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Abstract. During the past decade, with the widespread use of smart-
phones and other mobile devices, big trajectory data are generated and
stored in a distributed way. In this work, we focus on the distributed
top-k similarity query over big trajectory streams. Processing such a dis-
tributed query is challenging due to the limited network bandwidth. To
overcome this challenge, we propose a communication-saving algorithm
DT-KST (Distributed Top-K Similar Trajectories). DT-KST utilizes the
multi-resolution property of Haar wavelet, and devises a level-increasing
communication strategy to tighten the similarity bounds. Then, a local
pruning strategy is imported to reduce the amount of data returned
from distributed nodes. Theoretical analysis and extensive experiments
on a real dataset show that DT-KST outperforms the state-of-the-art
approach in terms of communication cost.

Keywords: Top-k similarity query - Trajectory stream - Communica-
tion cost

1 Introduction

Recently, the explosive development of positioning techniques leads to the wide-
spread of various location-acquisition devices. These devices, monitoring the
motions of vehicles, people, animals, and goods, are producing massive and high-
speed distributed trajectory streams. Analyzing this kind of stream data enables
the understanding and forecasting of moving behaviors, and brings out novel
applications and services.

In this paper, we are aiming at processing such a distributed query: “given a
reference trajectory Q, compare it against a crowd of trajectory streams stored
on spatially distributed nodes, and find the top-k similar ones”. Q@ can be an
actual trajectory of a moving object or a virtual movement describing a desired
moving pattern. This kind of query is practical in many scenarios. For example,
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Fig. 1. Distributed processing model

video cameras are set up in many roads to capture the moving traces of vehicles
continuously. The transport department is interested in finding trajectories simi-
lar to a given driving pattern such as “waving” or “swerving” to detect potential
drunk drivers [2]. Another typical scenario is that, when a city manager plans
to add or remove a bus route, he needs to know whether a specific route is
taken by at least k passengers during 8:00-9:00. To deal with this issue, he may
ask a crowd of organizations such as the bus, taxi companies and even smart
phone owners to get trajectories similar to the given route [14]. In the above
cases, it is inefficient to gather all distributed trajectory streams into a central
site in advance, due to the limited network resources and privacy issues. Hence,
centralized methods cannot be applied directly [3,8,10,11].

We firstly abstract the distributed model as a network which consists of a
coordinator site and M remote sites (shown in Fig. 1). Each remote site main-
tains some local trajectory streams, and only communicates with the coordinator
site. Query references are submitted to the coordinator to get the query results.
In a naive solution, the coordinator directly transmits the query reference Q to
all remote sites. Then, each remote site computes the similarity between Q and
its local streams to report the k closest ones to the coordinator site. Finally, the
coordinator site determines the final top-k results after receiving the candidates
from all remote sites. Despite the simplicity, the communication overhead of this
method is huge, because the coordinator site needs to send Q to all remote sites.
The overhead becomes unacceptable when a lot of remote sites exist. To reduce
the communication cost, multi-resolution based techniques that decompose the
original data into different resolutions have been proposed [4,13]. In these works,
the original data are decomposed into different resolutions, and data in a coarser
resolution provide a rough outline of the original data, while those in a finer res-
olution disclose more details. LEEWAVE exploits the multi-resolution property
of Haar wavelet that can tighten the similarity bounds gradually after iterations
[13]. [4] utilizes multi-resolution property of “bounding envelope”. The core idea
of LEEWAVE is to compute Euclidean distance based similarity bounds for each
candidate trajectory, while [4] computes a DTW distance based lower bound.
Compared with [4], LEEWAVE is specially designed for processing stream data
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which matches our problem. However, it suffers the following problems: (i) It
aims at processing one-dimensional time series, while trajectories are essentially
multi-dimensional. (ii) It collects data from remote sites to prune candidates in
the coordinator, which requires much communication cost when the number of
candidate trajectories or that of remote sites is large.

