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Outlier Detection over Distributed Trajectory Streams

Jiali Mao * Pengda Sun |

Abstract

The wide deployments of GPS-embedded devices have
produced multiple rapid voluminous trajectory streams,
which needs to be analyzed to extract abnormal behaviors
of moving objects in real-time. To date, outlier detection
over distributed trajectory streams has not received enough
focuses due to the constraint factors like skewness distribu-
tion and evolving nature of trajectory data, and on-the-fly
execution requirement with minimal communication cost. In
this paper, we present the first scalable decentralized outli-
er detection framework over distributed trajectory streams,
called ODDTS. It consists of remote site processing and co-
ordinator processing, with the aim of continuously provid-
ing feature-grouping based outliers detection over distribut-
ed trajectory streams. Extensive experiments over real data
demonstrate high detecting validity, less communication cost
and linear scalability of ODDTS method for online identify-
ing outliers upon distributed trajectory streams.
Keywords distributed trajectory stream, feature-grouping,
outlier detection, scalability

1 Introduction

The proliferating deployments of positioning de-
vices and surveillance equipment have expedited expo-
nential growth of position stream data arrived from dis-
parate sources. For instance, the surveillance inspection
spots deployed in city traffic crossroads record their n-
earby passing vehicles’ location information and moving
behavior characteristic (e.g., speed) in real time, mean-
while, transmit them through the leased lines to the
servers of the traffic control center in their respective
regions. The sequences of positions received continu-
ously by the servers in various regions have formed into
distributed trajectory streams. This necessitates effi-
cient streaming analysis to extract timely insights to
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Figure 1: Example of speed based outlier

meet the needs of real-time applications. Centralizing
the massively distributed trajectory streams to the cen-
tral server and analyzing them afterward raises the issue
with computing and storage capacities. Thus the whole
analyzing process shall be distributed throughout the
entire network of nodes (servers). In this paper we are
primarily concerned with designing highly scalable de-
centralized outlier detection approach over distributed
trajectory streams. With the advent of open-source dis-
tributed frameworks like Spark and Storm, exploiting
the distributed solution for outlier detection becomes
possible. It can facilitate various time-critical applica-
tions like route planning [1], ride-sharing planning [2],
as well as road infrastructure optimization [3], etc.
Trajectory outlier is usually regarded as a trajectory
that is obviously dissimilar with the majority of the
others, such as the vessel behaves significantly different
from the other ones in the same area of ocean [4],
the hurricane that suddenly changes wind direction [5],
and the taxi with detour behavior [6], etc. Despite
huge efforts have been conducted to trajectory outlier
detection, most of them distinguish outlier from inliers
based on spatial proximity. Actually, trajectory outlier
may manifest as the significant difference of motion
behavior from between a trajectory and its spatial
neighbors. Consider the following example, in road
network scenario, at each time instant, traces of vehicles
can be grouped into clusters in terms of the driving
direction and spatial proximity. The mean speed of
each cluster represents that of the road segment where
per cluster locates on. From Fig.1 we can observe that
the speeds of two road segments (represented by two
clusters T'C; and T'Cy) are obviously lower than that
of their respective neighbors. Here, T'C'y and TCs are
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most likely the speed-based trajectory cluster outliers
relative to their respective neighborhoods, indicating
some contingency event like the traffic jam.

In a bid to identify the aforementioned outliers upon
streaming trajectories, we presented a feature-grouping
based outlier detection framework [7]. Nevertheless,
it cannot be directly applied to distributed streaming
cases owing to the following challenges. First, trajec-
tory data distribution is highly skewed and changes
over time. Accordingly, outliers may behave differently
across various regions and evolve gradually. To address
this issue, the instantaneous outlierness of per trajecto-
ry shall be measured on the local node, and the evolv-
ing outlierness of each object shall be estimated through
continuously gathering the outlierness of its related tra-
jectory from the local nodes. Another noticeable prob-
lem is that outlier detection shall be executed timely to
ensure preventive actions to be taken as early as pos-
sible. This involves two key issues, one is to exploit
efficient parallel detection process of the nodes, and the
other is to reduce the amount of data to be transferred
among the nodes during detection process.

