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Abstract—To address the problem of high matrix computational
cost in traditional diffusion process methods for large scale image
retrieval, we propose a novel image retrieval algorithm based on
hierarchical locally constrained diffusion process (HLCDP) by
combining algebraic multigrid and diffusion ranking on
manifold. In HLCDP, all retrieved images of the image database
are built into a bottom-to-top hierarchical structure by selecting
the representative images. Then the similarity among images on
the top layer is diffused by using locally constrained diffusion
process, and the affinities ( i.e. ranking scores) between query
images and top-layer representative images are interpolated to
all images on the bottom layer to obtain the affinities between the
query images and all of the images in database. Our method is
evaluated on image retrieval tasks by comparing with locally
constrained diffusion process (LCDP), self-smoothing operator
(SSO) and self-diffusion (SD). The experimental results on
MPEG?7 data set and ImageCLEFmed2005 data set demonstrate
that the proposed method improves the retrieval performance
and reduces the retrieval time consumption.

Keywords—Hierarchical  structure;  algebraic
Manifold learning; Diffusion process
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I. INTRODUCTION

With the rapid development of communication technology
and multimedia technology, the amount of images rapidly
increases. How to retrieve images the users needed quickly
from large scale images has a very important research value.
Due to the development of machine learning technology,
manifold learning [1], [2], [3] has been widely used in content
based image retrieval. In traditional image retrieval methods
based manifold learning [4], [5], [6], [7], image matching in
retrieval tasks is only to calculate the affinity values between
pairwise images, and then rank the most similar images
according to these values. These methods ignore the intrinsic
manifold structure of all images. To improve these issues,
researchers begin to focus the influence of all images in the
image database on the affinities between pairwise images, and
then propose diffusion process methods.

The diffusion process methods make good use of the
underlying manifold among all images in database to improve
the retrieval performance. For example, label propagation [§]
propagates the labeled information from labeled samples to
unlabeled samples by using the diffusion process through the
underlying manifold of the database. Yang [9] proposes a
Locally Constrained Diffusion Process (LCDP). The LCDP
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algorithm replaces the connected graph of all images in
database with K nearest neighbor graph to reduce the effect of
noise. This method mainly considers the local structure of the
manifold. There are also some diffusion methods focusing on
the global structure. Jiang [10] proposes Self-Smoothing
Operator (SSO), diffusing similarity of all images through the
connected graph. Inspired by SSO, Wang [11] proposes a self-
Diffusion (SD) method that improves the diffusion
performance by adding a unit matrix at each diffusion step. In
general, diffusion methods use the Gaussian kernel function to
compute the similarity among images and structure the
connected graph, then diffuse similarity through the graph.
However, there are some deformed graph structures. Wang
[12] proposes the shortest path Propagation (SPP), which is
constructed by the graph based on the shortest path between
images. This method improves the retrieval performance
markedly. But this method result in an increase in runtime,
since each of the images to be retrieved needs to be computed
separately. Compared with traditional image retrieval methods
based manifold learning, these above diffusion process
methods have improved the retrieval efficiency. But these
diffusion process methods require a large number of iterative
calculations to converge. These methods are improper for
large scale images.

In order to solve the problems of high matrix calculation
and large amount of iterative computation of large-scale
images, and to guarantee a better retrieval accuracy, we
propose a novel image retrieval algorithm based on
hierarchical locally constrained diffusion process which is
derived from algebraic multigrid [13], [14], [15], [16] and
diffusion ranking on manifold. Our algorithm builds all
retrieved images in database into a bottom-to top hierarchical
structure. Next, we use locally constrained diffusion process to
obtain the ranking scores between query images and top-layer
representative images. Finally, the ranking scores are
interpolated to all retrieved images on the bottom layer.
Compared with the locally constrained diffusion process
(LCDP) algorithm, the hierarchical locally constrained
diffusion process (HLCDP) algorithm proposed in this paper
reduces the time consumption and improves the retrieval
accuracy.

II. RELATED WORK

Most of the diffusion-based methods have a general
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framework [17]. First, we generally calculate the similarity
matrices of pairwise images, and make a graph structure. Each
image is a node of the graph, and the weight of the edge

connected two nodes represents the similarity of the two nodes.

Then a transition matrix is defined to represent the probability
from one node to another. And next a diffusion process update
scheme is defined for diffusing the similarity among images
by adapting the update step. Finally, we can acquire the
affinity matrix of all images.