In this work, we show that the Haar wavelet can be used to compress tra-
jectory data, and we can compute a similarity bound for the compressed data.
Then, we propose an iterative algorithm, called DT-KST, to process the dis-
tributed top-k similarity query. DT-KST prunes the candidate trajectories in a
level-increasing manner and gradually tightens the similarity bound for candi-
dates. In comparison with LEEWAVE-CL — an improved version of LEEWAVE
by adopting our tighter lower bound, DT-KST outperforms it in two aspects:
(i) Only the local top-k upper bounds are required to be sent to the coordi-
nator, while two parameters of each candidate are required in LEEWAVE-CL.
(ii) In each iteration, DT-KST only sends the global k-th smallest upper bound
to remote sites, while LEEWAVE-CL needs to send a list containing IDs of all
candidates. The main contributions are summarized as follows:

— We show that the Haar wavelet based technology can compress the trajectory
streams.

— We propose a new algorithm DT-KST to process top-k similarity query over
distributed trajectory streams. DT-KST sends the coefficients of the query
reference one level at a time in a top-down manner, and prunes the candi-
dates progressively. In comparison of LEEWAVE-CL which collects informa-
tion from remote sites and prunes results in the coordinator site, DT-KST
prunes candidates in the remote sites directly.

— We give theoretical analysis and extensive experimental results to show that
DT-KST can save more communication cost than LEEWAVE-CL.

The rest of the paper is organized as follows. Section 2 discusses the related
work. In Sect. 3, we define the problem formally and show that normalized Haar
wavelet can be used to compress trajectory data. Furthermore, Sect. 4 proposes
DT-KST algorithm and analyzes the performance in theory. Section 5 shows the
experimental results. Finally, a brief conclusion is given in Sect. 6.

2 Related Work

In this section, we review recent works related to ours, including distributed
top-k query on data streams and distributed trajectory similarity query.

2.1 Distributed Top-k Query on Data Streams

There exist some works on reducing the communication cost for distributed
streaming top-k query. [9] proposes two schemes similar to the naive idea in
Sect. 1, called CP and PRP. However, both of them suffer from heavy commu-
nication overhead due to the necessity to send the query reference to all remote
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Fig. 2. Haar wavelet transform

sites. To overcome this weakness, LEEWAVE, a level-wise approach, can tighten
the similarity bound gradually by leveraging the multi-resolution property of
Haar wavelet [13]. It only sends a fraction of the query reference to remote
sites iteratively to approach the final result. A more compact lower bound is
proposed in [5]. These two works use the Euclidean distance as the similarity
metric. [4] investigates the same problem using DTW distance. As all of them
aim to process one-dimensional time series, they cannot be adopted to process
multi-dimensional trajectories directly.

2.2 Distributed Trajectory Similarity Query

[6,12] study how to deal with similarity join by utilizing the MapReduce frame-
work, with the goal to reduce the data transmission between map and reduce
tasks, and they are optimized for reducing the communication cost among data
nodes. But in our distributed environment, remote sites only communicate with
the coordinator site. In [15], each trajectory is divided into a few subsequences
and these subsequences are stored in different remote sites. This work does not
take communication into consideration. Communication cost is considered in
Smart Trace [1] and Smart Trace™ [14]. However, they only consider a special
case where each remote cite (represented by a smartphone) only contains one tra-
jectory. In contrary, we consider a more general scenario where each trajectory is
fully stored in a remote site, and each site can maintain multiple trajectories. So,
the aforementioned techniques [1,14,15] cannot be applied to solve our problem.

