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Abstract—Large quantities of mixed-type data, containing
categorical, ordinal and numerical attributes, have commonly
existed in real world. In this paper, a mixed-type data clustering
method, which could deal with the uncertain situation that a
cluster may not have a definite cluster boundary, is proposed
inspired by the theory of three-way decisions. Many existing
studies represent a cluster with a single set based on a two-way
strategy, which does not adequately show the fact that a cluster
may not have a well-defined cluster boundary. In this paper, we
represent a cluster with a pair of sets, i.e., the core region and
fringe region. The three-way clustering is suitable for dealing
with uncertainty because it shows intuitively which objects
are fringe to the cluster. Then, new measurements of distance
between mixed-type data are proposed for different types of
attribute values by means of a weighted tree structure. The
measurement considers the semantic of attributes, the number
of attribute values and the occurrence frequency of attribute
values. Finally, a three-way clustering algorithm for mixed-
type data is proposed. The experimental results show that the
proposed distance measure of mixed-type data is reasonable
and effective, the proposed algorithm is in a better performance
at the accuracy and the average adjusted rand index than the
compared algorithms in most cases.

Keywords-cluster; mixed-type data; three-way decisions; un-
certainty;

I. INTRODUCTION

Cluster analysis is one of the most important techniques
used in data mining and machine learning for grouping, so
that objects in the same group are more similar to each
other than to those outside the group [?], [?]. The data
is characterized by numerical attributes, or characterized
by categorical attributes. Even in some cases, there exists
ordinal relationship between attribute values.

In order to solve the problem of mixed-type data clus-
tering, Huang [?] proposed the famous K-prototypes al-
gorithm that combined K-means with K-modes algorithm.
Then, some derivations of K-prototypes algorithm have been
presented [?], [?], [?]. Pathak and Pal [?] used collaborative
clustering method to find the cluster substructures that are
common to both categorical and numerical part of the mixed
data, then obtained the final clustering result. Chen and
He [?] thought that there are three types of mixed-type
data such as the numerical dominant data, the categorical
dominant data and the balanced data, and they designed the
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corresponding measurement function. Lam et al. [?] used
the fuzzy adaptive resonance theory to cluster the mixed-
type data with categorical and numeric features. Aziz [?]
proposed a new dissimilarity measure based on eigenstruc-
ture of the covariance matrix and robust principal component
score to achieve mixed data clustering.

Therefore, for further improving the similarity measure of
mixed-type data containing categorical data and numerical
data as well as ordinal data, Hsu et al. [?], [?] constructed
different tree structures for categorical data and ordinal data,
and the hierarchical distance between attribute values in
the tree structure is used to calculate the distance of data.
However, it is not a convincing method to assign the weights
randomly in advance. Aiming at computing the categorical
data, more and more scholars [?], [?], [?] think that the
number and the occurrence frequency of attribute values
have important influence on similarity measure. Therefore,
it is very important to find an effective measurement which
considers semantics of attribute values and the characteris-
tics of data sets.

On the other hand, many existing clustering approaches
represent a cluster by a single set based on a two-way strate-
gy. That is, one object belongs to a cluster or not belong to a
cluster. However, in the actual production, such as in pattern
recognition system [?], there is not only a situation that one
object definitely belongs to or not belong to a cluster, but
also a situation that one object might or might not belong
to a cluster. The traditional crisp two-way representation
does not adequately show the fact that a cluster may not
have a well-defined cluster boundary. Thus, we proposed
the framework of three-way clustering [?], [?], [?] inspired
by the three-way decisions, which is introduced by Professor
Yao [?], [?]. Three-way decisions extend binary-decisions in
order to overcome some drawbacks of binary-decisions. The
basic ideas of three-way decisions have been widely used
in real-world decision-making problems, such as clustering
analysis, decision making, email spam filtering, three-way
investment decisions and many others [?].

In the three-way clustering, a cluster is represented by a
pair of sets which divide a cluster into three regions, i.e.,
the core region, fringe region and trivial region, instead of
two regions produced by a single set as the other existing
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methods. Objects in the core region are typical elements of
the cluster, objects in the fringe region are fringe elements
of the cluster, and objects in the trivial region do not
belong to the cluster definitely. A cluster is therefore more
realistically characterized by a set of core objects and a set
of boundary objects. The three-way representation intuitively
shows which objects are fringe to the cluster. Obviously, the
classic two-way representation is a special case of three-way
representation when the fringe region is empty.

