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Abstract. Instances in multi-label data sets are generally described as
a high-dimensional feature vector, as brings the “curse of dimensional-
ity” problem. To ease this problem, some multi-label feature selection
algorithms have been proposed. However, they all handle feature selec-
tion problems with the assumption that all candidate features are avail-
able beforehand. While in some real applications, feature selection must
be conducted in the online manner with dynamic features, for example,
novel topics arise constantly with a set of features in social networks.
Online streaming feature selection (OSFS), dealing with dynamic fea-
tures, has attracted intensive interest in recent years. Some online fea-
ture selection methods are designed for single-label applications, They
can not be directly applied in multi-label scenarios. In this paper, we pro-
pose a multi-label online streaming feature selection algorithm based on
spectral granulation and mutual information (ML-OSMI), which takes
high-order label correlations into consideration. Moreover, comprehen-
sive experiments are conducted to verify the effectiveness of the proposed
algorithm on twelve multi-label high-dimensional benchmark data sets.

Keywords: Multi-label feature selection - Streaming features
Mutual information + Granular computing

1 Introduction

Multi-label data emerge on various real-world domains, such as image process-
ing, text classification, bioinformatics and information retrieval [1-5]. In these
applications, each instance is associated with multiple labels simultaneously. For
example, a document may belong to many topics and a gene could have several
functions [5]. Moreover, multi-label data are generally represented by very high
dimensional vectors, as brings a large number of features and most of them are
irrelevant or redundant [6]. Unnecessary features may not only reduce the perfor-
mance of classifiers but result in the increment of memory storage and computa-
tion time. To ease these problems, feature selection techniques have been wildly
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studied, which select a relative small subset of features from the original feature
space to remove irrelevant and redundant features without losing discriminative
information for later processing.

A number of feature selection methods dealing with multi-label data have
been proposed [7-9]. However, they handle feature selection problems with the
assumption that all candidate features are available before the learning starts
and have to wait for the calculation of all the features, which is very deficient
in practice. Online streaming feature selection [10], evaluating features dynam-
ically with the arrival of new features, is a more time efficiency and intuitive
way to solve such problems. Existing online feature selection methods [11-14].
But they are designed for single-label learning tasks and cannot be directly
applied to multi-label tasks. One commonly encountered way is transforming
the multi-label problems into single-label problems. Then single-label online fea-
ture selection methods can be adopted. Nevertheless, it ignores the correlation
among labels which may carry useful information for learning task, or leads to
extremely high and unbalanced label space [9,15].

In this paper, we analyze multi-label online streaming feature selection prob-
lem and design an online streaming feature selection algorithm based on spec-
tral granulation and mutual information. The proposed algorithm first granu-
lates labels using spectral clustering. Then it transforms label granules into new
multi-class labels and performs feature selection on the new label space. The
main contributions of this study are summarized as follows: (1) Although there
are multi-label feature selection methods for constant features and single-label
feature selection algorithms for dynamic features, we introduce dynamic feature
selection into multi-label scenarios. (2) We designed a novel multi-label online
streaming feature selection algorithm. (3) Comprehensive experiments are con-
ducted to compare our proposed methods with traditional multi-label methods
and single-label online streaming feature selection algorithms on various bench-
mark multi-label data sets.

2 Related Works

2.1 Multi-label Feature Selection

In multi-label learning tasks, each instance is associated with multiple labels
and these labels are generally correlated, as makes multi-label feature selection
tasks more complicated than single-label ones. Moreover, there are evidences
showing that taking label correlations into consideration can benefit the learning
model [7]. Hence, exploring label dependence is an important issue. Multi-label
feature selection algorithms can be divided into three categorizes by the type of
correlations they considered, first-order, second-order and high-order methods.
First-order ones, such as BR [15], consider each label independently and
transform the multi-label feature selection task into several binary single-label
sub-problems. LCF'S [16] is a second-order algorithm. It builds new labels based
on relations among the original labels to capture pair-wise label correlations
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and then conducts BR approach on the expanded label space to select a sub-
set of informative features. First-order and second-order algorithms assume that
labels are independent to each other or pair-wise correlated. However, correla-
tions among labels in real applications are more complicated. LP transforms
multi-label data set to a new single-label multi-class data set, then any single-
label feature selection could be adopted [15]. However, when the number of labels
is extreme large, LP based methods could suffer from terribly class-imbalance
problems [6].