3 Preliminary

3.1 Problem Statement

We assume the time span is divided into a series of basic “time-bins” (i.e., 105s),
and each object will generate a location per time-bin. A trajectory point p, is
the location of a moving object at time-bin ¢;. For each object, a trajectory
stream is an infinite sequence of trajectory points, {py,p;,-- -}, generated at
time-bins {to, 1, - - }. To process infinite stream data, we only maintain data in
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recent n time-bins in cache. The query reference Q and a candidate trajectory
are represented as: @ = {qy,94," - ,9,_1}, C ={co, €1, -+ ,€n_1} respectively.
Each trajectory point is in d-dimensional space, i.e., q;,¢; € R?. The Euclid-
ean Distance between a pair of trajectory points, and that between a pair of
trajectories are computed as follows:

ED(q;,¢ci) =|lg; — cil| = \/qu||2 +[leill? — 2q; - ¢ (1)

ED(Q.C) = \/ S ED(g; ) (2)

Here, ||q;|| (or ||c;||) denotes the L2-norm value of vector g, (or ||c;||), and
g, * ¢; denotes the dot/inner product of two vectors g; and ¢;. For simplicity,
we also use Squared Euclidean Distance (SED) to measure the similarity, i.e.,
SED(q;,¢c;) = ED(q;,¢;)? and SED(Q,C) = ED(Q,C)%. We formalize our
query below.

Definition 1 (Distributed Top-k Similarity Query, DTSQ(Q,T5)).
Given a query reference Q and a set of all trajectory streams TS which are
maintained in all remote sites, this query returns a result set S such that (i)
S| =k, SCTS, and (1)) VC e S, € TS - S, SED(Q,C) < SED(Q,C").

3.2 Review of Haar Wavelet

Haar wavelet is effective to compress time series [5,13]. Its transforming pro-
cedure can be regarded as a series of averaging and differencing operations at
different resolutions. Working in a bottom-up manner, this procedure won'’t stop
until the average for the whole time series is obtained. This progress can be
described as an error tree, as shown in Fig.2(a). For simplicity, an arbitrary
non-leaf node has two entries, a] and d’, where the former is the pair-wise
average of its children and the latter is the corresponding difference. The leaf
nodes contain the original time series. In Fig. 2(b), we show an example of trans-
forming a one-dimensional time series {8,6,2,4,5,9,17,13}. The first pair-wise
averages in the time series are {% =7 44 — 3 % =7, 17'5713 = 15}, and
the corresponding differences are {% =1, 25—4 = -1, % = -2, 17513 = 2}.
Next, based on {7,3,7,15}, we obtain new averages {5,11} and new differences
{2, —4}. Finally, the overall average {8} and the corresponding difference {—3}
are obtained. Thus, the wavelet coefficients are {8, —3,2,—4,1,—1,—2,2}, con-
taining the overall average and all the differences. Note that the non-normalized
factor, %, is used to compute the averages and differences in our example. In
fact, which is called the normalized factor, is adopted in this paper.

1
oL

4 DT-KST Algorithm

4.1 Haar Wavelet for Trajectory

Trajectory is a special kind of time series in which each position is a data point in
d-dimensional space. In this section, we show that the normalized Haar wavelet
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can be extended to decompose trajectory data. For two trajectories @ and C
of the same length n (n is a power of 2), the depth of their error trees are
L+ 1, where L = log, n, and the Haar wavelet coefficients for them are H(Q) =

{aog,mdog,oa dlg,w T 7d%—1,n/2—1} and H( ) - {ao ,00 do ,09 dl 0077 7d%71,n/271}7

where aOQO and af o are the overall average of H(Q) and H(C) respectively, di%

and dc . are the differences, and al i z i dlgj7 dc € R%.
Accordlng to the normalized Haar wavelet transform procedure, the pair-wise
average and difference for two successive nodes of Q’s error tree are computed

Q Q Q Q
a; +4a; . a; Qs . . .
as: aQ] = DLA LAl \/5“’2”1 ) d?j = L) CibLeitl \57'“’2”1. Two adjacent averages in the
I “9.

