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Detecting clusters of arbitrary shape and constantly delivering the results for newly arrived items are two
critical challenges in the study of data stream clustering. However, the existing clustering methods could
not deal with these two problems simultaneously. In this paper, we employ the density peaks based clus-
tering (DPClust) algorithm to construct a leading tree (LT) and further transform it into a fat node leading
tree (FNLT) in a granular computing way. FNLT is a novel interpretable synopsis of the current state of
data stream for clustering. New incoming data is blended into the evolving FNLT structure quickly, and
thus the clustering result of the incoming data can be delivered on the fly. During the interval between
the delivery of the clustering results and the arrival of new data, the FNLT with blended data is granulated
as a new FNLT with a constant number of fat nodes. The FNLT of the current data stream is maintained in
a real-time fashion by the Blending-Granulating-Fading mechanism. At the same time, the change points
are detected using the partial order relation between each pair of the cluster centers and the martingale
theory. Compared to several state-of-the-art clustering methods, the presented model shows promising

accuracy and efficiency.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Data streams have been generated everywhere nowadays be-
cause of the technological development in sensors, networks,
smart phones and surveillance. Mining data streams in specific do-
mains such as environmental monitoring, city traffic load monitor-
ing [1], or online commercial activities [2], etc., has produced a lot
of researches. Clustering data stream has become one of the impor-
tant issues since a majority of the data streams come unlabeled in
the age of Big Data, and turned to be critical in summarizing data
or finding out outliers [3].

The major challenges in clustering data streams include: 1) Data
streams continuously flow in, so it is usually unfeasible to store all
the original data on disk. Therefore, it demands that the data be
processed in one single pass. 2) The patterns may change occasion-
ally or frequently as data points in the streams keep arriving [4].
To address these challenges, quite a few research works have been
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published, e.g. [5-12]. We will discuss these works in the coming
section.

Current data stream clustering approaches fall into two cate-
gories: K-means-like and density- based. The former intends to
minimize the distance summation of non-center data points to
their corresponding centers, hence the incapability of detecting
non-spherical clusters. The methods of latter category cluster items
based on their density distribution in the space where the items
are embedded, so they can detect right clusters in arbitrary shapes
of datasets. However, some density-based data stream clustering
methods (like D-Stream [8] and MR-Stream [7]) that find clusters
with the concept of dense grids (determined with a preset thresh-
old value), may fail to perform well when there coexist clusters of
different density levels. Recently, Hahsler and Bolanos addressed
this problem by proposing a micro-cluster-based data stream clus-
tering method that leverages the density between micro-clusters
through a shared density graph (this method is named as DB-
STREAM) [11].

We present in this paper a novel data stream clustering
(named as DP-Stream) with the underlying leading tree (LT, re-
fer to Section 3.2 for a detailed explanation) structure in the
density-peaks-based clustering method [13]. The initial buffered
data points are firstly used to construct an LT. The LT can be used
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Fig. 1. A simplified illustration of DP-Stream. From top to bottom: buffered data before initialization — initial LT — Granulating LT into FNLT and incorporating the new
items with cluster label immediately delivered. The color represents the local density and the radius represents the population (weight) of each node.

to deliver the clustering result for the initial buffered data given
the cluster centers are selected automatically. Then the LT is gran-
ulated into a fat node leading tree (FNLT, refer to Section 4.1 for
a detailed definition) by merging the closest points to their corre-
sponding parents, so as to capture the essence of the finest-grained
data items with a synopsis of data [14]. Heinz and Seeger proposed
to use a Cluster Kernel to present a group of objects in the data
stream [15]; they also addressed the issue of limiting the mem-
ory consumption in clustering streaming data, in which the cluster
kernels may be regarded as information granules as the fat nodes
in our DP-Stream. But the difference is obvious, since the fat nodes
in our method are some closely located data points other than the
resultant clusters. As the data items streaming in, their clustering
assignation is quickly determined as soon as the local density of
every node (including new items and the existing fat nodes) is in-
crementally updated. An example of FNLT is shown in Fig. 1.

At the last stage of a clustering-new-items round, the previous
FNLT along with the incorporated new items is granulated again
(to keep the population of the nodes stable), waiting the next
batch of coming items in the stream. Like most of the data stream
clustering, DP-Stream includes a fading out mechanism to focus on
recent data points and a change point detection utility to deal with
concept drift. However, the difference is that our method has very
simple implementation of these two utilities due to the properties
of an FNLT structure.

DP-Stream has the following salient features:

« It can detect clusters of arbitrary shapes and different density
levels;

« The concept drift is accurately and efficiently detected in a sim-
ple way;

- It offers an intuitively interpretable visualization of the evolving
synopsis of the data stream;

« The evolution of the FNLT is implemented with an efficient in-
cremental update, thus DP-Stream permanently offers cluster-
ing result for streaming in items.

Most of the existing data stream clustering methods, such as
DBSTREAM, MR-Stream, CluStream, fall in the online-offline cate-
gory. However, those online-offline models do not adapt well to
some applications (e.g. system monitoring), in which the clusters
information is required to be always ready.

To the best of our knowledge, DP-Stream is the first model us-
ing a density-peaks-based LT structure to cluster data stream. And
more importantly, it is the first data stream clustering method that
simultaneously meets the two demands: detecting clusters of any
shape and running without an offline component.

The remainder of this paper is organized as follows. After a
brief discussion of the related works in Section 2, we present in
Section 3 the automatic selection of centers and the leading tree
structure with density-peaks-based clustering. In Section 4, we de-
scribe the DP-Stream method including the components of out-
liers’ recognition, drift detection, and fading function. In Section 5,
we discuss the computational complexity of maintaining the FNLT.
Section 6 describes detailed experiments with synthetic and real
datasets. A conclusion is given in Section 7.
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2. Background

In this section, we review some related works on data stream
clustering and the clustering method based on density peaks.

2.1. Clustering data streams

Generally, a clustering method for data stream is originated
from a corresponding clustering method for batch data, e.g., CluS-
tream [16] from K-means, DenStream [6] from DBSCAN [17], and
STRAP [9] from AP clustering [18]. From the perspective of whether
they can detect arbitrary shape in the data stream, the data stream
clustering methods can be divided into two categories: K-means-
like and density-based.

2.11. K-means-like

Aggarwal et al. developed CluStream for clustering large evolv-
ing data streams [16]. It divides the clustering process into an “on-
line component” and an “offline component”. The former periodi-
cally summarizes the statistics of raw data and the latter uses this
summary statistics to perform clustering. Many later researches on
data stream clustering follow this “offline component” paradigm.
Subsequently, Aggarwal et al. expanded CluStream to HPStream to
clustering high dimensional data streams [3].

Ackermann et al. proposed the StreamKM++ method by main-
taining a small sketch of the input using the merge-and-reduce
technique [19]. StreamKM++ produces good clustering results for
ellipsoidal data sets but is not efficient enough.

Zhang et al. presented a data stream clustering method called
STRAP [9], which extends the clustering algorithm of affinity prop-
agation (AP) [18] to evolving data streams. In STRAP, weighted AP
is firstly extended from AP to updating the model when a new
item arrives and then Page-Hinkley test is used to detect change
point of a drift. The users of STRAP need to specify the parameter
of €, which is the threshold for deciding whether an item should
go to reservoir as an outlier or join in the existing model.

Lughofer and Sayed-Mouchaweh extended evolving vector quan-
tization (eVQ) [20] to eVQ-A to propose a single-pass and sample-
wise streaming data clustering method, which delivers the cluster-
ing result permanently without a retraining procedure [10]. It can
detect clusters with convex (ellipsoidal) shapes in any directions
and locations.

