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Detecting clusters of arbitrary shape and constantly delivering the results for newly arrived items are two 

critical challenges in the study of data stream clustering. However, the existing clustering methods could 

not deal with these two problems simultaneously. In this paper, we employ the density peaks based clus- 

tering (DPClust) algorithm to construct a leading tree (LT) and further transform it into a fat node leading 

tree (FNLT) in a granular computing way. FNLT is a novel interpretable synopsis of the current state of 

data stream for clustering. New incoming data is blended into the evolving FNLT structure quickly, and 

thus the clustering result of the incoming data can be delivered on the fly. During the interval between 

the delivery of the clustering results and the arrival of new data, the FNLT with blended data is granulated 

as a new FNLT with a constant number of fat nodes. The FNLT of the current data stream is maintained in 

a real-time fashion by the Blending-Granulating-Fading mechanism. At the same time, the change points 

are detected using the partial order relation between each pair of the cluster centers and the martingale 

theory. Compared to several state-of-the-art clustering methods, the presented model shows promising 

accuracy and efficiency. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Data streams have been generated everywhere nowadays be-

ause of the technological development in sensors, networks,

mart phones and surveillance. Mining data streams in specific do-

ains such as environmental monitoring, city traffic load monitor-

ng [1] , or online commercial activities [2] , etc., has produced a lot

f researches. Clustering data stream has become one of the impor-

ant issues since a majority of the data streams come unlabeled in

he age of Big Data, and turned to be critical in summarizing data

r finding out outliers [3] . 

The major challenges in clustering data streams include: 1) Data

treams continuously flow in, so it is usually unfeasible to store all

he original data on disk. Therefore, it demands that the data be

rocessed in one single pass. 2) The patterns may change occasion-

lly or frequently as data points in the streams keep arriving [4] .

o address these challenges, quite a few research works have been
∗ Corresponding author. 
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ublished, e.g. [5–12] . We will discuss these works in the coming

ection. 

Current data stream clustering approaches fall into two cate-

ories: K -means-like and density- based. The former intends to

inimize the distance summation of non-center data points to

heir corresponding centers, hence the incapability of detecting

on-spherical clusters. The methods of latter category cluster items

ased on their density distribution in the space where the items

re embedded, so they can detect right clusters in arbitrary shapes

f datasets. However, some density-based data stream clustering

ethods (like D-Stream [8] and MR-Stream [7] ) that find clusters

ith the concept of dense grids (determined with a preset thresh-

ld value), may fail to perform well when there coexist clusters of

ifferent density levels. Recently, Hahsler and Bolanos addressed

his problem by proposing a micro-cluster-based data stream clus-

ering method that leverages the density between micro-clusters

hrough a shared density graph (this method is named as DB-

TREAM) [11] . 

We present in this paper a novel data stream clustering

named as DP-Stream) with the underlying leading tree (LT, re-

er to Section 3.2 for a detailed explanation) structure in the

ensity-peaks-based clustering method [13] . The initial buffered

ata points are firstly used to construct an LT. The LT can be used

http://dx.doi.org/10.1016/j.knosys.2016.12.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
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Fig. 1. A simplified illustration of DP-Stream. From top to bottom: buffered data before initialization → initial LT → Granulating LT into FNLT and incorporating the new 

items with cluster label immediately delivered. The color represents the local density and the radius represents the population (weight) of each node. 
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to deliver the clustering result for the initial buffered data given

the cluster centers are selected automatically. Then the LT is gran-

ulated into a fat node leading tree (FNLT, refer to Section 4.1 for

a detailed definition) by merging the closest points to their corre-

sponding parents, so as to capture the essence of the finest-grained

data items with a synopsis of data [14] . Heinz and Seeger proposed

to use a Cluster Kernel to present a group of objects in the data

stream [15] ; they also addressed the issue of limiting the mem-

ory consumption in clustering streaming data, in which the cluster

kernels may be regarded as information granules as the fat nodes

in our DP-Stream. But the difference is obvious, since the fat nodes

in our method are some closely located data points other than the

resultant clusters. As the data items streaming in, their clustering

assignation is quickly determined as soon as the local density of

every node (including new items and the existing fat nodes) is in-

crementally updated. An example of FNLT is shown in Fig. 1 . 

At the last stage of a clustering-new-items round, the previous

FNLT along with the incorporated new items is granulated again

(to keep the population of the nodes stable), waiting the next

batch of coming items in the stream. Like most of the data stream

clustering, DP-Stream includes a fading out mechanism to focus on

recent data points and a change point detection utility to deal with

concept drift. However, the difference is that our method has very

simple implementation of these two utilities due to the properties

of an FNLT structure. 

DP-Stream has the following salient features: 

• It can detect clusters of arbitrary shapes and different density

levels; 
• The concept drift is accurately and efficiently detected in a sim-

ple way; 

• It offers an intuitively interpretable visualization of the evolving

synopsis of the data stream; 

• The evolution of the FNLT is implemented with an efficient in-

cremental update, thus DP-Stream permanently offers cluster-

ing result for streaming in items. 

Most of the existing data stream clustering methods, such as

BSTREAM, MR-Stream, CluStream, fall in the online-offline cate-

ory. However, those online-offline models do not adapt well to

ome applications (e.g. system monitoring), in which the clusters

nformation is required to be always ready. 

To the best of our knowledge, DP-Stream is the first model us-

ng a density-peaks-based LT structure to cluster data stream. And

ore importantly, it is the first data stream clustering method that

imultaneously meets the two demands: detecting clusters of any

hape and running without an offline component. 

The remainder of this paper is organized as follows. After a

rief discussion of the related works in Section 2 , we present in

ection 3 the automatic selection of centers and the leading tree

tructure with density-peaks-based clustering. In Section 4 , we de-

cribe the DP-Stream method including the components of out-

iers’ recognition, drift detection, and fading function. In Section 5 ,

e discuss the computational complexity of maintaining the FNLT.

ection 6 describes detailed experiments with synthetic and real

atasets. A conclusion is given in Section 7 . 
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. Background 

In this section, we review some related works on data stream

lustering and the clustering method based on density peaks. 

.1. Clustering data streams 

Generally, a clustering method for data stream is originated

rom a corresponding clustering method for batch data, e.g., CluS-

ream [16] from K -means, DenStream [6] from DBSCAN [17] , and

TRAP [9] from AP clustering [18] . From the perspective of whether

hey can detect arbitrary shape in the data stream, the data stream

lustering methods can be divided into two categories: K-means-

ike and density-based . 

.1.1. K-means-like 

Aggarwal et al. developed CluStream for clustering large evolv-

ng data streams [16] . It divides the clustering process into an “on-

ine component” and an “offline component”. The former periodi-

ally summarizes the statistics of raw data and the latter uses this

ummary statistics to perform clustering. Many later researches on

ata stream clustering follow this “offline component” paradigm.

ubsequently, Aggarwal et al. expanded CluStream to HPStream to

lustering high dimensional data streams [3] . 

Ackermann et al. proposed the StreamKM++ method by main-

aining a small sketch of the input using the merge-and-reduce

echnique [19] . StreamKM++ produces good clustering results for

llipsoidal data sets but is not efficient enough. 

Zhang et al. presented a data stream clustering method called

TRAP [9] , which extends the clustering algorithm of affinity prop-

gation (AP) [18] to evolving data streams. In STRAP, weighted AP

s firstly extended from AP to updating the model when a new

tem arrives and then Page-Hinkley test is used to detect change

oint of a drift. The users of STRAP need to specify the parameter

f ε, which is the threshold for deciding whether an item should

o to reservoir as an outlier or join in the existing model. 

Lughofer and Sayed–Mouchaweh extended evolving vector quan-

ization (eVQ) [20] to eVQ-A to propose a single-pass and sample-

ise streaming data clustering method, which delivers the cluster-

ng result permanently without a retraining procedure [10] . It can

etect clusters with convex (ellipsoidal) shapes in any directions

nd locations. 

Although k -means-like data stream clustering methods are not

ble to detect nonspherical clusters, these methods may produce

ower within cluster sum of squares (WSS) than those density-

ased methods when the dataset is actually spherically shaped, be-

ause k -means directly tries to minimize WSS. For example, CluS-

ream produced twice a slightly lower WSS than DBSTREAM [11] . 