(i+1)-th level of Q’s error tree who share the same farther node are in the form
of {%%-1,2;’7 aiQ+1,2j+1}' Then, the sum of pair-wise distance is:

SED( i+1, 2]7 'LC+1,2])+SED( 1+1 2g+17 §+1,2j+1)

Q Q C . Q Q c “
a’ +d=. d a®. —d=. C o dS .
Yol Y e e e s G Y i e B B
E B E
Q Q C Q Q C C Q Q
[ T ”*d”n EPL s B R s e A
v vz v vz
—d¢ a?-fd?- —df
P B e g% 8 ppag, af,) 4 SED(S, )

Thus, we get the following theorem:
Theorem 1. For two trajectories Q and C, SED(Q,C) = SED(H(Q),H(C)).

Proof 1. Let S;(Q,C) denote the sum of distances between averages at level i
of Q and C’s error trees, and SED;(Q,C) denote the sum of distances between
differences. That is:
2t —1 2" —1
Si(Q,C):Zj: SED(a?;, af;) SEDZ-(Q,C):Z]__ SED(d?;, df ;)
Now, we have:
i+1

2 —
Si+1(Q>C):Z. SED( Z+1j7 ic+1j)

J—O
=37 seD ”,am—&-z | SED(), dS ;)

= Si(Q,C) SEDi(Q,C)
For the bottom level of the error trees, we have:

L—-1
S1(Q.€) = 80(Q.C) + >~ " SEDi(Q.C) = SED(H(Q), H(C))
As the bottom level of the error tree maintains the original data, we have

SED(Q,C) = S.(9,C). Finally, SED(Q,C) = SED(H(Q), H(C)) holds.

According to [13], if the length of the reference is not a power of 2, then it
can be divided into a few subsequences, each with a length equal to a power of
2. In this way, the overall similarity can be computed by summing the distances.
So, Haar wavelet can be used to decompose trajectories of any length.
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4.2 Level-Increasing Bounds

The core idea of DT-KST is that the coordinator iteratively sends coefficients
in a top-down manner and only one level is dispatched at a time. Remote sites
gradually prune the candidates with more and more coefficients of Q. To better
illustrate our idea, we give the following definition:

Definition 2. For two trajectories Q and C, the accumulated distance from level
0 to level I is computed as: accSED;(Q,C) = So(Q,C) + 22:0 SED;(Q,C).

Then, we have the following equation:
SED(Q,C) = accSED_1(9Q,C)
L—-1
= accSED(Q,C) + Zi:m SED;(Q,C) (3)

According to Eq. 3, if only coefficients at the first few levels are received by
remote sites, each site cannot determine how much those not-yet-seen coefficients
at lower levels will contribute to the whole distance. So, we expand the latter
part of Eq.3 and get the following formula:

L—1 L—1 2°—1

N SEDi(Q,B)= > S (1117 + |ldS,|1” - 2d; - df ) (4)
i=l+1 i=l+1 j=0
In Eq.4, Y050, 22 e 1d2;||? is computed by SSQ — P 022 o llde |

where SS@Q is the sum of squared coefficients of H(Q) and can be computed

in advance by the coordinator, Zz 0 22 N ||d ||? can be computed according
to the known coefficients received by remote 51tes Similarly, the second part in
Eq.4 is computed in remote sites. The main challenge is how to compute the
value of the third part of Eq.4 without knowing coefficients below level [. In
DT-KST, instead of computing the third part exactly, we compute a compact
bound for it using the Cauchy-Schwarz inequality. Then, we have the following
bound:

L—1 2i—1 L—1 2i-1
= ADIDINFEEN DRI

i=l+1 j=0 i=l+1 j=0
L—1 2°—1 L—1 2°—1 L—1 2°—1
Q C
<=2 > Al ldil < DD Y —2dRedi <2 > > ||d]| - [|df |
i=l+1 j=0 i=l+1 =0 i=l+1 j=0

L—1 2i-1 L—1 2i-1
<20 >0 Dol Do D llds1 (5)

i=l+1 j=0 i=l+1 j=0
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In combination of Egs. 3, 4 and Ineq. 5, we get the following similarity bound:

L—1 2°—1 L—1 2i—1 L—1 2i—1
DD AP+ e, 1P = 24| Do D a2y o > NS
i=l+1 j=0 i=l+1 j=0 i=l+1 j=0

