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A B S T R A C T

The color perception of Diffusion Tensor Images (DTI) by using voxel-based statistical analysis suffers from high
computational cost and vague regional structure. To address these issues, we therefore propose a novel
approach for color perception of DTI based on hierarchical manifold learning. First, the selection of the
representative nodes as seeds within similar region to build them into the bottom-to-up hierarchical structure is
derived from the algebraic multigrid and multi-scale graph partitioning. Next, the low-dimensional coordinates
of the top-layer seeds are calculated using manifold-based techniques with a new distance metric and mapping
of these coordinates into the RGB color space. Last, the color perception of DTI is obtained through
interpolating the seeds to the bottom layer of all nodes. The experimental results demonstrate that the
proposed algorithm can reduce the computation complexity from O N( )3 (based on algorithms in the literature
(Ghassan et al., 2011 [9])) to O N( )2 and highlight the different regional structures of the brain via color
perception of variation.

1. Introduction

The novel technology of Diffusion Tensor Imaging (DTI) has been
developed since the end of the twentieth century from its use in
Magnetic Resonance Imaging. This technology provides significant
information for the brain tissue micro-structure based on diffusion of
water molecules in vivo [1,2]. Note that DTI, currently one of the
primary tools in brain imaging, is a noninvasive tool that is used to
study the white matter structure of the brain to diagnose preterm
infant brains [3] and the development of central nervous system [4].
Unlike ordinary medical images, each pixel of a DTI image corresponds
to a Diffusion Tensor (DT). DT is a symmetric 3 × 3 matrix, or second-
order rank 3 diffusion tensors with 6 unique elements, which repre-
sents the water molecules diffusion at the current point. Furthermore,
DTs must be Positive Semi-Definite (PSD).

High-dimensional and complex structures exist in the brain that
cause difficulties in visualization and subsequent processing of DTI
images [5,6]. To detect the available pattern information and analyze
the intrinsic structures, Machine Learning (ML) methods based on DTI
dimensionality reduction have gradually become the research focus. In
[7], Brun proposed a method for coloring DTI fiber traces using
Laplacian Eigen-maps (LE) to enhance the perception fiber bundles
and connectivity in the human brain. The results were similar fiber

bundles mapped to similar points in the low-dimensional RGB color
space. However, the results only mapped the specific fiber trace into the
RGB color space, rather than the medical images. Thus, this method
has limited application prospects. In [8], Verma explored nonlinear
dimensionality reduction methods ISOmetric feature MAPping
(ISOMAP) to discover the valid structure and geometric characteriza-
tion of DTI images. This method has been applied to research on the
growth and development of the brain in mice. In [9], Hamarneh
surveyed the ISOMAP algorithm to visualize the high-dimensional,
manifold-valued DTI images that are faithful to the underlying DTI
data. The approach highlighted the importance of distance preservation
to render similar pixels with perceptual similar color, and vice versa.
The above-mentioned methods regarding ISOMAP require the calcula-
tion of the shortest path between pixels, resulting in the main memory
being the limiting issue [10]. In [11], a method was proposed that
utilized the Locality Preserving Projections (LPP) algorithm for ex-
tracting the manifold structure effectively and capturing the statistical
relationships among tensor image data. To improve the noise immunity
of the method, in [12], Aarabi proposed a method relying on the
Diffusion Map (DM) to meaningfully visualize the brain white matter
by means of high dimensional diffusion tensor data mapped to a three-
dimensional space. However, these methods do not consider the overall
regional structures of DTI; rather, they emphasize the color difference
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between the pixels in DTI. In addition, in the literature [13], the DTI
with measurement noise can exhibit noise-induced correlations among
diffusion tensor measures. In the literature [14], a method was
reported to overcome the shortcomings of some dimension reduction
methods, which have the mistake neighbor points to the correct
locations. The authors proposed a novel technique known as
Trustworthy Stochastic Proximity Embedding (TSPE) based on
Stochastic Proximity Embedding (SPE), which preserves the neighbor-
hood relation to the true neighbors. However, the performance of this
algorithm is not stable enough.