Given a sample set of images X={x,"x;T,...x, } € R™",
where n is the number of sample images and m is feature
dimension of each image. A connected graph G=(X,E) is
constructed, where the nodes of the graph G represents the
sample points and E represents the weights of the edges
connecting the two nodes. The Gaussian kernel function is
always used to compute the weights between two nodes E(i,j)
in the graph:

EGi, j)=expt-a’(i, j)/2o” ) (1)
where d*(i , j) represents the distance between image x; and
image x; and ¢ is a parameter of Gaussian kernel function.

The transition matrix commonly used in the diffusion
process is a random walk transition matrix [8], [10], [11],
which is defined as

P=D"'E @)
where D is a diagonal matrix with D(i,i)=2"-1E(i,j), and the
transition matrix P is an non-symmetric matrix, and
X P(i)=1.

In Global Page Rank (GPR) [18], the diffusion process is
defined as

S =1P 3)
where f; is the ranking score vector after ¢ steps of diffusion
process. On the basis of Global Page Rank, the label
propagation (LP) [8] combines semi-supervised learning to
extend the diffusion process in (3) by fixing the query
information f{i)=1 after each diffusion step. Therefore, the
diffusion process of LP algorithm includes two steps: 1)
[rri=fiP; 2) fir(D)=1 if x; is a query image.

In the above diffusion process methods, calculating the
transition probability from one image to another, we
commonly consider all the paths between these two images.
The influence of the noisy nodes is ignored completely, which
will affect the diffusion performance. In order to solve this
problem, LCDP algorithm [9] replaces the original global
connected graph G with a K nearest neighbor graph Gk.
According to the above graph G, we construct a K nearest
neighbor graph Gk(V,Ex), whose weights of the edges are
defined as follows

EK(i,j)z{E(i,j) ,x; € KNN(x;) @

0 , otherwise

and then the transition matrix is defined as
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Compared with the transition matrix P, the transition
matrix Px can reduce the effect of noisy nodes effectively.
However there is a problem that the range of intersection
between KNN(x;) and KNN(x;) is too small to lead two similar
nodes that have no transition path. For this problem, the LCDP
algorithm defined the diffusion process in a novel manner. Its
main idea is to connect the point x; and point x; by finding two
neighbor points & in KNN(x;) and / in KNN(x;), the definition is
as follows

Peli, j)= (5)

P1t<+1 _
Zp(xi s X3 P (% ’XI)P(XI 7xj) (6)
ke KNN(x; )l KNN (x ;)
Equation (6) is expressed as a matrix:
P1t<7<l =PKp1t<K(PK)T @)

The LCDP algorithm decreases the influence of noisy
nodes by replacing the original connected graph with the K
nearest neighbor graph. This algorithm solves the problem that
there is no transition path between two similar images x; and x;
when KNN(x;) of image x; and KNN(x)) of image x; have no
intersection.

The existing diffusion process methods consume a large
amount of time in the matrix operation, and require a large
number of iterative calculations. With the increase of the size
of the image database, the retrieval time will increase greatly.
To address this problem, we propose a novel image retrieval
method based on hierarchical locally constrained diffusion
process (HLCDP). Our method combines the idea of algebraic
multigrid and ranking scores on manifold learning. We
construct the original retrieved images of database into a
bottom-to-top hierarchical structure. Then we diffuse the
similarity between query images and the top-layer
representative images by exploiting locally constrained
diffusion process method. Finally we interpolate to all images
of bottom layer. Compared with the locally constrained
diffusion process, the time consumption of our proposed
method is reduced, and our method also improves the retrieval
performance .

III. HIERARCHICAL LOCALLY CONSTRAINED
DIFFUSION PROCESS

The diffusion process methods consider the influence of all
the images in database on the similarity between the pairwise
images. They exploit the intrinsic structure of the images
database to improve the retrieval results. However, it takes a
lot of time for matrix computation and computational iterative
steps on the original images database directly. And a large
number of iterations are required in the diffusion process. To
improve the above problems, we propose a hierarchical locally
constrained diffusion process (HLCDP) algorithm. This
algorithm exploits the affinity values between pairwise images
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Figure 1. Framework of the proposed method

in the database to select the representative images and
transforms the affinity values of the current layer to the next
layer by interpolation matrix. Therefore, to transform the
similarity among different layers, we construct the image
database into a bottom-to-up hierarchical structure [14], [15],
[16]. Then we use the LCDP [9] algorithm to obtain affinity
matrix between query images and the representative images on
the top layer. Last, the affinity matrix acquired on top layer is
interpolated to the bottom layer and finally obtain the affinity
matrix between query images and all the images. This method
can reduce the time cost of high matrix computation and
improve the retrieval performance. The framework of the
proposed HLCDP is shown in Figure 1.