MDMR [17] defines mutual information based evaluations to guide feature
selection procedure, considering multi-label feature selection problems in two
aspects, namely feature dependency and feature redundancy. [18] implements a
multi-label feature selection method similar to MDMR named MLMRMR based
on the single-label feature selection algorithm mRMR [19]. [9] partitions labels
into clusters according to their similarity using a balanced k-means methods
and then undertakes feature selection based on mRMR viewing each cluster
of labels as a new multi-label subtask. RFS [20] introduces ¢5 1-norm on both
loss function and regularization to eliminate unnecessary features. [21] solves
multi-label feature selection with streaming labels by ranking features iteratively,
where the labels arrive one at a time. [7] proposes a multi-label feature selection
method called MIFS. The labels are first mapped to a low-dimensional space
with less noisy. Then it conducts feature selection on the reduced label space.

2.2 Online Streaming Feature Selection

Online streaming feature selection focuses on the feature selection problems with
dynamic features. Grafting [13], Alpha-investing [14], fast-OSF'S [11] and SAOLA
[22] are several state-of-the-art algorithms proposed to solve online streaming fea-
ture selection problems. Grafting treats the feature selection task as a stream-
wise regularized risk minimization problem. New features are selected if the
improvement of accuracy made by them is greater than a predefined threshold.
However, it has no mechanism to remove redundant features selected previously,
rendering it suffering from the nesting effect. Alpha-investing [14] uses a step-
wise linear regression model and a p-value to determine new features which are
selected or not. Furthermore, alpha-investing and Grafting used prior informa-
tion about the structure of feature space, which is impossible to obtain on the
original streaming tasks. Hence, they might not produce good performance in
real applications. Wu [11] proposed the fast-OSFS algorithm, needing no prior
knowledge about the feature space, which contains two major steps: online rele-
vance analysis and online redundancy analysis. The first step discards irrelevant
features and the second eliminates redundant features. SAOLA [22] is another
online feature selection method dealing with dynamic features using mutual
information based criterions to guide feature selection heuristically.

Though there are several online feature selection methods proposed, they are
designed for single-label tasks and can not apply directly in multi-label scenarios.
In this paper, we study the multi-label feature selection problems with dynamic
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(or streaming) features and propose a multi-label online streaming feature selec-
tion algorithm.

3 The Proposed Method

In this section, we first describe the multi-label online streaming feature selec-
tion problem. Then, we design a multi-label online streaming feature selection
method. The proposed method applies spectral clustering which granulates labels
into clusters and captures high-order label correlations. Moreover, the relevance
and redundancy of features are redefined using mutual information to guide
multi-label feature selection procedure.

3.1 Problem Statement

Definition 1 (Traditional Multi-label Feature Selection). Let X be the
sample space and @; € X is a feature vector. Y = {l1,l2,...,1,, } is a set of
labels. Multi-label learning is objective to produce a function H = {X — 2F}
which assigns each instance with a set of relevant labels. Traditional multi-label
feature selection holds the assumption that instances are represented with a fixed
dimensional feature space F' = {f1, f2,..., fa}. They aim to select an optimal
subset of features SF C F without harming the predictive performance.

Definition 2 (Streaming Features). Streaming features denote a feature
space where features flow in one by one over time with fixed number of instances.
With a dynamic feature space, the dimensionality may tend to very high or even
infinite. Besides, each feature is required to be processed when its arrival. Hence,
feature selection procedure should be conducted in the online manner.

Definition 3 (Multi-label Online Streaming Feature Selection). Multi-
label online streaming feature selection copes with a streaming feature vector
F!, where F! = {fi1, fay..., ft} and f; denotes the feature arrives at time
t. As the features flow in continuously, multi-label streaming feature selection
task is objective to remove irrelevant and redundant features from the available
feature set F while holds discriminative information with more than one targets
Y = {l]_, lz, ceey lm }

There are three major challenges in the multi-label streaming feature selec-
tion scenario:

— The dynamic and uncertain nature of the feature space. The dimen-
sionality of the feature space grows over time and may even tend to infinite.