The methods that rely on manifold learning to reduce the dimen-
sions and color perception without loss of information for DTI are
becoming increasingly popular [15]. However, these approaches face
two main challenges. One challenge is that the approaches have high
computation complexity. Because the DTI with 6-D and thousands of
pixels use manifold learning methods, high hardware requirements and
computational burden are inevitable. Another challenge is that, after
dimensionality reduction, the results focus on the color difference of
pixels, making the regional structures of the DTI indistinct. To address
these two issues, here, we describe a novel and efficient approach for
color perception of DTI. Our algorithm builds the pixels into a
hierarchy structure, which is derived from the Algebraic MultiGrid
(AMG) [16] and multiscale graph partitioning [17]. Next, only a mere
fraction of the pixels are used for dimensionality reduction and color
perception. Finally, the representative seeds are interpolated to all of
the pixels. The main contributions of this paper are: (a) the proposal of
a new method that decreases the complexity of calculation compared
with methods in the literature [9] fromO N( )3 toO N( )2 ; (b) the proposed
method includes a new metric to approximately estimate the distance
among the representative seeds of the top-layer to avoid double
counting; (c) the results have better regional structures, which enhance
the image texture feature information and improve the visual effect for
clinicians; (d) the proposed method improves the algorithm in the
literature [17] and extends the color perception of medical images
application.

The rest of this paper is organized as follows. In Section 2, a related
method is introduced in detail. Section 3 first, we present an analysis of
the rationality of the hierarchical structure and then provide a
summary of the proposed algorithm. In Section 4, we present a series
of experimental results. Finally, we describe the conclusion and the
future work in Section 5.

2. Color perception of DTI based on ISOMAP

In the field of medical image processing, a problem is that the
medical image data are embedded in a high-dimensional space. To
visualize the manifold-valued medical image data and improve both the
visual perception and the accuracy of diagnosis, Hamarneh proposed
an approach involving distance-preserving reduce dimension (DPDR)
[9] and color perception for DTI; this approach renders the different
perceptual colors to accurately reflect the different high-dimensional
pixel values. First, for the diffusion tensor images, the dimensions of
each pixel are larger than the dimensions of the color space. Employing
multi-dimensional scaling distance-preserving enables the mapping of
the high-dimension DTI within the dimensions that can be perceived
by humans. The goal is that, after dimensionality reduction, similar
pixels should be rendered in a color that is as close as possible to the
perception. The metric of any two high dimensional pixels is deter-
mined by their geodesic distance on the manifold. Second, the lower
dimensional coordinates are mapped to a three-channel color space to
enhance the perception of pixels. Finally, in the case that the relative
distance of the pixels is not changed, the color perception of the
diffusion tensor images can be obtained via rotation, translation, and
scaling to maximize the color gamut and volume. For more details
regarding color perception for DTI based on DPDR, please refer to
literature [9].

The advantages of using distance-preserving dimensionality reduc-
tion to color perception DTI are that the results have color diversifica-
tion among the pixels along with rich details. However, because the
DPDR method uses isometric feature mapping, which requires calcula-
tion of the geodesic distance between pixels, the complexity and
hardware requirements are high. The high computational cost will
hinder the promotion of this method in clinical application.
Furthermore, ISOMAP is a global mapping method, and in literature
[9], ISOMAP focuses on the color differences among pixels via
operation of an enormous dissimilarity matrix, so the different regional
structures and image texture in DTI will not be obvious. We establish a
hierarchical structure to achieve the purpose of reducing the computa-
tional cost from O N( )3 to O N( )2 and the color information of repre-
sentative seeds is transformed to all pixels by neighbor relationship of
all pixels, in order to highlight the regional structures. This hierarchy
color perception method can overcome the shortcoming of high
computational cost and the vague regional structure.

3. Color perception of diffusion tensor images using
hierarchical manifold learning (CPDTI-HML)

Considering the rationality of the distance-preserving dimension-
ality reduction for coloring perception DTI and the corresponding
detects, i.e., high computational cost and a lack of regional structures,
we propose a method involving color perception of diffusion tensor
images using hierarchical manifold learning named as CPDTI-HML.
For every layer, we select the most valuable pixels as seeds, and then
the selected seeds are pictured as candidate nodes on the next layer.
The rest of the pixels can be processed in the same manner. By
selecting the representative seeds, all pixels are built into a hierarchical
structure. From the bottom to top, the method forms a pyramid, in
which the most influential seeds are at the top, and all of the pixels are
at the bottom [17]. The top-layer representative seeds using the
multidimensional scaling (MDS) [19] method directly are mapped to
a lower dimension space and then converted to the RGB color space
before returning to all the pixels with color information by interpolat-
ing representative seeds from the top layer to the bottom layer. This
hierarchy color perception method can overcome the shortcomings of
high computational complexity and vague regional structures. An
overview of the color perception of DTI using hierarchical manifold
learning is shown in Fig. 1..