Although k-means-like data stream clustering methods are not
able to detect nonspherical clusters, these methods may produce
lower within cluster sum of squares (WSS) than those density-
based methods when the dataset is actually spherically shaped, be-
cause k-means directly tries to minimize WSS. For example, CluS-
tream produced twice a slightly lower WSS than DBSTREAM [11].

2.1.2. Density-based

Cao et al. proposed an approach for discovering clusters in an
evolving data stream named DenStream [6]. Its online component
constructs and maintains three sorts of micro-clusters, namely core
micro-clusters, potential micro-clusters and outlier micro-clusters,
to summarize the data streams. And a pruning strategy is used to
remove some outlier micro-clusters for economical memory con-
sumption. Its offline component employs a variant of DBSCAN on
the set of potential micro-clusters to meet a clustering request.
However, It has problems with detecting the rectangular low-
density cluster.!

D-Stream [8] is a grid-density-based stream clustering algo-
rithm organizing the grids in a red-black tree. It uses the concept
of connecting neighboring grids (which is defined as two grids that

1 https://cran.r-project.org/web/packages/streamMOA/vignettes/streamMOA.pdf.

differ only on one dimension and on this dimension their intervals
are adjacent) to summarize the close data points. The relation of
neighboring is used to transitively connect the grids to form a grid
group. A set of grids G = (g1, ..., gm) is a grid cluster if it is a grid
group, every inside grid of G is a dense grid, and every outside
grid of G is either a dense grid or a transitional grid. It will be dif-
ficult for D-Stream to find the density threshold to detect dense
grids when there are several clusters of different density level in
the data stream.

MR-Stream [7] provides a multiresolution cluster discovery ca-
pability for stream data, based on the idea of first putting records
into treelike organized cells of multi-granularity and then cluster-
ing the cells considering their weights, volumes and densities. MR-
Stream can detect the clusters of arbitrary shape with noise. Apart
from those for fading function, MR-Stream involves quite a few ad-
ditional parameters, namely ratio of distance threshold divide unit
length of interval €, minimum weight of a cluster 8, and minimum
size of a cluster w. Like D-Stream, MR-Stream also has the diffi-
culty to determine the density threshold to identify dense grids
when the density levels of clusters are different.

Recently, Hahsler proposed DBSTREAM [11]|, whose micro-
cluster-based online clustering component explicitly captures the
density between micro-clusters via a shared density graph, ad-
dressed the problem with D-Stream and MR-Stream when the
data points within each cell are not uniformly distributed and two
dense cells are separated by a small area of low density.

All the density based data stream clustering methods above
follow the “online-offline” style. By “online-offline”, it means that
the stream clusterings consist of two major components. The “on-
line” part is responsible for maintaining the microclusters of the
streaming objects, while the “offline” performs the resultant clus-
tering based on the microclusters only when a user submits his/her
query.

However, there are some researches combined the ideas of
the mentioned ‘k-means-like” and “density-based”, hence cannot
be categorized as any one type of them. For example, Rehman
et al. presented a successful hybrid of “loading objects into grids”
of D-Stream (or MR-Stream) and “merging closest micro-clusters”
of CluStream [21]. Besides, there are some hierarchical clustering
models for data streams that do not need to specify a number
of clusters and can return a more informative cluster hierarchical
structure [22,23].

2.1.3. Change point detection

When clustering evolving data streams, the major cluster may
change over time. We will get the clustering result wrongly evalu-
ated if we do not tag the change point, because the cluster labeled
as C; is actually another cluster rather than the former cluster C;
once the drift occurs.

Zhang et al. used the Page-Hinkley test to detect the change
points in STRAP [9]. Koshijima et al. proposed a nonparametric and
computationally efficient change point detection method named
bag-of-words [24]. Ho and Wechsler developed a general martin-
gale framework for detecting changes in time-varying data streams,
in which the exchangeability of the data is tested to determine
whether a change has occurred [12]. This martingale approach is of
special interest in our research, since we will show later the FNLT
structure can be conveniently put in the martingale framework to
detect a major concept drift.

2.2. Clustering with density peaks (DPClust)

The proposed method starts from DPClust [13] by Rodriguez
and Laio, so we give a brief introduction to its idea and the al-
gorithm here. They firstly made a sound intuitive assumption that
no matter what the shape of clusters looks like, centers are always
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Table 1
Notations in DPClust and DP-Stream.
Symbol Meaning
X=(X,..., XN) The dataset with x; as its i th data point
D = {d;} The distances of the pairs of data points in X, where 1
<i<j=N
I=(,..., N) The set of the indices of data points in the dataset
C=(C,..., Cx) K centers of the clustering result
p=(p1,...0n) The local density of X
§=(81,....0n) The distance to nearest points of higher local density
Q=(q,..., qn) The sorted indices of p in descending order i.e.,

pql 2IOQZ = "'qum
The indices of the nearest neighbor with larger p for
data points series(xq, ..., XN)

y=W0,..., ) The elementwise product of p and §
W= (wq,..., wy) The weight (population) of nodes in FNLT
Cl= (CL, ..., Cly) The cluster label of nodes in FNLT

surrounded by non-center data points with lower density, and the
distance between two centers are relatively long. Then two simple
measures, namely local density (denoted as p) and minimal dis-
tance to data points with higher density (denoted as &), are em-
ployed to accomplish the clustering job.

The notations used to describe the algorithm DPClust and our
methods are listed in Table 1.

The algorithm of DPClust takes the distance matrix of a given
dataset as input, and performing the following steps:

1) Compute {p,.p0,...., 0y} via cut-off kernel:

1, x<0;
pi= Y x(dij—do). wherex(X)={0 P (1)
jel\li) T
d. is the cutoff distance; or via Gaussian kernel:
i 2
pi= Yy elw) (2)
Jjel\{i}

Eq. (2) is used in the implementation of Rodriguez and Laio;
2) Sort {p1.p02.....poy} in a descending order to yield

(Pgy+ Pgy- -+ Pay)s
3) Compute § via

min{dg, ¢}, 1=2;
j<t

8 = max{dg,q,}. i=1.
j=2 ’

3)

and write the index of the nearest neighbor with larger p in

vector Nn:
_ 10 ifi=q
Nn; = {j such that §; = d; ;, otherwise (4)

4) Interactively choose the points with “anomalously large” p
and § as centers;

5) Assign each data point to the same cluster as its nearest
neighbor with larger p. At first, the centers are assigned to
their corresponding cluster label, then each noncenter ob-
ject x; is assigned to the same cluster as Nn;. Formally, this
is written as:

k,
a-fh.

DPClust uses a parameter named bord_rho to distinguish core
and hallo data points of a cluster. The hallo data points around a
cluster are somehow similar to but are not outliers in fact. And
whether a point is a hallo point depends heavily on the choice of
d. parameter. So for simplicity, we omit the discussion of hallo and
core in this study.

ifi=C.ke{l,...,K}
otherwise

(5)

3. Extending DPClust

In original implementation of DPClust offered by the authors,
the centers are chosen by the users interactively. This is good for
running the program once per dataset, and it can involve human’s
insight to follow the statement - the only points of high § and rel-
atively high p are the cluster centers [13]. But when DPClust has to
be called iteratively to cluster a data stream, the centers need to
be automatically selected. We address this issue in Section 3.1. Al-
though it is not explicitly pointed out in [13], DPClust constructs
a tree structure (we define it as Leading Tree later) as its interme-
diate result. This tree structure is the key for us to design a data
stream clustering algorithm which constantly delivers the cluster-
ing result online without an offline component.