.1.2. Density-based 

Cao et al. proposed an approach for discovering clusters in an

volving data stream named DenStream [6] . Its online component

onstructs and maintains three sorts of micro-clusters, namely core

icro-clusters, potential micro-clusters and outlier micro-clusters, 

o summarize the data streams. And a pruning strategy is used to

emove some outlier micro-clusters for economical memory con-

umption. Its offline component employs a variant of DBSCAN on

he set of potential micro-clusters to meet a clustering request.

owever, It has problems with detecting the rectangular low-

ensity cluster. 1 

D-Stream [8] is a grid-density-based stream clustering algo-

ithm organizing the grids in a red-black tree. It uses the concept

f connecting neighboring grids (which is defined as two grids that
1 https://cran.r-project.org/web/packages/streamMOA/vignettes/streamMOA.pdf . 

a  

g  

n  
iffer only on one dimension and on this dimension their intervals

re adjacent) to summarize the close data points. The relation of

eighboring is used to transitively connect the grids to form a grid

roup. A set of grids G = (g 1 , . . . , g m 

) is a grid cluster if it is a grid

roup, every inside grid of G is a dense grid, and every outside

rid of G is either a dense grid or a transitional grid. It will be dif-

cult for D-Stream to find the density threshold to detect dense

rids when there are several clusters of different density level in

he data stream. 

MR-Stream [7] provides a multiresolution cluster discovery ca-

ability for stream data, based on the idea of first putting records

nto treelike organized cells of multi-granularity and then cluster-

ng the cells considering their weights, volumes and densities. MR-

tream can detect the clusters of arbitrary shape with noise. Apart

rom those for fading function, MR-Stream involves quite a few ad-

itional parameters, namely ratio of distance threshold divide unit

ength of interval ε, minimum weight of a cluster β , and minimum

ize of a cluster μ. Like D-Stream, MR-Stream also has the diffi-

ulty to determine the density threshold to identify dense grids

hen the density levels of clusters are different. 

Recently, Hahsler proposed DBSTREAM [11] , whose micro-

luster-based online clustering component explicitly captures the

ensity between micro-clusters via a shared density graph, ad-

ressed the problem with D-Stream and MR-Stream when the

ata points within each cell are not uniformly distributed and two

ense cells are separated by a small area of low density. 

All the density based data stream clustering methods above

ollow the “online-offline” style. By “online-offline”, it means that

he stream clusterings consist of two major components. The “on-

ine” part is responsible for maintaining the microclusters of the

treaming objects, while the “offline” performs the resultant clus-

ering based on the microclusters only when a user submits his/her

uery. 

However, there are some researches combined the ideas of

he mentioned ‘ ‘k -means-like” and “density-based”, hence cannot

e categorized as any one type of them. For example, Rehman

t al. presented a successful hybrid of “loading objects into grids”

f D-Stream (or MR-Stream) and “merging closest micro-clusters”

f CluStream [21] . Besides, there are some hierarchical clustering

odels for data streams that do not need to specify a number

f clusters and can return a more informative cluster hierarchical

tructure [22,23] . 

.1.3. Change point detection 

When clustering evolving data streams, the major cluster may

hange over time. We will get the clustering result wrongly evalu-

ted if we do not tag the change point, because the cluster labeled

s C 1 is actually another cluster rather than the former cluster C 1 
nce the drift occurs. 

Zhang et al. used the Page-Hinkley test to detect the change

oints in STRAP [9] . Koshijima et al. proposed a nonparametric and

omputationally efficient change point detection method named

ag-of-words [24] . Ho and Wechsler developed a general martin-

ale framework for detecting changes in time-varying data streams,

n which the exchangeability of the data is tested to determine

hether a change has occurred [12] . This martingale approach is of

pecial interest in our research, since we will show later the FNLT

tructure can be conveniently put in the martingale framework to

etect a major concept drift. 

.2. Clustering with density peaks (DPClust) 

The proposed method starts from DPClust [13] by Rodriguez

nd Laio, so we give a brief introduction to its idea and the al-

orithm here. They firstly made a sound intuitive assumption that

o matter what the shape of clusters looks like, centers are always

https://cran.r-project.org/web/packages/streamMOA/vignettes/streamMOA.pdf
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Table 1 

Notations in DPClust and DP-Stream. 

Symbol Meaning 

X = ( x 1 , . . . , x N ) The dataset with x i as its i th data point 

D = { d i, j } The distances of the pairs of data points in X , where 1 

≤ i < j ≤ N 

I = (1 , . . . , N) The set of the indices of data points in the dataset 

C = ( C 1 , . . . , C K ) K centers of the clustering result 

ρ = (ρ1 , . . . ρN ) The local density of X 

δ = ( δ1 , . . . , δN ) The distance to nearest points of higher local density 

Q = ( q 1 , . . . , q N ) The sorted indices of ρ in descending order i.e., 

ρq 1 ≥ ρq 2 ≥ . . . ≥ ρq N 

Nn = ( Nn 1 , . . . , Nn N ) The indices of the nearest neighbor with larger ρ for 

data points series ( x 1 , . . . , x N ) 

γ = ( γ1 , . . . , γN ) The elementwise product of ρ and δ
W = ( w 1 , . . . , w N ) The weight (population) of nodes in FNLT 

Cl = ( Cl 1 , . . . , Cl N ) The cluster label of nodes in FNLT 
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surrounded by non-center data points with lower density, and the

distance between two centers are relatively long. Then two simple

measures, namely local density (denoted as ρ) and minimal dis-

tance to data points with higher density (denoted as δ), are em-

ployed to accomplish the clustering job. 

The notations used to describe the algorithm DPClust and our

methods are listed in Table 1 . 

The algorithm of DPClust takes the distance matrix of a given

dataset as input, and performing the following steps: 

1) Compute { ρ
1 
, ρ

2 
, . . . , ρ

N 
} via cut-off kernel: 

ρi = 

∑ 

j∈ I\{ i } 
χ( d i, j − d c ) , where χ( x ) = 

{
1 , x < 0 ;
0 , x ≥ 0 . 

(1)

d c is the cutoff distance; or via Gaussian kernel: 

ρi = 

∑ 

j∈ I\{ i } 
e −( 

d i, j 
d c 

) 
2 

. (2)

Eq. (2) is used in the implementation of Rodriguez and Laio;

2) Sort { ρ1 , ρ2 , . . . , ρN } in a descending order to yield

( ρq 1 , ρq 2 , . . . , ρq N ) ; 

3) Compute δ via 

δq i = 

{ 

min 

j<i 
{ d q i , q j } , i ≥ 2 ;

max 
j≥2 

{ d q i , q j } , i = 1 . 
(3)

and write the index of the nearest neighbor with larger ρ in

vector Nn : 

N n i = 

{
0 , i f i = q 1 
j such that δi = d i, j , otherwise 

(4)

4) Interactively choose the points with “anomalously large” ρ
and δ as centers; 

5) Assign each data point to the same cluster as its nearest

neighbor with larger ρ . At first, the centers are assigned to

their corresponding cluster label, then each noncenter ob-

ject x i is assigned to the same cluster as Nn i . Formally, this

is written as: 

C l i = 

{
k, i f i = C k , k ∈ { 1 , . . . , K} 
C l N n i , otherwise 

(5)

DPClust uses a parameter named bord _ rho to distinguish core

and hallo data points of a cluster. The hallo data points around a

cluster are somehow similar to but are not outliers in fact. And

whether a point is a hallo point depends heavily on the choice of

d c parameter. So for simplicity, we omit the discussion of hallo and

core in this study. 
. Extending DPClust 

In original implementation of DPClust offered by the authors,

he centers are chosen by the users interactively. This is good for

unning the program once per dataset, and it can involve human’s

nsight to follow the statement – the only points of high δ and rel-

tively high ρ are the cluster centers [13] . But when DPClust has to

e called iteratively to cluster a data stream, the centers need to

e automatically selected. We address this issue in Section 3.1 . Al-

hough it is not explicitly pointed out in [13] , DPClust constructs

 tree structure (we define it as Leading Tree later) as its interme-

iate result. This tree structure is the key for us to design a data

tream clustering algorithm which constantly delivers the cluster-

ng result online without an offline component. 

.1. Automatic selection of centers 

There have existed some works on automatically selecting the

luster centers, e.g., Hinneburg and Keim used a hill climbing

pproach to identify the local maxima of the density function

25] (the corresponding clustering method is called DENCLUE),

hich are corresponding to the cluster centers in DPClust. Hinneb-

rg and Garbriel further made a progress toward a faster DENCLUE

called DENCLUE 2.0) by reducing the hill climbing to a special case

f an expectation maximization problem [26] . We use a linear fit-

ing approach to automatically select the centers [27] . As pointed

ut in [13] , the cluster centers are featured by their anomalously

arge γ values. 