In this paper, for different types of attribute values,
we construct different measurement of distance between
objects, which is based on a weighted tree structure through
considering the influence of the semantics of attribute values,
the number of attribute values and the occurrence frequency
of the attribute values. Then, a novel three-way clustering
algorithm for mixed-type data is proposed.

The remainder of this paper is organized as follows.
Section ?? introduces some basic definitions such as mixed-
type data and the representation of three-way clustering.
Section ?? proposes a novel three-way decision clustering
framework for mixed-type data. Section ?? reports the result-
s of comparative experiments and conclusions are provided
in Section ??.

II. PRELIMINARIES

A. Mixed-type data

Let us consider a universe U = {x1, -+ ,Xn, " ,XN}
with N objects. A D-dimensional data point x,, compris-
es P categorical attributes, () numerical attributes and T’

ordinal attributes, where P + Q + T = D, ie., x, =
(xL,- @l aPHl ... gP4Q pPHQ+1 . Dy
{x,lwxfl,--- ,al } is a subset of categorical attributes

without sequence meaning, in other words, there is no
order or rank relationship between these attribute values.
The attribute values represent a certain class, coding, s-
tate, etc. {xl T, 2l 2, .- 2P+ Q} represents a subset of
ordinal attributes which attribute values have meaningful
order or rank. The attribute values are representative by the
sequence of words, symbols, numbers, etc. For example, the
attribute values have the ordinal meaning in the elements
of the set {Very bad, Bad, Medium,Good, Very good}.

gl TQrL g Pret2 o PR s a set of numerical-
valued attributes.

B. Representation of three-way clustering

The purpose of clustering is to divide objects in a universe
into some clusters. If there are K clusters, the family of
clusters, C, is represented as C = {Cy, -+ ,C, -+ ,Ck}.
In many existing clustering approaches, a cluster is repre-
sented by a single set, where the objects in the set belong
to this cluster definitely and the objects not in the set do
not belong to this cluster definitely. This is a typical result
of two-way decisions. However, this representation is not
adequately show the fact that a cluster may not have a
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well-defined cluster boundary, especially in real applications.
Thus, the representation of three-way clustering using a pair
of sets to represent a cluster is more appropriate than the
use of a crisp set, which also directly leads to three-way
decisions based interpretation of clustering.

In contrast to the general crisp representation of a cluster,
we represent a three-way cluster C}, as a pair of sets:

Cr = (Co(Cy), Fr (C)), (D
where Co(Cy) C U and Fr(Cy) C U. let Tr(Cy) =
U - Co(Cy) — Fr(Cy).

If Fr(Cy) = 0, the representation of Cj, in Eq. (??) turns

into C, = Co(Cy); it is a single set and Tr(Cy) = U —
Co(Cy). This is a representation of two-way decisions. In
other words, the representation of a single set is a special
case of the representation of three-way cluster.

Co (Cy), Fr(Cy), Tr (C) naturally form the three re-
gions of a cluster as core region, fringe region and trivial
region respectively. Objects in the core region of a cluster
definitely belong to the cluster, objects in the trivial region
of a cluster definitely do not belong to the cluster C, and
objects in the fringe region of a cluster might or might not
belong to the cluster.

These subsets have the following properties.

CO(Ck) NFEr (Ck) =0
Co(Ce) NTr (Cy) = ¢,
Fr (C}C) NTr (Ck) =¢

Furthermore, according to Formula (??), we know that
it is enough to represent a cluster expediently by the core
region and the fringe region.

In another way, we can define a cluster by the following
properties:

(I)Co (Cy) # 6,0 < k < K,
(i7)Co (Cy) U Fr (Ci) UTr (Cy) =

Property (i) implies that a cluster cannot be empty. This
makes sure that a cluster is physically meaningful. And
property (ii) states that any object in U must definitely
belong to or might belong to a cluster, which ensures that
every object is properly clustered.

