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Abstract—Online streaming feature selection (OSFS) algo-
rithms, producing an approximately optimal subset from so-
far-seen features in real time, are capable of addressing feature
selection issues in extreme large or even infinite dimensional
space. There are several algorithms proposed carrying out
in OSFS way. However, some of these algorithms need prior
knowledge about the entire feature space which is inaccessible
in real OSFS scenario. Besides, results of them are sensitive to
the permutations of features. In this paper, we first propose an
OSFS framework based on the uncertainty measures in rough
sets theory. The framework needs no additional information,
except for the given data. Moreover, a sorting mechanism is
adopted in the framework, as creates its stability to varying
the order of features. Then, specifying the uncertainty measure
with conditional information entropy (CIE), we design an
algorithm named CIE-OSFS based on the framework. Compre-
hensive experiments are conducted to verify the effectiveness
of our method on several high dimensional benchmark data
sets. The experimental results indicate that CIE-OSFS achieves
more compactness with the prerequisite of guaranteeing the
predictive accuracy and performs more stably to the changing
of features’ order than other algorithms in most cases.

1. Introduction

Data collection has grown tremendously with the rise
of Big Data applications [1]. Not only is the scale of
instances growing larger, but also the number of features
for an instance becomes enormous [2]. However, many
of these features are irrelevant or redundant and which
matters is not known. Unnecessary variables, causing the
increment of calculation complexity and computation time,
may greatly reduce the performance of classifiers. Therefore,
it is essential to conduct feature selection procedure.

Traditional feature selection algorithms hold the hy-
pothesis that the number of features is fixed and the en-
tire feature space is accessible beforehand [3]. However,
when it comes to medical learning problems, for example,
emerging medical technologies bring new features, the entire
feature space can be extreme large or even infinite. No
prior knowledge about the entire space could be referred
by the learning algorithms during the runtime. Moreover,
these tasks demand high reliability of temporary results

produced by online learning mechanism once new features
is available. Wu et.al [4] formulated these feature selection
tasks with dynamic features as online streaming feature
selection (OSFS) problems. Aiming to deal with stream
data, OSFS algorithms generate updated results in real time
with previous results and new information but use no prior
knowledge.

Although there are several methods [3], [4], [5], [6]
carrying out in OSFS way, some of them used prior knowl-
edge about the entire feature space. Besides, their results
are related to the ordering of features. But in real streaming
feature selection scenario, both the entire feature space and
the related order of features are not accessible. Methods
using prior knowledge or sensitive to the ordering of features
may lead to their inefficiency in real applications. Hence,
OSFS algorithms should not only use no prior knowledge
to deliver credible results but robust to the changing of the
order of features.

In this paper, we consider OSFS problems from the
rough sets perspective and propose an uncertainty measures
based framework to address OSFS issues. Rough sets [7]
techniques, gaining insights into properties of given data,
contribute its requiring no prior knowledge. In addition,
a sorting mechanism enable the framework robust to the
changing of the ordering of features. Specifying the un-
certainty measure with conditional information entropy in
rough sets theory, we design a OSFS algorithm named
online streaming feature selection based on conditional in-
formation entropy (CIE-OSFS).

The contributions of this study include two aspects:
(1) a stable online streaming feature selection framework
based on uncertainty measures is designed; (2) an online
streaming feature selection algorithm applying conditional
entropy information (CIE) in rough sets theory [8] called
CIE-OSFS is proposed.

2. Related Works

Feature selection, aiming to address ”the curse of di-
mensionality” problem caused by high dimensionality data
[9], is an active area of research in pattern recognition [10],
machine learning [11] and data mining [12]. According to
the relation between feature selection process and learning
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algorithms, feature selection methods can be categorized
into wrapper, embedded and filter methods.

The wrapper methods using the feedback of a specific
classifier to determine which features to be selected. But
their performance are limited to specific classifiers and the
computation time of the wrapper methods is general high
[4]. The embedded methods design classifiers attached with
spares mechanisms to maximize classification accuracy and
minimize the size of features used simultaneously. While
the filter methods, use consistency or dependency to guide
feature selection procedure, are independent to classifiers
[3]. Compared to wrapper and embedded ones, the filter
methods are more time efficient.