Let [ γs , γInd ] = sortDescending( γ ) , For i = N − l to 0 (from the

nd to beginning) we fit the γ points against their indices to a

inear equation with length l : 

s 
i = a i I i + b i , (6)

here γ i = ( γi +1 , γi +2 , . . . , γi + l ) , I i = ( I i +1 , I i +2 , . . . , I i + l ) . The two

ariables a i and b i are solved to reach a minimal mean square error

MSE). 

Then compute ˆ γi = a i I i + b i and �γ = γi − ˆ γi , when the first i

s found to satisfy 

γi > LocalR ∗ Max ( dγ s 
i ) , (7)

nd 

γi > Gl obal R ∗ Max ( dγ s ) , (8)

he procedure of detecting centers terminates, where dγ s 
i and d γ s 

re the difference-vector of γ s 
i 

and γ s respectively. LocalR is de-

igned to control how significant the γ value of the first center

hould grow larger than the previous data points (considering the

irection of linear fitting movement), and GlobalR is used to con-

rol how large �γ should be with respect to the global greatest γ
alue. GlobalR is meant to avoid a situation, where the �γ i is very

arge relative to dγ s 
i but very trivial to the maximum increment in

. In this case, the point should not make a center. 

When the linear fitting process terminates, the number of cen-

ers is i and the points with indices in (γ In d 1 , . . . , γ In d i ) are the

orresponding centers. This method is illustrated as Fig. 2 . 

.2. Leading Tree structure in DPClust 

By careful investigation, we find out that the intermediate re-

ult Nn in DPClust actually represents a tree. In this tree, each node

xcept the root is led by its parent to join the same cluster. Thus

e call this tree a Leading Tree (LT), and name the parent of an

tem as its leading node . With an LT, the process of assigning the

oncenter data points turns into disconnecting the centers from

heir parents (except the root of the LT). And the resulted subtrees

epresent the clusters. Example 1 illustrates the idea. 
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Fig. 2. Diagram to illustrate the idea of selecting centers with linear fitting. The 

black circles are the real γ values, and a red dot is the predicted γ value of the data 

point before the points currently being linearly fitted. If there is a significant “jump”

from the predicted ˆ γ value to the real γ value at position i , then the points whose 

γ values are larger or equal to γ i are chosen as cluster centers. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Algorithm 1: DP-Stream algorithm. 

Input : Data stream X 

Output : Cl , outliers, and change points 

Construct the initial LT; 

Granulate the LT (Algorithm 2); 

while Data X new 

streaming in do 

if X new 

is not strange then 

Merge X new 

into FNLT, output Cl new 

(Algorithm 3); 

end 

Buffer Bu f f erSize new data points ; 

for each data point X new 

in the Buffer do 

if X new 

is noise then 

Discard X new 

or store it on hard disk; 

end 

else 

Merge X new 

into FNLT, output Cl new 

; 

end 

end 

Detect drift ; 

Fade out, remove weak nodes ; 

Granulate and update FNLT ; 

end 
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xample 1. We firstly generate 13 points (DS1) on the 2D plane,

s shown in the upper left corner of Fig. 3 , and then the interme-

iate results ρ, δ, γ , Nn and the final result Cl for DS1 are com-

uted with DPClust (according to the definitions in Table 1 and

he Equations in Section 2.2 . That is, ρ is computed with Eq. (2) ,

with Eq. (3) , γi = ρi × δi for each i from 1–N , Nn is computed

ith Eq. (4) , and Cl is computed with Eq. (5) ), as shown in the

ottom right corner of Fig. 3 . Finally, the tree structure is indicated

y vector Nn and the 3 points with largest γ value are chosen to

e centers by the linear fitting approach. The LT of Example 1 is

hown in the salient position of Fig. 3 , and it can be split into 3

ubtrees if the points x 6 and x 11 are disconnected from their par-

nts. Each subtree is a cluster, which is corresponding to the CL

ow in the table contained in Fig. 3 . 

The logical relationship among the centers of clusters in DP-

lust is not of “peer to peer” as in many other clustering methods

e.g. K -means, AP clustering), but of partial ordinal relation. To pre-

are the discussion of change detection in later sections, we give

wo definitions here. 

efinition 1. η operator . For any non-root node x in an LT, there

s a node p such that η(x ) = p, where p is the nearest neigh-

or with higher local density to x . More formally, η(x ) = p iff

p = arg min 

y 
{ d x,y | ρx < ρy ; x, y ∈ X} . 

we denote η( η( . . . η(•))) ︸ ︷︷ ︸ 
n times 

= ηn (•) , e.g., in Fig. 3 , η( x 6 ) = x 13 ,

2 ( x 9 ) = x 12 . 

efinition 2 partial order in LT. Suppose x i , x j ∈ X , we say x i ≺
 j , i f f ∃ m ∈ N 

+ such that x j = ηm (x i ) . 

Obviously, the root C 1 satisfies C i ≺C 1 , ∀ C i ∈ C \ C 1 , where C 1 is

lways the center of a cluster no matter how many clusters there

ould be. With this starting point, we can define the significant

rift in DP-Stream, which will be elaborated on in Section 4.4 . 

. DP-Stream algorithm 

This section aims at using FNLT (see Section 4.3 for a detailed

efinition) to cluster data streams, more specifically, achieving on-

ine clustering in the case of non-stationary data distributions. The

esulting algorithm, called DP-Stream, involves the following steps

 Algorithm 1 with a diagram in Fig. 4 ). 

1) The initial buffered data is used to construct an LT after

computing the vectors ρ, δ, Nn . The cluster centers are auto-

matically selected with a linear fitting approach for param-
eter vector γ . The cluster label for each data point is stored

as Cl . 

2) Granulate the LT into an FNLT; 

3) The evolving FNLT is updated in a batch fashion: 

3a) With a new arrived item, the first step is to incrementally

update ρ and δ for x and all nodes in the FNLT. Compute the

strangeness parameter θ to decide whether it is an outlier

(or possibly a starting point of a drift). 

3b) Find the leading node for the new item X new 

, and assign the

same cluster label as its leading nodes if X new 

is not strange .

If X new 

is strange, then its clustering result will be postponed

to the moment when the buffer is filled up. 

3c) Decide whether a drift has occurred. If there is a drift,

then tag the change point (for further use in the evaluation

or validation); if the strange points are outliers, then store

them on the hard disk or simply discard them. 

3d) Fade the history nodes. The weak nodes are removed. 

3e) The FNLT with newly incorporated items are further granu-

lated into a new FNLT. 

Steps from 3a) to 3d) are iteratively executed when there are

tems flowing in. The complexity of DP-Stream is analyzed in

ection 5 , and the performance of DP-Stream will be empirically

ssessed in Section 6 . 

.1. Granulating the LT/FNLT 

To prevent the size of an FNLT from ever growing and to re-

erve the essential information of the current data points in the

tream, we employ two strategies. One is granulating , i.e., the clos-

st nodes are merged to their corresponding leading nodes. The

ther is fading − remov ing. When an item x m 

is merged to L sat-

sfying L = η(x m 

) , we perform T ′ . ρL ← T . ρL + T . ρx m 
and T ′ . W L ←

 . W L + T . W x m . Also, for any node y satisfying x m 

= η(y ) , we set L

 η( y ). For more details of granulating the FNLT, the readers are

eferred to Algorithm 2 . 

A manually set constant Sketch Index (SI) is used to control how

arge a proportion of all the nodes are remained after merging the

loset data points to their leading nodes. The first N merge points

( x (1) 
m 

, . . . , x 
( N merge ) 
m 

) in SortDeltaInds are merged into their leading
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Fig. 3. The LT generated from the data points DS1 (the upper left corner), including the intermediate results (the bottom right corner), by which the leading relation and 

the centers are determined. The three largest gamma values are highlighted with gray background. 

Fig. 4. Diagram of DP-Stream algorithm. The dashed arrows represent the steps executed only once during system initialization. 
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nodes respectively. If an L (i ) = η(x (i ) 
m 

) has been merged to L ′ al-

ready, then x (i ) 
m 

is transitively merged to L ′ in both newNn and Re-

mainInds . newNn holds the changed Nn and RemainInds is used to

store the IDs of fat nodes after the granulation. 