— The streaming nature of the feature space. The subset of selected fea-
tures should be updated timely with new features flow in one at a time.

— The complex correlations among labels. There are complex correlations
among labels and evidences show that taking label correlations into consid-
eration will benefit learning model.
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3.2 The Framework of ML-OSMI

The framework of the proposed multi-label online streaming feature selection
algorithm is shown in Fig.1. To capture label correlations, the original label
space is first transformed into a multi-class multi-target one with much lower
dimensionality. Then, the new labels are used to select features. To conduct
feature selection procedure with many labels and streaming features, we adopt
relevance test and redundancy test to guide the online feature selection, moti-
vated by single-label online streaming feature selection methods [11]. Section 3.3
gives the details of label space transformation and Sect. 3.4 redefines the rele-
vance and redundancy of features.

Label _
V=0l transfomation > Z={252 502

l l

new features Checki
ecking

Checki lect
' f ecking Selected SF
flow in relenvance redundancy features

Fig. 1. Framework of the proposed algorithm

3.3 Capturing Label Correlations by Spectral Granulation

In multi-label data, a label is generally related to a small set of labels from the
entire label space [9,23]. Hence, the label correlations can be explored as much
as possible by dividing labels into partitions, where the labels in one partition
are relevant to each other and the labels in different partitions are irrelevant.
The partitions of labels are considered as granulas in this paper. The labels in
the same granula are high correlated while the labels in different granula are
mutually independent or weakly related. To generate the granulas, labels are
clustered using spectral clustering with cosine similarity. Then, each label clus-
ters is transformed into a multi-class label applying LP framework [6]. Finally,
we get a new label space consists of multi-class labels with much lower dimen-
sionality than the original label space. The new multi-class labels are used to
steer feature selection processing taking label correlations into account.

3.4 Evaluations Based on Mutual Information

To perform multi-label feature selection, an algorithm must be able to mea-
sure the dependency between features and labels. Mutual information is often
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employed to characterize this dependency. Given two random variables & and
y, their mutual information is defined in terms of probability density functions

p(z), p(y) and p(z,y):

) = z,y)lo M T
mi(x,y) —//p( s Y)l gp(m)p(y)d dy . (1)

the normalized version of mutual information is:

, 2 x mi(z,y)
nmi(z,y) = ——————~ . 2
29) = %) + hiy) @
where h(z) = [p(x)logp(x)dz. Given conditional variable z, the conditional

mutual 1nf0rmat10n between x and y is

cemi(x,ylz) // (z,y|2)log (() ())da:dy (3)

Given a finite set of features F' and a finite set of labels L, mutual information
based feature selection methods is objective to find the optimal subset of features
SF* C F without reducing the information shared by features and labels, as
can be written as:

SF* = argmin{|SF| : mi(SF,L) = mi(F,L)} . (4)
SFCF
It can also be considered as removing every unnecessary feature from F'. Using
conditional mutual information, this formulation can be expressed as:

SF* = argmin{|SF|:VfeF — SF,cmi(f,L|SF) =0} . (5)
SFCF

The Eq. (5) indicates that an optimal reduction of the original feature set F'
should contain no irrelevant or redundant features. However, either Egs. (4) or
(5) is difficult to calculate. In the following, we redefine the relevance and redun-
dancy of features based on mutual information to guide the feature selection
procedure to achieve this target.

Definition 4 (Relevance) given a finite label set L = {l1,la,...,1,}, the
relevance of the feature f and the label set L is defined as:

rel(f, L) = max{nmi(f,l;),l;eL} . (6)

The rel(f,L) measures the relevance between feature f and the label set L.
Moreover,it delivers in pairwise manner, as can be calculated with efficiency.
Obviously, if rel(f,L) = 0, f shares little information with any label I; € L. In
other words, f can be discarded without harming the predictive performance.
However, 0 is a threshold which is too strict to use in real applications. A com-
promise choice is using a small positive relevance threshold a. If rel(f, L) < a,
f is considered to be an irrelevant feature.
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Definition 5 (Redundancy). let F is a finite feature set, for any feature geF',
the significance of g on L given another heF' is defined as

sig(g, Lh) = max{cemi(g, li|h), lieL} . (7)

which means that a feature g is redundant and can be removed from F' if there
exists a feature heF' — g satisfying sig(g, L|h) = 0. This is a loosed and approx-
imate version of the formulation emi(g;l;|F — g) = 0 described in Eq. 5. It only
considers second-order conditional dependency but is much easier and efficient
to calculate.

