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Abstract—To address the problem of high matrix computational 
cost in traditional diffusion process methods for large scale image 
retrieval, we propose a novel image retrieval algorithm based on 
hierarchical locally constrained diffusion process (HLCDP) by 
combining algebraic multigrid and diffusion ranking on 
manifold. In HLCDP, all retrieved images of the image database 
are built into a bottom-to-top hierarchical structure by selecting 
the representative images. Then the similarity among images on 
the top layer is diffused by using locally constrained diffusion 
process, and the affinities ( i.e. ranking scores) between query 
images and top-layer representative images are interpolated to 
all images on the bottom layer to obtain the affinities between the 
query images and all of the images in database. Our method is 
evaluated on image retrieval tasks by comparing with locally 
constrained diffusion process (LCDP), self-smoothing operator 
(SSO) and self-diffusion (SD). The experimental results on 
MPEG7 data set and ImageCLEFmed2005 data set demonstrate 
that the proposed method improves the retrieval performance 
and reduces the retrieval time consumption. 

Keywords—Hierarchical structure; algebraic multigrid; 
Manifold learning; Diffusion process 

I. INTRODUCTION  
With the rapid development of communication technology 

and multimedia technology, the amount of images rapidly 
increases. How to retrieve images the users needed quickly 
from large scale images has a very important research value. 
Due to the development of machine learning technology, 
manifold learning [1], [2], [3] has been widely used in content 
based image retrieval. In traditional image retrieval methods 
based manifold learning [4], [5], [6], [7], image matching in 
retrieval tasks is only to calculate the affinity values between 
pairwise images, and then rank the most similar images 
according to these values. These methods ignore the intrinsic 
manifold structure of all images. To improve these issues, 
researchers begin to focus the influence of all images in the 
image database on the affinities between pairwise images, and 
then propose diffusion process methods. 

The diffusion process methods make good use of the 
underlying manifold among all images in database to improve 
the retrieval performance. For example, label propagation [8] 
propagates the labeled information from labeled samples to 
unlabeled samples by using the diffusion process through the 
underlying manifold of the database. Yang [9] proposes a 
Locally Constrained Diffusion Process (LCDP). The LCDP 

algorithm replaces the connected graph of all images in 
database with K nearest neighbor graph to reduce the effect of 
noise. This method mainly considers the local structure of the 
manifold. There are also some diffusion methods focusing on 
the global structure. Jiang [10] proposes Self-Smoothing 
Operator (SSO), diffusing similarity of all images through the 
connected graph. Inspired by SSO, Wang [11] proposes a self-
Diffusion (SD) method that improves the diffusion 
performance by adding a unit matrix at each diffusion step. In 
general, diffusion methods use the Gaussian kernel function to 
compute the similarity among images and structure the 
connected graph, then diffuse similarity through the graph. 
However, there are some deformed graph structures. Wang 
[12] proposes the shortest path Propagation (SPP), which is 
constructed by the graph based on the shortest path between 
images. This method improves the retrieval performance 
markedly. But this method result in an increase in runtime, 
since each of the images to be retrieved needs to be computed 
separately. Compared with traditional image retrieval methods 
based manifold learning, these above diffusion process 
methods have improved the retrieval efficiency. But these 
diffusion process methods require a large number of iterative 
calculations to converge. These methods are improper for 
large scale images. 

In order to solve the problems of high matrix calculation 
and large amount of iterative computation of large-scale 
images, and to guarantee a better retrieval accuracy, we 
propose a novel image retrieval algorithm based on 
hierarchical locally constrained diffusion process which is 
derived from algebraic multigrid [13], [14], [15], [16] and 
diffusion ranking on manifold. Our algorithm builds all 
retrieved images in database into a bottom-to top hierarchical 
structure. Next, we use locally constrained diffusion process to 
obtain the ranking scores between query images and top-layer 
representative images. Finally, the ranking scores are 
interpolated to all retrieved images on the bottom layer. 
Compared with the locally constrained diffusion process 
(LCDP) algorithm, the hierarchical locally constrained 
diffusion process (HLCDP) algorithm proposed in this paper 
reduces the time consumption and improves the retrieval 
accuracy. 