A. Hierarchical Structure of Images

To reduce the high computational cost, our method
considers to construct the original one-layer structure of image
database into hierarchical structure. First, we select the
representative images from all of images on the current layer,
which are regarded as candidate images on next layer. Next,
the rest of the images can be selected in the same manner.
This process forms a bottom-to-up pyramid, in which the most
influential and representative images are at the top, and all
images of database are at the bottom.

Let X={x17x20,.... xT xgi17,....xsT} € R™™ be a sample set of
images, where n is the number of sample images and m is
feature dimension of each image in the sample set.
Xe={xiTx.T,... x,[} represents the g retrieved images, and
XV={xe11T xg2",...,xa"} Tepresents the (n-g) query images. First,
we construct the k nearest neighbor graph GOV i),
where V1 represents the g images, and W% is the similarity
matrix. The similarity matrix W%=[w;]ox, of all images in the
database is determined as

VVij[.O] _ EX[{—04

0 -+, otherwise

X; —xsz) ,x; € KNMx,) or x; € KN]\(xJ-)

®)

where o is the parameter of the kernel function.

The representative images are selected to construct a
bottom-to-up hierarchical pyramid structure, in which the non-
representative are strongly connected with representative
images. The definition of connection relationship between
image x; and image x; is described as

Wy =6 Max,, Wy },0<0<1 )

where 6 is the strength threshold, reflecting the strength of the
relationship between neighboring images. Only the
representative images are selected to participate in the
subsequent operation and the non-representative images are
ignored, which can reduce the amount of calculation.

The representative images selected of the next layer are
represented as V1 € V&1 (s=1,2,..) , which are strongly
connected with non-representative images of current layer. In
each layer, we establish an interpolation matrix to transform
the similarity among representative images in current layer to
next layer instead of computing the similarity matrix directly
by (8). The interpolation matrix Q! from (s-1)-t4 layer to s-
th layer is defined as

[s-1]

w.
s—1 k . s s
Qi[k ]:—[_TZ ’Ws_l ,ig V[],ke yll
ik
] _ (10)
Qi =1 [s]
[oo1] eV £
07 =0
As the representative images W selected, the

corresponding similarity matrix W! can be calculated by the
interpolation matrix Q!1, the formula is as follows

o) = QLT st gl (an
Thus, according to this strategy described as (11), the

similarity matrix among images of each layer can be
calculated by the following formula

11 (G B g 2

B. Diffusion Process on Top Layer

As the selected representative images (counted as # ) on
top layer, if the distance among these images are calculated
directly using the Gaussian kernel function, which may differ
from the true distance, and is also double counting. Thus, we
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use the similarity matrix W*! which has computed by (12) as
the similarity among the top-layer representative images. Due
to the large difference among the top-layer representative
images, the performance of diffusion process will be affected
by noisy image nodes. So we use the LCDP algorithm to
diffuse the similarity among query images and the
representative images on the top layer, which replaces the
global connection graph with the K nearest neighbor graph to
reduce the effect of noisy image nodes.

First, we directly use the similarity matrix #*! among all
top-layer images to construct a K nearest neighbor graph. The
K nearest neighbor matrix is described as follows

[s]

i

-{o

Currently, the K nearest neighbor graph only contains the
top-layer representative images, and reflects the relationship
among the top-layer representative images. Considering the
relationship between the query images and the top-layer
representative images, we add the query images to the K
nearest neighbor graph by exploiting the Euclidean distance to
find the K nearest images of query images. For a query image
yi(yi€ XY), the definition of its K nearest neighbor images
{x;j=1,...,K} that belong to the top-layer represented images

,x; € KNN(x;)

Wil x,
, otherwise

J

(13)