To tackle the above issues, we propose the first dis-
tributed feature-grouping based outlier detection frame-
work to identify outliers upon trajectory streams. It
consists of parallel outlier detection on the remote sites,
and evolving anomaly object detection on a single co-
ordinator. For the remote sites, the trajectory frag-
ments derived by trajectory simplification are grouped
into clusters, and then implemented detection to out-
put the trajectory fragment (or fragment cluster) outlier
based on the behavior dissimilarity in relation to their
respective neighborhoods. For the coordinator, upon
receiving the trajectory fragment outliers detected by
the remote sites, the outlierness duration of the related
object is updated and checked whether exceeding the
given anomaly timebin count threshold to detect the
evolutionary anomaly object. In more detail, the con-
tributions of this paper are summarized below.

e We first address the problem of outlier detection
over distributed trajectory streams.

e We present trajectory outlier definitions to charac-
terize the anomaly trajectory fragment, the anoma-
ly fragment cluster and the evolutionary anomaly
object in distributed streams.

e We propose a two-phase framework, termed as
ODDTS, to support trajectory outliers detection

upon distributed streams.
e We conduct a comprehensive series of experiments

on two real datasets. Experimental results manifest
the efficiency and effectiveness of our proposal.

Outline.The remainder of this paper is structured
as follows. Section 2 reviews related work in literature.
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In Section 3, the preliminary concepts are introduced
and the problem is defined formally. In Section 4, we
outline the scheme of ODDTS. In Section 5, we show
the results of our experiments. Finally, the last section
presents conclusion of the work.

2 Related work

Trajectory outlier detection has received consid-
erable attentions. The existing techniques involve
classification-based approach [8], historical similarity
based approach [4, 6,9-12], distance-based approach
[5,13, 14], direction- and density-based approach [15],
isolation-based approach [16], etc (see [17] for a sur-
vey). Due to huge volume, rapid updating and highly
skewed nature of streaming trajectories, there exist rel-
atively few researches on outlier detection upon trajec-
tory streams [13,14,16]. They mainly distinguish outlier
from inliers based on spatial proximity. In our previous
work [7], we proposed a feature-grouping based outlier
detection framework with two detection methods to i-
dentify outliers upon streaming trajectories.

However, the above centralized solutions are not tai-
lored to distributed trajectory streams. Even scalable
techniques of them still require excessive execution over-
heads for handling continuously increased distributed
stream data when compared to the stringent response
time requirements of actual applications. Additional-
ly, distributed distance-based [18] and distributed local
outlier [19] detection methods cannot be directly applied
to identify trajectory outlier. Recently, in the aspect
of distributed trajectory analysis, a surge of researches
have been devoted to trajectory querying in distributed
dataset [20,21]. Zhang et al. proposed a communica-
tion cost-saving approach to process distributed top-k
similarity query over trajectory streams by utilizing the
multi-resolution property of Haar wavelet [22]. But the
distributed trajectory query solutions are not well suited
for our proposed outlier detection problem (depicted in
Section 1). In order to capture the behavior outlierness
of each trajectory in relation to its local neighborhood
upon distributed streams, it is imperative to design a
scalable decentralized feature-grouping based outlier de-
tection mechanism.

3 Problem Definition

The notations used in the rest of this paper are
summarized in Table 1. Some of the notations are
adapted from [7] and listed here for completeness.

Consider a distributed-computing environment
with a single coordinator and M remote sites. Let S
denote a trajectory stream and it is composed of M
subsets Si, ..., Sy, with each local stream Sy located
at the kth remote site, i.e., S = u,fglesk.
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Table 1: List of notations

denotes the distance between tf; and tf; by SF (or

DF), i.e., Dif fi(tfi,tf;) = Sob_, wy - disy(tfi, tf;), and

Notation | Definition

Sk the local stream of the kth remote site

M the number of remote sites

T. the current timebin

N the window size

i the location of an object at the timestamp ¢;

tf the trajectory fragment

d the proximity threshold within cluster

d. the proximity threshold between clusters
p(pe) the local outlier threshold of fragment (cluster)
thrg the anomaly timebin count threshold

Diffo(tfi, tf;) = ZlL:b+1 wy - disy(tfi tf;).

Given a proximity threshold d (d > 0), trajectory
fragments can be grouped into clusters (denoted as F'C)
in terms of the distance (Dif f1) between the fragments
by SF, and the fragments inside a cluster are neighbors
to each other. The aggregated summarization of F'C
can be maintained using the synopsis data structure,
called Fragment Cluster Feature(CF).

DEFINITION 3.2. (FRAGMENT CLUSTER FEATURE, C'F)

DEFINITION 3.1. (LOCAL TRAJECTORY STREAM) The
local tragectory stream Sy, = {(p1,t1), (p2,t2),...} refers
to the infinite sequence of position points of multiple
moving objects that received by the kth remote site, and
p; is the location (latitude and longitude) of one object
at timestamp t; in 2-D space, i.e., p; = (Ti,y;).

