{e}) — f(Si—1), where f(S) satisfies the
property of submodular. Obviously, a submodular function is monotonous and
non-negative, i.e., for Ve ¢ S, f(S U {e}) > f(S) or Ve ¢ S, f(SU {e}) < f(5)
and VS C V, f(S) > 0. The lower bound performance of this algorithm is 63.21%
of optimal solution. From the property of submodular, we can define coverage
function as weights of sentences so that automatic text generation satisfies the
property of submodular and can be solved by this algortihm.

3 Problem Setup

3.1 Problem Formulation

Assume we have document cluster D = {d;,ds, . ..,d,} and keyword set K. The
goal is to find the sentence set S = {s;|s; € d;,d; € D}, which S can cover
all keywords from K. Considering the applicability and effectiveness, we choose
text extraction method. We model text extraction as a set covering problem, the
definition as follows:

Definition 1 (Text Extraction). Given keyword set V = {wy,wa, ..., wn1},
the customized keyword set U = {ui,usg,...,un2} and sentence set C =
{51, 52,...,5n}. Assume that S; = {wi|w,, € UUV'}, the purpose is to find the
minimal subset C' that V € Ugeer S and u; € Uger S.

3.2 Automatic Text Generation Process

The automatic text generation process is divided into two parts: corpus pre-
processing, text generation.

1. Corpus Preprocessing.
Because the high topic confusion of corpus, we classified it into different clus-
ters. LDA (Latent Dirichlet Allocation) is a topic generation model proposed
by Blei [15], which can generate the topic probability distribution of a doc-
ument. In this paper, we use LDA model to predict distribution of topics in
corpus and cluster documents by topic distribution. Finally, we obtain several
document sets with lower confusion as candidate set of documents.

2. Text Generation.
In order to generate a beautiful text structure, we classified the candidate
set again. After clustering the candidate set into several clusters, we use each
cluster to generate a paragraph.
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According to the framework shown in Fig.1, this approach contains two-
phase: text cleanup and text extraction. In text cleanup phase, we obtain topic
distribution of candidate documents by LDA model and use it to represent
documents. Then, we cluster the documents into different topics. In text
extraction phase, we use the scores of TF-IDF to define the keywords, we
model the text extraction as a keyword set covering problem. Then, we solve
the problem via employing the tool of submodular. The new text is composed
of sentences extracted from each cluster.

Paragraph Paragraph, * * * |Paragraph
New Text (Output)

1 1
. documents '
1 1
. 00 0 g o |
! e !
¥ ® 0 0 ® 0 |
0 |
' O @ Clustering !
LI 1
x
E& . @ ~cluster <=7~ o . :
1 ". \ / ‘ \ / .'\ :
| Qe .0 .- g0 |
1 S=- So- == I
[ P IR I —— K ———
______________ 2 N L LS L1273
1 1
1 1
! L] . .
: Keywords[ ] [ ] | | i
E c Customized |
| Em | e
: S A\ 4 A\ 4 A4 :
1+ 1
'S | Extracting Text | !
) '
K '
1
H = v v v !
1 1
1 1
1 1
1 1
1 1
1 1

Fig. 1. The framework for automatic text generation

4 Algorithms

1. Keyword Set Generation
TF-IDF (Term Frequency-Inverse Document Frequency) is a statistical
method to evaluate the importance of a word in one document or one corpus.
TF represents the frequency of one word appearing in the document. For one
specified word ¢;, the value of TF is denoted as 7} ;. IDF is a measure of the
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importance of one word, for a specified word t;, the IDF value is denoted as
I;. Then, we use variable T'— I; ; = T; ; x I; to obtain the value of TF-IDF.
All in all, a high-frequency word has a larger TF-IDF value, so we can use this
algorithm to obtain most important words and to filter out high-frequency
non-keywords.

. Text Extraction

After obtaining the set of keywords from the above algorithm and defining
customized words, we model text extraction as a set covering problem, the
formal description is as follows:

m
minimize|C'|, that is, minimizeZXj
j=1
st X;€{0,1},j=12....m
Y, e {0,1},i=1,2....0lj=12....m
Z;; €{0,1},i=1,2,...,n25=1,2,...,m

m

Y XY= 1i=1,2,...,nl(1x)
j=1

n2 m

SN XiZij = 1.(2¢)

i=1 j=1

Among this, C’ is a set of the extracted sentences, which composes the gen-
erated new text; X; = 1 represents sentence S; is contained in the sentence
set C’, X; = 0 is opposite; Y; ; = 1 means the i-th keyword w; is in sentence
S, Ym = 0 is opposite; Z; ; = 1 means the i-th customized keyword u; is in
sentence S, Z; ; = 0 is opposite. Also, constraint (1*) is to ensure generated
text covers all keywords; constraint (2*) is to ensure generated text at least
covers one customized keyword.