II. RELATED WORK 
Most of the diffusion-based methods have a general 
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framework [17]. First, we generally calculate the similarity 
matrices of pairwise images, and make a graph structure. Each 
image is a node of the graph, and the weight of the edge 
connected two nodes represents the similarity of the two nodes. 
Then a transition matrix is defined to represent the probability 
from one node to another. And next a diffusion process update 
scheme is defined for diffusing the similarity among images 
by adapting the update step. Finally, we can acquire the 
affinity matrix of all images. 

Given a sample set of images X={x1
T,x2

T,...,xn
T}∈ Rn×m, 

where n is the number of sample images and m is feature 
dimension of each image. A connected graph G=(X,E) is 
constructed, where the nodes of the graph G represents the 
sample points and E represents the weights of the edges 
connecting the two nodes. The Gaussian kernel function is 
always used to compute the weights between two nodes E(i,j) 
in the graph:  

 
( ) ( ) ( ){ }22 2/,exp, σjidjiE −=  (1) 

 
where d2(i , j) represents the distance between image xi and 
image xj  and  is a parameter of Gaussian kernel function. 

The transition matrix commonly used in the diffusion 
process is a random walk transition matrix [8], [10], [11], 
which is defined as  

 
EDP 1−=  (2) 

 
where D is a diagonal matrix with D(i,i)= n

j=1E(i,j), and the 
transition matrix P is an non-symmetric matrix, and 

n
j=1P(i,j)=1. 

In Global Page Rank (GPR) [18], the diffusion process is 
defined as 

 
1t tf f P+ =  (3) 

 
where ft is the ranking score vector after t steps of diffusion 
process. On the basis of Global Page Rank, the label 
propagation (LP) [8] combines semi-supervised learning to 
extend the diffusion process in (3) by fixing the query 
information f(i)=1 after each diffusion step. Therefore, the 
diffusion process of LP algorithm includes two steps: 1) 
ft+1=ftP; 2) ft+1(i)=1 if xi  is a query image. 

In the above diffusion process methods, calculating the 
transition probability from one image to another, we 
commonly consider all the paths between these two images. 
The influence of the noisy nodes is ignored completely, which 
will affect the diffusion performance. In order to solve this 
problem, LCDP algorithm [9] replaces the original global 
connected graph G with a K nearest neighbor graph GK. 
According to the above graph G, we construct a K nearest 
neighbor graph GK(V,EK), whose weights of the edges are 
defined as follows 
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and then the transition matrix is defined as  
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Compared with the transition matrix P, the transition 

matrix PK can reduce the effect of noisy nodes effectively. 
However there is a problem that the range of intersection 
between KNN(xi) and KNN(xj) is too small to lead two similar 
nodes that have no transition path. For this problem, the LCDP 
algorithm defined the diffusion process in a novel manner. Its 
main idea is to connect the point xi and point xj by finding two 
neighbor points k in KNN(xi) and l in KNN(xj), the definition is 
as follows 
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Equation (6) is expressed as a matrix: 
 

( )TK
t
KKK

t
KK PPPP =+1

 (7) 
 
The LCDP algorithm decreases the influence of noisy 

nodes by replacing the original connected graph with the K 
nearest neighbor graph. This algorithm solves the problem that 
there is no transition path between two similar images xi and xj 
when KNN(xi) of image xi and KNN(xj) of image xj have no 
intersection. 