+ accSED(Q,C) < SED(Q,C) < accSED;(Q,C)
L—1 2¢—1 L—1 2i—1 L—1 2i—1

+ 0 Y AP NI + 24| D0 DA\ D D NdeI1R (6)
i=l+1 j=0 i=l4+1 j=0 i=l+1 j=0

In Ineq. 6, we maintain both lower and upper bounds of the similarity in a
level-increasing manner. Note that the same upper bound is used by LEEWAVE
and DT-KST. But LEEWAVE directly uses accSED;(Q,C) as the lower bound.
Obviously, our lower bound is larger than accSED;(Q,C). The correctness of
DT-KST is based on the assumption that both bounds become progressively
tighter. We give the proof of this assumption below.

Theorem 2 (Lower Bound Theorem). The lower bound of a similarity range
18 mon-decreasing when we move from level | to level [ + 1.

Proof 2. Let Lb; denote the lower bound of the similarity on level I, then:

oltl_g
Lbups = Lby = SEDu42(Q,€) =3 (14211 + a1 )

\j Lzl 2Izllld 117 - $ LZI 2Zzll\d ll?

i=l+1 =0 i=l+1 j=0

—$ Dy an?,mJ S5 g (7)

i=l+2 j=0 i=1+2 j=0

To show that the lower bound will not decrease as level goes down, we need
to pmve that Lbjy1 — Lby > 0. In Eq. 7, SED;41(Q,C) can be substituted with

11 )
ZJ o (ld2, j||2 + [|dfy 112 - 2d2 ¥ -df,, ;). Then our problem is trans-
formed into proving the following inequation holds:

2l L—1 2i—1 L—1 2i—1
C
Z Ay iy <4 D0 D A2y D0 D lld7,1P
i=l+1 j=0 i=l+1 j=0
L—1 2i—1 L—1 2i—1
C
=y 2o Do NaBIE | X2 Dol ®)
i=l+2 j=0 i=l4+2 j=0
ol+1_q 2l4+1_1 20+1 1
In Ineq. 5, we have Z dl+1] dl+lj < Zo ||de+17j||2- Z |\dl+1,]| .
j=

l+1_1 2011
So, our target changes to prove that Z HleJH . > ||dl+1]||

Jj=0 j=0
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1s less than the right part of Ineq. 8. For ease of ewpressz’on we set T =

2!t 1 2'—1
2j=0 ||sz+1J||27 o= 00 P o = S, Y ISP, 6
ZZL:_11+2 21 ||d ;11?. Ineq. 8 is transformed to:

VZy+Va-B<V(a+z) - (B+y) (9)
We square both sides of Ineq. 9 and get the following inequation:
2z y-a-B<a-y+0-x (10)

Ineq. 10 holds according to the arithmetic-geometric mean inequality, so does
Ineq. 8.

Theorem 3 (Upper Bound Theorem). The upper bound of a similarity
range is non-increasing when we move from level | to level [ + 1.

The proof of Theorem 3 is omitted because it is similar to that of Theorem 2.

4.3 Implementation of DT-KST Algorithm

Algorithm 1 shows the level-increasing pruning work in the coordinator site.
Initially, coordinator site transforms the reference Q using the normalized Haar
wavelet and sends the sum of squared coefficients SSQ to all remote sites (line
1-2). Then, it runs an iterative pruning procedure (line 3-11) until the Done
flag (initialized with false) is true. During the i-th iteration, it sends the level
i coefficients to the candidate sites (line 4). Here, a candidate trajectory implies
that it still has a chance to be the result. Similarly, candidate sites refer to
the remote sites that contain at least one candidate trajectory. It receives local
upper bounds from candidate sites, and sends the global k-th smallest one to
candidate sites for pruning (line 5-6). After pruning procedure, the coordinator
site recomputes the total number of candidate trajectories. If there are still more
than k candidates, the iteration continues. Otherwise, DT-KST terminates the
iteration and informs the candidate sites to stop running (line 9). Finally, DT-
KST receives the overall top-k trajectories from remote sites and returns the
result (line 12).