3.5 The Proposed Method

We propose a multi-label online feature selection algorithm named multi-label
online streaming feature selection based on spectral granulation and mutual
information (ML-OSMI) on the basis of Sects. 3.2, 3.3 and 3.4. The pseudo-code

Algorithm 1. ML-OSMI

Input: Feature stream F', label space L and the relevance threshold a
Output: selected features SF

1 granulating labels into Z = {21, 22, ..., 2 } using spectral clustering;
2 SF =0;
3 repeat
4 get f from the stream F';
5 /*checking relevance */
6 if rel(f,L) < a then
7 ‘ continue;
8 end
9 /*checking redundancy */
10 added = 1;
11 for a; in SF do
12 /*checking whether f is redundant®/
13 if sig(f,zi,a;) == 0 then
14 added = 0;
15 break;
16 end
17 /*checking whether a; is redundant*/
18 if sig(aj, z:, f) == 0 then
19 | SF = SF\ay;
20 end
21 end
22 if added == 1 then
23 | SF=SFUf;
24 end

25 until no new features or stopping criteria met;
26 return SF
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of ML-OSMI is shown in Algorithm 1. ML-OSMI delivers as follows. As a new
feature f flows in, if rel(f, L) < « is satisfied, f is considered to be a irrelevant
feature and discarded. The online feature selection waits for the next feature. If
f passes the relevance checking at Step 6, the algorithm assesses two kinds of
redundancy, the redundancy of f and the redundancy of selected features before
time t. Suppose SF' is the set of selected features before f arrives. Firstly, the
algorithm checks the redundancy of f to determine whether there exists a feature
a; € SF making f conditionally independent to the label set. If there has no such
a feature in SF', f is selected. Then, the algorithm removes all features made
to be redundant by f from SF'. If there has no new features, the algorithm
terminates.

3.6 Analysis of Time Efficiency

The time complexity of the proposed algorithm consists of two parts: the com-
plexity of conducting relevance analysis and the complexity of removing redun-
dant features. In the analysis, the number of samples is omitted for simplicity.
Let F; be the features arrived before time t. F} is a subset of F; containing
all features which are relevant to the label set. Suppose SF; is the selected fea-
ture subset at time ¢ and 7 = |SF;|. Let m = |Ft| be the number of features
in F; and p = |F{|. When the number of feature is extremely high, it has
m > p > r. Hence, the average time complexity of the proposed algorithm is
O(km+kpr), where k is the number of label granulas and k < r. If all features
are discarded on the relevance test, the best time complexity is O(km). While
all features pass the independence test, the worst-case complexity is O(kmr).
Noticing that k < n and r < m, where n is the cardinality of the original
label set, one can concludes that O(kmr) < O(nm?).

4 Experiment Results

4.1 Experiment Settings

We use twelve multi-label high-dimensional benchmark data sets from various
domains as our test beds. The details of data sets are shown in Table 1. The scene
is from the image processing application. emotions and CAL500 involve emo-
tions classification of music. genbase and yeast are obtained in biology domain.
The rest seven data sets are from text and natural language processing topics.
All data sets are available at the MEKA website'. The experiments are con-
ducted on a personal computer with Windows Server 2016, Inter(R) Core (TM)
i7-6850K CPU and 64 GB memory employing MATLAB R2016a platform.