3.1. Selecting representative seeds of regional structures

To reduce the computational complexity and obtain the represen-
tative nodes of regional structures, our method selects the representa-
tive and influential nodes as seeds from all of the pixels at the current
layer, which represent the main regional structures of DTI. Next, the
selected nodes are regarded as candidate nodes on next layer. The rest
of the nodes can be treated in the same manner. From the bottom to
top it forms a pyramid, in which the most valuable seeds are at the top,
and all of the pixels are at the bottom [17,18,20]. This process is able to
retain those nodes with greater impact, while ignoring smaller effect of
those similar nodes.

Let X i = 1i to N be the original pixel point sets of diffusion tensors.
A six-dimensional vector I I I I= ( , ,…, )i 1 2 6 represents six independent
elements corresponding to the i-th pixel point Xi. First, constructing
the k-neighborhood graph G V W( , )[0] [0] [0] , V [0] being its set of all nodes,
each corresponding to a pixel, withW [0] being the similarity matrix.Wij

[0]

represents the weights along the edges connecting pixels i and j, to be
determined as follows:

⎧⎨⎩W
α I I I N I or I N I

otherwise
=

exp(− − ), ∈ ( ) ∈ ( )
0 ,

,ij
i j j k i i k j[0] 2

(1)

where N I( )k i and N I( )k j represent the k-nearest neighbor set of Ii and Ij,

X. Zeng et al. Pattern Recognition 63 (2017) 583–592

584



respectively, and α is the parameter of the kernel function.
The representative seeds must be selected to build a hierarchy

structure, which represents the main structure information for differ-
ent regions in DTI. The intuitive condition of selecting representative
seeds is as follows. The representative seeds are strongly connected
with the non-representative seeds in DTI. For the strong connection
between two pixels, we utilize the simple similarity metric (under the
inspiration of [17,18]). Without loss of generality, letting W denote the
general mathematical notation of the similar matrix at any layer, before
selecting the representative seeds, we define the strong connection
between node i and node j with significant similarity as follows:

W θ Max W θ≥ { }, 0 < ≤ 1,ij k i ik≠ (2)

where θ is the strength threshold, which reflects the strength of the
relationship between neighbors. A node i strongly connected to node j
in the DTI k-neighborhood graph means that the similarity between the
two nodes is a great proportion of the maximum similarity between
node i and its neighborhood nodes. In particular, in practical operation,
node i is selected as the representative seed node if Eq. (2) is satisfied
and the degree of the node i is larger than that of node j; otherwise,
node j is selected.

Obviously, on the s-th layer of the bottom-to-top hierarchical
structure, the selected representative seeds between the neighborhood
layers should satisfyV V⊆s s[ ] [ −1], where s=1, 2,…, N, and N denotes the
layer number. Under the constraint of Eq. (2), each node inV V/s s[ −1] [ ] is
strongly connected to V s[ ] [17]. In this manner, only the selected
representative nodes with different regional structures are involved in
the color perception in the next step, whereas the non-representative
nodes are negligible. As a result, the amount of calculation is reduced
and the region information of the DTI is emphasized.

After the representative nodes of the next layer are selected, the
similarity metric between these representative nodes is kept to be as
high as possible. Thus, for transforming the similarity among the
different layers, we only need to establish a similarity transformation
matrix inspired by the inter-layer interpolation matrix [17,20]. The
essence of the transformation matrix is the following: if the similarity

among representative seeds exists in the lower layer, then we only need
to retain the similarity, or else the similarity is calculated by the
average similarity on all reachable paths. As a result, a reasonable
definition of the similarity transformation matrix P s[ −1] from the (s−1)-
th layer to the s-th layer is described as follows:

⎪

⎪

⎧

⎨
⎪⎪

⎩
⎪⎪

⎧
⎨
⎩

P i V k V

P
P

i V j i

= , ∉ , ∈

= 1
= 0

, ∈ , ≠

ik
s W

W
s s

ii
s

ij
s

s

[ −1]
∑

[ ] [ ]

[ −1]

[ −1]
[ ]

ik
s

k ik
s

[ −1]

[ −1]

(3)

As the above-defined transformation matrix P s[ −1] between the two
neighboring layers, the similarity matrix of representative nodes W s[ ] at
the next layer can be described by the following formula:

W P W P=s s T s s[ ] [ −1] [ −1] [ −1] (4)

This strategy guarantees the transformation of the similarity matrix
after constructing a hierarchical structure in an obvious manner:

W P P P P W P P P P= ... ...s s T s T T T s s[ ] [ −1] [ −2] [1] [0] [0] [0] [1] [ −2] [ −1] (5)

After we obtain the representative nodes and their corresponding
similarity matrix on the top layer, the intrinsic 3-dimensional coordi-
nates corresponding to the RGB color space are obtained by dimen-
sionality reduction while preserving the distance metric, as described
in Section 3.2.1. In addition, we can return bottom-layer to obtain the
3-dimensional representations of all pixels using the transformation
matrix sequence P P P P... s s[0] [1] [ −2] [ −1], approximated as the inter-layer
interpolation matrix in Section 3.3.

3.2. Color perception of seeds

When building the hierarchical structure for all of the pixels, we
only need to reduce dimensionality for the representative seeds on the
top layer directly using the manifold learning method such that the
distance among the seeds is maximally reserved to obtain the intrinsic
three dimensional coordinates. For some representative seeds, we

Fig. 1. Overview of the proposed method.
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provide some color information in the RGB color space and seek a
rotation scale in which the color information should be as close as
possible to the lower coordinates of the corresponding seeds. The other
seeds are transformed by rotation scale to maximize the color gamut
and volume among the representative seeds, and then the perceptual
color differences are highlighted and the color information between the
representative seeds is enriched. The principle guarantees that similar
seeds will be represented by similar colors, whereas different seeds will
be represented by dissimilar colors. In summary, the difference
between the seeds can be expressed by different colors.

3.2.1. Distance measure for the seeds
The use of distance-preserving manifold learning for the represen-

tative seeds to reduce the dimensionality requires the distance between
seeds on the top layer. From the bottom layer to the top layer, a large
number of pixels are neglected. Because representative seeds include
parts of all of the pixels, computing the Euclidean distance or geodesic
distance directly for the top-layer seeds is inappropriate because of the
great error between the real distance and the directly computed

distance along with double counting. A simple strategy is the use of
the similarity matrix of all of the nodes to compute the distance by the
exponential function for the inverse operator of the similarity compu-
tation. Through the inter-layer transformation matrix P, the similarity
matrix of the representative seeds is transferred on the upper layer. The
other seeds are processed until the top layer is reached in the same
manner. After we obtain the top-layer representative seeds and their
similarity matrix, we only need to take the logarithm function of the
similarity matrix of the top-layer of the representative seeds to obtain
the solution, thus approximately estimating the distance of the seeds.
Using the proposed tactic, we can avoid repeated calculation and
accurately estimate the distance of seeds. Thus, the distance for
representative seeds is defined as follow:

⎛
⎝⎜

⎞
⎠⎟D I I

α
W) ≈ − 1 log( ,i j ij

n
,

[ ]

(6)

where W n[ ] denotes the similarity matrix of the seeds in the goal layer n,
and D denotes distance matrix corresponding to the representative seeds.
α is the parameter of the kernel function corresponding to Eq. (1).

Fig. 2. Display of the simulated DTI data results obtained by FA, MD, DPDR and our method. FA captures the variability along the horizontal direction, and MD does not capture any
changes. DPDR can present the changes from the horizontal direction and the vertical direction. Our method captures changes in the horizontal direction.