The existing diffusion process methods consume a large 
amount of time in the matrix operation, and require a large 
number of iterative calculations. With the increase of the size 
of the image database, the retrieval time will increase greatly. 
To address this problem, we propose a novel image retrieval 
method based on hierarchical locally constrained diffusion 
process (HLCDP). Our method combines the idea of algebraic 
multigrid and ranking scores on manifold learning. We 
construct the original retrieved images of database into a 
bottom-to-top hierarchical structure. Then we diffuse the 
similarity between query images and the top-layer 
representative images by exploiting locally constrained 
diffusion process method. Finally we interpolate to all images 
of bottom layer. Compared with the locally constrained 
diffusion process, the time consumption of our proposed 
method is reduced, and our method also improves the retrieval 
performance . 

III. HIERARCHICAL LOCALLY CONSTRAINED 
DIFFUSION PROCESS 

The diffusion process methods consider the influence of all 
the images in database on the similarity between the pairwise 
images. They exploit the intrinsic structure of the images 
database to improve the retrieval results. However, it takes a 
lot of time for matrix computation and computational iterative 
steps on the original images database directly. And a large 
number of iterations are required in the diffusion process. To 
improve the above problems, we propose a hierarchical locally 
constrained diffusion process (HLCDP) algorithm. This 
algorithm exploits the affinity values between pairwise images 
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Figure 1. Framework of the proposed method 

 
in the database to select the representative images and 
transforms the affinity values of the current layer to the next 
layer by interpolation matrix. Therefore, to transform the 
similarity among different layers, we construct the image 
database into a bottom-to-up hierarchical structure [14], [15], 
[16]. Then we use the LCDP [9] algorithm to obtain affinity 
matrix between query images and the representative images on 
the top layer. Last, the affinity matrix acquired on top layer is 
interpolated to the bottom layer and finally obtain the affinity 
matrix between query images and all the images. This method 
can reduce the time cost of high matrix computation and 
improve the retrieval performance. The framework of the 
proposed HLCDP is shown in Figure 1. 

A. Hierarchical Structure of Images 
To reduce the high computational cost, our method 

considers to construct the original one-layer structure of image 
database into hierarchical structure. First, we select the 
representative images from all of images on the current layer, 
which are regarded as candidate images on next layer. Next, 
the rest of the images can be selected in the same manner. 
This process forms a bottom-to-up pyramid, in which the most 
influential and representative images are at the top, and all 
images of database are at the bottom. 

Let X={x1
T,x2

T,...,xg
T,xg+1

T,...,xn
T}∈Rn×m be a sample set of 

images, where n is the number of sample images and m  is 
feature dimension of each image in the sample set. 
XL={x1

T,x2
T,...,xg

T} represents the g  retrieved images, and 
XU={xg+1

T,xg+2
T,...,xn

T} represents the (n-g) query images. First, 
we construct the k nearest neighbor graph G[0](V[0],W[0]), 
where V[0] represents the g images, and W[0] is the similarity 
matrix. The similarity matrix W[0]=[wij]g×g of all images in the 
database is determined as 
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where  is the parameter of the kernel function. 

The representative images are selected to construct a 
bottom-to-up hierarchical pyramid structure, in which the non-
representative are strongly connected with representative 
images. The definition of connection relationship between 
image xi and image xj is described as 

 
{ } 10, ≤<≥ ≠ θθ ikikij WMaxW  (9) 

 
where  is the strength threshold, reflecting the strength of the 
relationship between neighboring images. Only the 
representative images are selected to participate in the 
subsequent operation and the non-representative images are 
ignored, which can reduce the amount of calculation. 