Example 2. We continue to demonstrate this granulating-FNLT al-

gorithm using the LT constructed in Example 1 . The remaining

number of fat nodes would be 6 if we let SI = 0 . 55 , since the seven

individual points x 9 , x 10 , x 12 , x 2 , x 3 , x 4 , x 8 are merged into their

parents, respectively. As shown in Fig. 5 . 

4.2. Outliers detection 

Outlier detection has a long history since the data are collected

or generated from a variety of sources. It finds out and removes

the anomalous samples from datasets [28] . Recently, Milos et al.

defined antihubs , based on reverse nearest neighbor and hubs , to
etect outliers, especially in high-dimensional setting [29] . Huang

t al. combined the ideas of nearest neighbor and reverse near-

st neighbor to propose a concept of natural neighbor , with which

atural value and natural outlier factor are computed to select the

utliers [30] . 

With DPClust, outliers are characterized by large δ and small ρ
13] , thus they can be detected by the ratio of δ to ρ . Similar to the

echanism of selecting centers, we define a parameter θ = δ/ρ to

ndicate how likely a data point would be an potential outlier. This

pproach can be easily implemented in the context of DP-Stream

ecause the parameters ρ and δ are readily available for every ob-

ect, and the linear fitting approach to select the anomalously large

alue is ready for reusing ( Section 3.1 ). However, detecting noises

as one thing different from selecting centers, that is, the data

oints with very large θ might have an extraordinary large δ and

 relatively large ρ . And a point with large ρ means that it is sur-

ounded by a group of objects, hence it is by no means an outlier.

o, after the first step of choosing the data points with anoma-
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Algorithm 2: granulating the FNLT. 

Input : the FNLT T , Sketch Index (SI) 

Output : a newly granulated FNLT T ′ 
Procedure : 

N merge ← � N(1 − SI) 
 ; 
newNn ← T . Nn ; 

[ δs , SInd δ] ← SortAscend(T . δ) ; 
RemainInds ← ∅ ; 
i ← 0 ; 

for each j in the first N merge elements of SInd δ do 

i ← i + 1 ; 

RemainInds i ← newNn j ; 

if newNn m 

== j for any m ∈ [1 , N] then 

newNn m 

← newNn j ; 

end 

if RemainInds m 

== j for any m ∈ [1 , i − 1] then 

RemainInds m 

← newNn j ; 

end 

end 

Append N − N merge elements in SInd δ to RemainInds ; 

U ← Unique (RemainInds ) ; 

T ′ . X ← T . X U ; 

T ′ . w i ← 

∑ 

T .w M i 
, where M i is the nodes set in T merged into 

T ′ .X i ; 
T ′ . ρi ← 

∑ 

T .ρM i 
, ; 

Extract new T ′ .D from T .D via T ′ .X; 

Update T ′ . δ and T ′ . Nn with T ′ .D and T ′ . ρ ; 

Fig. 5. Illustration of granulating an LT into FNLT. The size reflects the population 

(the larger size, the greater population), and the color reflects the local density for 

each node (the warmer color, the higher density). 
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ously large θ , a second step is needed to filter the points with

elatively large ρ . After the two steps, the points left are chosen as

utliers and should be simply removed or stored on the hard disk

f necessary. 

xample 3. The method of using parameter θ to identify strange

ata points and using buffering mechanism to differentiate outliers

rom a new pattern is illustrated in Fig. 6 . The strange items or

utliers are separated from the FNLT. This existing FNLT was con-

tructed in Example 2 . 

.3. Merging the new items into the FNLT 

A fat node leading tree (FNLT) is defined as a tuple ( X , W, D,

, δ, Nn, Cl) , in which the meaning of the elements is listed in

able 1 . The initial LT can be regarded as an FNLT by assigning its

 = (1 , . . . , 1) . 

For a fast delivery of the clustering result of the items arrived,

e assign each item to its leading node immediately after the in-
remental updating of the local densities for all fat nodes and the

ewly arrived, leaving the updating of the FNLT (possibly includes

he change of centers) after the granulation. The procedure of

erging the new items into the FNLT is described as Algorithm 3 .

Algorithm 3: Incrementally updating the FNLT. 

Input : the FNLT T , a new item x 

Output : an updated FNLT 

Procedure : 

Step1 : //Update T . ρ and compute ρx for x 

for each point x i in T .X do 

d i,new 

← computeDistance( x i , x ); 

IncreValue ← exp (−(d i,new 

/dc) 2 ) ; 

T .ρi ← T .ρi + IncreValue; 

ρx ← ρx + IncreValue* T .W i ; 

end 

Append ρx to T . ρ; 

Step2 : // Expand T . D N×N to T . D (N+1) ×(N+1) 

The bottom row of T . D (N+1) ×(N+1) ← [ d new 

, 0] ; 

The last column of T . D (N+1) ×(N+1) ← [ d new 

, 0] T ; 

Step3 ://Compute δx and Nn x for x 

if ρx is not the biggest then 

Nn x ← argmin 

i 

{
T .D i,N+1 | i ∈ [1 , N] , T .ρi > ρx 

}
; 

δx ← min { T . D i , N+1 | i ∈ [1 , N] , T .ρi > ρx } ; 
end 

else 

Nn x ← 0 ; 

δx ← max { T . D i , N+1 | 1 ≤ i ≤ N } ; 
end 

Step4 : //Output the clustering result for x 

if ρx is not the biggest then 

C l x ← C l Nn x ; 

end 

else 

C l x ← C l s , where s = arg min 

i 

{ D i,N+1 } ; 
end 

Step5 : //update T . δ and T . Nn 

if x does not change the order of T . ρ then 

SI ← { i | ρi < ρx , 1 ≤ i ≤ N} ; 
for each si in SI do 

if T .D si,N+1 < T .δsi then 

T .δsi ← T .D si,N+1 ; 

T .Nn si ← N + 1 ; 

end 

end 

end 

else 

Recompute T . δ and T . Nn according to the definitions; 

end 

Append δx , Nn x , x , 1 to T . δ, T . Nn , X , W , respectively; 

Algorithm 3 is the core of DP-Stream. It is an accurate/exact in-

remental updating method to extend DPClust for data streams. 

emma 1. The FNLT constructed with Algorithm 3 is the same as in a

on-incremental approach. 

roof. To show the correctness of Algorithm 3 , we indeed show

hat the incremental approach obtains each element in FNLT tu-

le ( X , W, D, ρ, δ, Nn, Cl) the same as that obtained in the non-

ncremental approach. 
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Fig. 6. Illustration of detecting outliers and a new pattern. (a) 2 data points x 14 and x 15 arrived and were detected strange with their extraordinary large θ value; (b) x 14 is 

identified as an outlier and x 15 is identified as one item in a new pattern after x 16 and x 17 appeared in the data stream. 
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a) ρ. Let us denote T . ρ as (ρT 
1 , . . . , ρ

T 
N ) , denote ρ computed af-

ter the arrival of a new item x via incremental approach as

ρInc = { ρ Inc 
i 

} N+1 
i =1 

, and denote that via non incremental ap-

proach as ρNonInc = { ρNonInc 
i 

} N+1 
i =1 

. For the local density of the

new item x , 

ρ Inc 
N+1 = ρNonInc 

N+1 = 

N ∑ 

i =1 

w i e 
−( 

d i,new 
dc 

) 
2 

. (9)

For the density of the fat nodes in the FNLT, i.e., 1 ≤ i ≤ N ,

we have 

ρ Inc 
i = ρT 

i + e −( 
d i, new 

dc 
) 

2 

, (10)

ρNonInc 
i = 

∑ 

1 ≤ j ≤N+1 , j � = i 
w j e 

−( 
d i, j 
dc 

) 
2 

= 

∑ 

1 ≤ j ≤N, j � = i 
w j e 

−( 
d i, j 
dc 

) 
2 

+ 1 × e −( 
d i,new 

dc 
) 

2

(11)

and since 

ρT 
i = 

∑ 

1 ≤ j ≤N, j � = i 
w j e 

−( 
d i, j 
dc 

) 
2 

, (12)

Substituting Eq. (12) into Eq. (10) , we get 

ρ Inc 
i = ρNonInc 

i , 1 ≤ i ≤ N. (13)

Combining Eq. (13) and Eq. (9) , ρInc = ρNonInc is obtained. 

b) D . The newly arrived item does not change the original dis-

tances between every pair of existing nodes. So what need

to do is to add the distance D N+1 , • and D •,N+1 to the original

D , as described in Step 2. 

c) Nn . The incremental update of Nn consists of two parts:

computing Nn x and updating the existing Nn . 