V¥ is as follows

(14)

e

W (j)z{exp[—dz(xi ,xj)/az],xj € KIYN(yi)
0 , otherwise

where ¢ is the parameter of the kernel function. To add the
query image y; to the K nearest neighbor graph of top-layer
representative images, we construct a new weight matrix
defined as

wi!w,
Wy = T (15)
w, 1
where W, is a u-dimension vector.
The transition matrix Px(i,j), which represents the

probability of diffusion from one image x; to another image x;,
is defined

Wili, Jj)

IR

Peli, j)= (16)

For diffusing the similarity among K nearest neighbor
graph, we utilize the update strategy in LCDP [11] algorithm,
which is defined by update as follows

W, = PcW,PL (17)

where the initialization of our diffusion process is Wx. Let W
be the final result when the (17) convergences, where the first
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u values of the vector W'+ which is the (u+1)-th row of
matrix W corresponds to the affinity vector represented as £
between the query image y; and all top-layer representative
images after diffusing. The affinities between the rest of the
query images and top-layer representative images can be
obtained in the same manner. The affinity matrix of the (n-g)
query images and the u top-layer representative images is
represented as F1*1,

C. Similarity Transformation among Top-to-bottom
Hierarchical Structure

After obtaining the affinity matrix ! between the query
images and the top-layer representative images on the top
layer, we need to interpolate the affinity matrix F©*! to all
images in bottom layer along the top-to-bottom hierarchical
structure by utilizing interpolation matrix Q. The interpolation
formula is defined as follows

pletl 2 pbl(pboy (18)

where F¥) represents the affinity matrix between the query
images and the representative images in current layer, and F15-1]
represents the affinity matrix between the query images and
the representative images in the next layer. The affinity matrix
between the query images and the representative images of
each layer can be process in this strategy. So the affinity
matrix between the query images and all the images in the
images database can be obtained by

FlOl = pI(pll (pl=21Y . (plY (plo1)' (19)

D. Summary of HLCDP Algorithm

In this paper we propose a hierarchical local constrained
diffusion process algorithm. It constructs a hierarchical
structure for all images in database. Only the representative
images of top layer are used with query images to diffuse
similarity by LCDP algorithm. The affinity matrix obtained on
top layer is interpolated to the bottom layer and finally we
obtain the affinity matrix between query images and all the
images. The algorithm of the proposed method is summarized
as follows:

Algorithm: Hierarchical constrained Diffusion

Process (HLCDP)

Locally

Input: The image database X:={x,".x,%,....x,T} € R&*™
The query images XU={xgi17 xg:2",...,x,"} € RO
Output: Corresponding retrieved images of the query images

Stepl. Construct a k nearest neighbor graph G=(V1%, %) of
images X’, V1% represents all images of the images database,
W using (8) represents a similarity matrix among all images
in the images database ;
Step2. Build a bottom-to-top hierarchical structure of all
images in the images database ;

for s=1:n

(1) For the representative images V! of upper layer,

select the representative images V! of current layer using




(9), and the representative images V! are treated as

candidate images of the next layer ;

(2) Calculate the interpolation matrix Q! from (s-1)-th

layer to s-th layer using (10) ;

(3) Update the representative images V*1 corresponding

similarity matrix Wl using (11) ;

end for
Step3. Obtain the affinity matrix ! of query images and
representative images on top layer ;

for i=1:(n-g)

(1) Obtain the K nearest neighbor similarity matrix
among the top-layer representative images using (13) ;

(2) Add the query image x{x;€ XY) to the graph of top-
layer representative images, and construct a new weight
matrix W using (14) ;

(3) On the top layer, the similarly among query image
and representative images are diffused using (17) ;

end for
Step4. Obtain the final affinity matrix 1! between the query
images and all retrieved images in database by the
interpolation matrix Q;

for s=n:1

Fll - pll(gh1Y

end for
StepS. Output corresponding retrieved images of the query
images by ranking FI% where F{% correspond the ranking
scores of query image x{(x;€ XY).

E. Analysis of HLCDP Algorithm

As our proposed HLCDP algorithm, whose diffusion
process is based on a hierarchical structure, the major cost is
in the calculation of ranking scores between top-layer
representative images and query images and interpolating the
ranking scores to bottom layer. The time complexity of
calculating ranking scores of images on top layer is
O(NImt,) , where m is the feature dimension of each image,
t4 is the number of iterations, and M¢ is the number of the
top-layer representative images. The time complexity of
interpolating the ranking scores from s-th layer to (s-1)-th
layer is O(NUINI1) where N¥I(s=1,2,...,C) is the number of
the representative images on the s-th layer, and C denotes the
layer number. Thus, the time complexity of HLCDP algorithm
is O(Mm+NANC I NETNE21y - .o +NZINTT), For LCDP
algorithm, whose diffusion process is on the original all
images of the image database, the complexity is O((NM")?*mtp),
where 73 is the iteration number.