The representative images selected of the next layer are 
represented as V[s] ∈ V[s-1] (s=1,2,...) , which are strongly 
connected with non-representative images of current layer. In 
each layer, we establish an interpolation matrix to transform 
the similarity among representative images in current layer to 
next layer instead of computing the similarity matrix directly 
by (8). The interpolation matrix Q[s-1] from (s-1)-th  layer to s-
th layer is defined as 
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As the representative images V[s] selected, the 

corresponding similarity matrix W[s] can be calculated by the 
interpolation matrix Q[s-1], the formula is as follows 

 
]1[]1[]1[][ −−−= ssTss QWQW  (11) 

 
Thus, according to this strategy described as (11), the 

similarity matrix among images of each layer can be 
calculated by the following formula 

 
[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ] [ ] [ ]121]0[]0[0121][ −−= sTTTTss QQQQWQQQQW  (12) 

 

B. Diffusion Process on Top Layer 
As the selected representative images (counted as u ) on 

top layer, if the distance among these images are calculated 
directly using the Gaussian kernel function, which may differ 
from the true distance, and is also double counting. Thus, we 
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use the similarity matrix W[s] which has computed by (12) as 
the similarity among the top-layer representative images. Due 
to the large difference among the top-layer representative 
images, the performance of diffusion process will be affected 
by noisy image nodes. So we use the LCDP algorithm to 
diffuse the similarity among query images and the 
representative images on the top layer, which replaces the 
global connection graph with the K nearest neighbor graph to 
reduce the effect of noisy image nodes. 

First, we directly use the similarity matrix W[s] among all 
top-layer images to construct a K nearest neighbor graph. The 
K nearest neighbor matrix is described as follows 
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Currently, the K nearest neighbor graph only contains the 

top-layer representative images, and reflects the relationship 
among the top-layer representative images. Considering the 
relationship between the query images and the top-layer 
representative images, we add the query images to the K 
nearest neighbor graph by exploiting the Euclidean distance to 
find the K nearest images of query images. For a query image 
yi(yi ∈ XU), the definition of its K nearest neighbor images 
{xj,j=1,...,K} that belong to the top-layer represented images 

[ ]sV  is as follows 
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where  is the parameter of the kernel function. To add the 
query image yi to the K nearest neighbor graph of top-layer 
representative images, we construct a new weight matrix 
defined as 
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where We is a u-dimension vector. 

The transition matrix PK(i,j), which represents the 
probability of diffusion from one image xi to another image xj, 
is defined  
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For diffusing the similarity among K nearest neighbor 

graph, we utilize the update strategy in LCDP [11] algorithm, 
which is defined by update as follows 

 
T
KtKt PWPW =+1  (17) 

 
where the initialization of our diffusion process is WK. Let W* 
be the final result when the (17) convergences, where the first 

u values of the vector W*
u+1 which is the (u+1)-th row of 

matrix W* corresponds to the affinity vector represented as Fi
[s] 

between the query image yi and all top-layer representative 
images after diffusing. The affinities between the rest of the 
query images and top-layer representative images can be 
obtained in the same manner. The affinity matrix of the (n-g) 
query images and the u top-layer representative images is 
represented as F[s]. 

C. Similarity Transformation among Top-to-bottom 
Hierarchical Structure 
After obtaining the affinity matrix F[s] between the query 

images and the top-layer representative images on the top 
layer, we need to interpolate the affinity matrix F[s] to all 
images in bottom layer along the top-to-bottom hierarchical 
structure by utilizing interpolation matrix Q. The interpolation 
formula is defined as follows 

 
[ ] [ ] [ ]( )Tsss QFF 11 −− =  (18) 

 
where F[s] represents the affinity matrix between the query 
images and the representative images in current layer, and F[s-1] 
represents the affinity matrix between the query images and 
the representative images in the next layer. The affinity matrix 
between the query images and the representative images of 
each layer can be process in this strategy. So the affinity 
matrix between the query images and all the images in the 
images database can be obtained by 

 
[ ] [ ] [ ]( ) [ ]( ) [ ]( ) [ ]( )TTTsTss PPPPFF 01210 −−=  (19) 

 

D. Summary of HLCDP Algorithm 
In this paper we propose a hierarchical local constrained 

diffusion process algorithm. It constructs a hierarchical 
structure for all images in database. Only the representative 
images of top layer are used with query images to diffuse 
similarity by LCDP algorithm. The affinity matrix obtained on 
top layer is interpolated to the bottom layer and finally we 
obtain the affinity matrix between query images and all the 
images. The algorithm of the proposed method is summarized 
as follows:  