3.1. Automatic selection of centers

There have existed some works on automatically selecting the
cluster centers, e.g., Hinneburg and Keim used a hill climbing
approach to identify the local maxima of the density function
[25] (the corresponding clustering method is called DENCLUE),
which are corresponding to the cluster centers in DPClust. Hinneb-
urg and Garbriel further made a progress toward a faster DENCLUE
(called DENCLUE 2.0) by reducing the hill climbing to a special case
of an expectation maximization problem [26]. We use a linear fit-
ting approach to automatically select the centers [27]. As pointed
out in [13], the cluster centers are featured by their anomalously
large y values.

Let [p®, yInd] = sortDescending(y), For i=N —1[ to 0 (from the
end to beginning) we fit the y points against their indices to a
linear equation with length [:

yf =aql; + b,’, (6)

where ¥; = (Vig1s Viszs - Yist)s I = Uip1, Iigos -, Iyy). The two
variables g; and b; are solved to reach a minimal mean square error
(MSE).

Then compute 9; = q;l; +b; and Ay = y; — 7;, when the first i
is found to satisfy

Ay; > LocalR » Max(dy;), (7)
and
Ay; > GlobalR « Max(dy®), (8)

the procedure of detecting centers terminates, where dy; and dy*
are the difference-vector of y; and p* respectively. LocalR is de-
signed to control how significant the y value of the first center
should grow larger than the previous data points (considering the
direction of linear fitting movement), and GlobalR is used to con-
trol how large Ay should be with respect to the global greatest y
value. GlobalR is meant to avoid a situation, where the Ay; is very
large relative to dy; but very trivial to the maximum increment in
y. In this case, the point should not make a center.

When the linear fitting process terminates, the number of cen-
ters is i and the points with indices in (yIndy, ..., yInd;) are the
corresponding centers. This method is illustrated as Fig. 2.

3.2. Leading Tree structure in DPClust

By careful investigation, we find out that the intermediate re-
sult Nn in DPClust actually represents a tree. In this tree, each node
except the root is led by its parent to join the same cluster. Thus
we call this tree a Leading Tree (LT), and name the parent of an
item as its leading node. With an LT, the process of assigning the
noncenter data points turns into disconnecting the centers from
their parents (except the root of the LT). And the resulted subtrees
represent the clusters. Example 1 illustrates the idea.
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Fig. 2. Diagram to illustrate the idea of selecting centers with linear fitting. The
black circles are the real y values, and a red dot is the predicted y value of the data
point before the points currently being linearly fitted. If there is a significant “jump”
from the predicted p value to the real y value at position i, then the points whose
y values are larger or equal to y; are chosen as cluster centers. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Example 1. We firstly generate 13 points (DS1) on the 2D plane,
as shown in the upper left corner of Fig. 3, and then the interme-
diate results p, 8, y, Nn and the final result CI for DS1 are com-
puted with DPClust (according to the definitions in Table 1 and
the Equations in Section 2.2. That is, p is computed with Eq. (2),
§ with Eq. (3), ¥; = p; x §; for each i from 1-N, Nn is computed
with Eq. (4), and Cl is computed with Eq. (5)), as shown in the
bottom right corner of Fig. 3. Finally, the tree structure is indicated
by vector Nn and the 3 points with largest y value are chosen to
be centers by the linear fitting approach. The LT of Example 1 is
shown in the salient position of Fig. 3, and it can be split into 3
subtrees if the points xg and x;; are disconnected from their par-
ents. Each subtree is a cluster, which is corresponding to the CL
row in the table contained in Fig. 3.

The logical relationship among the centers of clusters in DP-
Clust is not of “peer to peer” as in many other clustering methods
(e.g. K-means, AP clustering), but of partial ordinal relation. To pre-
pare the discussion of change detection in later sections, we give
two definitions here.

Definition 1. » operator. For any non-root node x in an LT, there
is a node p such that n(x) = p, where p is the nearest neigh-
bor with higher local density to x. More formally, n(x) = p iff
p= argymin{dx.ylpx < py;x.y € X}

we denote n(n(...n(e))) =n"(e), eg, in Fig. 3, n(Xg) = X13,
———————

n times
12 (X9) = X12.

Definition 2 partial order in LT. Suppose X;, x; € X, we say X; <
xj, iff3me N* such that x; = n™(x;).

Obviously, the root C; satisfies C;<Cq, VC; € Q\Cq, where C; is
always the center of a cluster no matter how many clusters there
would be. With this starting point, we can define the significant
drift in DP-Stream, which will be elaborated on in Section 4.4.

4. DP-Stream algorithm

This section aims at using FNLT (see Section 4.3 for a detailed
definition) to cluster data streams, more specifically, achieving on-
line clustering in the case of non-stationary data distributions. The
resulting algorithm, called DP-Stream, involves the following steps
(Algorithm 1 with a diagram in Fig. 4).

1) The initial buffered data is used to construct an LT after
computing the vectors p, §, Nn. The cluster centers are auto-
matically selected with a linear fitting approach for param-

Algorithm 1: DP-Stream algorithm.

Input: Data stream X
Output: (I, outliers, and change points
Construct the initial LT;
Granulate the LT (Algorithm 2);
while Data Xpew Streaming in do
if Xqew is not strange then
| Merge Xnew into FNLT, output Clyey (Algorithm 3);
end
Buffer Buf ferSize new data points ;
for each data point Xpey in the Buffer do
if Xqew is noise then
\ Discard Xpew or store it on hard disk;
end
else
| Merge Xnew into FNLT, output Clyew ;
end
end
Detect drift ;
Fade out, remove weak nodes ;
Granulate and update FNLT ;
end

eter vector p. The cluster label for each data point is stored
as Cl.
2) Granulate the LT into an FNLT;
3) The evolving FNLT is updated in a batch fashion:
3a) With a new arrived item, the first step is to incrementally
update p and § for x and all nodes in the FNLT. Compute the
strangeness parameter 6 to decide whether it is an outlier
(or possibly a starting point of a drift).
3b) Find the leading node for the new item Xy, and assign the
same cluster label as its leading nodes if Xpew is not strange.
If Xnew is strange, then its clustering result will be postponed
to the moment when the buffer is filled up.
3c) Decide whether a drift has occurred. If there is a drift,
then tag the change point (for further use in the evaluation
or validation); if the strange points are outliers, then store
them on the hard disk or simply discard them.
3d) Fade the history nodes. The weak nodes are removed.
3e) The FNLT with newly incorporated items are further granu-
lated into a new FNLT.

Steps from 3a) to 3d) are iteratively executed when there are
items flowing in. The complexity of DP-Stream is analyzed in
Section 5, and the performance of DP-Stream will be empirically
assessed in Section 6.

4.1. Granulating the LT/FNLT

To prevent the size of an FNLT from ever growing and to re-
serve the essential information of the current data points in the
stream, we employ two strategies. One is granulating, i.e., the clos-
est nodes are merged to their corresponding leading nodes. The
other is fading — removing. When an item x,, is merged to L sat-
isfying L = 1(xm), we perform T".0; < T.p; +T.p,, and T"W; <
TW| + T.Wy,,. Also, for any node y satisfying x, = n(y), we set L
< n(y). For more details of granulating the FNLT, the readers are
referred to Algorithm 2.