Most feature selection algorithms proposed, wrapper,
embedded or filter ones, handle feature selection problems
with the assumption that all candidate features are available
beforehand [13]. But in OSFS tasks [14], the entire feature
space may be increasing and could be extremely large or
even infinite. Hence, traditional feature selection methods
are unworkable in real streaming feature cases.

Several methods have been proposed to address stream-
ing feature selection issues. Grafting [5] treats the feature
selection task as a stream-wise regularized risk minimization
problem. New features are selected if the improvement of
accuracy made by them is greater than a predefined thresh-
old. However, there is no mechanism to removing redundant
features selected previously, rendering it suffering from the
nesting effect. Alpha-investing [6] uses a linear regression
to evaluate the modified model. It uses a p-value to deter-
mine new features which are selected or not. Furthermore,
Alpha-investing and Grafting used prior information about
the structure of feature space [4], which is impossible to
obtain on the original streaming tasks. Hence they might
not produce good performance in real applications.

Wu [4] proposed the fast-OSFS algorithm, needing no
prior knowledge about the feature space, which contains
two major steps: online relevance analysis and online re-
dundancy analysis. The first step discards irrelevant features
and the second eliminates redundant features. However, its
examination order of redundant features is related to the
relative order of features.

In real streaming feature selection scenario, both the
feature space and the related order of features are not
accessible. Methods using prior knowledge or sensitive to
the ordering of features may lead to their inefficiency in real
applications. In this paper, we propose an OSFS framework
suitable for real OSFS applications, which is robust to the
ordering of features and requires no prior knowledge except
for given data itself.

3. An OSFS Framework Based on Rough Sets
Using Uncertainty Measures

Rough set theory is an effective soft computation tech-
nique [15] [16] for applications with vagueness and un-
certainty. It has been applied very fruitfully in many real-
life applications to reduce the dimensionality. Best of all,

rough sets based feature selection techniques deliver the
dependencies and significance of variables in the condition
of gaining insights into properties of given data. It uses no
additional information or prior knowledge about the feature
space, as is suitable for real streaming feature scenarios.

3.1. Traditional Feature Selection Methods Using
Uncertainty Measures

An information system can be formulated as IS =
(U,A, V, f), where U = {x1, x2, ..., xn} is a nonempty
and finite set of samples. A = C ∪ D is a finite set of
attributes, where C = {a1, a2, ..., an} is the set of condi-
tional attributes (features) and D = {d} is the set of decision
attributes (label). In addition, V =

⋃
aεA Va, where Va is the

domain of a. f : U → Va (for every aεA) is the information
function.
Definition 1 (Uncertainty Measure)Definition 1 (Uncertainty Measure)Definition 1 (Uncertainty Measure) For any set B ⊆ A, the
indiscernible relation [8] defined on B can be formulated
as IND(B) = {(x, y)εU × U |∀aεB, f(x) = f(y))}. Ac-
cordingly, the partitions of U on B is denoted by U/B =
{X1, X2, ..., Xm}. The uncertainty measure of U on B is
defined as UM(B) which measures the discernibility or the
information contributed by B. In addition, the uncertainty
measure function B can be specified as different entropies
and granularities [17] in rough sets. For example, when the
information entropy [8] is used, the uncertainty of U on B
is

UM(B) = H(B) = −
n∑

i=1

p(Xi)log(p(Xi)) (1)

where XiεU/B and p(Xi) = |Xi|/|U |(i = 1, 2, ...,m).
Definition 2 (Conditional and Joint Uncertainty)Definition 2 (Conditional and Joint Uncertainty)Definition 2 (Conditional and Joint Uncertainty) Let P and
Q be the set of conditional attributes and P,Q ⊆ A. The
joint uncertainty of P and Q is defined as

JUM(P,Q) = UM(P ∪Q) (2)

And the conditional uncertainty of Q on P is

CUM(Q|P ) = JUM(P,Q)− UM(P ) (3)