 
Algorithm: Hierarchical Locally constrained Diffusion 
Process (HLCDP)

Input: The image database XL={x1
T,x2

T,...,xg
T}∈Rg×m 

            The query images XU={xg+1
T,xg+2

T,...,xn
T}∈R(n-g)×m 

Output: Corresponding retrieved images of the query images 
 
Step1. Construct a k nearest neighbor graph G[0]=(V[0],W[0]) of 
images XL, V[0] represents all images of the images database, 
W[0] using (8) represents a similarity matrix among all images 
in the images database ; 
Step2. Build a bottom-to-top hierarchical structure of all 
images in the images database ;  

for s=1:n 
(1) For the representative images V[s-1] of upper layer
select the representative images V[s] of current layer using 
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(9), and the representative images V[s] are treated as 
candidate images of the next layer ; 
(2) Calculate the interpolation matrix Q[s-1] from (s-1)-th 
layer to s-th layer using (10) ; 
(3) Update the representative images V[s] corresponding 
similarity matrix W[s] using (11) ; 
end for  

Step3. Obtain the affinity matrix F[s] of query images and 
representative images on top layer ; 

for i=1:(n-g) 
(1) Obtain the K nearest neighbor similarity matrix 

among the top-layer representative images using (13) ; 
(2) Add the query image xi(xi∈XU)  to the graph of top-

layer representative images, and construct a new weight 
matrix WK using (14) ; 

(3) On the top layer, the similarly among query image 
and representative images are diffused using (17) ; 

end for  
Step4. Obtain the final affinity matrix F[0] between the query 
images and all retrieved images in database by the 
interpolation matrix Q; 

for s=n:1 
[ ] [ ] [ ]( )Tsss QFF =−1  

end for 
Step5. Output corresponding retrieved images of the query 
images by ranking F[0], where Fi

[0] correspond the ranking 
scores of query image xi(xi∈XU). 
 

 

E. Analysis of HLCDP Algorithm 
As our proposed HLCDP algorithm, whose diffusion 

process is based on a hierarchical structure, the major cost is 
in the calculation of ranking scores between top-layer 
representative images and query images and interpolating the 
ranking scores to bottom layer. The time complexity of 
calculating ranking scores of images on top layer is 
O(N[C]mtA) , where m is the feature dimension of each image, 
tA is the number of iterations, and N[C] is the number of the 
top-layer representative images. The time complexity of 
interpolating the ranking scores from s-th layer to (s-1)-th 
layer is O(N[s]N[s-1]), where N[s](s=1,2,...,C) is the number of 
the representative images on the s-th layer, and C denotes the 
layer number. Thus, the time complexity of HLCDP algorithm 
is O(N[C]mt+N[C]N[C-1]+N[C-1]N[C-2]+ +N[2]N[1]). For LCDP 
algorithm, whose diffusion process is on the original all 
images of the image database, the complexity is O((N[1])2mtB), 
where tB is the iteration number. 

The images on the first layer are all retrieved images in 
database. There is N[C]<N[C-1]< <N[1]. The time complexity 
of HLCDP satisfies 
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(20) 

From above (20), our HLCDP algorithm can reduce the time 
complexity effectively. 

IV. EXPERIMENTS 
To demonstrate the validity of HLCDP, we perform 

experiments on image retrieval in this section. In the 
experiments, we mainly use two common evaluation criteria 
which are precision rate and recall rate to evaluate the 
performance of proposed method, and carry out LCDP [9], 
SSO [10] and SD [11] as comparative methods. In this paper, 
the MPEG7 data set [17] and ImageCLEFmed2005 data set [19] 
are used in image retrieval. 