(i) computing Nn x . Nn x ← argmin 

i 

{ T .D i,N+1 | i ∈ [1 , N] ,

T .ρi > ρx } , if ρx is not the largest; Nn x ← 0, otherwise

(Step 3). This is the same as in a non-incremental

approach. 

(ii) updating the existing T. Nn . Most frequently, a single

new object would not change T. Q . So Step 5 of the al-

gorithm first finds such node y that ρy < ρx (condi-

tion 1). Subsequently, if d x, y < Nn y (condition 2), then

Nn y ← x (Step 5). This procedure leaves unchanged

the Nn of the nodes that do not satisfy the two condi-

tions simultaneously, because of the fact that T. Nn is

determined by T. D and T. Q . However, if the new item

x happened to make some change to T. Q , we directly

recompute T. Nn using T. D and T . ρ. 
d) δ. According to the definition of δ (see Eq. (3) ), both δx and

the existing δ can be obtained once Nn and D are updated

correctly. 

e) Cl . If ρx is the largest, then x is labeled as cluster 1 ( x is the

root of the whole FNLT); else Cl x is assigned with Cl Nn x . 

f) X and W . The update of X and W is trivial, simply let X =
[ X, x ] and W = [ W , 1] (last statement in Step 5). 

rom the steps a) to f), we can tell that each element in the tuple

 X , W, D, ρ, δ, Nn, Cl) obtained via the incremental updating algo-

ithm is the same as that computed non-incrementally. Hence the

orrectness of Algorithm 3 is proved. �

xample 4. An illustrative example based the FNLT in Example 2 is

hown in Fig. 7 to demonstrate the basic idea of Algorithm 3 .

 new data point ( x 14 ) arrives after the LT of 13 points is gran-

lated into an FNLT of 6 fat nodes. Then the new FNLT is ob-

ained after the elements in the definition of an FNLT are incre-

entally updated or expanded. We will discuss acceleration effect

f Algorithm 3 in Section 5 . 

.4. Drifts detection 

A key difficulty in data streaming is to detect a change in the

enerative process underlying the data stream, referred to as drift.

o and Wechsler proposed a martingale framework to detect the

hange of data generating model [12] . We firstly review the core

deas in Ho’s work, and then introduce them into our drift detec-

ion problem. 

efinition 3. Exchangeable [12] . Let { Z i : 1 ≤ i < ∞ } be a sequence

f random variables. A sequence of random variables Z 1 , . . . , Z n , . . .

s exchangeable if for every finite subset of the random variable

equence(containing n random variables), the joint distribution

p(Z 1 , . . . , Z n ) is invariant under any permutation of the indices of

he random variables, i.e, p(Z 1 , Z 2 , . . . , Z n ) = p(Z (1) , Z (2) , . . . , Z (n ) ) ,

or all permutations π defined on the set { 1 , . . . , n } . 
A change in general in a data streaming setting is defined by a

hange in the parameter θ from θ0 to θ1 at time t 0 [31] . We adopt

his claim in DP-Stream. 

efinition 4. Martingale [12] . A sequence of random variables

 M i : 0 ≤ i < ∞ } is a martingale with respect to the sequence of

andom variables { Z i : 0 ≤ i < ∞ } if, for all i ≥ 0, the following

onditions hold: 

• M i is a measurable function of Z 0 , Z 1 . . . , Z i , 

• E (| M |) < ∞ , and 
i 
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Fig. 7. Illustration of Algorithm 3 . (a) The FNLT and its intermediate results before the new item arriving. (b) The updated FNLT after the new item has been incorporated. 

 

t

w  

t

 

a  

c  

b  

u  

u  

c  

e

 

o  

t  

t  

S

L  

T

P  

o  

f  

T  

t  

w  

f  

i  

c  

s

 

p  

F

i  

t  

t  

x  

t  

t

 

t  

w

Fig. 8. Illustration of major concept drift. (a) x 3 is the root of the whole LT before 

x 8 ’s arrival, hence the cluster label for { x 1 , x 2 , x 3 } is 1. (b) x 8 is the new root of 

the whole LT after x 8 being incorporated, hence the cluster label for { x 1 , x 2 , x 3 } is 

changed into 2. 
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• E(M n +1 | Z 0 , . . . , Z n ) = M n . 

Let Z i be the prime center (the root) C T of the whole FNLT at

ime i , and M i be the distance between Z i and Z i −1 . Intuitively, M i 

ould remain relatively small with some fluctuations as long as

he drift does not occur. 

Before applying Martingale theory to DP-Stream, we make an

ssumption: a drift occurs at time i only if there are at least two

lusters in the reservoir at time i − 1 . The assumption makes sense

ecause the reasonable choice of reservoir size (batch of items we

sed to rebuild the FNLT) is much smaller than total weight (pop-

lation) of the evolving FNLT nodes. Therefore, the drift must oc-

ur gradually with the old pattern fading out and a new pattern

merging simultaneously. 

In DP-Stream, we say a drift occurs if and only if the location

f the highest cluster center C T 
i 

has changed so significantly that

he distance from the current C T 
i 

to previous C T 
i −1 

is farther than

hat to a previous non-top center. With the definitions given in

ection 3.2 , it can be put formally: 

emma 2. The time i is a change point, if ∃ C S 
i −1 

≺ C T 
i −1 

, such that

 .D 

C T 
i 

,C S 
i −1 

< T .D 

C T 
i 

,C T 
i −1 

. 

roof. In DPClust, Cl is assigned in accordance with the ρ value

f their corresponding centers, i.e., Cl ρInd 1 
= 1, Cl ρInd 2 

= 2, and so

orth, where ρInd i is computed within [ ρs , ρInd ] = sortDesc( ρ) . If

 .D 

C T 
i 

,C S 
i −1 

< T .D 

C T 
i 

,C T 
i −1 

, which means the root of the FNLT is changed

o another center, and let θ be the coordinate of C T in the space in

hich X is embedded, then θ must change from θ0 to a much dif-

erent value θ1 . Because the definition of cluster center in DPClust

mplies that a center C j is surrounded by the items with lower lo-

al density but relatively far from the points with higher local den-

ity (including C k satisfying C j ≺C k ). �

An example to illustrate Theorem 2 is shown in Fig. 8 . The

ositions, colors and the leading relations of the each point in

ig. 8 are based on real data and computing results. In Fig. 8 a, x 3 
s C T , for the three data points x 1 , x 2 , x 3 are closer to each other

han the other four points, which leads to the highest ρ of x 3 . In

he next time ( Fig. 8 b), a new item x 8 arrives and locates among

 4 , . . . , x 7 , hence x 8 is of the greatest local density and selected as

he new C T . If we denote the coordinate of x 3 as θ0 = (r 0 , ϕ 0 ) , and

he x 8 as θ1 = (r 1 , ϕ 1 ) , obviously we have θ0 � = θ1 . 

A change point indicates a significant drift. Therefore, the clus-

ering result should be evaluated independently since the clusters

ith same label have actually changed into different distributions. 
.5. Fading out and removing weak nodes 

To emphasize on the recent data and gradually forget the

ld ones, we use a fading-removing mechanism on the historical

ata. A parameter named half-life is firstly defined as in [3] . We

hoose an exponential form for the fading function because of its

idespread application in temporal systems, where the importance

f past data needs to be gradually decreased. 

efinition 5. Half-life . In DP-Stream, the half-life t 0 of a point x i is

efined as the time at which w i · f (t 0 ) = w i · (1 / 2) , where f (t) =
 

−λt , λ > 0 . 

Because e −λt = 1 / 2 ⇒ λ = ln 2 /t, we can easily determine the

arameter λ if t 0 is given. In the experiments, we perform W = W ·
 

λ and ρ = ρ · e λ after reconstructing the FNLT every time. After

any rounds of fading, some points will have very small weight

e.g. < RemovalThre ) if no new points are merged into them. In

his case, they are removed from the FNLT. 