To solve this set covering problem, one method is to employ the linear pro-
gramming to approximate the integer programming, which is a NP-hard prob-
lem and we cannot theoretically figure out the lower bound of performance
of it. Another method is using submodular (See Sect.2.2) if we can define a
set function satisfying the property of submodular. That is the focus of this
paper.

In order to solve the set covering problem, we use the following objective
function:

£(8) = > W, + > W, (3)

wie{w|lweSINK/{w|weC'} w; e{w |weSINKy /[{w|weC’}

where w; is a generated keyword, which occurs in sentence set S but not in
extracted sentence set C', W, is the weight value of keyword w;. w; is a
customized keyword, which occurs in sentence set S but not in extracted sen-
tence set C’, Wy, is the weight value of keyword w;. Obviously, this function
is a submodular. The algorithm is shown in Algorithm 1.
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Algorithm 1. Text Extraction Algorithm with Submodular
Input:

The set of sentences, V;

The set of keywords, K;

The set of customized keywords, Ky;
Output:

The set of generated sentences, C' C V/;

1: Initialize C' =0

2: while (K!=0)or(C' N Ky =0) do
3:  select s, s.t. s = argvg\zlawc/[f(C” U {v}) — f(C")]
4: C'=C'u{s}
5. VyesK.remove(w)
6
7
8

Vues Ku.remove(u)
: end while
: return C’

In the Algorithm 1, w is a word in the set of K, v is a word in the set of K.
The statement of 2 row is the termination conditions of the algorithm, K! = ()
means the keywords is not covered completely, C' N Ky = @ means that
no customized keywords is covered, when satisfying both of them, program
is terminated. After finding optimal sentence, we update K by removing
keywords in this sentence and update Ky by removing customized words
in this sentence. we employ hill-climbing algorithm to solve the set covering
problem, so that we can use the least sentences to cover all keywords.

In this algorithm, we find unit s with the largest ratio of objective function
gain to scaled cost. If adding s increases the objective function value and not
violates the budget constraint, it is then selected and otherwise bypassed. In
each iteration, we add the sentence with greatest weight into coverage set.
The coverage set becomes the final output.

5 Experiments

5.1 Datasets and Parameters

The corpus which contains 1703 documents. After classifying those documents,
we choose 4 classifications as candidate sets. The number of documents in each
classification are 529, 245, 649 and 280 respectively. We pick 10 documents from
each classification as experimental data and other documents are trained by
LDA model to cluster by different topics.

Owning to no standard evaluation data set, we generate standard summariza-
tion by manual annotation. For each candidate set which contains 10 documents,
we choose 3 volunteers to extract one summarization and there are 12 standard
summarizations in all. In this paper, the default parameters of number of top-
ics in LDA topic cluster, K value of K-Means and number of keywords in one
classification are set as 50, 4 and 2 * #documents per cluster respectively.



Automatic Text Generation via Text Extraction Based on Submodular 243

5.2 Baselines

We compare our method with TextRank method based on graphs proposed
by Mihalcea [16] and LinearPro method which approximates the set covering
problem with a linear programming.

1. TextRank
This algorithm builds graph by using sentences as nodes and similarities
between sentences as weights of edges. TextRank algorithm is an unsupervised
text generation extraction method with better results. Different methods have
different computing method if sentence similarity.

2. LinearPro
In Sect. 4, we have mentioned that two methods can solve the set covering
problem, the one is integer programming which is a NP-hard problem. We
can employ the linear programming to approximate the problem. However,
we cannot figure out the lower bound of performance of this method, we
use this method as baseline and we donate it as LinearPro. In this method,
after getting the weights of each sentence, we need to define a threshold and
sentence is extracted when the weight of the sentence is greater than the
threshold, in this experiment, we set threshold as 0.8.

5.3 Evaluation Metrics

The method proposed in this paper is evaluated by Edmundson coincidence rate
[17] and ROUGE evaluation standard [19].

e Edmundson
The basic unit of Edmundson is sentence, the coincidence rate C' is calculated
by the following equation:

EAEN
C =120 2
S.]

x 100% (4)
In this equation, S, represents the set of extracted sentences and S, represent
standard text, generally, we use average value of coincidence rate (Ave) to
reduce error.