Algorithm 2 details the work in the remote site. Initially, the remote site
extracts the coefficients for each local trajectory, and maintains the upper and
lower bounds for each trajectory. The remote site stores such information in
set S, (line 2). When receiving the level i coefficients of the query reference,
the remote site updates the similarity bounds for each candidate according to
Ineq. 6 and sends k smallest upper bounds to the coordinator (line 6-8). After
receiving the global k-th smallest upper bound, it prunes candidates and sends
the number of candidates to the coordinator (line 11-12). Two cases will lead to
the termination of iteration in Algorithm 2: (i) No candidate is left after pruning
(line 13-15); (ii) Remote site receives the finish signal (line 4). Finally, the remote
site will send the final result to the coordinator before stopping.
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Algorithm 1. DT-KST in coordinator site
Input: reference trajectory Q, k;

Output: the k most similar trajectories to Q;
1: Extract coefficients of Q and get H(Q), SSQ = Z?;Ol || H(Q):||%;

2: Send SSQ to all remote sites;

3: for i = 0; !Done; i + + do

4:  Send the level i coefficients of H(Q) to all candidate sites;

5:  if Receive local upper bounds from all candidate sites then

6: Sort these bounds and send the k-th smallest one, gkub, to candidate sites;

7. else

8: /* Receive |S;| from all candidate remote sites; */

9: If the total number of candidate trajectories is equal to k, send the finish
signal to candidate sites and set Done to true;

10:  end if

11: end for

12: return the final k trajectories;

4.4 Performance Analysis

We compare DT-KST with LEEWAVE-CL (an improved version of LEEWAVE
with our tighter lower bound) in terms of communication cost and time complex-
ity. We use M to denote the number of remote sites, IV to denote the number of
trajectories, and n to denote the length of trajectories. Moreover, we use |C;| to
refer to the number of candidate trajectories after the i-th iteration, and |C'S;|
to denote the number of remote sites that contain candidates.

The iterative processing strategy of LEEWAVE-CL inherits from LEEWAVE.

In each iteration, it computes two summary parameters: \/ Zf:*li_l 32:0 1 |Id; ;112
and accSED;(Q,C) at the remote sites for each candidate. Then, the coordinator
receives the two parameters to generate a tighter bound for each candidate.

Finally, it prunes candidates according to the updated similarity bounds.

Time complexity: The running time of DT-KST and LEEWAVE-CL consist of
two parts: time for Haar wavelet transforming which is O(N -n) and the iterative
pruning time. Since both of them compute in iterative way and tighten the
similarity bounds in each iteration, the pruning time complexity is O(N -log, n)
for the two algorithms (the sorting time is omitted as k is usually small). As
logy n < n, the whole running time is dominated by the transforming time. In
conclusion, the overall time complexity is O(N - n) for both of them.

Communication cost of DT-KST: In the 0-th iteration, the coordinator
sends the level 0 efficients to all M remote sites and receives at most N upper
bounds from these sites, which requires a bandwidth cost of O(d - (M + N)).
In the 4-th iteration (¢ > 1), the main cost lies in that the coordinator sends
the i-th level coefficients to candidate sites, then receives at most |C;_1| upper
bounds, which requires a communication cost of O(d - (2¢ - |CS;_1| + |Ci_1]))
bytes. So, after A iterations, the total communication cost upper bound is O(d -

(M + N+ 07120 0S| +[Cizal)))-
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Algorithm 2. DT-KST in remote site r

Input: a set of trajectory T'S,;

1: Extract coeflicients for each trajectory;

2: Create a set S, which maintains a triple < I D, ub,lb > for each trajectory;
3: Receive SSQ from the coordinator;