Fig. 3. Display of the real DTI data results obtained by FA, MD, DPDR and our method. FA and MD are scale images, i.e., the pixels do not have color information. DPDR and our
approach have color information, but our approach reduces the amount of computation and emphasizes the regional structures.
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3.2.2. Color transformation at the representative seeds
For the representative seeds, the MDS [19] is used for distance-

preserving mapping to obtain the three-dimension coordinates. Next,
the RGB color space is adopted as the range of the MDS mapping. To
accomplish the color perception of the seeds, we must provide local
color cues for some representative seeds and then expand the local
color information to the whole seeds. The first step is to set up different
color information for some of the representative seeds. Next, from the
color information and the three dimensional coordinate corresponding
to the given seed, we can seek the rotation-scaling transformation that
ensures the color information and the 3-dimensional coordinates are as
close as possible. The remaining seeds are rotated to obtain the color
information, thus expanding the color gamut and volume. The method
both renders seeds with color and provides different color information
for different seeds based on perception. From the known color
information Cs and the corresponding 3-dimensional coordinates Us,
we seek the rotation-scaling matrix R. These processes are first to
centralize the basic color information:

∑μ
p

C= 1
C i

p
s=1s (7)

Where p denotes the number of representative seeds with color
information, and Cs denotes the known color information of the given
representative seeds.

∑μ
p

U= 1
U i

p
s=1s (8)

Where Us denotes three-dimensional coordinates of the given repre-
sentative seeds. Note that the essence of rotation-scaling is that the
color information Cs should be as close as possible to the three-
dimensional coordinates Us of the corresponding seeds, i.e., their
covariance is maximized:

∑COV
p

C μ U μ COV UDV= 1 ( − )( − ) =
i s C s U

T T
s s (9)

If the singular value decomposition of the covariance matrix COV is
UDV T , thenUU VV I D diag d d d d= = , = ( ), ≥ ≥T T

i 1 2 3 and di is the i-th
largest Eigenvalue of the matrix COV. To minimize the error between
the known color information Cs and the transformation RUs from the 3-
dimensional coordinatesUs, the rotation-scaling transformation R must
be satisfied with the formula:

R USV= T (10)

where the S is determined by:

⎧⎨⎩S I Cov
diag otherwise= , | | ≥ 0

(1, 1, −1) , (11)

where, for the determinant |Cov| > 0, the same-direction rotation is
used; otherwise the different direction rotation is used.

Via the above computation, R represents the rotation-scaling
transformation from the 3-dimensional coordinate space to the RGB
color space. The three-dimensional coordinates of all of the seeds at the
top layer can be rotated and scaled to obtain the corresponding RGB
colors by the matrix R, and then the color information of the whole
diffusion tensor images is obtained by the color clue of the top layer, as
described in the following section.

3.3. Color perception of all nodes

After obtaining the color perception of the representative seeds
on the top layer, the next step is interpolation to all of the pixels on
the bottom layer from representative seeds on top layer. The purpose
of the interpolation is to map the color information from the
representative seeds to all of the nodes, thus rendering the pixels
of the diffusion tensor images with color. Similar to the selection of
the representative seeds, we also utilize the transformation matrix as

the same inter-layer interpolation matrix P for every layer to return
all of the pixels. More significantly, a similar region should be
perceived as being similar in color, and vice versa. The interpolation
formula is defined as follows:

Y P Y=s s s−1 [ −1] [ ] (12)

where Y s[ ] denotes the representative seeds with color information on
the upper layer, and Y s[ −1] denotes seeds with the color information
on the next layer. The rest of the layers can be processed in the same
manner until the bottom layer nodes are assigned color information,
i.e.,

Y P P P P Y= ... s s s[0] [0] [1] [ −2] [ −1] [ ] (13)

In this manner, using the transformation matrix sequence
P P P P... s s[0] [1] [ −2] [ −1], all of the pixels of the DTI can be perceived based
on the color information, with similar regions having similar colors.

3.4. Summary of the proposed algorithm

Summarizing the above analysis, for solving the high computational
cost problem and enhancing the regional structures of the diffusion
tensor images, we proposed the hierarchical color perception algorithm
on DTI. By constructing the bottom-to-top hierarchical structure for all
of the pixels, only the most representative seeds on the top layer
retaining the geometric structure are mapped to the three-dimensional
space using MDS. Next, the three-dimensional coordinates of seeds are
converted to the RGB color space to render the similar seeds with color
as similar as possible and different seeds with dissimilar colors. The
color information of the top layer seeds is returned to all of the pixels
via the inter-layer interpolation matrix, thus obtaining the color DTI
with regional structure saliency from high-dimensional diffusion tensor
data. The main procedures of the proposed method are summarized in
Algorithm 1.