A manually set constant Sketch Index (SI) is used to control how
large a proportion of all the nodes are remained after merging the
closet data points to their leading nodes. The first Nperge points

(xﬁ,}),...,x,(,gv’”"’g”) in SortDeltalnds are merged into their leading
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Fig. 3. The LT generated from the data points DS1 (the upper left corner), including the intermediate results (the bottom right corner), by which the leading relation and

the centers are determined. The three largest gamma values are highlighted with gray background.
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Fig. 4. Diagram of DP-Stream algorithm. The dashed arrows represent the steps executed only once during system initialization.

nodes respectively. If an L) = n(x,(T';)) has been merged to L’ al-

ready, then xﬁ,? is transitively merged to L’ in both newNn and Re-
maininds. newNn holds the changed Nn and Remaininds is used to
store the IDs of fat nodes after the granulation.

Example 2. We continue to demonstrate this granulating-FNLT al-
gorithm using the LT constructed in Example 1. The remaining
number of fat nodes would be 6 if we let SI = 0.55, since the seven
individual points xg, X19, X12, X2, X3, X4, Xg are merged into their
parents, respectively. As shown in Fig. 5.

4.2. Outliers detection

Outlier detection has a long history since the data are collected
or generated from a variety of sources. It finds out and removes
the anomalous samples from datasets [28]. Recently, Milos et al.
defined antihubs, based on reverse nearest neighbor and hubs, to

detect outliers, especially in high-dimensional setting [29]. Huang
et al. combined the ideas of nearest neighbor and reverse near-
est neighbor to propose a concept of natural neighbor, with which
natural value and natural outlier factor are computed to select the
outliers [30].

With DPClust, outliers are characterized by large § and small p
[13], thus they can be detected by the ratio of § to p. Similar to the
mechanism of selecting centers, we define a parameter 6 = §/p to
indicate how likely a data point would be an potential outlier. This
approach can be easily implemented in the context of DP-Stream
because the parameters p and § are readily available for every ob-
ject, and the linear fitting approach to select the anomalously large
value is ready for reusing (Section 3.1). However, detecting noises
has one thing different from selecting centers, that is, the data
points with very large & might have an extraordinary large § and
a relatively large p. And a point with large p means that it is sur-
rounded by a group of objects, hence it is by no means an outlier.
So, after the first step of choosing the data points with anoma-
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Algorithm 2: granulating the FNLT.

Input: the FNLT T, Sketch Index (SI)
Output: a newly granulated FNLT T’
Procedure:
Nmerge <~ |—N(1 *SI)-| )
newNn < T.Nn;
[8%, SIndg] < SortAscend(T.§);
Remaininds < @;
i< 0;
for each j in the first Nmerge elements of SInds do
i<—i+1;
Remaininds; <— newNn;;
if newNn,;; == j for any m € [1, N] then
| newNny < newNnj;
end
if Remainindsy, == j for any m € [1,i — 1] then
| Remainindsy, < newNn;;
end
end
Append N — Nperge €lements in SIndg to Remaininds;
U « Unique(Remaininds);
T'X < TXy;
T .w; < > T.wy, where M; is the nodes set in T merged into
T/.X,';
T.p; < X T.pwmy0
Extract new T’.D from T.D via T’ .X;
Update T’.6 and T'.Nn with T'.D and T'.p ;

Merged

alg|~|r|ulels el
-
I

5.93
5.93

&

Fig. 5. Illustration of granulating an LT into FNLT. The size reflects the population
(the larger size, the greater population), and the color reflects the local density for
each node (the warmer color, the higher density).

lously large 6, a second step is needed to filter the points with
relatively large p. After the two steps, the points left are chosen as
outliers and should be simply removed or stored on the hard disk
if necessary.

Example 3. The method of using parameter 6 to identify strange
data points and using buffering mechanism to differentiate outliers
from a new pattern is illustrated in Fig. 6. The strange items or
outliers are separated from the FNLT. This existing FNLT was con-
structed in Example 2.

4.3. Merging the new items into the FNLT

A fat node leading tree (FNLT) is defined as a tuple (X, W, D,
p, 6, Nn, Cl), in which the meaning of the elements is listed in
Table 1. The initial LT can be regarded as an FNLT by assigning its
w=q@,..., 1.

For a fast delivery of the clustering result of the items arrived,
we assign each item to its leading node immediately after the in-

cremental updating of the local densities for all fat nodes and the
newly arrived, leaving the updating of the FNLT (possibly includes
the change of centers) after the granulation. The procedure of
merging the new items into the FNLT is described as Algorithm 3 .

Algorithm 3: Incrementally updating the FNLT.

Input: the FNLT T, a new item x
Output: an updated FNLT
Procedure:
Step1: //Update T.p and compute px for x
for each point x; in T.X do
d; new < computeDistance(x;, x);
IncreValue <« exp(—(d; pew/dc)?);
T.p; < T.p; + IncreValue;
Px < px + IncreValue* T.W;;
end
Append px to T.p;
Step2: // Expand T.Dyyy to T.Dyi1yx(N+1)
The bottom row of T.Dy. 1yx(N4+1) < [@new, O];
The last column of T.Dy, 1y ny1) < [dnew, O]T;
Step3://Compute 8¢ and Nny for x
if px is not the biggest then
Nny « argmin {T.D; n,4li € [1,N], T.0; > px};
1

Ox < min{T.Dj n;q[i € [1,N], T.0; > px}s
end
else
Nny < 0;
8x < max{T.Djn.1]1 <i=<N};
end
Step4: //Output the clustering result for x
if px is not the biggest then

‘ Clx <~ CINnX;
end
else

‘ Cly < Cl;, where s = argmin{D; y.1};

1

end
Step5: //update T.§ and T.Nn
if x does not change the order of T.p then
SI « {ilp; < px,1 <i<N};
for each si in SI do
if T'Dsi,N+1 < T-Ssi then
T.8s5 < T.Dgi Ny

T.Nng; < N+1;
end
end
end
else

‘ Recompute T.§ and T.Nn according to the definitions;
end
Append 8y, Nny, x, 1 to T.§, T.Nn, X, W, respectively;

Algorithm 3 is the core of DP-Stream. It is an accurate/exact in-
cremental updating method to extend DPClust for data streams.

Lemma 1. The FNLT constructed withAlgorithm 3 is the same as in a
non-incremental approach.

Proof. To show the correctness of Algorithm 3, we indeed show
that the incremental approach obtains each element in FNLT tu-
ple (X, W, D, p, §, Nn, CI) the same as that obtained in the non-
incremental approach.



106

J. Xu et al./Knowledge-Based Systems 120 (2017) 99-117

QO 014
1 index | Theta
1 | 4541081
5 | 5124575
6 | 2912231
7 | 5864437
11 | 0.815899
13 | 1.144516 0
index | Theta ©
1 | 4541081 5 5 15 | 315231 \Nva\\e
5 | 5124575 2x10 Theta Graph 16 | 0460967 | p°°
6 2912231 K 17 [losaae38
7 [5864437 | 7 gol_\m\ 7 o x108 Theta Graph
11 [ 0815899 o 7 5 ] 6 13 1n ) GK "
13 [1.144516 £
14 | 6.496+08 2
b }s\rar\ge Ors o 7 5 1 15 6 13 1117 |6 .
(a) (b)

Fig. 6. Illustration of detecting outliers and a new pattern. (a) 2 data points x4 and x5 arrived and were detected strange with their extraordinary large 6 value; (b) x14 is
identified as an outlier and x;5 is identified as one item in a new pattern after x;s and x;; appeared in the data stream.

a) p. Let us denote T.p as (,olT, .