With respect to the family of clusters, C, we have
the following family of clusters formulated by three-way
decisions as:

C={(Co(Cy),Fr(Cy)),---
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,(Co(Ck),Fr(Ck))}.
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As long as one condition is satisfied, it is called an overlap-
ping (or soft) clustering; otherwise, it is a hard clustering.
As long as one condition from Eq. (??) is satisfied, there
must exist at least one object belonging to more than one
cluster.

III. THE PROPOSED METHOD

In this section, we first introduce the measurement of
distance between objects. The different weighted tree are
utilized to represent and measure the distance between
categorical values, ordinal values and numerical values,
respectively. Then, a novel three-way clustering algorithm
for mixed-type data is presented.

A. The measurement of distance

1) Categorical values: The proposed distance measure-
ment borrows the representation of distance hierarchy [?].
Actually, the distance hierarchy structure is a kind of tree in
topological structure. The tree consists of nodes, edges, and
weights as shown in Figure ??. We need to construct a tree
for every categorical attribute. The leaf nodes are composed
of the attribute values. The distance between any two cate-
gorical values is the distance between the two leaf nodes in
the weighted tree. The computing process concludes three
steps: 1) to establish the topological structure according to
the semantic of attribute values; 2) to weight the edges
according to the number of attribute values, the occurrence
frequency of attribute values and the depths of the node; and
3) to compute the distance between leaf nodes on the tree.

Let Cat? be the d-th categorical attribute in the original
data set U, and V(Cat?) be the domain of Cat?. There
are three principles to construct a weighted tree. First, one
leaf node represents one attribute value of Cat?; that is to
say, the number of leaf nodes is equal to the cardinality of
V(Cat?). Second, if the hierarchy of semantic is deeper, the
corresponding subtree is closer to the right side. Third, on
the same hierarchy, higher the frequency of values is, the
corresponding node is closer to the right side.

To explain the tree, we illustrate an example here. There
is a categorical attribute, i.e., Drink, and it has 8 attribute
values, that is V(Drink) = {boiled water, pepsi, coke, sprite,
strawberry juice, orange juice, green apple juice, red apple
juice}. The semantic of values tell us that {pepsi, coke,
sprite} belong to “carbonated” drinks, {strawberry juice,
orange juice, green apple juice, red apple juice} belong to
“juice”, and {green apple juice, red apple juice} are “apple
juice”. Then, we get the topological structure as shown in
Figure ??. The root® is Drink, the internal nodes are the
categorical classed and the leaf nodes are the eight values.
The digit under of the leaf nodes is the frequency of the
value in the attribute column. For example, the value “red
apple” appears 40 times.
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Figure 1. The weighted tree of categorical values

Let nodel! represents the i-th node at the h lev-
el. For example, in Figure ??, node? means the node
juice. Let child (nodel’) be a set of child nodes of
nodeﬁl, and child, (node?) means its the j-th child node,
’child (node?)’ is the number of child nodes of node!. For
example, |child (nodeg)’ = 3, it means node juice has
three child nodes.

F. Noorbehbahani [?] pointed out that for any categorical
attribute, the more the number of attribute values is, the
smaller the distance between attribute values is. For example,
if a categorical attribute is supposed to have a domain size
of 2, the distance of two unmatched attribute values will be
greater than the case having domain size of 20. We use the
weight on the edge of the parent node and the child node to
represent the distance between them. Then, the number of
children reflects the values of weight. Obviously, the more
the number of child nodes is, the smaller the weight between
parent node and the child node is.

Thus, derived from [?], we first define the weight function
f(nodel) as follows. The function compute the weight
coefficient in view of influence by the number of children
on an internal node (nodel!).

1, x§91
f(nodel) = 1—&(z—61), 0, <z <6y
1—51(92—91)—52(.@—92), Z‘>€(26)

where z = ’child (nodef) , 61,8 €(0,1), 01,00 € N+.

According to Eq. (??), we know that with the growth of
the number of child nodes, the weight coefficient between
parent node and child node is getting smaller.

Meanwhile, according to the conclusions in [?], [?], [?],
we know that for categorical attribute Cat®, the partition
ability for clustering is affected by the occurrence frequency
of its attribute values in the data set.

Let fr (node?) represent its occurrence frequency in a
data set. When it is a leaf node, fr (nodef) is the frequency
of the value. When it is an internal node, fr (nodef) is




the sum of the occurrence frequency of its all children.
In other words, fr (node?) is the occurrence frequency in
the subtree whose root is the node node?. For example,
in Figure ??, fr (carbonated) = fr (pepsi) + fr (coke) +
fr (sprite)=100.