Algorithm 1. ：(CPDTI-HML Algorithm) Color Perception of
Diffusion Tensor Images Using Hierarchical Manifold Learning.

Input：Diffusion tensor images data
Output：Color diffusion tensor images
Step1, DTI pre-processing. // Let 6-D matrix with size m n× of
diffusion tensor images pull a column vector to form a matrix X:
mn( ) × 6.
Step2, Construct k-neighborhood graph. // Construct k-neighbor-

hood graph G V W= ( , )[0] [0] [0] of matrix X, V [0] being its set of all
nodes, each corresponding to a pixel. The similarity matrix of all

pixels is given by W [0] using Eq. (1).
Step3, Build a bottom-to-top hierarchical structure of all pixels

using the following operation.

for s=1: n //construct G s[ ] from G s[ −1] to select the representative

seeds V s[ ]:

(1) Select the set of representative seeds V s[ ] as the candidate
nodes of the next layer from

V s[ −1], so that V V/s s[ −1] [ ] is strongly connected to V s[ ].

(2) Calculate the inter-layer interpolation matrix P s[ −1] using Eq.
(3).

(3) Update the similarity matrix W s[ ] of the selected seeds V s[ ]

using Eq. (4).

if the number of representative seeds V s[ ] is less than the allowed
minimum seeds

exit
end if

end for
Step4, Obtain the distances between the top-layer seeds. //

Estimate the distance between the representative seeds on the
top layer n utilizing Eq. (6).
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Step5, Calculate the three-dimensional coordinates. // Using the
MDS for representative seeds, obtain the three-dimensional co-
ordinates Y .

Step6, Color perception of the representative seeds. // The three-
dimensional coordinates Y are rotated by the rotation-scaling

matrix R to obtain all seeds with color information, i.e.,Y RY=rotation ,
and R is obtained from the given color information and corresponds
to the three dimensional coordinates of some of the seeds.
Step7, Interpolate the seeds to all nodes. // DTI with color in-

formation can be obtained by the inter-layer interpolation matrix
P.
for k=n:1

Y P Y=rotation
k k

rotation
k[ −1] [ −1] [ ]

end for

3.5. Analysis of the proposed algorithm

For the DPDR of color perception, the major cost is in the Eigen-
value decomposition and the calculation of the shortest path; thus, the
complexity of the DPDR is O N( )3 , where N denotes the total number of
all pixels. For our proposed method (CPDTI-HML), the selected
representative nodes are approximately half of the candidate pixels in
every layer. The complexity of interpolation from layer s to s − 1 is
O N( )2 . Thus, the cost of our method is given by the recursive formula:
T N T O N( ) = ( ) + ( )N

2
2 , where T N( ) represents the time consumed. For

T N( ), we use the reverse substitution method:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∑

T N T N O N T N O N O N

T O N

( ) =
2

+ ( ) =
4

+
2

+ ( )...

= (0) +
2i

n

i

2
2

2

=0

2

(14)

Using the limit to approximate the solution:

⎛
⎝⎜

⎞
⎠⎟∑T N O N O N1( ) = lim

2
= ( )

n i

n

i→+∞ =0

2
2

(15)

In [21], from the theorem, the complexity of our proposed method
CPDTI-HML is O N( )2 .

4. Experimental results

In this section, we will demonstrate the validity of our method by
processing the synthetic diffusion tensor images data and the real
diffusion tensor images data. Moreover, these experimental results of
our proposed method (CPDTI-HML) are compared with three devel-
oped methods: Fractional Anisotropy (FA), Mean Diffusivity (MD)
[22], and DPDR [9]. In particular, FA and MD are common clinical
scalar images. MD represents the average measure of diffusion at a
particular direction. MD is the function of the diffusion tensor
Eigenvalues λ i, = 1, 2, 3i , which is defined by the following formula:

∑MD λ λ= =
i i=1

3
(16)

FA represents the proportion of the amount of anisotropy in pixels.
FA is defined by:

∑ ∑FA λ λ λ= 3
2

( − ) /
i i i i=1

3 2
=1

3 2
(17)

To evaluate the performances of the different methods, image
entropy is used as the means to measure the uncertainty of the
resulting image quantitatively. A larger value of entropy indicates the
higher complexity of the images, i.e., its color values are more chaotic.
Conversely, a lower value of entropy indicates the image information is

more ordered. The definition of entropy is Entropy P P= − ∑ logi
n

i i=1 ,
where Pi denotes the probability of a gray value in the image.