. pL), denote p computed af-

ter the arrival of a new item x via incremental approach as

pine = { plnC}N“ and denote that via non incremental ap-
proach as phoninc — { pNoninc} i1 For the local density of the
new item x,

I N I IHEW
PNE1 = PRI Zwl ) 9)

For the density of the fat nodes in the FNLT, ie.,, 1 <i < N,

we have
pne = pl +e-(hae) (10)
dij 2 new
plNonInc Z Wjef(Tf]) — Z wje~ (dc) +1xe (Y
1<j<N+1,j#i 1<j<N,j#i
(11)
and since
(i
piT = Z wje () (12)
1<j<N,j#i
Substituting Eq. (12) into Eq. (10), we get
pllnc plNonlnc 1<i<N. (‘13)

Combining Eq. (13) and Eq. (9), p™¢ = pNonnc s obtained.
b) D. The newly arrived item does not change the original dis-
tances between every pair of existing nodes. So what need
to do is to add the distance Dy, 1, and D, y.1 to the original
D, as described in Step 2.
¢) Nn. The incremental update of Nm consists of two parts:
computing Nny and updating the existing Nn.

(i) computing  Nny.

(ii

=

Nny < argmin{T.D; n,1]i € [1, N],

1

T.p; > px}, if px is not the largest; Nny < 0, otherwise
(Step 3). This is the same as in a non-incremental
approach.

updating the existing TNn. Most frequently, a single
new object would not change T.Q. So Step 5 of the al-
gorithm first finds such node y that o, < px (condi-
tion 1). Subsequently, if dy, y < Nny (condition 2), then
Nny <« x (Step 5). This procedure leaves unchanged
the Nn of the nodes that do not satisfy the two condi-
tions simultaneously, because of the fact that T.Nn is
determined by T.D and T.Q. However, if the new item
x happened to make some change to T.Q, we directly
recompute T.Nn using T.D and T.p.

d) 8. According to the definition of § (see Eq. (3)), both 8¢ and
the existing § can be obtained once Nn and D are updated
correctly.

e) CL If py is the largest, then x is labeled as cluster 1 (x is the
root of the whole FNLT); else Cly is assigned with Clyy, .

f) X and W. The update of X and W is trivial, simply let X =
[X,x] and W=[W, 1] (last statement in Step 5).

From the steps a) to f), we can tell that each element in the tuple
(X, W, D, p, 8, Nn, Cl) obtained via the incremental updating algo-
rithm is the same as that computed non-incrementally. Hence the
correctness of Algorithm 3 is proved. O

Example 4. An illustrative example based the FNLT in Example 2 is
shown in Fig. 7 to demonstrate the basic idea of Algorithm 3.
A new data point (x14) arrives after the LT of 13 points is gran-
ulated into an FNLT of 6 fat nodes. Then the new FNLT is ob-
tained after the elements in the definition of an FNLT are incre-
mentally updated or expanded. We will discuss acceleration effect
of Algorithm 3 in Section 5.

4.4. Drifts detection

A key difficulty in data streaming is to detect a change in the
generative process underlying the data stream, referred to as drift.
Ho and Wechsler proposed a martingale framework to detect the
change of data generating model [12]. We firstly review the core
ideas in Ho’s work, and then introduce them into our drift detec-
tion problem.

Definition 3. Exchangeable [12]. Let {Z;: 1 < i < oo} be a sequence
of random variables. A sequence of random variables Z1, ..., Zn, ..

is exchangeable if for every finite subset of the random varlable
sequence(containing n random variables), the joint distribution
p(Zy,...,Zy) is invariant under any permutation of the indices of
the random variables, ie, p(Zi,Z;,....Zn) = p(Zay. Z2y: - -» Z(m))-
for all permutations 7w defined on the set {1,...,n}.

A change in general in a data streaming setting is defined by a
change in the parameter 6 from 6 to 0 at time ty [31]. We adopt
this claim in DP-Stream.

Definition 4. Martingale [12]. A sequence of random variables
{M;: 0 < i < oo} is a martingale with respect to the sequence of
random variables {Z;: 0 < i < oo} if, for all i > 0, the following
conditions hold:

» M; is a measurable function of Zy,Z; ..., Z;,
« E(|[M;]) < oo, and
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Fig. 7. Illustration of Algorithm 3. (a) The FNLT and its intermediate results before the new item arriving. (b) The updated FNLT after the new item has been incorporated.

* EMn41l20, ..., Zn) = Mp.

Let Z; be the prime center (the root) CT of the whole FNLT at
time i, and M; be the distance between Z; and Z;_;. Intuitively, M;
would remain relatively small with some fluctuations as long as
the drift does not occur.

Before applying Martingale theory to DP-Stream, we make an
assumption: a drift occurs at time i only if there are at least two
clusters in the reservoir at time i — 1. The assumption makes sense
because the reasonable choice of reservoir size (batch of items we
used to rebuild the FNLT) is much smaller than total weight (pop-
ulation) of the evolving FNLT nodes. Therefore, the drift must oc-
cur gradually with the old pattern fading out and a new pattern
emerging simultaneously.

In DP-Stream, we say a drift occurs if and only if the location
of the highest cluster center CiT has changed so significantly that
the distance from the current CiT to previous Cﬁ 1 Is farther than
that to a previous non-top center. With the definitions given in
Section 3.2, it can be put formally:

Lemma 2. The time i is a change point, if 3C; | <C] ., such that

-1
T'DCIT.CI.{] < T.DCT*C;,]'

Proof. In DPClust, Cl is assigned in accordance with the p value
of their corresponding centers, ie., Cl,g =1, Clypyg,=2, and so
forth, where pind; is computed within [ S, pInd] = sortDesc(p). If
T'DCiT~Ci5 : < T'DCiniT X which means the root of the FNLT is changed

to another center, and let & be the coordinate of CT in the space in
which X is embedded, then 6 must change from 6, to a much dif-
ferent value 6. Because the definition of cluster center in DPClust
implies that a center ¢ is surrounded by the items with lower lo-
cal density but relatively far from the points with higher local den-
sity (including C* satisfying G<Ck). O

An example to illustrate Theorem 2 is shown in Fig. 8. The
positions, colors and the leading relations of the each point in
Fig. 8 are based on real data and computing results. In Fig. 8a, x3
is T, for the three data points x;, X5, x3 are closer to each other
than the other four points, which leads to the highest p of x3. In
the next time (Fig. 8b), a new item xg arrives and locates among
X4, ...,X7, hence xg is of the greatest local density and selected as
the new C'. If we denote the coordinate of x5 as 8y = (rg, ¢g), and
the xg as 61 = (r1, ¢1), obviously we have 6y # 6.

A change point indicates a significant drift. Therefore, the clus-
tering result should be evaluated independently since the clusters
with same label have actually changed into different distributions.

(@ (b)

Fig. 8. Illustration of major concept drift. (a) x5 is the root of the whole LT before
xg's arrival, hence the cluster label for {x;, x,, x3} is 1. (b) xg is the new root of
the whole LT after xg being incorporated, hence the cluster label for {x;, x5, x3} is
changed into 2.

4.5. Fading out and removing weak nodes

To emphasize on the recent data and gradually forget the
old ones, we use a fading-removing mechanism on the historical
data. A parameter named half-life is firstly defined as in [3]. We
choose an exponential form for the fading function because of its
widespread application in temporal systems, where the importance
of past data needs to be gradually decreased.

Definition 5. Half-life. In DP-Stream, the half-life ¢ty of a point x; is
defined as the time at which w; - f(ty) = w; - (1/2), where f(t) =
e M A >0.