To guarantee various moving objects of different
sampling rates report their locations at least once in a
time interval, the term “timebin” is used to describe a
basic time interval (represented by m timestamps, here
m > 1). As new position points arrive continuously,
the local trajectory stream is typically processed in a
sliding window. Here, time-based sliding window model
is leveraged. Let N represent the window size and T,
denote the current timebin, only the most recent stream
elements pr, (T. — N +1 < T; < T.) are implemented
outlier detection. Whenever the window slides forward,
it moves forward by 1 timebin.

It is space-efficient to summarize each trajectory
by reserving a small number of sample points. Similar
to [7], each trajectory is simplified into a set of char-
acteristic points via trajectory simplification, and every
two consecutive characteristic points are connected in-
to a trajectory fragment, denoted as tf. A trajectory
thus becomes an ordered sequence of fragments. Let
F = f1,---, fr denote L features extracted from the
attributes of trajectories, and the features are divided
into two groups: Similarity Feature (f1,---, fp), or S-
F for short, e.g., latitude and longitude coordinates,
which is used to find the spatial neighbors for each tra-
jectory fragment, and Difference Feature (fpt1, -, fL),
or DF for short, e.g., speed, direction, etc, which is
used to identify the trajectory fragment whose mo-
tion behavior is obviously distinct from its vicinity.
Let wy,--- ,wy denote the weight of L features sep-
arately, and dis;(tf;,tf;) denote the distance between
tfi and tf; by the feature f;. Here, dis;(tf;,tf;) can
be any typical distance metric (e.g., Fuclidean, LC-
SS and DTW, etc.). Furthermore, Diff; (or Dif fo)
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CF of a fragment cluster FC; = {tf1,tfa,...,tfn}, is
of the form (IScen, Sp, ISien, [Saf, coTpr, cOTr ).
® [Scen: the linear sum of the fragments’ center
points;
o [s,: the linear sum of the product of the fragments’
angle and length;
® [Siep: the linear sum of the fragments’ length;
o [sgp: the linear sum of the fragments’ weighted sum
of DF;
e cory: the bottom left corner of MBR;
® cory.: the top right corner of MBR;
n: the number of fragments;

Minimum Bounding Rectangle (MBR, for short) is
leveraged to represent the spatial region of each cluster.
The representative fragment rp; of a fragment cluster
FC; can be derived using the method in [23]. We first
obtain the central point and the angle with lsf and

li:’n respectively. Then a line is plotted across the
central point, along the angle, and extended to reach the
borders of MBR. The intersection points are regarded
as the starting and ending points of rp;.

Hereafter, to identify anomaly fragment cluster is
to detect anomaly representative fragment. Whether
anomaly trajectory fragment or anomaly representative
fragment detection at T, the key step is to estimate the
anomaly degree of a trajectory fragment tf; (or repre-
sentative fragment rp;) with regard to its neighborhood
(denoted as Np (tf;) or N (rp;)). Nr (tf;) includes
the other fragments within the cluster that tf; belongs
to. N (rp;) includes the representative fragments of
FC;’s neighboring clusters in terms of a given proximity
threshold d. (d. > d) by SF. Here, we employ the con-
cepts of local difference density (Idd) and local anoma-
ly factor (LAF) in [7]. ldd is defined as the inverse
of the average difference of each fragment to its neigh-

; _ [Nt (£f3)]
bors by DF | i.e., lddr, (tf;) = thjENTcﬁan D RAGIGDR

LAF is used to measure the probability of fragmen-
t for being an outlier based on ldd, i.e., LAF T (tf;) =

> lddy, (tf5)
tfj ENp, (tf;) lddp (tf; .
1 I?\?T Gl GRS Y general, a higher value of LAF
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indicates that a trajectory fragment (or fragment clus-
ter) is more likely to be an outlier.

DEFINITION 3.3. (ANOMALY TRAJECTORY FRAGMENT)
Given a local outlier threshold p (p > 1), trajectory
fragment tf; at timebin T, is called a fragment outlier

(or F-outlier, for short), iff LAF T (tf;) > p.

DEFINITION 3.4. (ANOMALY FRAGMENT CLUSTER)

Given a local cluster outlier threshold p. (pe > p), a
fragment cluster FC; and its representative fragment
rp;, FC; at timebin T, is identified as a fragment cluster
outlier (or FC-outlier, for short), iff LAFT (rp;) > pe.