JUM(P,Q) measures the discernibility of P
and Q, while CUM(Q|P ) represents the infor-
mation that Q carries on the condition of P .
Definition 3 (Reducible attribute or Redundant feature)Definition 3 (Reducible attribute or Redundant feature)Definition 3 (Reducible attribute or Redundant feature)
for any attribute s ∈ A − P , the significance of s on the
condition of P is

sig(s, P, d) = UM({d}|P ∪ {s})− UM({d}|P ) (4)

When its value equals to 0, s contributes no discernible
information to P . Hence, s is redundant in P , if and only
if

sig(r, P, d) = 0 (5)

Definition 4 (Reduct)Definition 4 (Reduct)Definition 4 (Reduct) P is a reduct of A, if and only if

UM({d}|P ) = UM({d}|A) (6)

where dεA is the label. Besides, for any r ∈ P ,

sig(r, P, d) �= 0 (7)
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Traditional feature selection methods using uncertainty
measures [8], [18], [19] generally have four steps:

1) initialize SF = {} and C = {a1, a2, ..., an};
2) find aεC by maximizing a specific uncertainty measure;
3) SF = SF ∪ a, C = C − a, repeat step 2 until stop

criteria met;
4) return selected features (reduct) SF .

Obviously, the complexity of its generating a reduct is
O(m2), where m = |C|.
3.2. An OSFS Framework Using Uncertainty Mea-
sures

Simply, streaming feature selection issues can be ad-
dressed by maintaining a subset of selected features and
updating it dynamically with new features flowing in. How-
ever, it is very time consuming in real applications for
the existence of many irrelevant features [20] as Figure 1
shows. If irrelevant features flow in, rebuilding a reduct
is very time consuming and unnecessary. Hence, we use
the independence test filtering irrelevant features to improve
time efficiency. The OSFS framework using the uncertainty
measures is designed in Figure 2.

Figure 1. The feature space of real applications

The framework considers the streaming feature selection
problems from rough sets perspective. It aims to dislodge
redundant features while keeps the discernibility other than
the classification accuracy or conditional probability fixed.
There are two major steps in the framework. In the first
step, the independence test is adopted to determine whether
features are related to the target and irrelevant features are
discarded. The next step applies uncertainty measures in
rough sets theory to remove redundant features once new
relevant features are added. Until there have no new features
or the stopping criteria is met, the two steps are repeated.
Moreover, the framework adopts a sorting mechanism to
eliminate effects caused by the related order of features, as
contributes its stability to the changing of features’ order.

3.3. On Removing Redundant Features In The
Framework

When a new feature related to decision attribute arrives,
the framework sorts features by correlation coefficients be-
fore generating a reduct of current selected features. The se-
quence produced by sorting is used to guide attribute reduc-
tion process heuristically. During checking the redundancy

1. Initialization
a) Selected features set SF = {}SF = {}SF = {}, decision attribute

(or label) D
2. Discarding Irrelevant features

a) Get a new feature f
b) Carrying out the independence test of f and D

• If f is an irrelevant feature. Discard f
• If not, SF = SF ∪ fSF = SF ∪ fSF = SF ∪ f

3. Removing Reducible (Redundant) features
a) Sorting features of SF in descending order with

correlation coefficient.
b) RED = {}RED = {}RED = {}, Add irredundant features to RED

using uncertainty measures by Definition 3 in the
order generated in a).

c) Replace SF with its reduct RED generated by
step b)

4. Repeat steps 2 and 3 until no new features or the
stopping criteria is met

5. Output the selected features set SF

Figure 2. An OSFS framework based on rough sets

of features, attributes with greater correlation coefficients
have higher priority. No matter what the ordering that the
features arrived is, the algorithm holds the most informative
ones. Moreover, attributes with high correlation coefficients
as well but contributing nothing to candidate selected at-
tributes are discarded. While attributes with low correlation
coefficient but contributing distinctive information are se-
lected. Therefore, the framework is stable to the changing
of features’ order. In addition, every feature is checked
only once in the order of sorting and irrelevant features are
removed before reduction, as makes the framework much
more efficiency than traditional feature selection methods
using uncertainty measures illustrated in Section 3.1.