. Computational complexity 

Space complexity of DP-Stream depends on the Sketch Index ( SI )

nd the size of reservoir. Since the FNLT is defined as ( X , W, D,

, δ, Nn, Cl) , size memory space used to hold an FNLT of n f ( =
tar tBu f f er Size ∗ SI) nodes is n f × d + n 2 

f 
+ 5 × n f , where n f × d ,

 

2 
f 
, and 5 × n f is the size of X, D and the 5 vectors { W, ρ, δ,

n, Cl) } respectively. Although some components in FNLT can be

omputed from others, we store them to trade memory for run-

ing time. Let n r be the size of reservoir that means the num-

er of items used to rebuild the FNLT, then the space needed

n merging and granulating procedure (apart from the FNLT) is

 r × d + (n 2 r + 2 × n f × n r ) + 4 × n r , where n r × d is the number of

torage size for new items, n 2 r + 2 × n f × n r for the expanded dis-
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Table 2 

Datasets used to empirically evaluate DP-Stream. 

Datasets # Attributes # Clusters # Objects 

ExclaStar 2 2–3 755 

MRDS 2 2–3 42 ,470 

ChameleonDS3 2 2–5 10 ,0 0 0 

RBF10a 10 5 1 ,0 0 0,0 0 0 

RBFDrift 15 5 1 ,0 0 0,0 0 0 

CoverType 54 3–7 581 ,012 

KDD’99 34 1–4 494 ,020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Parameters in DP-Stream. 

Parameter Purpose Interval 

percent to decide dc in DPClust [0 .05, 20] 

LocalR for selecting centers [1 .6, 4.8] 

GlobalR for selecting centers [0 .01,0.3] 

InitialBuffSize the number of items to construct the 

initial LT 

[30 0, 20 0 0] 

SI the rate of compressing the initial LT into 

an FNLT 

[0 .75, 0. 95] 

bufferSize the number of items to rebuild the FNLT [20 ,10 0 0] 

half - life the speed of fading out [2 ,10] 

RemovalThre how weak a fat node should be removed 

from the FNLT 

[0 .1,0.5] 

Table 4 

Configurations of the three parameters. 

Dataset percent LocalR GlobalR 

ExclaStar 5 4 .8 0 .1 

MRDS 2 4 .8 0 .3 

ChameleonDS3 0 .5 4 .8 0 .2 

RBFa10 0 .2 2 .6 0 .1 

RBFDrift 0 .2 2 .6 0 .1 

CoverType 20 4 .8 0 .3 

KDD’99 2 1 .6 0 .05 
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c  
tance matrix before granulating, and 4 × n r for the 4 vectors { ρ, δ,

Nn, Cl }. Therefore, the total space needed to update the FNLT with

newly arrived items and granulate the FNLT is 

SC = (n f + n r ) × d + (n f + n r ) 
2 + 5 × n f + 4 × n r . (14)

We remove weak nodes from the FNLT. Therefore, the clustering

method uses the space never exceeding SC . 

To analyze the algorithm’s time complexity, we need to con-

sider Algorithm 1, Algorithm 2 and Algorithm 3 . From Algorithm 1 ,

it is clear that astrange item will require more steps to process

than a non-strange item, although this does not affect the big O

notation of DP-Stream. The highest complexity part of the DP-

Clust to construct the initial LT is the distance matrix computa-

tion, which is O (n 2 
f 
) . In Algorithm 2 for granulating the FNLT, the

closest data points indicated by the δ parameter are merged to

their leading point respectively. The most time consuming part

in Algorithm 2 is the transitive updating of Nn values in newNn

and RemainInds , whose complexity is O (N merg × (N merge + n f + n r )) ,

where N merge is the number of nodes to be granulated into other

leading nodes. Then, for the delivery of the clustering result of

a non-strange new item, the complexity in each step is O ( n f ) in

Algorithm 3 . That is, DP-Stream can find the cluster assignation of

a non-strange new item in O ( n f ) time complexity. This is a high-

light of our method. The time complexity in outlier detection, as

well as in fading out function, is linear. 

In summary, the time complexity of building the initial LT is

O ( N 

2 ), and the complexity in updating and granulating the FNLT

is O ( n f ) and O (N merge × (N merge + n f + n r )) . The overall complexity

of DP-Stream is O ( N 

2 ). DP-Stream has the virtue of assigning the

cluster label to a new item X new 

in O ( n f ) time complexity if X new 

is

not strange, which is to our best of knowledge the fastest delivery

of clustering result in data stream clustering. 

6. Experiments 

The experiments are conducted on a personal computer with

Intel i5-2430M CPU, 8G RAM, Windows 7 64bit OS, and Matlab

2014 programming environment. We test DP-Stream on 7 datasets:

five of them are synthetic and the others are real world datasets

from UCI Machine Learning Repository. Among the three 2D syn-

thetic data streams, ChameleonDS3 is downloaded from Karypis

Lab 2 ; ExclaStar is generated originally in this paper, and MRDS

is reproduced with the description in [7] with the help of En-

gauge Digitizer. 3 The other two synthetic datasets RBF10a and RBF-

Drift are generated by generators.RandomRBFGenerator and genera-

tors.RandomRBFGeneratorDrift methods of the open source software

MOA (Massive Online Analysis) 4 respectively. The details of the

seven datasets are listed in Table 2 . 

We compare the accuracy performance of DP-Stream with the

classic CluStream [16] and DenStream [6] (implemented in MOA),
2 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download . 
3 http://markummitchell.github.io/engauge-digitizer/ . 
4 http://moa.cs.waikato.ac.nz/ . 

s  

c  
s well as the state-of-the-art method STRAP [9] . The STRAP source

ode is generously offered by Zhang from the Internet. 5 

The metric Purity to evaluate the stream clustering accuracy is

efined as in [3] : 

 urity = 

∑ K 
i =1 

| C d 
i 
| 

| C i | 
K 

× 100% , (15)

here K is the number of real clusters. The symbol | C d 
i 
| denotes

he number of points with dominant class label in cluster i , and

 C i | is the number of points in real cluster i [7] . Because Purity has

he limitation of favoriting smaller number of clusters, the metric

djusted Rand Index (ARI) [32,33] is also employed in our evalua-

ions. ARI and Purity can be used only with the presence of the

xternal class label (ground truth), hence they are called exter-

al validation measures [4] . However, if there is no class label in

he data stream, some internal validation measures will be cho-

en. For example, in the case of ChameleonDS3, we choose Silhou-

tte Index [34] to evaluate the clustering quality achieved by DP-

tream and the comparative methods. Besides, internal validation

easures have the ability to reflect the compactness and separa-

ility of clustering results, so we additionally employe Silhouette

ndex to evaluate all clustering results in our experiments. 

DP-Stream involves 8 parameters in total, whose purposes and

uggested value intervals are listed in Table 3 . However, we find

ut that the clustering results are only sensitive to the first 3 pa-

ameters. In each experiment with the corresponding dataset, we

ive our parameters configuration in a row of Table 4 . For example,

he 3rd row shows the parameters setting in MRDS experiment.

ow these parameters are set will be discussed in Section 6.4 . 

.1. 2D synthetic datasets 

The three 2D synthetic datasets (as in Fig. 9 ) are chosen for dif-

erent purposes. ExclaStar is designed to test the ability of a stream

lustering model to find clusters of different density level and non-

pherical shapes, and to track the mergence of clusters; MRDS is

hosen to determine whether a clustering can filter the noises and
5 http://mine.kaust.edu.sa/Pages/Software.aspx 

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
http://markummitchell.github.io/engauge-digitizer/
http://moa.cs.waikato.ac.nz/
http://mine.kaust.edu.sa/Pages/Software.aspx
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Fig. 9. The three 2D data streams. The points appear in the color sequence of “blue → green → red”. (a) ExclaStar. It consists of an exclaim symbol and a star. (b) MRDS [7] , 

and (c) ChameleonDS3. Its file name in the downloaded zip is “t7.10k.dat”, and the points are without class label. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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I  
dentify the concept drifts; ChameleonDS3 is borrowed to demon-

trate one limitation of the proposed method: when a cluster con-

ains several internal high density spot, DP-Stream usually fails to

etect the whole big cluster. This is because the assumption of DP-

lust (a cluster consists of a center of high density and many sur-

ounding points of relatively lower density) does not hold in this

ircumstance. 

.1.1. ExclaStar dataset 

ExclaStar dataset consists of 240 points for the star, 391 for the

ar and 124 for the pie. Apart from the reasons mentioned above,

e additionally visualize the whole clustering procedure on this

ataset and gain insight on how the algorithm DP-Stream works

ecause it has relatively fewer points. 

As expected, it is shown that the FNLT has 3 clusters of points

t the beginning stage ( Fig. 10 a) and gradually 2 clusters on the

eft side merge into one ( Fig. 10 b). It is also demonstrated that the

luster labels are assigned to newly arrived items as soon as they

re incorporated into the FNLT. 