To illustrate the effectiveness of the proposed algorithm, we compare our
algorithm with four state-of-the-art multi-label feature selection algorithms and
two state-of-the-art single-label online feature selection algorithms. The com-
parisons contain the number of selected of features, running time and prediction

! http://meka.sourceforge.net/#datasets.
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performances. The predictions are delivered by the multi-label k-nearest neigh-
bors algorithm(ML-KNN) [24] trained with the selected features. ML-KNN is
a well known multi-label classification method for its efficiency. In our experi-
ments, the number of nearest neighbors is set to the recommended value 10 and
the smoothing factor is 1. Five widely used evaluations are used to measure the
predictive performances, namely Hamming Loss, Coverage, One Error, Ranking
Loss and Average Precision [6]. The greater the value of Average Precision, the
better the performance of the model. For the other four evaluations, the less
their value are, the better the model is.

Table 1. Details of the benchmark data sets

Ind | Dataset Instance | Feature | Label | Domain
1 emotions 593 72 6 | music

2 | bibtex 7395 1836 | 159 |text

3 | CAL500 502 68 | 174 | music
4 | delicious 16105 500 |983 |text

5 enron 1702 1001 53 | text

6 | genbase 662 1186 27 | biology
7 | languagelog | 1460 1004 75 | text

8 medical 978 1449 45 |ext

9 | scene 2407 294 6 | images
10 | tmc2007 28596 49060 22 | text

11 | 20NG 19299 1006 20 | text

12 | yeast 2417 103 14 | biology

4.2 Comparisons with Traditional Multi-label Feature Selection
Methods

The comparative multi-label feature selection algorithms are F-Score [25], MLM-
RMR [18,19], RFS [20] and MIFS [7]. Comparisons on running time and predic-
tive performances are given. The implements of these algorithms can be found on
Github? and the parameters such as the size of selected features are set as their
default value. Moreover, the 5-fold validation mechanism is adopted on all data
sets. Table 2 gives the running time and Fig. 2 shows the predictive performances
of multi-label feature selection methods.

(1) ML-OSMI vs. F-Score. As is shown in Table 2, F-Score takes fewer time
on 8 of 12 data sets except for CAL500, enron, genbase and medical. However,
Fig. 2 shows that ML-OSMI achieves higher Average Precision on 11 of 12 except
for the bibtex. There has no significant difference on Coverage among all fea-
ture selection methods. For Hamming Loss, ML-OSMI delivers better results on

2 https://github.com/KKimura360/MLC _toolbox.
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Table 2. Running time (Seconds)

Ind | F-Score | MIFS | RFS MLMRMR | Proposed
1 0.013 0.117 0.795| 0.026 0.102
2 |3.719 29.751| 603.866 | 30.022 18.655
3 ]0.141 0.897 0.529| 0.011 0.041
4 |7.294 |424.569| 3989.808 | 96.614 45.698
5 10.650 1.837 20.059 | 2.209 0.388
6 0.361 0.529 3.103 | 0.882 0.025
7 1.074 1.978 13.013 | 2.575 3.441
8 10.733 1.157 6.733 | 1.558 0.532
9 0.029 0.717 34.849| 1.044 2.388
10 | 0.499 27.580 | 21669.986 | 20.382 1.142
11 10.523 19.950 | 6544.833 | 14.217 24.936
12 1 0.027 0.568 34.542 | 0.285 0.545

enron, genbase, languagelog, medical and scene. On other 7 data sets, ML-OSMI
and F-Score perform equally well. Besides, ML-OSMI obtains better performance
on 9 out of 12 data sets for One Error and 10 out of 12 data sets for Ranking
Loss.

(2) ML-OSMI vs. MIFS. Table 2 says that ML-OSMI uses fewer time to select
features on 9 out of 12 data sets than MIFS. Figure 2 shows that ML-OSMI per-
forms better than MIFS on all data sets but the scene on Average Precision,
Hamming Loss and Ranking Loss. For Coverage, neither of them shows superi-
ority. Moreover, except for scene and languagelog, ML-OSMI gains better results
of One Error than MIFS.

(3) ML-OSMI vs. RFS. The comparisons between ML-OSMI and RFS in
Table 2 show that ML-OSMI achieves better time efficiency on all data sets. For
the predictive performances, Fig. 2 indicates that ML-OSMI gets better results
evaluated by Average Precision, One Error and Ranking Loss on all data sets
except for the emotions and languagelog. Besides, ML-OSMI outperforms RFS
on 8 out of 12 data sets on Hamming Loss and delivers the same results on 3
of the remaining 4 data sets. For Coverage, ML-OSMI and RF'S perform almost
equally well.