Because e* =1/2 = A =1In2/t, we can easily determine the
parameter A if ty is given. In the experiments, we perform W =W -
e* and p = p-e* after reconstructing the FNLT every time. After
many rounds of fading, some points will have very small weight
(e.g. < RemovalThre) if no new points are merged into them. In
this case, they are removed from the FNLT.

5. Computational complexity

Space complexity of DP-Stream depends on the Sketch Index(SI)
and the size of reservoir. Since the FNLT is defined as (X, W, D,
p, 6, Nn, Cl), size memory space used to hold an FNLT of nf(:
StartBuf ferSize + SI) nodes is ng x d + n% +5 x ng, where ny x d,
n}, and 5 x ny is the size of X, D and the 5 vectors {W, p, §,
Nn, Cl)} respectively. Although some components in FNLT can be
computed from others, we store them to trade memory for run-
ning time. Let n, be the size of reservoir that means the num-
ber of items used to rebuild the FNLT, then the space needed
in merging and granulating procedure (apart from the FNLT) is
npxd+(n?+2x Ny x nr) +4 x nr, where ny x d is the number of
storage size for new items, n? +2 x ny x ny for the expanded dis-
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Table 2

Datasets used to empirically evaluate DP-Stream.
Datasets # Attributes  # Clusters  # Objects
ExclaStar 2 2-3 755
MRDS 2 2-3 42,470
ChameleonDS3 2 2-5 10,000
RBF10a 10 5 1,000,000
RBFDrift 15 5 1,000,000
CoverType 54 3-7 581,012
KDD’99 34 1-4 494,020

tance matrix before granulating, and 4 x n, for the 4 vectors {p, §,
Nn, Cl}. Therefore, the total space needed to update the FNLT with
newly arrived items and granulate the FNLT is

SC= (np+ny) xd+ (np+n:)? +5xn;+4 xny. (14)

We remove weak nodes from the FNLT. Therefore, the clustering
method uses the space never exceeding SC.

To analyze the algorithm’s time complexity, we need to con-
sider Algorithm 1, Algorithm 2 and Algorithm 3. From Algorithm 1,
it is clear that astrange item will require more steps to process
than a non-strange item, although this does not affect the big O
notation of DP-Stream. The highest complexity part of the DP-
Clust to construct the initial LT is the distance matrix computa-
tion, which is O(n%). In Algorithm 2 for granulating the FNLT, the
closest data points indicated by the § parameter are merged to
their leading point respectively. The most time consuming part
in Algorithm 2 is the transitive updating of Nn values in newNn
and Remaininds, whose complexity is O(Nmerg x (Nmerge + 117 + 1)),
where Nperge is the number of nodes to be granulated into other
leading nodes. Then, for the delivery of the clustering result of
a non-strange new item, the complexity in each step is O(nf) in
Algorithm 3. That is, DP-Stream can find the cluster assignation of
a non-strange new item in O(ny) time complexity. This is a high-
light of our method. The time complexity in outlier detection, as
well as in fading out function, is linear.

In summary, the time complexity of building the initial LT is
O(N2), and the complexity in updating and granulating the FNLT
is O(ny) and O(Nmerge x (Nmerge + s +nr)). The overall complexity
of DP-Stream is O(N2). DP-Stream has the virtue of assigning the
cluster label to a new item Xpew in O(nt) time complexity if Xpew is
not strange, which is to our best of knowledge the fastest delivery
of clustering result in data stream clustering.

6. Experiments

The experiments are conducted on a personal computer with
Intel i5-2430M CPU, 8G RAM, Windows 7 64bit OS, and Matlab
2014 programming environment. We test DP-Stream on 7 datasets:
five of them are synthetic and the others are real world datasets
from UCI Machine Learning Repository. Among the three 2D syn-
thetic data streams, ChameleonDS3 is downloaded from Karypis
Lab?; ExclaStar is generated originally in this paper, and MRDS
is reproduced with the description in [7] with the help of En-
gauge Digitizer.> The other two synthetic datasets RBF10a and RBF-
Drift are generated by generators.RandomRBFGenerator and genera-
tors.RandomRBFGeneratorDrift methods of the open source software
MOA (Massive Online Analysis)* respectively. The details of the
seven datasets are listed in Table 2.

We compare the accuracy performance of DP-Stream with the
classic CluStream [16] and DenStream [6] (implemented in MOA),

2 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.
3 http://markummitchell.github.io/engauge-digitizer/.
4 http://moa.cs.waikato.ac.nz/.

Table 3
Parameters in DP-Stream.
Parameter Purpose Interval
percent to decide dc in DPClust [0.05, 20]
LocalR for selecting centers [1.6, 4.8]
GlobalR for selecting centers [0.01,0.3]
InitialBuffSize  the number of items to construct the [300, 2000]
initial LT
SI the rate of compressing the initial LT into [0.75, 0. 95]
an FNLT
bufferSize the number of items to rebuild the FNLT [20,1000]
half-life the speed of fading out [2,10]
RemovalThre how weak a fat node should be removed [0.1,0.5]

from the FNLT

Table 4

Configurations of the three parameters.
Dataset percent  LocalR  GlobalR
ExclaStar 5 4.8 0.1
MRDS 2 4.8 0.3
ChameleonDS3 0.5 4.8 0.2
RBFa10 0.2 2.6 0.1
RBFDrift 0.2 2.6 0.1
CoverType 20 4.8 0.3
KDD’'99 2 1.6 0.05

as well as the state-of-the-art method STRAP [9]. The STRAP source
code is generously offered by Zhang from the Internet.’

The metric Purity to evaluate the stream clustering accuracy is
defined as in [3]:

K Icd
# x 100%, (15)

Purity =

where K is the number of real clusters. The symbol ICfI denotes
the number of points with dominant class label in cluster i, and
|G;| is the number of points in real cluster i [7]. Because Purity has
the limitation of favoriting smaller number of clusters, the metric
Adjusted Rand Index (ARI) [32,33] is also employed in our evalua-
tions. ARI and Purity can be used only with the presence of the
external class label (ground truth), hence they are called exter-
nal validation measures [4]. However, if there is no class label in
the data stream, some internal validation measures will be cho-
sen. For example, in the case of ChameleonDS3, we choose Silhou-
ette Index [34] to evaluate the clustering quality achieved by DP-
Stream and the comparative methods. Besides, internal validation
measures have the ability to reflect the compactness and separa-
bility of clustering results, so we additionally employe Silhouette
Index to evaluate all clustering results in our experiments.
DP-Stream involves 8 parameters in total, whose purposes and
suggested value intervals are listed in Table 3. However, we find
out that the clustering results are only sensitive to the first 3 pa-
rameters. In each experiment with the corresponding dataset, we
give our parameters configuration in a row of Table 4. For example,
the 3rd row shows the parameters setting in MRDS experiment.
How these parameters are set will be discussed in Section 6.4.

6.1. 2D synthetic datasets

The three 2D synthetic datasets (as in Fig. 9) are chosen for dif-
ferent purposes. ExclaStar is designed to test the ability of a stream
clustering model to find clusters of different density level and non-
spherical shapes, and to track the mergence of clusters; MRDS is
chosen to determine whether a clustering can filter the noises and

5 http://mine.kaust.edu.sa/Pages/Software.aspx
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Fig. 9. The three 2D data streams. The points appear in the color sequence of “blue — green — red”. (a) ExclaStar. It consists of an exclaim symbol and a star. (b) MRDS [7],
and (c) ChameleonDS3. Its file name in the downloaded zip is “t7.10k.dat”, and the points are without class label. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

identify the concept drifts; ChameleonDS3 is borrowed to demon-
strate one limitation of the proposed method: when a cluster con-
tains several internal high density spot, DP-Stream usually fails to
detect the whole big cluster. This is because the assumption of DP-
Clust (a cluster consists of a center of high density and many sur-
rounding points of relatively lower density) does not hold in this
circumstance.