From the point No. 708, the cluster 2 and cluster 3 should be

erged into one. Therefore, the ground truth is modified accord-

ngly. DP-Stream finally obtains an average purity of 99.77% with

he parameters setting as that in the first row of Table 4 . Because

he basis of DP-Stream (DPClust) has the power of detecting the

on-spherically shaped clusters such as a star or a bar, DP-Stream

btains a smooth high Purity and ARI score on the dataset ExclaS-

ar. However, the measure Silhouette Index is fluctuating because

t favors the well-separated compact spherical clusters, which is

uite different from the case of ExclaStar. STRAP achieves a rela-

ively lower ARI and Purity because its basis – AP clustering is not

ble to detect the right clusters in ExclaStar. The results are shown

n Fig. 11 . 

.1.2. MRDS dataset 

MRDS is a synthetic data set of 38.7K records, containing 2

onconvex-shaped clusters and 2 convex-shaped clusters with 10%

oise. The ranges of both the x and y dimensions are set as [0, 120]

7] . It would greatly improve the accuracy of DP-Stream to use the

arameter θ (defined as θ = δ/ρ in Section 4.2 ) to detect outliers

n stream. Because with the existence of outliers, the structure of

he FNLT will be influenced if the outliers are regarded as normal

tems. In the test with MRDS dataset, the majority of outliers are

uccessfully selected, as shown in Fig. 12 . 

Although the clustering result for each new item is permanently

elivered, the granulation of FNLT is performed only when the

eservoir for buffering the new items is fully occupied. Therefore,

he number of times that FNLT granulating points N gr is computed

s: 

 gr = � (N − InitialBu f f Size ) /bu f f erSize 
 + 1 , (16)
.g., � (38700 − 1000) / 500 
 + 1 = 77 in this experiment. Three

hange points are detected at the positions of 48, 54, and 74

ut of 77 FNLT granulating points, respectively. Finally, DP-Stream

chieves competitive ARI and Purity against other comparative

ethods, as shown in Fig. 13 . 

.1.3. ChameleonDS3 dataset 

As shown in Fig. 9 c, the clusters in ChameleonDS3 are not

smoothly” distributed. Each cluster contains a few internal density

eaks, which violates the assumption of the cluster characteristics

efined in [13] saying: cluster centers are surrounded by neighbors

ith lower local density ... . Therefore, DP-Stream achieves a lower

ilhouette Index than other methods on this dataset since it tends

o detect one cluster per density peak, and consequently results in

ore clusters than needed. 

The source code implementing STRAP needs the class labels in

he function named build_cluster , so the clustering result of STRAP

n ChameleonDS3 is not available. The results produced by CluS-

ream, DenStream and DP-Stream are depicted in Fig. 14 . 

.2. RBF10a And RBFDrift datasets 

These two datasets are generated based on Radius Basis Func-

ion. RBF10a is a stationary data stream with its centers staying

lmost still all the time, while RBFDrift is an evolving data stream

hose centers keep moving as the new items flow in. 

.2.1. RBF10a 

The initial buffered data points of RBF10a are visualized using

D multidimensional nonclassical scaling in Fig. 15 , from which we

an see that the dataset has cluster No.1 and cluster No.2 located

ear to each other and they are of different density levels. In this

ituation, DPClust tends to identify the two clusters as one. Be-

ause DPClust is unable to determine the right number of clus-

ers, the accuracy of DP-Stream on the dataset RBF10a is thus af-

ected. However, DBSCAN can find the correct clusters in the initial

ataset, which leads to a better performance of DenStream than

hat of DP-Stream. As for STRAP, it clusters the stream as only one

lass in most time, which results in a rather high purity but low

RI. The overall comparison is shown in Fig. 16 . 

.2.2. RBFDrift 

RBFDrift is generated with the command genera-

ors.RandomRBFGeneratorDrift -s 0.002 -k 5 -i 5

c 5 -a 15 -n 5 . DP-Stream detects a total of 1746

hanges in the dataset and achieves a high Purity of 96.26% with

he average number of clusters 5.0423. The performance of the

omparative methods on RBFDrift is shown in Fig. 17 . 

With the data stream RBFDrift, we find out that CluStream

nd DenStream both obtained a little better Purity and Silhouette

ndex than DP-Stream. This is because the stream generated by
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Fig. 10. Exemplar stages of Clustering in ExclaStar Dataset: (a) in the earlier stages there are three clusters, (b) near the end of the stream the two clusters on the left side 

merge into one. 
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radial basis function is actually spherically shaped. However, be-

cause this stream keeps constantly changing its positions of the

clusters, CluStream and DenStream tend to cluster it as more clus-

ters, hence the relatively lower ARI. Contrary to DenStream, STRAP

clusters RBFDrift as smaller number of clusters, so STRAP achieves

a lower ARI but a higher Purity. Regarding to the three valida-

tion measure comprehensively, DP-Stream achieves a very promis-

ing result on RBFDrift. 

6.3. Real datasets 

DP-Stream is evaluated also on two real world datasets: the

well known KDD’99 and another UCI dataset named Forest Cover-

Type dataset (referred to as CoverType in this paper). 

6.3.1. CoverType dataset 

The CoverType data is about predicting forest cover type from

cartographic attributes. Although it is not a typical data stream

set, we use it in a stream fashion, as in [11] . We normalize the

attributes by min/max method and adopt Euclidian distance met-
ic to compute the parameters ρ. The ground truth groups the in-

tances into 7 different forest cover types, but the averaged num-

er of classes over each evaluation window is 3.06. 

Before the steam clustering algorithm functions, we begin with

onstructing an initial LT with 500 records. The initial LT detects a

umber of clusters as 4, which is in accordance with the ground

ruth. In the process of clustering the whole CoverType dataset,

he averaged number of clusters given by DP-Stream is 2.5. The

roposed clustering finally results in an average purity of 95.91%

nd averaged ARI of 0.3049, which outperforms the comparative

ethods (see Fig. 18 ). Note that the measures Purity and Silhou-

tte Index for CluStream are incorrect for a software issue, so they

re not included in the figure. 

DP-stream performs better than STRAP because the data points

n each cluster typically form a non-spherical shape (we validated

his by visualizing the points on 2D plane). The result of DP-Stream

s also slightly better than that of DenStream. The possible reason

s that DenStream did not find a proper value for threshold pa-

ameter ε and μ that are used to determine neighbors and core

icro-clusters, respectively. Meanwhile, DP-Stream is less sensitive

n parameter variation to achieve the best performance (see more

etails in Section 6.4 ). 
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Fig. 11. ExclaStar Dataset. Because there is a bug when running DenStream for this small dataset, we do not include the result of DenStream in the sub-figures of ARI and 

Purity. 
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Fig. 12. Test the outliers detection by θ values in two typical stages in data stream MRDS. The selected outliers are displayed as red asterisks. (a) position = 2 of 84 

windows; (6) position = 52 of 84 windows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.3.2. KDD’99 dataset 

Zhang et al. used STRAP program to build a clustering model

n 1 percent of KDD’99 dataset [9] , but we enlarge the proportion

p to 10 percent. The dataset is preprocessed firstly by choosing

ts 34 numerical attributes and then normalizing the attributes by

heir semantics as suggested in [9] . 

By visualizing the initially buffered data with 2D nonclassical

ulti-dimensional scaling, one can tell that the KDD’99 is typi-

ally non-convex shaped. Therefore, DP-Stream has sound reason

o perform better than the other three methods in most of the

ime. However, KDD’99 has a unique feature different from the pre-

ious six datasets: the number of clusters varies dramatically. As

n intrusion detection dataset, KDD’99 usually has only one clus-

er labeled as “normal”. But when several types of intrusions occur
 a  
ithin a reservoir, the number of clusters may increase to a max-

mum of 6. Because DP-Stream currently adopts a static d c policy,

t is challenging for this model to adjust well to so wide range

f cluster numbers. Thus DP-Stream suffers in the middle phase

f KDD’99, which causes a lower averaged ARI than the other

hree methods. The performances of DP-Stream and the other three

ethods are depicted in Fig. 19 . 

.4. Configuration and sensitivity of parameters 

DP-Stream involves 8 parameters in clustering data streams,

hose purposes and recommended value intervals are sum-

arized in Table 3 . For simplicity without sacrificing much

ccuracy, we set half - life = 5 and RemovalThre = 0.5 through
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Fig. 13. Clustering results in data stream MRDS. 