4. An OSFS Algorithm Using Conditional In-
formation Entropy

Attribute reduction algorithms, using conditional infor-
mation entropy (CIE) or other uncertainty measures, objec-
tive to hold discernibility with selected features. Compared
to traditional attribute reduction algorithms intend to keep
the positive region or the lower approximation unchanged
[21], they have better fault tolerability [22]. In this section,
we adopt conditional information entropy to measure the un-
certainty and propose an online streaming feature selection
algorithm under the framework illustrated in Section 3.2.
Besides, a brief analysis of the efficiency of the proposed
algorithm is given.

4.1. An Online Streaming Feature Selection Algo-
rithm

The pseudo-code of the online streaming feature selec-
tion based on conditional information entropy (CIE-OSFS
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in short) is shown in Algorithm 1.

Algorithm 1: The CIE-OSFS Algorithm

Input: decision attribute d, features stream
F = {f1, f2, ..., fn}F = {f1, f2, ..., fn}F = {f1, f2, ..., fn}

Output: set of selected features SF
1 SF = {} ;
2 repeat
3 get fi from the stream F ;
4 carry out the independence test Ind(fi, d);
5 if ∼ Ind(fi, d) then
6 SF = SF ∪ {fi};
7 /*using CIE to remove redundant features*/
8 RED = {}; /*the set of selected features*/
9 /*sort attributes by correlation coefficient */

10 get B = {b1, b2, ..., bm}; ∀bi, bj ∈ SF ,
i > j, s.t. corr(bi, d) ≥ corr(bj , d);

11 calculate CIE({d}|SF );
12 /* generating a reduct of SF */
13 for i = 1, 2, ...m do
14 /* removing redundant features */

sig(bi, RED, d) = CIE({d}|RED)

−CIE({d}|RED ∪ {bi})
if sig(bi, RED, d) > 0 then

15 RED = RED ∪ {bi};
16 if CIE({d}|RED) == CIE({d}|SF )

then
17 break;
18 end
19 end
20 end
21 SF = RED;
22 end
23 until no new features or the accuracy threshold met;

4.2. The Time Efficiency of CIE-OSFS

Suppose Rt is the selected feature subset at time t and
r = |Rt| is the number of features that Rt contains. Let
Ft be the features arrived before time t . F r

t is a subset of
Ft containing all features which are not independent to the
decision attribute. Let m1 = |Ft| be the number of features
in Ft and m2 = |F r

t |. The time complexity of CIE-OSFS
consists of two parts: the complexity of conducting rele-
vance analysis and the complexity of removing redundant
features. Therefore, the average time complexity of CIE-
OSFS is O(m1 +m2 · r2). When all features are discarded
in the independence test, the best time complexity is O(m1).
While all features passed the independence test, the worst-
case complexity is O(m1 · r2).

5. Experimental Results

In this section, we provide several experimental results
to compare the effectiveness and stability of CIE-OSFS

TABLE 1. DETAILS OF MEDICAL DATA SETS

No. Dataset Instances Features Source
1 prostate 102 12600 mldataorg
2 central-nervous-sys 60 7129 mldataorg
3 lung-cancer-michigan 96 7129 mldataorg
4 leu 38 7129 libsvm
5 marti0 500 1024 ChaLearm
6 reged0 500 999 ChaLearm
7 arcene 100 10000 NIPS2003
8 madelon 2000 500 NIPS2003

with fast-OSFS [4], Alpha-investing [6] and Grafting [5].
Comparative algorithms compared were performed using
their original implementations and settings. The details of
high dimensional benchmark data sets used are shown in
Table 1. All data sets are from medical or healthy field. The
predictive accuracy was produced by KNN classifier (k=3)
using selected features. More results using other classifi-
cation methods and comparisons of time efficiency can be
found on Github1. All experimental results are obtained on
a personal computer with Windows 10, Inter(R) Core (TM)
i3-4170 CPU (3.70 GHz) and 8.00 GB memory employing
MATLAB R2015a platform.

5.1. Comparisons of Results in OSFS Scenario

To simulate the scenario of online streaming feature
selection and evaluate the effectiveness OSFS algorithm, we
adopt prediction accuracy and the size of selected features
to evaluate the process of streaming feature selection. In
the experiments, the first 10 percentage of features were
handled at beginning and the rest of features were pro-
cessed increasingly. Moreover, 10-fold cross validation is
employed. Figure 3 and Figure 4 give the performance of
four algorithms on 8 data sets.