6.1.1. ExclaStar dataset

ExclaStar dataset consists of 240 points for the star, 391 for the
bar and 124 for the pie. Apart from the reasons mentioned above,
we additionally visualize the whole clustering procedure on this
dataset and gain insight on how the algorithm DP-Stream works
because it has relatively fewer points.

As expected, it is shown that the FNLT has 3 clusters of points
at the beginning stage (Fig. 10a) and gradually 2 clusters on the
left side merge into one (Fig. 10b). It is also demonstrated that the
cluster labels are assigned to newly arrived items as soon as they
are incorporated into the FNLT.

From the point No. 708, the cluster 2 and cluster 3 should be
merged into one. Therefore, the ground truth is modified accord-
ingly. DP-Stream finally obtains an average purity of 99.77% with
the parameters setting as that in the first row of Table 4. Because
the basis of DP-Stream (DPClust) has the power of detecting the
non-spherically shaped clusters such as a star or a bar, DP-Stream
obtains a smooth high Purity and ARI score on the dataset ExclaS-
tar. However, the measure Silhouette Index is fluctuating because
it favors the well-separated compact spherical clusters, which is
quite different from the case of ExclaStar. STRAP achieves a rela-
tively lower ARI and Purity because its basis - AP clustering is not
able to detect the right clusters in ExclaStar. The results are shown
in Fig. 11.

6.1.2. MRDS dataset

MRDS is a synthetic data set of 38.7K records, containing 2
nonconvex-shaped clusters and 2 convex-shaped clusters with 10%
noise. The ranges of both the x and y dimensions are set as [0, 120]
[7]. It would greatly improve the accuracy of DP-Stream to use the
parameter 6 (defined as 6 = 8/p in Section 4.2) to detect outliers
in stream. Because with the existence of outliers, the structure of
the FNLT will be influenced if the outliers are regarded as normal
items. In the test with MRDS dataset, the majority of outliers are
successfully selected, as shown in Fig. 12.

Although the clustering result for each new item is permanently
delivered, the granulation of FNLT is performed only when the
reservoir for buffering the new items is fully occupied. Therefore,
the number of times that FNLT granulating points Ngr is computed
as:

Ng = [(N — InitialBuffSize) /bufferSize] + 1, (16)

e.g., [(38700—1000)/5001 +1 =77 in this experiment. Three
change points are detected at the positions of 48, 54, and 74
out of 77 FNLT granulating points, respectively. Finally, DP-Stream
achieves competitive ARl and Purity against other comparative
methods, as shown in Fig. 13.

6.1.3. ChameleonDS3 dataset

As shown in Fig. 9c, the clusters in ChameleonDS3 are not
“smoothly” distributed. Each cluster contains a few internal density
peaks, which violates the assumption of the cluster characteristics
defined in [13] saying: cluster centers are surrounded by neighbors
with lower local density ... . Therefore, DP-Stream achieves a lower
Silhouette Index than other methods on this dataset since it tends
to detect one cluster per density peak, and consequently results in
more clusters than needed.

The source code implementing STRAP needs the class labels in
the function named build_cluster, so the clustering result of STRAP
on ChameleonDS3 is not available. The results produced by CluS-
tream, DenStream and DP-Stream are depicted in Fig. 14.

6.2. RBF10a And RBFDrift datasets

These two datasets are generated based on Radius Basis Func-
tion. RBF10a is a stationary data stream with its centers staying
almost still all the time, while RBFDrift is an evolving data stream
whose centers keep moving as the new items flow in.

6.2.1. RBF10a

The initial buffered data points of RBF10a are visualized using
2D multidimensional nonclassical scaling in Fig. 15, from which we
can see that the dataset has cluster No.1 and cluster No.2 located
near to each other and they are of different density levels. In this
situation, DPClust tends to identify the two clusters as one. Be-
cause DPClust is unable to determine the right number of clus-
ters, the accuracy of DP-Stream on the dataset RBF10a is thus af-
fected. However, DBSCAN can find the correct clusters in the initial
dataset, which leads to a better performance of DenStream than
that of DP-Stream. As for STRAP, it clusters the stream as only one
class in most time, which results in a rather high purity but low
ARI The overall comparison is shown in Fig. 16.

6.2.2. RBFDrift

RBFDrift is generated with the command genera-
tors.RandomRBFGeneratorDrift -s 0.002 -k 5 -i 5
-c 5 -a 15 -n 5. DP-Stream detects a total of 1746
changes in the dataset and achieves a high Purity of 96.26% with
the average number of clusters 5.0423. The performance of the
comparative methods on RBFDrift is shown in Fig. 17.

With the data stream RBFDrift, we find out that CluStream
and DenStream both obtained a little better Purity and Silhouette
Index than DP-Stream. This is because the stream generated by
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24

14 16 18 20 22

(b)

Fig. 10. Exemplar stages of Clustering in ExclaStar Dataset: (a) in the earlier stages there are three clusters, (b) near the end of the stream the two clusters on the left side

merge into one.

radial basis function is actually spherically shaped. However, be-
cause this stream keeps constantly changing its positions of the
clusters, CluStream and DenStream tend to cluster it as more clus-
ters, hence the relatively lower ARI. Contrary to DenStream, STRAP
clusters RBFDrift as smaller number of clusters, so STRAP achieves
a lower ARI but a higher Purity. Regarding to the three valida-
tion measure comprehensively, DP-Stream achieves a very promis-
ing result on RBFDrift.

6.3. Real datasets

DP-Stream is evaluated also on two real world datasets: the
well known KDD’99 and another UCI dataset named Forest Cover-
Type dataset (referred to as CoverType in this paper).

6.3.1. CoverType dataset

The CoverType data is about predicting forest cover type from
cartographic attributes. Although it is not a typical data stream
set, we use it in a stream fashion, as in [11]. We normalize the
attributes by min/max method and adopt Euclidian distance met-

ric to compute the parameters p. The ground truth groups the in-
stances into 7 different forest cover types, but the averaged num-
ber of classes over each evaluation window is 3.06.

Before the steam clustering algorithm functions, we begin with
constructing an initial LT with 500 records. The initial LT detects a
number of clusters as 4, which is in accordance with the ground
truth. In the process of clustering the whole CoverType dataset,
the averaged number of clusters given by DP-Stream is 2.5. The
proposed clustering finally results in an average purity of 95.91%
and averaged ARI of 0.3049, which outperforms the comparative
methods (see Fig. 18). Note that the measures Purity and Silhou-
ette Index for CluStream are incorrect for a software issue, so they
are not included in the figure.

DP-stream performs better than STRAP because the data points
in each cluster typically form a non-spherical shape (we validated
this by visualizing the points on 2D plane). The result of DP-Stream
is also slightly better than that of DenStream. The possible reason
is that DenStream did not find a proper value for threshold pa-
rameter € and p that are used to determine neighbors and core
micro-clusters, respectively. Meanwhile, DP-Stream is less sensitive
on parameter variation to achieve the best performance (see more
details in Section 6.4).
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Fig. 12. Test the outliers detection by 6 values in two typical stages in data stream MRDS. The selected outliers are displayed as red asterisks. (a) position = 2 of 84
windows; (6) position = 52 of 84 windows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

6.3.2. KDD'99 dataset

Zhang et al. used STRAP program to build a clustering model
on 1 percent of KDD’99 dataset [9], but we enlarge the proportion
up to 10 percent. The dataset is preprocessed firstly by choosing
its 34 numerical attributes and then normalizing the attributes by
their semantics as suggested in [9].