The images on the first layer are all retrieved images in
database. There is MCI<NE1<... <N, The time complexity
of HLCDP satisfies

0N e, + NICIyle=l 4 yle-lyle=2ly o ylIyl)

<< 0Nt , )+ (C—l)o((N[‘])zj < 0((1\/[1])2 sz) (20)

From above (20), our HLCDP algorithm can reduce the time
complexity effectively.
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IV. EXPERIMENTS

To demonstrate the validity of HLCDP, we perform
experiments on image retrieval in this section. In the
experiments, we mainly use two common evaluation criteria
which are precision rate and recall rate to evaluate the
performance of proposed method, and carry out LCDP [9],
SSO [10] and SD [11] as comparative methods. In this paper,
the MPEG?7 data set [17] and ImageCLEFmed2005 data set [19]
are used in image retrieval.

A. Experiments on MPEG7 data set

The MPEG7 data set contains 1,400 silhouette images
divided into 70 shape classes. There are 20 shapes in each
class. Every shape in the database is submitted as a query.
Retrieval accuracy is measured by bull’s eye score. Every
shape in the database is submitted as a query, and the top 40
shapes are reported for each shape.

In the experiments, we use the shape matching algorithm
in [21] to compute the pairwise distances between these
shapes. The size of nearest neighbors £ is set as 15. To make
the s-th layer’ representative images be approximately half of
the (s-1)-th layer’ images, we set strength threshold 6 to 0.99.
We set the layers of hierarchical structure to 4. As a result, the
1400 shape images are built into 4 hierarchical structure. The
number of images on each layer are 1400, 889, 574 and 384
from bottom-to-top respectively. On the top layer, different
size of K results different retrieval performance. To analyze
the influence of different K values on retrieval results, we set
K from 1 to 15 in the experiments. Bull’s eye scores of
different K on the MPEG?7 data set are shown in Figure 2.

As can be seen in Figure 2, HLCDP method’s retrieval
performance is sensitive to the size of K. From K=1, The
bull’s eye scores are improved with the increasing of K. From
K=10, the bull’s eye score is 100%. To obtain the best
retrieval performance, we fix K to 10 in the next experiments
on the MPEG7 data set.

The proposed HLCDP algorithm is compared with the
LCDP, SSO and SD to test validity of HLCDP. The results of
four methods’ bull’ eye scores are shown in Table 1. From the
Table 1, it can be seen HLCDP algorithm and LCDP
algorithm both have the best retrieval performance with 100%
bull’ eye score while the bull’ eye score of SSO and SD are
99.87% and 99.89% respectively on MPEG7 data set. In
contrast, the proposed HLCDP algorithm has better
performance. This shows that our proposed is effective.

HLCDP

Bullseye score(%)

0 5 10
Number of K

Figure 2. Bull’s eye scores of different K on the MPEG?7 data set



TABLE 1. COMPARISON OF RETRIEVAL PERFORMANCE ON MPEG7

Method Bull’s eye score(%)
AIR[23] 93.67
AIR+SSO 99.87
AIR+SD 99.89
AIR+LCDP 100
AIR+HLCDP 100

B. Experiments on ImageCLEFmed2005 data set

The above experiments are done on images that the query
images are inside the database. In this section, we do
experiments with the query images that are outside the
database on ImageCLEFmed2005 data set. In total, this data
set contains 57 categories, while there are only categories that
have over 110 images. We select randomly 110 images of
each category from these categories. The first 10 images of
each category are selected as the test set. The rest 1,500
images are used as the training set. Then the images of test set
and training set are scaled to a size of 128 * 64, and these
images are extracted the visual features by using histogram of
Oriented Gradient (HOG) [20]. The hierarchical structure of
the image is set to 4 layers. The strength threshold 8 for each
layer selecting representative images is set to 0.95. The value
k of k nearest neighbor graph constructed of all images on
bottom is set to 20.