A. Experiments on MPEG7 data set 
The MPEG7 data set contains 1,400 silhouette images 

divided into 70 shape classes. There are 20 shapes in each 
class. Every shape in the database is submitted as a query. 
Retrieval accuracy is measured by bull’s eye score. Every 
shape in the database is submitted as a query, and the top 40 
shapes are reported for each shape. 

In the experiments, we use the shape matching algorithm 
in [21] to compute the pairwise distances between these 
shapes. The size of nearest neighbors k is set as 15. To make 
the s-th layer’ representative images be approximately half of 
the (s-1)-th layer’ images, we set strength threshold  to 0.99. 
We set the layers of hierarchical structure to 4. As a result, the 
1400 shape images are built into 4 hierarchical structure. The 
number of images on each layer are 1400, 889, 574 and 384 
from bottom-to-top respectively. On the top layer, different 
size of K results different retrieval performance. To analyze 
the influence of different K values on retrieval results, we set 
K from 1 to 15 in the experiments. Bull’s eye scores of 
different K on the MPEG7 data set are shown in Figure 2. 

As can be seen in Figure 2, HLCDP method’s retrieval 
performance is sensitive to the size of K. From K=1, The 
bull’s eye scores are improved with the increasing of K. From 
K=10, the bull’s eye score is 100%. To obtain the best 
retrieval performance, we fix K to 10 in the next experiments 
on the MPEG7 data set. 

The proposed HLCDP algorithm is compared with the 
LCDP, SSO and SD to test validity of HLCDP. The results of 
four methods’ bull’ eye scores are shown in Table 1. From the 
Table 1, it can be seen HLCDP algorithm and LCDP 
algorithm both have the best retrieval performance with 100% 
bull’ eye score while the bull’ eye score of SSO and SD are 
99.87% and 99.89% respectively on MPEG7 data set. In 
contrast, the proposed HLCDP algorithm has better 
performance. This shows that our proposed is effective. 

 
 

0 5 10 15
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Number of K

B
ul

ls
ey

e 
sc

or
e(

%
)

 

 

HLCDP

 
Figure 2. Bull’s eye scores of different K on the MPEG7 data set 
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TABLE 1. COMPARISON OF RETRIEVAL PERFORMANCE ON MPEG7 

Method Bull’s eye score(%)
AIR[23] 93.67 

AIR+SSO 99.87 
AIR+SD 99.89 

AIR+LCDP 100 
AIR+HLCDP 100 

 

B. Experiments on ImageCLEFmed2005 data set 
The above experiments are done on images that the query 

images are inside the database. In this section, we do 
experiments with the query images that are outside the 
database on ImageCLEFmed2005 data set. In total, this data 
set contains 57 categories, while there are only categories that 
have over 110 images. We select randomly 110 images of 
each category from these categories. The first 10 images of 
each category are selected as the test set. The rest 1,500 
images are used as the training set. Then the images of test set 
and training set are scaled to a size of 128 * 64, and these 
images are extracted the visual features by using histogram of 
Oriented Gradient (HOG) [20]. The hierarchical structure of 
the image is set to 4 layers. The strength threshold  for each 
layer selecting representative images is set to 0.95. The value 
k of k nearest neighbor graph constructed of all images on 
bottom is set to 20. 

In the experiments, the bottom layer of this structure is the 
1500 training images. The 1500 training images are built into 
4-layer hierarchical structure. The number of images on each 
layer are 1500, 890, 564 and 377 from bottom-to-top 
respectively. On the top layer, we diffuse the similarity 
between 150 query images and 377 representative images by 
using LCDP to obtain the affinities. The retrieval accuracy is 
different when the value K of K nearest neighbor graph 
changes. We set K to 10, 20, 30, and 40 to observe the 
influence of different value K on retrieval precision. 