Considering the evolving nature of streaming tra-
jectories, the object with abnormal fragments in several
timebins (may be inconsecutive) is intrinsically an ab-
normal moving object. To verify the abnormal moving
property of the object, we shall continuously observe the
objects that have anomaly trajectory fragments in cur-
rent time window. As the objects usually move across
various regions, the trajectories of the objects would ar-
rive at several remote sites. To identify the evolutionary
anomaly object, the anomaly trajectory fragments de-
tected by the remote sites need to be transferred to the
coordinator at per timebin. The coordinator sets a list
(denoted as listp,) of anomaly timebins for the objec-
t O; that has anomaly fragment, and conducts object
outlier detection by judging whether the size of listo,
(denoted as |liste,|) reaches the given threshold thr,.

DEFINITION 3.5. (EVOLUTIONARY ANOMALY OBJECT)
Given an anomaly timebin count threshold thr,
(% < thry < N), an object O; at timebin T, is an
evolutionary object outlier (or EO-outlier, for short),
iff [listo,| > thrg.

Problem Statement. Given local outlier thresh-
old p and p., anomaly timebin count threshold thr,, and
a union of local trajectory streams within a sliding win-
dow of size N that distributed in multiple remote sites,
our goal is to continuously detect F-outlier, FC-outlier
and EO-outlier over distributed trajectory streams.

4 Framework: Outlier Detection over
Distributed Trajectory Streams

In this section, we propose a distributed framework,
termed as ODDTS, to continuously identify trajectory
outliers over distributed streams. Our distributed so-
lution is inherently parallel and can perform on any
modern distributed infrastructure. In subsequent ex-
periments, we use Spark, which performs analysis by
organizing incoming trajectory stream within each time
window into micro-batches, and the size of micro-batch
needs to be as small as possible to guarantee low latency.
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Algorithm 1: ODDTS (Qutlier Detection over
Distributed Trajectory Streams)

Input: S: a trajectory stream which consists
of M subsets in current time window
Output: (1)Ap: a set of F-outliers;
(2)AFrc: a set of FC-outliers;
(3)Ao: a set of EO-outliers;
foreach remote site do
Upon arrival of new trajectory data, detect
F-outliers (Ap) and FC-outliers (Apc) by
implementing FCD algorithm;
3 Send A to the coordinator;

N =

4 for the coordinator do

5 Upon receiving Ap from any remote site,
detect EO-outliers (Ap) by implementing
EOD algorithm;

6 return Ap, Apc and Ao;

ODDTS consists of remote site processing and coordi-
nator processing, the detailed description is outlined in
Algorithm 1. At each timebin, the workflow is summa-
rized as below: (i) Remote site processing (Lines 1-3),
including (a) Trajectory simplifying and clustering: in-
coming trajectory data is simplified into fragments and
then grouped into clusters. and (b)F-outlier and FC-
outlier detection: F-outlier and FC-outlier are identi-
fied according to behavior dissimilarities among trajec-
tory fragments (or representative fragments) and their
respective neighborhoods. (ii)Coordinator processing,
EO-outlier detection: on the basis of F-outliers trans-
ferred by the remote sites, the timebin for identifying
F-outlier is inserted into the anomaly timebin list of
the object that F-outlier belongs to. Then the size of
anomaly timebin list of the influenced object is updated
and compared with the given threshold thr, to identify
EO-outlier (Lines 4-5).

In our distributed environment, the remote sites on-
ly communicate with the coordinator, and the concern is
to implement efficient outlier detection in parallel while
minimizing the communication cost between the coor-
dinator and the remote sites during detection process.

4.1 Remote Site Processing The main tasks of the
remote sites are to implement outlier detection on re-
spective incoming trajectory data in parallel and return
detection results to the coordinator timely. The de-
tailed description of parallel outlier detection algorithm
(or FCD, for short) is presented in Algorithm 2. Initial-
ly, incoming trajectories are split into a set of consec-
utive trajectory fragments with least information loss.
Through trajectory simplifying (denoted by T'raSimp),
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Algorithm 2: FCD (F-outlier and FC-outlier
Detection)

Input: Si: a local trajectory stream at T; p,
pc: the local outlier thresholds
Output: (1)Ap: a set of F-outliers;
(2)AFrc: a set of FC-outliers;
foreach trajectory Tr in S do
Trsimp < TraSimp(Tr);
L Tran < Tray UTTemp;

= W N =

Generate a set of trajectory fragments T'F, from

Trau;

5 Group the trajectory fragments of TF, into F'C's
according to d;

6 foreach trajectory fragment tf; in each FC' do

lddg, (tf;)

fo-eN (tf;) Tddp (tf;)
. tfj ENT, (¢F3) Tddp, (Bf;) |
7 LAFr (tf;) « RERGA] ;