4.1. Results on synthetic DTI

The synthetic DTI data used for this work are adopted from [9], for
which the scan matrix size is 128 × 128. For the heat kernel function,
we have taken α to be a constant equal to 1. The k-NN is set to 25. To
make the representative seeds be approximately half of the candidate
nodes in every layer, we set θ to 0.85.

In these synthetic data, the implemented proposed method
(CPDTI-HML) was compared with FA, MD, and DPDR [9].
Obviously, scalar images are not able to capture the changes of tensor
in direction. Fig. 2 shows the results of using FA, MD, DPDR, and our
hierarchy color perception method. From the results, FA is found to
only represent the changes along the horizontal direction; however,
there is the same value on the same abscissa. For MD, almost no
changes are found from the horizontal direction or the vertical
direction. Using the DPDR method can capture the changes in the
diffusion tensor in both directions by color. The color used in our
method can represent the changes of DT in the horizontal direction.
However, compared with the FA and MD information presented, our
proposed approach can reflect the underlying structure of the original
tensor data without introducing error messages, which is of higher
clinical value..

4.2. Results on real DTI

The real DTI data corresponds to axial brain DTI slices of a normal
subject, and the real DTI data used for this work are from [9], for which
the matrix size is 256 × 256. For simplicity, all of the parameters of the
four compared methods are set to be the same as those in Section 4.1.
For slice 1, we have removed the background pixels.

Fig. 3 shows the results of applying the four techniques on the real
DTI data, comparing the corresponding FA map, MD map and the
result of the DPDR approach with the results of our proposed method.
From the experimental results, FA and MD are regarded as gray-scale
images, which represent only the simple characteristics and lose a large
amount of information. Thus, there are limitations of FA and MD in
analyzing the DTI. After processing using the DPDR method and our
approach, the white matter and the remaining tissues are separated
clearly in the brain image. It is helpful to segment the white matter for
subsequent work. However, after the method of DPDR color percep-
tion, the result cannot provide a clear distinction with the brain
cerebrospinal fluid (CSF) because the approach of DPDR processes
all of the pixels and focuses on the difference between pixels rather
than the regional structure. Thus, the color is more diverse and the
image has rich details, but the regional structure is not obvious.
Conversely, our proposed method selects the representative nodes in
the similar areas, which pays more attention to color differences
between regions. Consequently, the results of our method have obvious
regional structure information. From the experimental results of our
method with multiple levels, with the layer number increasing, the
distinctiveness of the anterior inter-hemispheric and posterior inter-
hemispheric is decreased; and the difference between the white matter
and the corpus callosum reduce in the middle part of the images. With
the layer number increasing, increasing numbers of pixels are merged
into the same areas, which are of similar color. Our results can provide
a variety of information for different users..

The other DTI data used in this study consists of three normal
subjects; the data are freely available via an online dataset.1 The data
were acquired with following specification: matrix size=128×128, b-
value=1000s/mm2, number of direction=68.

1 Available from: http://human.brain-map.org/mri_viewers/data.
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Fig. 4. Qualitative color perception of the DTI slices of a normal subjects. FA, MD, DPDR and our method are displayed. Note that the results of DPDR are chaotic and unclear, whereas
our method can reflect the underlying structure, with different regions being marked by different colors. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. Color perception of the DTI slices of a normal subject. Comparison of FA, MD, DPDR and our method. The DPDR cannot highlight the different areas by color accurately. Our
results express the regional structure clearly, and the multilevel results provide more information. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Figs. 4–6 represent the results of FA, MD, DPDR and our approach.
We find that FA and MD are gray images and express less information
than the color images. Thus, the gray images have lower identification
capability than the color images intuitively. When the captured images
contain noise, the results of DPDR are chaotic in overall structure, thus
failing to render different regions with different color accurately, based
on the perception. However, using our method, the results are clear

regarding the whole image structure, and the different areas are
marked accurately by different colors. Thus, using our method makes
it possible to efficiently distinguish different parts of tissues and truly
reflect the underlying structure and geometrical characteristics....