As can be seen from Figure3, the HLCDP shows the best 
retrieval precision when the value K is 20. In the next 
experiments, we fixed K to 20. In diffusion process methods 
existing, the number of iterations t also has an important effect 
on the retrieval results. The number of iterations is too large or 
small, which will lead to the decrease of the retrieval accuracy. 
Figure4 shows the relationship between the number of 
iterations and the precision of the proposed method and the 
other three methods for comparing respectively when the 
number of top retrieved samples is 50. 

Figure4 shows the evolution of precision over different 
range of t in the retrieval task. Obviously, the HLCDP 
method’ retrieval results is the best when the number of 
iterations t is 40. But LCDP algorithm, SD algorithm and SSO 
algorithm diffuse similarity over large t. The retrieval 
performances are increasing until the number of iterations of 
these three methods are around 4000, 3000 and 600 
respectively. Different from LCDP algorithm, SD algorithm 
and SSO algorithm whose diffusion process are performed in 
the original 1500 images and 150 query images, our HLCDP 
algorithm builds the 1500 images into a four-layer hierarchical 
structure in which there are 337 representative images on the 
top layer. We only do diffusion process computation between 
the 337 representative images and 150 query images. With the 
images decreasing for diffusion process, the number of 

iterations also reduced. 

Figure 3. The relationship between the precision and the number of top 
retrieved samples when different K values are set (K=10,20,30,40) 
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Figure 4. When the number of top retrieved samples is 50, precision of four 
methods over t 
 

The proposed method is compared with the LCDP, SD and 
SSO algorithms, and our experiments evaluate these four 
methods from the precision and recall rate, which are shown 
in Figure 4 and Figure 5. It can be seen from Figure 4 the 
precision and recall rate of our method are lower than those of 
the other three methods when the number of top retrieved 
samples is 10. But with the increasing of the number of top 
retrieved samples, the precision and recall rate of our method 
(84.47% , 16.89%) are approximate to those of LCDP 
(84.47% , 16.93%) and still lower than that of SD (88.33% , 
17.67%) and SSO (86.33% , 17.27%). When the number of 
top retrieved samples is 30, the precision and recall rate of our 
method (83.78% , 25.13%) are higher than that of LCDP 
(82.18% , 24.65%) and SSO (82.84% , 24.85%), and slightly 
lower than SD (84.6% , 25.38%). Since the number of top 
retrieved samples is 40, the precision and recall rate of our 
method (82.73% , 33.09%) are higher than the other three 
methods which are LCDP (80.32% , 32.13%), SSO (80.1% , 
32.04%), SD (81.93% , 32.77%). With the number of top 
retrieved samples increasing from 40 to 100, the retrieval 
performance of our proposed is always better than other three 
methods, as shown in Figure5 and Figure 6. These 
experiments can verify the effectiveness and practicability  of 
HLCDP in image retrieval. 
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Figure 5. Precision (left) and recall (right) of our proposed method and other 
three methods on the ImageCLEFmed2005 data (K=20) 
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Figure 6. Precision recall curve on the ImageCLEFmed2005 data (K=20) 

 

V. CONCLUSION 
In this paper we propose an image retrieval method based 

on hierarchical locally constrained diffusion process, which is 
derived from diffusion ranking on manifold with the use of 
algebraic multigrid to solve the high matrix calculations and 
the large amount of iterations computation in traditional 
diffusion process methods. The proposed method builds all 
retrieved images into a bottom-to-top hierarchical structure. 
The affinities between query images and top-layer images are 
obtained by LCDP, and then these affinities are interpolated to 
the bottom layer. Finally we obtain the affinities between the 
query images and all retrieved images in database. Our 
HLCDP algorithm is compared with LCDP, SSO, SD on 
MPEG7 data set and ImageCLEFmed2005 data set. The 
experimental results demonstrate that our approach not only 
have advantage on reducing computation cost but also 
improve the retrieval accuracy. In reality, some images of the 
images data set are labeled. For making global use of the 
labeled information to improve retrieval performance further, 
we consider to combine our proposed method with semi-
supervision learning in future. 
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