4: while The received value is not the finish signal do

5. if Receive the level i coefficients of H(Q) then

6 Update the similarity bounds for trajectories in S;;

7 Sort triples in S, according to the upper bounds;

8 Send k smallest upper bounds to coordinator;

9: else

10: /* Receive gkub; */

11: Remove the triples whose lower bounds are greater than gkub from S,;
12: Send the number of triples in S, to the coordinator;

13: if |S;| = 0 then

14: break;

15: end if

16:  end if

17: end while
18: Send the contents of trajectories whose IDs are in S, ;

Communication cost of LEEWAVE-CL: The communication cost in the
0-th iteration is O(d - (M + 2 - N)), because the coordinator site sends the level
0 coefficients to each site and receives the two summary parameters that are
computed for each trajectory stream. In the i-th iteration (i > 1), there are
three steps. Firstly, the coordinator transmits the i-th level coefficients and the
IDs of candidates to candidate remote sites, which leads to a communication
cost of O(|CS;_1]-(d- 2"+ |C;_1|)). Then, each remote site sends two summary
parameters for each candidate trajectory which costs O(d - |C;_1|). Finally, the
coordinator computes the global candidates C; for next iteration. Hence the
communication cost in the i-th iteration is O(|C'S;_1|-(d-2¢+|Ci_1|) +d-|Ci_1|).
After )\ iterations the accumulated communication cost reaches O(d- (M +2N +

Simy 20108l + 05 1Cia) + 05 [Cia| - CSical).

Discussion: We summarize our key findings regarding to the communication
comparison with DT-KST and LEEWAVE-CL. Firstly, in the 0-th iteration, the
communication cost of DT-KST is smaller than that of LEEWAVE-CL. Sec-
ondly, in other iterations, both of them are same in |C;| and |CS;|, because
they use the same bound to prune candidates. However, their communication
strategies are different. In LEEWAVE-CL, each candidate sends two summary
values to the coordinator firstly. Then, the coordinator sends the list of pruned
results to each remote site. However, DT-KST computes the bounds for can-
didate trajectories in the candidate remote sites, and only sends local k£ small-
est upper bounds to the coordinator. So, the amount of data received in the
coordinator is reduced. Moreover, LEEWAVE-CL sends the list of candidate
trajectories to all candidate remote sites. DT-KST only needs to send the
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Fig. 3. Communication cost in respect of k and M

global k-th upper bound to candidate sites. So, the amount of data sent by
the coordinator is also reduced in DT-KST. In summary, DT-KST saves at
least O(d- (N + Zf‘;ll |Ci—1]) + Zf:ll |Ci—1]-|CS;—1|) communication cost than
LEEWAVE-CL.

5 Experiments

5.1 Experimental Setup

We evaluate the performance of DT-KST in this section. We compare DT-KST
with LEEWAVE-CL algorithm. Both algorithms are implemented in Java, and
all experiments are conducted on a Server with an 8 core Intel E5335 2.0 GHz
processor and 16 GB memory.

We use a real world trajectory dataset of Beijing taxis [7] for experiment.
Each trajectory point contains position (longitude and latitude), speed and other
information of the taxi at the given timestamp. We select the trajectories from 1
to 7 October, 8:00 to 10:00 am and choose 10,000 longest ones for experiment. We
align the length of trajectories to 10,000 using the dead-reckoning technique [16].

5.2 Results

We first examine the impact of & and M on bandwidth consumption when the
length of all trajectories is set to 1,024. The value of k varies from 1 to 1,000, and
M varies from 50 to 200. The results are shown in Fig. 3. For both algorithms,
a larger k or M indicates the increment of communication cost. Because when
k grows, both the number of candidate remote sites and that of candidate tra-
jectories increase in each iteration. Similarly, when M increases, there are more
candidate sites in each iteration. Finally, we can conclude that in comparison
with LEEWAVE-CL, DT-KST is more communication-efficient in respect of k
and M.