By visualizing the initially buffered data with 2D nonclassical
multi-dimensional scaling, one can tell that the KDD’99 is typi-
cally non-convex shaped. Therefore, DP-Stream has sound reason
to perform better than the other three methods in most of the
time. However, KDD’99 has a unique feature different from the pre-
vious six datasets: the number of clusters varies dramatically. As
an intrusion detection dataset, KDD'99 usually has only one clus-
ter labeled as “normal”. But when several types of intrusions occur

within a reservoir, the number of clusters may increase to a max-
imum of 6. Because DP-Stream currently adopts a static d. policy,
it is challenging for this model to adjust well to so wide range
of cluster numbers. Thus DP-Stream suffers in the middle phase
of KDD’99, which causes a lower averaged ARI than the other
three methods. The performances of DP-Stream and the other three
methods are depicted in Fig. 19.

6.4. Configuration and sensitivity of parameters

DP-Stream involves 8 parameters in clustering data streams,
whose purposes and recommended value intervals are sum-
marized in Table 3. For simplicity without sacrificing much
accuracy, we set half-life=5 and RemovalThre=0.5 through
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Fig. 15. 2D visualization of the initial buffered data points in RBF10a.

for which we set
SI =0.75}, the config-

SI=0.90} is

used for the other six datasets. Therefore there are only 3 rela-
tively more sensitive parameters (i.e., percent, LocalR, and GlobalR)
left to be tuned.

The clustering result may be rather poor if the parameters
are set without considering the distribution of the data points.
However, reasonable values assigned to these parameters would
achieve good performance (both in accuracy and efficiency), and
small fluctuation around the well-chosen values makes little
changes in the clustering result. Therefore, we apply a grid search
technique [36] on the combination of the typical values of percent,
LocalR, and GlobalR when the initial LT is constructed. With this
policy, we first let percent € {0.2, 0.5, 2, 5, 20}, LocalR € {1.6, 2.6,
4.8} and GlobalR < {0.05, 0.1, 0.2, 0.3}, then we evaluate the total
5 x 3 x4 =060 clustering results induced by the different param-
eter configurations under the internal evaluation metric Silhouette
Index [34]. The configuration achieving highest Silhouette Index is
selected for the later clustering process. With this grid search strat-
egy, we find the best configuration of the 3 parameters for the
seven datasets as tabulated in Table. 4.

The sensitivity of parameters {Percent, LocalR, GlobalR} is tested
on the dataset CoverType by fixing any two of them and varying
the third parameter. In addition to the values we search in the
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grid, we add a smaller and a greater value out of the recommended
range, e.g., 0.01 and 80 for the parameter Percent. The sensitivity is
shown in Fig. 20, from which one reads that if two of the param-
eters are well chosen, then variation of the third does not change
the accuracy significantly. However, if all of the three parameters
are chosen badly, the accuracy would decrease considerably. For
example, the values {Percent = 0.01, LocalR = 1.2, GlobalR = 0.001}
produce a much lower Purity and ARI of 85.88% and 0.2582 re-
spectively.

6.5. Overall performance comparison and discussion

6.5.1. Accuracy comparison

An overall performance comparison between DP-Stream and
the other 3 competing methods on the 7 datasets is summarized in
Fig. 21. From the figure, we find that the majority of the spots lies
in the upper left region, and if there are some spots located on
the bottom right region, they are near the diagonal. This implies
that DP-Stream is a robust and promising data stream clustering
method.
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DP-Stream borrows quite a few ideas from the existing stream
clusterings including microclusters, fading out, sliding window, and
change detection. But it also has its own unique features. The
fat nodes of the FNLT is approximately equivalent to the micro-
clusters in many previous methods such as CluStream, DenStream,
and DBSTREAM. However, one major contribution of DP-Stream is
that the partial order relation (see Definition 2) between any pairs
of the fat nodes essentially enables the fast delivery of the clus-
tering result for the newly arrived objects. Also, efficient update of
this partial order relation plays an important role in getting rid of
the “online-offline” paradigm and in directly maintaining full clus-
tering on the fly.

Another salient feature of DP-Stream different from the exist-
ing works is the reservoir. It may be compared to the “window”
in CluStream, STRAP, etc., but usually it has much smaller size. The
underlying reason is that CluStream and STRAP need a relatively
larger number of objects in the window to find the clusters of this
moment, while DP-Stream has an easy-to-update FNLT to incorpo-

rate and label the new objects. The reservoir of DP-Stream is used
to decide when the FNLT with new individual objects needs to be
granulated into another FNLT, and when the history objects need
to decay in a batch fashion. That is, when the number of new ob-
jects grows up to the size of the reservoir, the operations of gran-
ulating and fading out are triggered. In the experiments, we find
that appropriately reducing the size of reservoir would accelerate
the processing with the accuracy being guaranteed.

6.5.2. Running time comparison

The running time of the four competing data stream clustering
methods on the 7 datastes is shown in Fig. 22. The overall time
complexities of DP-Stream and other competing methods are all
quadratic w.r.t. the size of reservoir, so their complexities have the
same big O notations. The difference in time consumption there-
fore depends only on how the algorithms process a data stream
with specific characteristic. DP-Stream has the virtue of assigning
cluster label to a non-strange item right after its leading node is
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decided. However, if a new item is recognized as strange, then its
destination (existing cluster, new cluster, or outlier) will be post-
poned until more items arrive or even until the reservoir is full
(refer to Fig. 6 for an illustration). So the more strange items DP-
Stream encounters, the longer its processing time lasts. Among
the 7 datasets, the 3 2D datasets have more strange items and
the other 4 datasets of higher dimensionality have relatively less
strange items. Therefore, DP-Stream exhibits lower efficiency on
the first 3 datasets and higher efficiency on the last 4 datasets than
the baselines.

7. Conclusions

In this paper, we developed the first data stream clustering al-
gorithm which uses the density peaks to find any shape of clus-
ters in data streams and permanently delivers the clustering re-
sult for the new items in linear time complexity. It gets rid of the
“online-offline” paradigm with an ever evolving fat node leading
tree. The process of updating the FNLT is also the process of gen-
erating the clustering result simultaneously. The FNLT has stable
amount of fat nodes with the help of fading out mechanism, and
some weak nodes are removed to emphasize on the recent data.
The DP-Stream also has the capability of detecting concept drifts
and filtering outliers. The experiments have shown the efficiency
and accuracy of our approach on synthetic datasets and real world
datasets, which verifies and demonstrates the result of theoretical
analysis.

As demonstrated in the experiments on ChameleonDS3 and
KDD’99, there are still spaces for DP-Stream to be improved. When
the density peaks within a cluster are more than one, or in other
words, the data distribution in a cluster is not smooth, DPClust
tends to cluster them as many clusters, which may violate human
intuition and the ground truth. Another case is when the number
of clusters varies greatly in the evolving stream, the static dc pol-
icy has difficulty to find the right number of clusters. Therefore,
we plan to address the issues in the future. In addition, the FNLT-
based drift detection method introduced in this paper is new, and
many aspects of this method still need to be explored, especially
its performance evaluated with the corresponding measures such
as false alarm, missing and delay.
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