¢ ROUGE
In Edmundson method, we take sentences as compared objects, in this paper,
we use ROUGE-N and ROUGE-S metrics. ROUGE-N can reflect the occur-
rence order of words, the equation is defined as:

ZSE{ST} anes Cu(ng)
ZSG{ST} anwGS C(ng)

In this equation, ST represents standard text, Cys(ng) represents the number
of n-grams coexisted in new text and standard text. C'(ng) represents the
occurrence number of n-grams in standard text.

ROUGE — N =

()
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5.4 Experimental Results Analysis

Based on the evaluation metrics of Edmundson coincidence rate, ROUGEL,
ROUGE2, ROUGE S and ROUGE SU, we compare our algorithm with base-
lines.

Comparison in Edmundson Coincidence Rate. Table1 is the comparison
with TextRank, LinearPro and Submodular in Edmundson Coincidence Rate.

Table 1. Comparison with baselines in edmundson coincidence rate

Algorithm Classification 1 | Classification 2 | Classification 3 | Classification 4
TextRank(BM25) | 0.0606 0.0 0.0192 0.0093
TextRank(Sim) 0.0303 0.0 0.0192 0.0093
LinearPro 0.0455 0.0213 0.0288 0.0093
Submodular 0.09 0.0851 0.1346 0.0370

From Table1, we can find that for four classifications, Edmundson coinci-
dence rate of our algorithm is higher a lot than other algorithms. For classifica-
tion 2, TextRank(BM25) and TextRank(Sim) have not worked and the coinci-
dence rate of LinearPro is only 0.0213, but the coincidence rate of our method
is 0.0851, which is higher than LinearPro. Obviously, these experimental data
indicates that our method outperforms than baselines.

Comparison in ROUGE. In the progress of experiment, we find the perfor-
mance of TextRank(Sim) is better than TextRank(BM25), so in this part and
next part, we use TextRank(Sim) and LinearPro to compare with Submodular
algorithm in ROUGE-1, ROUGE-2, ROUGE-S, ROUGE-SU. The experimental
results are shown in Fig. 2.

From Fig.2, Submodular outperforms TextRank and LinearPro generally.
Though LinearPro is better than Submodular in C1, but for C2, C3, C4, Sub-
modular method have absolute superiority. Submodular is worse than Tex-
tRank(Sim) in R-2 for C3, but it is better than TextRank(Sim) in R-1, R-S and
R-SU. From the perspective of sentence extraction, R-S and R-SU can reflect the
sequence of sentences consistent with standard text more effectively and have
more practical significance than R-2. Also, from the perspective of probability,
our method has better results in most classifications. Therefore, our method is
more effective than TextRank and LinearPro.

Comparison in Mean Value of ROUGE. Table2 shows the mean values of
R-1, R-2, R-S, R-SU of four classifications for TextRank(Sim), LinearPro and
Submodular methods respectively. The mean value of Submodular in R-1, R-
2, R-S, R-SU is higher than that of TextRank(Sim) and LinearPro algorithms.
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Fig. 2. Comparison with baselines in ROUGE

Thus, from the perspective of average effect, Submodular is superior to baselines.
Even in the worst case, the average R-S value of Submodular is improved about
1.5 than LinearPro, the average R-2 value of Submodular is improved about 2
than TextRank(Sim).

Table 2. Comparison with baselines in mean value of ROUGE

Method R-1 R-2 R-S |R-SU
TextRank(Sim) | 32.25 |21.25 | 14.50 |16.25
LinearPro 37.75 |21.50 | 19.25 |20.00
Submodular 40.25 | 23.25 | 20.75 | 22.25

In summary, for those evaluation metrics, Submodular algorithm is more
outstanding than other algorithms.

6 Conclusion and Future Work

In this paper, we propose a two-phase algorithm which consists of text cleanup
and text extraction. We generate paragraphs based on the topic modeling and
clustering analysis firstly. Then, we model the text extraction as a set covering
problem after we find the keywords by TF-IDF. Experiments show the effective-
ness of our proposed method by comparing with comparable baselines.

In the future work, we will improve the efficiency of our method. Also, we can
consider about the position of sentences or words of title so that the generated
text will be more consistent with standard summarization in the next work.
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