8 if LAFr (tf;) > p then
9 L AF%AFU{tfi};

10 foreach fragment cluster FC; do
11 L Derive its representative fragment rp; ;

12 foreach representative fragment rp; do
13 Find its spatial neighbors Nt (rp;) according

to dg;
E lddp, (rpj)
rp; €N (rp;) lddp (rp;) .
14 LAFTC (Tpi) — g |1\7vTC rp))] < 3

15 if LAF1 (rp;) > p. then
16 | Arc + Apc U{FCi};

17 return Ap and Apc;

a small number of characteristic points are derived from
raw trajectories using the method in [7], and every two
consecutive characteristic points are connected into a
trajectory fragment (Lines 1-4). To identify the outlier
with respect to its spatial neighborhood, the trajectory
fragments are grouped into clusters (FCs) via hierar-
chical clustering according to the proximity threshold d
(Line 5). Here, a STR-tree index technique is leveraged
to accelerate clustering.

For F-outlier detection, each trajectory fragment
shall be measured the abnormality degree of its motion
behavior relative to the others in the same cluster,
which involves the calculations of ldd and LAF(Lines
6-7). Through comparing the values of (dd between
each trajectory fragment and its vicinity by DF, we
derive the value of LAF for each fragment at T..
The trajectory fragments with LAF’s values exceeding
p are reported as F-outliers (Lines 8-9). Then, the
object that F-outlier belongs to is treated as FO-
outlier candidate and transferred to the coordinator.

For FC-outlier detection, to identify anomaly fragment
cluster is essentially to detect anomaly representative
fragment as relative to its neighboring representative
fragments. Specifically, for per fragment cluster, we
obtain its representative fragment (Lines 10-11), and
search for its neighboring representative fragments that
are within distance d. (Lines 12-13) by SF from it.
Then the value of ldd of each representative fragment
is derived by comparing the distance between it and its
neighboring representative fragments by DF. LAF’s
value of each representative fragment is also derived
and used to detect FC-outlier in terms of local anomaly
threshold p. (Lines 14-16).

Pruning step The most time-consuming part of
this phase is Idd calculation, which involves pairwise d-
ifference calculations among trajectory fragments with-
in a cluster, and that among neighboring representative
fragments. Costs of ldd calculations would become com-
paratively expensive especially when massive amount
of trajectories arrive at one timebin. To speed up F-
outlier and FC-outlier detection, unnecessary ldd cal-
culations need to be pruned. After clustering trajectory
fragments, the mean of the fragments’ weighted sum
of DF within a cluster is derived by ST‘:f , denoted as
AV Gpp. During F-outlier detection, only the trajec-
tory fragment whose weighted sum of DF' higher (or
lower) than p times of AVGpr (pu > 1), shall compute
the values of ldd and LAF'. Also, the mean of the repre-
sentative fragments’ weighted sum of DF within similar
neighborhood can be derived, and on the basis of which
the representative fragments with weighted sum of DF
higher (or lower) than p times of that mean, need ldd
and LAF calculation. Obviously, such pruning step can
quickly eliminate the need of examining a large number
of fragments, the operational overhead of ldd calculation
is thus sharply reduced and parallel outlier detection
process achieves the significant performance gain.

4.2 Coordinator Processing With the evolution of
trajectories, the moving object who has anomaly tra-
jectory fragments in several timebins (maybe inconsec-
utive) is intrinsically an object outlier, e.g., the speed-
ing car. It is desirable to exploit a procedure to track
the evolving abnormal behaviors of objects from the s-
tarting timebin to the recent timebin in current time
window. At each timebin, upon receiving the detect-
ed results (i.e.,EO-outlier candidates) from the remote
sites, the coordinator would implement FO-outlier de-
tection, called FOD, the detailed description of which
is given in Algorithm 3. In current time window, the
timebin for identifying the object O;’s fragment as F-
outlier is viewed as an anomaly timebin and inserted
into listo, (Lines 1-10). listp, would be maintained
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Algorithm 3: EOD (Evolutionary Moving
Object Detection)
Input: Ap: a set of F-outliers; thr,: the
anomaly timebin count threshold;
Output: Ap: a set of EO-outliers;

1 foreach F-outlier in Ar do
2 Obtain the object ID (denoted as O;) that
F-outlier belongs to;
3 if listo, not exists then
4 Create listo,;
5 listo, < 0;
6 else
7 /* T, denotes the oldest timebin of
listoi*/
8 while T, <T.— N +1do
9 L listo, < listo, — Tb;
10 listo, + listo, UTy;
11 if |listo,| > thr, then
12 L AO (*AOU{Oi};

13 return Ap;

with the slide of time window, i.e., the obsolete anoma-
ly timebins shall be eliminated as new one is inserted
into listo, (Lines 8-10). Once the size of listp, grows
beyond the anomaly timebin count threshold thr,, the
object O; would be reported as an EO-outlier (Lines
11-12).