On the other hand, we find that the weight between parent
node and child node is relevant to the levels (depths) where
they are in the tree. For example, in Figure ??, although
“strawberry juice”, “orange juice”, “green apple juice”, “red
apple juice” are all belong to “juice”, the distance between
“strawberry juice” and “orange juice” should be bigger than
the distance between “green apple juice” and “red apple
juice”. Because “green apple juice” and “red apple juice”
are both belong to “apple juice” while “strawberry juice”
and “orange juice” are just belong to “juice”. In other words,
“green apple juice” and “red apple juice” are more similar
than “strawberry juice” and “orange juice”.

Based on the above analysis, the influence factors in
weight between parent node and its child node contain the
number of child nodes, the frequency and the level of nodes.

Let w(nodel, childj(nodel)) be the weight between
node!" and its j-th child node child; (nodel"). It is calcu-
lated as follows.
fr(childj (nodez‘))

fr(node?)
X

f (nodef) .

w(nodel', child;(nodel)) = .
@)
where 7 € N+.

The role of 7 is to make sure that the distance between
leaf nodes in deeper level is smaller. In Figure ??, according
to Eq. (2?), let §; = 3, n = 2. Thus the weight between
“apple juice” and “red apple juice” could be calculated as:

w(apple juice,red apple juice)

.. fr(red apple juice)
_ fapple juice) - T tappte juicer — _ 158 _ oo
_ 3 =3 U .

In the same way, other weights could be calculated as shown
in Figure 2?.

Let dist(Cat?,root?) be the distance between Caté and
the root node, so the value of dist(Catl,root?) is the
sum of weights on edges from Cat? to the root node. For
example, in Figure ??, dist(coke, drink) = 0.0754+0.333 =
0.408.

Let Catd and Catl be two different attribute values
which are the leaf nodes of the tree. Let CAN (Catﬁ, Catff)
be the closest ancestor node for Cat?, Catd. For ex-
ample, in Figure ??, C AN (pepsi, coke) carbonated,
CAN (boiled water, orange) = Drink.

Let Cdist(Catl, Catd) be the distance between Catd
and Catf], then we have the following formula:

Cdist(Cat?,Cat?) =
’dist(C’atﬁ, root?) + dist(Cat,root?)
—2 x dist(CAN (Catﬁ, Cat?) ,TOOtd)|

®)
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For instance, in Figure ??, the distance between ‘“‘straw-
berry juice” and “red apple juice” is calculated as:

Cdist (strawberry juice,red apple juice)
= |dist (strawberry juice, Drink) +
dist (red apple juice, Drink) —
2 x dist (juice, Drink)|
= [(0.5 + 0.067) + (0.5 + 0.1 + 0.074) — 2 x 0.5| = 0.241

In the same way, we can compute the distance between
the other categorical attribute values according to Eq. ??.

2) Ordinal values: The measurement for ordinal attribute
values is similar to categorical attributes, which is also based
on a weighted tree structure. The distance between two
attribute values is the length of the weighted path linked the
two values. The computing process concludes three similar
steps as used in the measurement of categorical attributes.

Let Ord® be the d-th ordinal attribute, its attribute values
have meaning of order or rank. For example, let us observe
an ordinal attribute, degree, its attribute values conclude
{Very Bad, Bad, No Comment, Good, Very Good}. Set y
be the size of the domain of Ord?. In the example, y = 5.
According to the semantic of attribute values, the weighted
tree could be constructed as shown in Figure ?? and there
are five nodes. That is to say, the root of the tree is “No
Comment”, the left branch is about the negative rank, the
right branch is the positive rank. The smaller rank one has
the smaller depth. In fact, the structure also can be seen as
a line, which is a kind of special tree.

No comment

Bad Good

03 03

Very bad Very good
- +
Figure 2. The tree structure of ordinal values

Let w (Ordd) be the weight function between two adja-
cent nodes in the tree. Inspired by Eq. ??, the w (Ordd)
could be defined as:

1, yfﬂl
w (Ord?) = 1= (y—th), 91 <y < s
1=Ci (P2 —91) = G (y —D2), y>(199)2

where (1,(s € (0, ].), 91,99 € N+.