In the experiments, the bottom layer of this structure is the
1500 training images. The 1500 training images are built into
4-layer hierarchical structure. The number of images on each
layer are 1500, 890, 564 and 377 from Dbottom-to-top
respectively. On the top layer, we diffuse the similarity
between 150 query images and 377 representative images by
using LCDP to obtain the affinities. The retrieval accuracy is
different when the value K of K nearest neighbor graph
changes. We set K to 10, 20, 30, and 40 to observe the
influence of different value K on retrieval precision.

As can be seen from Figure3, the HLCDP shows the best
retrieval precision when the value K is 20. In the next
experiments, we fixed K to 20. In diffusion process methods
existing, the number of iterations t also has an important effect
on the retrieval results. The number of iterations is too large or
small, which will lead to the decrease of the retrieval accuracy.
Figure4 shows the relationship between the number of
iterations and the precision of the proposed method and the
other three methods for comparing respectively when the
number of top retrieved samples is 50.

Figure4 shows the evolution of precision over different
range of ¢ in the retrieval task. Obviously, the HLCDP
method’ retrieval results is the best when the number of
iterations ¢ is 40. But LCDP algorithm, SD algorithm and SSO
algorithm diffuse similarity over large ¢. The retrieval
performances are increasing until the number of iterations of
these three methods are around 4000, 3000 and 600
respectively. Different from LCDP algorithm, SD algorithm
and SSO algorithm whose diffusion process are performed in
the original 1500 images and 150 query images, our HLCDP
algorithm builds the 1500 images into a four-layer hierarchical
structure in which there are 337 representative images on the
top layer. We only do diffusion process computation between
the 337 representative images and 150 query images. With the
images decreasing for diffusion process, the number of

295

iterations also reduced.
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Figure 3. The relationship between the precision and the number of top
retrieved samples when different K values are set (K=10,20,30,40)
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The proposed method is compared with the LCDP, SD and
SSO algorithms, and our experiments evaluate these four
methods from the precision and recall rate, which are shown
in Figure 4 and Figure 5. It can be seen from Figure 4 the
precision and recall rate of our method are lower than those of
the other three methods when the number of top retrieved
samples is 10. But with the increasing of the number of top
retrieved samples, the precision and recall rate of our method
(84.47% , 16.89%) are approximate to those of LCDP
(84.47% , 16.93%) and still lower than that of SD (88.33% ,
17.67%) and SSO (86.33% , 17.27%). When the number of
top retrieved samples is 30, the precision and recall rate of our
method (83.78% , 25.13%) are higher than that of LCDP
(82.18% , 24.65%) and SSO (82.84% , 24.85%), and slightly
lower than SD (84.6% , 25.38%). Since the number of top
retrieved samples is 40, the precision and recall rate of our
method (82.73% , 33.09%) are higher than the other three
methods which are LCDP (80.32% , 32.13%), SSO (80.1% ,
32.04%), SD (81.93% , 32.77%). With the number of top
retrieved samples increasing from 40 to 100, the retrieval
performance of our proposed is always better than other three
methods, as shown in Figure5 and Figure 6. These
experiments can verify the effectiveness and practicability of
HLCDP in image retrieval.
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Figure 5. Precision (left) and recall (right) of our proposed method and other
three methods on the ImageCLEFmed2005 data (K=20)
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Figure 6. Precision recall curve on the ImageCLEFmed2005 data (K=20)

V. CONCLUSION

In this paper we propose an image retrieval method based
on hierarchical locally constrained diffusion process, which is
derived from diffusion ranking on manifold with the use of
algebraic multigrid to solve the high matrix calculations and
the large amount of iterations computation in traditional
diffusion process methods. The proposed method builds all
retrieved images into a bottom-to-top hierarchical structure.
The affinities between query images and top-layer images are
obtained by LCDP, and then these affinities are interpolated to
the bottom layer. Finally we obtain the affinities between the
query images and all retrieved images in database. Our
HLCDP algorithm is compared with LCDP, SSO, SD on
MPEG7 data set and ImageCLEFmed2005 data set. The
experimental results demonstrate that our approach not only
have advantage on reducing computation cost but also
improve the retrieval accuracy. In reality, some images of the
images data set are labeled. For making global use of the
labeled information to improve retrieval performance further,
we consider to combine our proposed method with semi-
supervision learning in future.
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