4.3 Time Complexity Analysis For each timebin,
given the maximum number of incoming trajectories n
and the window size N, execution overhead of ODDT-
S algorithm is composed of two parts: (i) the opera-
tional overheads of parallel outlier detection on the re-
mote sites and FO-outlier detection on the coordinator,
and (ii) the time to transfer detection results from the
remote sites to the coordinator. Let n, (n, < n) de-
note the maximum number of the incoming trajectory
data on the individual remote site at a certain timebin,
F-outlier and FC-outlier detection incurs a complexi-
ty of O(n,logn,) using STR-tree index. Let no denote
the maximum number of moving objects in current time
window. When all of the objects have F-outliers at a
certain timebin, the worst computational cost of coor-
dinator is O(no), which scarcely happens. Let Comy
denote the cost of transmitting FO-outlier candidates
from one remote site to the coordinator, the whole
transferring overhead Com is Zf:il Comy,. Let ngo de-
note the maximum number of EO-outlier candidates at
some timebin, Com at most requires O(M (ngo)), and
the worst-case cost is O(np). Actually, the communi-

cations can even be avoided when none of F-outliers is
detected by any remote site. Since n, > no, ODDTS
algorithm approximately takes O(n,logn,), and even
an ideal complexity of O(47log 17). That the execu-
tion overhead is in the linear order of M indicates that
ODDTS is well scalable with regard to the number of
remote sites. As compared to the computational cost
of the centralized version (i.e., M =1, O(nlogn)), the
execution overhead of ODDTS is significantly reduced
owing to parallel outlier detections of the remote sites
with minimal communication cost.

5 Empirical Evaluation

In this section, we conduct extensive experiments on
two real datasets to assess effectiveness and efficiency
of ODDTS over distributed streams. It is worth
noting that none of the existing solutions is tailored
to trajectory outlier detection over distributed streams.
Thus, they are not suitable to compare with ODDTS.

All the experiments are conducted on a cluster of
5 nodes running Spark-2.1.0-bin-hadoop 2.7 on centos
7.2.  Each node consists of 20 physical cores Intel
2.2GHz processors, and the nodes are interconnected
with 10Gbps Ethernet. The values of parameters are
set for each dataset based on our experimental tuning.
Unless mentioned otherwise, the window size N is set
to 30 minutes, and timebin is set to 2 minutes.

5.1 Datasets We evaluate our proposed method on
two real datasets: taxi trajectory dataset of 2013 (or
Taxil3, for short), and taxi operational dataset of 2015
(or Tazilb, for short). During the experiments, we
simulate the trajectory stream via sending data from the
disk files to the compute cluster with a specified transfer
rate. The transfer rate can be adjusted by changing the
number of streaming elements at each timebin.
Taxil3 contains more than 400GB of trajectory
data generated by the taxis of Shanghai and Beijing in
the fourth quarter of 2013. It includes four attributes of
timestamp, velocity, longitude and latitude coordinates.
To evaluate the robustness of ODDTS for trajectory
data in different scale of regions, we derive two datasets
of Shanghai from Taxi13: Taxil13-1 with 1.89 million
records, and Tazi13-2 with 3.69 million records.
Taxil5 contains more than 200GB of trajectory
data derived by 13,600 taxis of Shanghai in April
2015. It has about 114 million points per day with six
attributes of Vehicle ID, Time, Longitude and Latitude,
Speed, and Taxi Status (free/occupied), etc. We select
a test area consisting of about 315 road segments,
and each road segment has at least one lane in each
direction. The ground truth outlier set is manually
verified through comparative velocity analysis for per
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(a) Movement distribution (b) Outlier detection result

Figure 2: Outlier detection on Taxild

trajectory fragment (or road segment) and its neighbors
at each timebin by the volunteers. Labeling of the
outliers is determined by majority of volunteers’ voting.