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

Position in ChameleonDS3 (in 50s)

S
ilh

ou
et

te
 

 

 

CluStream
DenStream
DP-Stream

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 14. Clustering results on ChameleonDS3 [35] . 

1 2

Fig. 15. 2D visualization of the initial buffered data points in RBF10a. 
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out the experiments. Except ExclaStar, for which we set

{ InitialBu f f Size = 180 , bu f f erSize = 20 , SI = 0 . 75 } , the config-

uration { InitialBu f f Size = 10 0 0 , bu f f erSize = 50 , SI = 0 . 90 } is
sed for the other six datasets. Therefore there are only 3 rela-

ively more sensitive parameters (i.e., percent, LocalR , and GlobalR )

eft to be tuned. 

The clustering result may be rather poor if the parameters

re set without considering the distribution of the data points.

owever, reasonable values assigned to these parameters would

chieve good performance (both in accuracy and efficiency), and

mall fluctuation around the well-chosen values makes little

hanges in the clustering result. Therefore, we apply a grid search

echnique [36] on the combination of the typical values of percent,

ocalR , and GlobalR when the initial LT is constructed. With this

olicy, we first let percent ∈ {0.2, 0.5, 2, 5, 20}, LocalR ∈ {1.6, 2.6,

.8} and GlobalR ∈ {0.05, 0.1, 0.2, 0.3}, then we evaluate the total

 × 3 × 4 = 60 clustering results induced by the different param-

ter configurations under the internal evaluation metric Silhouette

ndex [34] . The configuration achieving highest Silhouette Index is

elected for the later clustering process. With this grid search strat-

gy, we find the best configuration of the 3 parameters for the

even datasets as tabulated in Table. 4 . 

The sensitivity of parameters { Percent, LocalR, GlobalR } is tested

n the dataset CoverType by fixing any two of them and varying

he third parameter. In addition to the values we search in the
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Fig. 18. Clustering results on CoverType Dataset. 
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Fig. 19. Clustering results on data stream KDD’99. 
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grid, we add a smaller and a greater value out of the recommended

range, e.g., 0.01 and 80 for the parameter Percent . The sensitivity is

shown in Fig. 20 , from which one reads that if two of the param-

eters are well chosen, then variation of the third does not change

the accuracy significantly. However, if all of the three parameters

are chosen badly, the accuracy would decrease considerably. For

example, the values { Percent = 0 . 01 , Local R = 1 . 2 , Gl obal R = 0 . 001 }
produce a much lower Purity and ARI of 85.88% and 0.2582 re-

spectively. 
m

.5. Overall performance comparison and discussion 

.5.1. Accuracy comparison 

An overall performance comparison between DP-Stream and

he other 3 competing methods on the 7 datasets is summarized in

ig. 21 . From the figure, we find that the majority of the spots lies

n the upper left region, and if there are some spots located on

he bottom right region, they are near the diagonal. This implies

hat DP-Stream is a robust and promising data stream clustering

ethod. 
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(a) Accuracy comparisons over different datasets

(b)  Win-Loss diagram when compared to the three competing models
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DP-Stream borrows quite a few ideas from the existing stream

lusterings including microclusters, fading out, sliding window, and

hange detection. But it also has its own unique features. The

at nodes of the FNLT is approximately equivalent to the micro-

lusters in many previous methods such as CluStream, DenStream,

nd DBSTREAM. However, one major contribution of DP-Stream is

hat the partial order relation (see Definition 2 ) between any pairs

f the fat nodes essentially enables the fast delivery of the clus-

ering result for the newly arrived objects. Also, efficient update of

his partial order relation plays an important role in getting rid of

he “online-offline” paradigm and in directly maintaining full clus-

ering on the fly. 

Another salient feature of DP-Stream different from the exist-

ng works is the reservoir. It may be compared to the “window”

n CluStream, STRAP, etc., but usually it has much smaller size. The

nderlying reason is that CluStream and STRAP need a relatively

arger number of objects in the window to find the clusters of this

oment, while DP-Stream has an easy-to-update FNLT to incorpo-

c  
ate and label the new objects. The reservoir of DP-Stream is used

o decide when the FNLT with new individual objects needs to be

ranulated into another FNLT, and when the history objects need

o decay in a batch fashion. That is, when the number of new ob-

ects grows up to the size of the reservoir, the operations of gran-

lating and fading out are triggered. In the experiments, we find

hat appropriately reducing the size of reservoir would accelerate

he processing with the accuracy being guaranteed. 

.5.2. Running time comparison 

The running time of the four competing data stream clustering

ethods on the 7 datastes is shown in Fig. 22 . The overall time

omplexities of DP-Stream and other competing methods are all

uadratic w.r.t. the size of reservoir, so their complexities have the

ame big O notations. The difference in time consumption there-

ore depends only on how the algorithms process a data stream

ith specific characteristic. DP-Stream has the virtue of assigning

luster label to a non-strange item right after its leading node is



116 J. Xu et al. / Knowledge-Based Systems 120 (2017) 99–117 

0
200
400
600
800

1000
1200

Cl
uS
tr
ea
m

De
nS
tr
ea
m

ST
RA

P

DP
-S
tr
ea
m

KDD99

0
500

1000
1500
2000
2500
3000

Cl
uS
tr
ea
m

De
nS
tr
ea
m

ST
RA

P
DP

-S
tr
ea
m

CoverTypeExclaStar

0
100
200
300
400
500

Cl
uS
tr
ea
m

De
nS
tr
ea
m

ST
RA

P

DP
-S
tr
ea
m

RBF

0
200
400
600
800

1000

Cl
uS
tr
ea
m

De
nS
tr
ea
m

ST
RA

P
DP

-S
tr
ea
m

RBFDri

0
8

16
24
32
40

Cl
uS
tr
ea
m

De
nS
tr
ea
m

ST
RA

P

DP
-S
tr
ea
m

0
0.5

1
1.5

2
2.5

Cl
uS
tr
ea
m

De
nS
tr
ea
m

ST
RA

P

DP
-S
tr
ea
m

Cl
uS
tr
ea
m

De
nS
tr
ea
m

ST
RA

P
DP

-S
tr
ea
m

time(s) time(s)time(s)time(s)time(s)time(s)time(s)

0
20
40
60
80

100
120
140

MRDS ChameleonDS3

Fig. 22. Running time comparison. The bars for DenStream on ExclaStar and STRAP on Chammeleon are absent because the corresponding clusterings are not available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

 

[  

 

 

[  

 

 

 

 

decided. However, if a new item is recognized as strange, then its

destination (existing cluster, new cluster, or outlier) will be post-

poned until more items arrive or even until the reservoir is full

(refer to Fig. 6 for an illustration). So the more strange items DP-

Stream encounters, the longer its processing time lasts. Among

the 7 datasets, the 3 2D datasets have more strange items and

the other 4 datasets of higher dimensionality have relatively less

strange items. Therefore, DP-Stream exhibits lower efficiency on

the first 3 datasets and higher efficiency on the last 4 datasets than

the baselines. 

7. Conclusions 

In this paper, we developed the first data stream clustering al-

gorithm which uses the density peaks to find any shape of clus-

ters in data streams and permanently delivers the clustering re-

sult for the new items in linear time complexity. It gets rid of the

“online-offline” paradigm with an ever evolving fat node leading

tree. The process of updating the FNLT is also the process of gen-

erating the clustering result simultaneously. The FNLT has stable

amount of fat nodes with the help of fading out mechanism, and

some weak nodes are removed to emphasize on the recent data.

The DP-Stream also has the capability of detecting concept drifts

and filtering outliers. The experiments have shown the efficiency

and accuracy of our approach on synthetic datasets and real world

datasets, which verifies and demonstrates the result of theoretical

analysis. 

As demonstrated in the experiments on ChameleonDS3 and

KDD’99, there are still spaces for DP-Stream to be improved. When

the density peaks within a cluster are more than one, or in other

words, the data distribution in a cluster is not smooth, DPClust

tends to cluster them as many clusters, which may violate human

intuition and the ground truth. Another case is when the number

of clusters varies greatly in the evolving stream, the static dc pol-

icy has difficulty to find the right number of clusters. Therefore,

we plan to address the issues in the future. In addition, the FNLT-

based drift detection method introduced in this paper is new, and

many aspects of this method still need to be explored, especially

its performance evaluated with the corresponding measures such

as false alarm, missing and delay. 
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