The communication cost of DT-KST and LEEWAVE-CL is determined by
two factors: sending and receiving data by the coordinator site. Figure 4 evaluates
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Fig. 4. Communication cost comparison

the performance from these two aspects. Figure4 shows that the difference in
the amount of data sent by the coordinator site is small. But, the difference in
the amount of received data is obviously large. In LEEWAVE-CL, the amount of
received data is much larger than that of sent data. As DT-KST only receives the
upper bound of a subset of whole candidate trajectories, the amount of received
data is largely reduced. Especially, when k is small (in Fig.4(a) and (c)), the
amount of data received in DT-KST is 10% less than that of LEEWAVE-CL.
We next evaluate the impacts of n and k£ on bandwidth consumption when
M = 200, as shown in Fig. 5. In this experiment, k varies from 1 to 1,000, and
n varies from 1,024 to 8,192. The bandwidth consumption of both DT-KST
and LEEWAVE-CL increase steadily as the length of query reference increases.
This is due to that more iterations are required and more relevant coefficients

Communication Cost (kb)

0,
8192

n 1024 1 K n 1024" 1 K

(a) DT-KST (b) LEEWAVE-CL

Fig. 5. Communication cost in respect of k£ and n, M = 200
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are sent to the remote sites. LEEWAVE-CL requires more communication cost
than DT-KST, mainly due to the following two reasons: (1) In the initial step,
LEEWAVE-CL requires all candidates to send their bound-related information
to the coordinator site which is rather costly (about 469 KB in this experiment);
(2) In each iteration, DT-KST prunes candidates in each candidate remote site
instead of sending them back directly. Meanwhile, as n increases from 1,024
to 8,192, the communication cost in DT-KST only increases to 2 times. This
confirms the superiority of DT-KST for processing long trajectories.

4,000

—a—n=8,192
—e—n=4,096
—4—n=2,048
—v—n=1,024

—8—n=8,192
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Fig. 6. Pruning performance in each iteration

We then evaluate the pruning effect of DT-KST in respect of the following
metrics: the number of candidates and that of candidate sites, which have been
used in [13,14]. Figure6 shows the result when n varies from 1,024 to 8,192.
At the first few iterations, the number of candidate trajectories decreases expo-
nentially (in Fig.6(a)) and the number of candidate sites also decreases fast
at the first few iterations (in Fig.6(b)). That’s because with the increment of
iterations, the coefficients of the query reference obtained by remote sites also
increase exponentially. More coefficients lead to tighter similarity bounds for
pruning candidates. The number of candidates and that of candidate sites keep
steady after the first few iterations because the top-k results have been found
(after the 6-th iteration). In combination of communication cost analysis in Sect.
4.4 and Fig. 6, longer query references usually mean more communication cost.

Finally, we evaluate the time efficiency of DT-KST. Figure 7(a) shows the
running time in terms of n, kK and N when M = 200. We find that the running
time increases linearly with the increment of n and IV, which validates that the
time complexity is proportional to n and N. That’s due to the following reasons:
(i) The Haar wavelet decomposition time is linear to n and N; (ii) The Haar
wavelet transforming time dominates the total running time. So, although with
the increase of k, the iterative pruning time increases accordingly. The overall
running time is not significantly affected. Next, we evaluate the running time in
respect of N and M when k = 1,n = 8,192. The result in Fig. 7(b) shows that
for a given query, when data are distributed in more sites, the time efficiency is
improved.
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Fig. 7. Time efficiency

6 Conclusion

In this paper, we firstly show that Haar wavelet can be used to compress multi-
dimensional time series, and we can compute a similarity bound from the com-
pressed data. Then, we present DT-KST — a communication cost-saving app-
roach to process distributed top-k similarity query over trajectory streams. To
be specific, DT-KST distributes the relevant wavelet coefficients of query ref-
erence to remote sites in a level-increasing fashion. Starting from the top level
and moving down by one level at a time, DT-KST tightens the similarity bounds
for candidates and prunes results accordingly. Theoretical analysis and extensive
experiment results show that DT-KST saves more bandwidth than state-of-the-
art algorithms.
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