5.2 Effectiveness Evaluation For effectiveness val-
idation purpose, we conduct ODDTS (setting with 16
remote sites) on T'azils. We aim to identify F-outliers,
FC-outliers and EO-outliers according to velocity fea-
ture. We choose longitude and latitude coordinate as
SF, and regard velocity as DF. Local outlier thresh-
olds are empirically set as follows: p = 2.5, p. = 3.5.
The portions of test area and the outlier detection re-
sults are visualized in Fig.2. Fig.2 (a) shows the move-
ment distribution of taxis’ traces (in light green) within
[8:00, 8:30] a.m. on April 15. The average speed of
most roads is not beyond 30km/h. Outliers at timebin
([8:29-8:30]) detected by ODDTS are illustrated in Fig.2
(b). F-outliers with thin red lines indicate that only a
few abnormal trajectories (with speed of 83km/h) oc-
cur on parts of roads. EO-outlier (in blue) represents an
overspeed car (with mean velocity of 155km/h during
multiple timebins). FC-outliers (in thick red) show that
the roads where a majority of taxis travel on have the
significantly different speed (68km/h) from their neigh-
bors (with mean speed of 25km/h). Outlier detection
result is coincide with the ground truth outliers. During
peak hours, such information like the roads with high
speed is pretty useful to help the drivers for optimal
route planning in real time.

Metrics. In a bid to further verify the effectiveness
of ODDTS, we use F-measure as the criteria measure-
ment. It is defined as F-measure = 2XPrecisionxRecall

Precision+Recall
.. RO D RO D
where Precision = | ‘g‘ | and Recall = | ‘Q‘ | R de-

notes the manually labeled trajectory outlier set, and
D denotes the detected outlier set by our proposal. F-
measure reaches a high value only when both Precision
and Recall are high. To understand how the parame-
ters impact on outlier detection, we implement ODDTS
with different thresholds (including d, d., p, pc, thra)
setting to evaluate the value of F-measure, as illustrat-
ed in Fig.3. Note that d uses the variation of latitude
and longitude, the distance of 0.0001 is corresponding
to about 11 meters. We observe that ODDTS obtain al-
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Figure 4: Ratio of detection and communication over-
head to total execution overhead

most the high F-measure for F-outlier detection when
p > 3 and d > 0.003, for FC-outlier detection when
pe > 3.5 and d. > 0.008, and for EO-outlier detection
when d > 0.004 and thr, > 7. It can be concluded that
ODDTS attains better detecting validity as long as the
thresholds are set appropriately.

5.3 Efficiency Evaluation We proceed to assess the
efficiency of ODDTS. The whole execution overhead is
broken down into time spent on key phases: the parallel
detection cost of the remote sites, the detection cost
of the coordinator, and the communication overhead
for transferring outlier detection results. Since the
detection cost of the coordinator is a tiny proportion
of the overall execution cost, we mainly estimate the
parallel detection cost and the communication overhead
by implementing ODDTS on Taxil3-2. The number
of trajectories gradually grows from 250k to 1,010k.
Noted that parallel outlier detection phase would finish
after every remote site has completed its detection,
the maximal parallel detection cost is chosen as the
evaluation criterion. Fig.4 (a) reports the ratio of the
maximal parallel detection cost to the total execution
time. We can see that the parallel detection overheads
of ODDTS with three different number of the remote
sites (abbreviated as ODDTS-3, ODDTS-9, ODDTS-16
respectively) increase as the trajectory data continue
to flow in, while ODDTS-16 guarantees the greatest
time savings. It can be concluded that the overall
execution cost is mainly determined by the time spent to
implement outlier detection in parallel for all the remote
sites. Owing to the high efficiency of parallel detection
phase, less detection cost would be spent as more remote
sites participate in the parallel detection procedure.

As far as communication overhead is concerned,
Fig.4 (b) shows the ratio of communication time to the
total execution time. We observe that the ratio reduces
with data size, and communication overhead grows s-
lightly with the increase of number of remote sites. For-
tunately, even though the amount of trajectory data
reaches 1,010k, communication cost of ODDTS-16 is
at most the ratio of 22% of the total execution over-
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head. As more remote sites execute outlier detection
in parallel, a little more time is spent to transfer the
outlier detection results from the remote sites to the
coordinator site during detection process. However, in-
stead of transferring all the data to the coordinator for
detecting, ODDTS simply needs to transmit the detec-
tion results on local streams. The communication cost
of ODDTS is far less than the time savings that paral-
lel detections bring about, and hence is always a small
portion of the whole execution overhead.

To verify the effectiveness of pruning process (de-
picted in Section 4), we compare the running time of
ODDTS with that of its unpruned version (denoted
as ODDTS,,) by implementing them on Tazil5. As
shown in Fig.5 (a), the execution overheads of ODDTS-
9 and ODDTS-16 are significantly improved, relative to
the solutions (ODDTS,,,-9 and ODDTS,,,-16) with-
out pruning process. In addition, ODDTS-16 saves
more time for parallel detection. This is due to that
a great deal of unnecessary ldd calculations are pruned
and thus the cost of parallel detection procedure are
greatly reduced.