4.3. Comprehensive analysis of the experiment results

In this section, we will utilize the image entropy to demonstrate the
performance of our proposed method (CPDTI-HML) in comparison
with another methods and show when building the pyramid, the
number of layers is increasing (eventually, the representative seeds
are not sufficient), the whole images information aggregation degree.

Table 1 presents a comparison of the information entropy of each
approach on real data. It is apparent that the result of our method
contains the lower values of the entropy than the results of DPDR, FA
and MD. This observation suggests the following: our method provides
a regular distribution of color values, the experimental results of
CPDTI-HML method has lower uncertainty, and the image structure
is clearer as the number of the selected seeds is shown in Table 2.

We utilize the function information_aggregation_degree ( i.e.
information density degree) to explain the information aggregation

Fig. 6. Qualitative color perception of DTI slices of a normal subject. FA, MD, DPDR and our method are displayed. Our method not only reduces computation but also has noise
immunity. The dissimilar color on the perception accurately highlights different areas. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
The entropy of the four techniques.

Data Methods

FA MD DPDR Fifth
Layer

Sixth layer Seventh
layer

Eighth
layer

Entropy

Slice 1 3.258 2.915 3.332 — 2.805 3.053 2.917
Slice 2 3.155 3.081 2.959 2.707 2.742 2.648 —

Slice 3 2.723 2.673 2.771 2.574 2.055 2.332 —

Slice 4 2.162 2.186 2.146 2.132 2.073 1.922 —

Table 2
The distribution of the seeds of each layer in real DTI.

Data Layers

First layer Second layer Third layer Fourth layer Fifth layer Sixth layer Seventh layer Eighth layer

Seeds

Slice 1 21367 12305 7184 4184 2427 1411 826 419
Slice 2 16384 4687 2714 1585 914 533 304 —

Slice 3 16384 4007 2350 1377 790 456 260 —

Slice 4 16384 3144 1828 1099 634 376 219 —
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for every layer; the function is defined by following formula:

informationaggregationdegree λ λ λ N= ( + + )/1 2 3 (18)

where λ λ λ1, 2, 3 are the three largest eigenvalues of the similarity matrix
regularization D W−1 for every layer, and N represents the total number
of representative seeds for every layer. If the information_aggrega-
tion_degree is greater value, the more information is aggregated. On
the contrary, the lower value of information_aggregation_degree is,
the more information is retained.

Now, we analyze the left subfigure in Fig. 7. As shown by the solid
line in the Fig. 7, with the number of seeds decreased, more informa-
tion is aggregated. From layer 1 to layer 8, the change of information
aggregated degree is smooth; however, after layer 8 (representative
seeds are 419), the changes become rapid. In other words, a great deal
of information is aggregated from the ninth layer. The subfigure also
indicates that the more layers, the more obvious overall regional
structures. However, if the number of seeds is too small (only 290
representative seeds or less), the information is excessively aggregated,
so that the results only have a few of pixels with color information and
the images seriously distorted, and the clinical significance is lost. The
results of this paper from the sixth layer to the eighth layer have a lower
amount of calculation, while highlighting the structural characteristics.
The right subfigure in Fig. 7 is similar regulation..

5. Conclusions

In this paper, we proposed a method for color perception of DTI
based on statistical analysis of the voxels combined with the use of the
algebraic multigrid to solve the problems of complex computation and
the lack of highlighting of the regional structures. The bottom-to-top
hierarchical structure is established by selecting the representative
seeds. The top-layer seeds are reduced in dimension by MDS using a
new distance metric, and then they are converted to the color space
directly. Finally, the seeds with color information are interpolated to all
pixels to obtain the color perception of all of the pixels.

For both synthetic DTI data and real DTI data, our CPDTI-HML
algorithm was compared with FA, MD and DPDR. Our approach not
only reduces the complexity but also enhances the areas characteristics,
thus improving the identification degrees. In other words, different
tissues are marked with different colors on the perception. So far, this
technique does not apply to a specific clinical task directly. As a result,
the future work will involve cooperation with doctors or radiologists to
study and diagnosis diseases of the brain. We hope the proposed
algorithm is used in clinical practice in the near future.
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