In Figure 3, CIE-OSFS obtains best performance among
four methods on leu and madelon. Besides, CIE-OSFS
outperforms Grafting on lung-cancer-michigan and performs
better than fast-OSFS and Alpha-investing on arcene. On
prostate, marti0 and reged0, neither of our method nor
other three algorithms express definite advantage. As Figure
4 shows, CIE-OSFS selects less features other algorithms
on all data sets except for madelon Moreover, CIE-OSFS
selects least size of features with higher stability while
features flow in.

Based on the observations above, we could conclude that
CIE-OSFS delivers better compactness with competitive ac-
curacy than other state-of-the-art algorithms when the entire
feature space is not accessible or exhaustively searching over
the entire feature space is impossible.

5.2. Comparisons of Stability

To test the stability of OSFS algorithms, we generate
the meta-test ten times with the features in different random
orders. In each meta-test, the data is divided into training

1. https://github.com/Hua-ming/CIE-OSFS
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Figure 3. The prediction accuracy changes with respect to the number of
features streaming in

(90%) and testing subset (10%) randomly. The training set is
used to carry out feature selection tasks and train a classifier.
Then, the testing set is given to the classifier to produce
prediction accuracy. Table 2 gives the range (marked as r.)
and the mean (marked as m.) of the size of selected features
and Figure 5 shows the mean accuracy of ten trails on 8 data
sets.

Figure 5 shows that CIE-OSFS procures better predic-
tion accuracy than Alpha-investing and Grafting on all data
sets. Compared to fast-OSFS, CIE-OSFS achieves better
accuracy on 5 out of 8 data sets. In Table 2, CIE-OSFS
outperforms Alpha-investing on all data sets and selects less
features than fast-OSFS except for the marti0. Moreover,
CIE-OSFS outperforms Grafting on 4 out of 8 data sets
and delivers same results on other 4 data sets. Above all,
the size of selected features delivered by CIE-OSFS varies
minimum, while results of other algorithms are with wider

Figure 4. The size of selected features changes with respect to the number
of features streaming in

TABLE 2. COMPARISON OF SELECTED SUBSET STABILITY WHILE THE

ORDER OF FEATURES CHANGING

No. CIE-OSFS fast-OSFS Alpha-investing Grafting
r. m. r. m. r. m. r. m.

1 0 2 2 5.4 6 10.1 0 2
2 1 1.2 2 3 4 2.6 0 1
3 0 1 2 3.9 13 21.5 0 1
4 0 1 2 3.8 4 2.3 8 43.2
5 0 1 0 1 35 24.2 0 1
6 0 2 2 11.2 13 36.3 37 51.3
7 1 2.4 1 4.3 4 2.1 10 67.6
8 0 3 3 3.6 3 5.4 335 34.7

fluctuations. For example, on madelon, the size of selected
features using Grafting varies with the range=335 in ten
trails, but CIE-OSFS generates same size of features in all
trails. These comparisons illustrate that CIE-OSFS generated
more stable results than other three algorithms.
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Figure 5. Comparison of accuracy stability while the order of features
changing

6. Conclusion

In this paper, we propose an framework based on the
uncertainty measures to address online streaming feature
selection issues. The framework considers streaming feature
selection problems in the view of rough sets, using the
uncertainty measures and a sorting mechanism to select
features heuristically. The proposed framework is stable to
changing of features’ order and requires no prior knowledge
on the entire feature space. Then, a stable online streaming
feature selection algorithm called CIE-OSFS was designed
based on this framework.

Comparisons have shown that CIE-OSFS demonstrates
more compactness with the prerequisite of guaranteeing the
predictive accuracy than other three state-of-the-art algo-
rithms, fast-OSFS, Alpha-investing and Grafting. Moreover,
CIE-OSFS delivers more stable results than other algorithms
under the changing of features’ order. Number of instance
may increase as features flow in, we will study how to per-
form online streaming feature selection under the condition
that the number of samples increase in our future work.
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