Then, we evaluate the impact of data scale on ex-
ecution overhead of ODDTS by comparing it with it-
s centralized version (abbreviated as ODDTS-1). We
implement ODDTS on Taxil3-2 using different num-
ber of remote sites (M = 1,3,9,16 respectively). As
illustrated in Fig.5 (b), when the trajectory data con-
tinue to flow in (from 490k to 3,500k), the costs of all
the approaches scale linearly with data size. But the
distributed versions perform much better than the cen-
tralized version, especially ODDTS-16 shows the best
performance. As discussed earlier, a little more time
is required to transfer the outlier detection result when
using more remote sites, but in the meantime, the to-
tal execution overhead is sharply reduced owing to vast
time savings of parallel detection procedure. Therefore,
the performance of the distributed solution is obviously
improved as compared to the centralized version.

Also, we studied the scalability of ODDTS with re-
spect to the number of remote sites. We conduct ODD-
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TS on Tazil3-1, Taxil3-2 and Taxils separately. As
shown in Fig.5 (c), as more remote sites are used, the to-
tal time consumptions of ODDTS on three datasets are
appreciably reduced. It also demonstrates the advan-
tage of ODDTS contributed by the efficient parallel de-
tection phase with minimal communication cost. Trans-
mission overhead is much smaller than the time sav-
ings of parallel detections and less sensitive to the vari-
ation of number of the remote sites. Therefore, ODDTS
provides significant scalability advantages when a large
number of remote sites are available.

Further, to verify the performance gain of ODDTS,
we conduct a comparative analysis on the throughput
of ODDTS-16 on Taxil3-1 and Tazil3-2. Throughput
is defined as the average amount of tuples processed
each second. As can be observed in Fig.5 (d), as com-
pared to larger scale dataset (Tazil3-2), the smaller
one (Tazil3-1) provides higher throughput owing to less
data processed in every timebin. Moreover, both the
throughputs of ODDTS on two datasets scale linearly
with the increase of data. This also confirms the scala-
bility of ODDTS with respect to increasing amount of
data. Such significant performance gain benefits from
parallel detection procedure. The above experiments es-
tablish that ODDTS can handle distributed trajectory
streams in a promising efficiency.

6 Conclusion

With the substantial increment of distributed tra-
jectory stream data, it is indispensable to exploit a dis-
tributed trajectory outlier detection solution to satisfy
the needs of emerging big data applications. To this
end, on the basis of distributed computing platform, we
first propose a two-phase distributed feature-grouping
based outlier detection method, termed as ODDTS, to
identify three types of trajectory outliers (F-outlier, FC-
outlier and EO-outlier) over distributed streams. Our
proposal can achieve obvious performance gains through
parallel outlier detection mechanism with the minimal
transmission overhead among the nodes. The evalua-

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 11/02/19 to 202.141.176.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

20x10°

0] | —7—0DDTS -9 -
ODDTS-1
~O—0DDTS, 16

° T i sae| | —O—ODDTS:3

H 300 | ——ODDTSH 5 3 —%—ODDTS-9

by —%—0DDTS-16 > ——ODDTS-16

E £ oo

= =

£ = g e
< w0 = — g sow' o

5 5 —

[ I3 [ -

5.0x10° 1.0x10° 1.5x10° 2.0x10° 2.5x10° 50 100 150 200 250 300 350
Length of stream Length of stream

3.0x10*

= Taxi13-2
== Taxi13-1

——Taxi13-2
—O=—Taxi15

A o
—_ o A
) " E 2.5x10° H)A’
3 ~/—Taxi13-1
L ' H o
o
2 2 zour
£ £ 0 —
o 4o g ) / o
£ B 1m0t —
E m s & @é A
2 — g 1.0x10°{ [
=

2 4 6 8 10 12 14 16
Number of remote sites

3.0x10° 6.0x10° 9.0x10° 1.2x10° 1.6x10° 1.8x10°
Length of stream

(a) Running time versus prun- (b) Running time versus data (c¢) Running time versus number (d) Throughput versus data s-
of remote sites cale

ing optimization scale

Figure 5: Execution overhead

tive experiments on real-world data proved that ODD-
TS could obtain high detection precision and scale well
for ever-growing data volumes and increasing number
of the remote sites. Moreover, our distributed solution
is generic and can be applied in most of parallel and
distributed trajectory processing scenarios.
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