(4) ML-OSMI vs. MLMRMR. Table 2 shows that MLMRMR takes less time
than ML-OSMI on emotions, CAL500, languagelog, scene, 20NG and yeast, while
ML-OSMI takes less time than MLMRMR on the other 6 data sets. As Fig. 2
shows, ML-OSMI performs better than MLMRMR, on enron and scene and
MLMRMR performs better than ML-OSMI on enron and bibtex. On the remain-
ing 9 data sets, ML-OSMI performs as good as MLMRMR.
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4.3 Comparisons with OSFS Methods in Streaming Feature
Scenario

We also compare ML-OSMI with two state-of-the-art OSFS algorithms, Alpha-
investing [14] and SAOLA [22]. To evaluate the effectiveness of the proposed
multi-label online streaming feature selection algorithm, we choose 8 data sets
with extreme high dimensionality to simulate the streaming feature selection sce-
nario. Average Precision and Hamming Loss are used as the criterions to demon-
strate the performance of the algorithms. Figure 3 reports the performances of
LP-SAOLA, LP-alpha-investing and ML-OSMI with the features flowing in con-
tinuously over time. Table 3 gives the running time.

Hamming Loss

Ranking Loss

Fig. 2. Comparisons with multi-label feature selection methods

Table 3. Running time (Seconds)

Dataset Ip-alpha-investing | Ip-saola | Proposed
emotions 0.004 0.154 | 0.102
bibtex 15.331 435.656 | 18.655
CAL500 0.003 0.193 | 0.041
delicious 6.180 43.281 | 45.698
enron 0.416 109.994 | 0.388
genbase 1.137 1.068 | 0.025
languagelog | 0.875 106.720 | 3.441
medical 0.481 150.697 | 0.532
scene 0.211 1.153 | 2.388
tmc2007 18.408 52.927 | 1.142
20NG 41.580 157.684 | 24.936
yeast 0.007 0.027 | 0.545
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Fig. 3. The predictive performance changes with features streaming in

(1) ML-OSMI vs. LP-alpha-investing. Figure3 shows that the proposed
algorithm outperforms LP-alpha-investing on 6 out of 8 data sets evaluated by
Average Precision and Hamming Loss. For mc2007, LP-alpha-investing generates
better results on the prior 80% of features than ML-OSMI. However, with new fea-
tures continuously flow in, ML-OSMI performs better than LP-alpha-investing.
Table 3 says that LP-alpha-investing takes less time dealing with 8 out of 12 data
sets. It should be noted that LP-alpha-investing transforms the whole label set into
a single multi-class label, as makes it more time efficiency.

(2) ML-OSMI vs. LP-saola. On enron, medical, bibtex and 20NG, ML-OSMI
gets better Average Precision and Hamming Loss with features streaming flowing
in. Besides, compared to LP-SAOLA, the proposed algorithm gains better time
efficiency on 9 out of 12 data sets except for delicious, scene and yeast. Especially,
on six relatively higher dimensional data sets with thousands of features, bib-
tex, enron, genbase, medical, tmc2007 and 20NG, the proposed algorithm shows
better efficiency for taking relative less time.

5 Conclusion

In this paper, we propose a multi-label online streaming feature selection
algorithm to address multi-label feature selection with dynamic features. The
proposed method first granulates the labels. Labels in the same granula are high
correlated and labels in different granula are mutually independent or weakly
correlated. Then, transforming each granula of labels into a multi-class label,
the original labels is converted into a new space with much lower dimensionality,
taking high-order correlations into consideration. Moreover, the relevance and
redundancy of features are redefine based on mutual information to guide feature
selection procedure. Finally, the features are selected with the new label space in
online manner. Comprehensive experiments are conducted to verify the effective-
ness of the proposed method, comparing it with traditional multi-label feature
selection methods and online streaming feature selection methods. Results have
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shown that the proposed multi-label online feature selection algorithm can effec-
tively solve multi-label feature selection with dynamic features. In our future
work, we will study how to deliver feature selection with features and labels flow
in simultaneously.
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