In fact, the weight between any two adjacent nodes is
same by Eq. ??. The main reason to regard the above three
situations is to harmonize the proportion among different
type values. For example, in Figure ??, if ¢; = 3,92 = 10



and (; = 0.35, the weight between two adjacent nodes is
0.3.

Let Ord? and Ord? be two different attribute values in
the tree. Let LM N be the left-most node. For example, in
Figure ??, LM N? = Very Bad. Let dist(Ord%, LM N?)
be the distance between Orde and LM N9. The val-
ue of dist(Ord?, LM N?) is the sum of weights on
edges from Orde to LM N9, For example, in Figure ?2,
dist(Good, LM N®) = dist(Good, Very Bad) = 0.9.

Let Odist(Ord?, Ord?) be the distance between Ordd
and Ord?. Tt is calculated by the following formula:

Odist(Ord?, Ord?) =
|dist(Orde, LM N®) — dist(Ord?®

v

LNy, 19

In the example, we have the distance between Good and
Bad as:

Odist (Good, Bad) =
|dist(Good, Very Bad) — dist(Bad, Very Bad)|
= 0.9 — 0.3| = 0.6.

3) Numerical values: In many cases, the distance be-
tween any two categorical or ordinal attributes is relatively
small to the distance between numerical values. Therefore,
the difference produced by categorical and ordinal attributes
will be eliminate if the numerical attribute values are too
large. In order to decrease the influence, it is necessary to
carry out normalization for numerical attributes.

Let Num? be the d-th numerical attribute, and Num?
is the ¢-th attribute value. p represents the mean of its
attribute values, § is the standard deviation. The Z-score
normalization function is as follow:

Num — p

5 an

Fruma (Numf) =

Let Ndist(Numl, Num?) be the distance between
Num? and Numd. Then, it is computed by the following
formula:

Ndist(Num?, Num?)

12
= |f’nu'md (NUmZ) - f’ﬂumd (Numg” ’ ()

4) Distance between objects: For any object x, in
a universe U, where {z,--- zl}, {af+1 ... 2P+Q},
{alT@+L ... pP+QFTY represent the categorical attribute
values, ordinal attribute values, numerical attribute values
of x, respectively. P, Q and T represent the number of
different attribute types.

Let Dist (x;,x;) be the distance between objects x; and
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x;. We have the measurement of distance as follows.

P
Dist (xi,x;) = Z Cdist? (zf,mg))
p=1

Q
+ ZOdist2 (a:f+q,xf+q) (13)
q=1
T
+ E:Ndist2 (Q:f+Q+t,mf+Q+t).
t=1

B. The three-way clustering algorithm

In this subsection, we will adopt an evaluation function-
based three-way cluster model [?], which produces three
regions by using an evaluation function and a pair of
thresholds on the values of the evaluation function. Suppose
there are a pair of thresholds («, 8) and o > (. Although
evaluations based on a total order are restrictive, the model
based on two thresholds has a computational advantage.
One can obtain the three regions by simply comparing the
evaluation value with a pair of thresholds. Based on an
evaluation function v(x), we get the following three-way
decision rules:

Co(Cy) = {xeUp(x) > a},
Fr(Cy) ={xeUp<u(x)<al, (14)
Tr(Cy) ={xeU(x) <}

In fact, the evaluation function v(x) can be a risk decision
function, a similarity function, a distance function and so
on. In other words, the evaluation function will be specified
accordingly when an algorithm is devised.

In this paper, a three-way clustering algorithm for mixed-
type data (shorted by TWD-MD) is proposed and depicted
in Algorithm ??. The basic idea of the algorithm is to
find the center of K clusters first. In fact, there is a
bunch of clustering approaches to determine the center. In
our experiments, we adopt the outstanding density peaks
clustering method [?]. Then, the left work is to decide the
left objects where to go. Line 3 to Line 8 describe how to
decide the left objects to the core region or fringe region of
corresponding cluster.

In order to make decisions, we find the neighbors
Xi_Neighbor Within the neighbor radius Ry, of the object
x;. The neighbors are find by the following formula:

Xi—Neighvor = {X;|dist(x;,x;) < Rep}-

Then, the object x; is assigned to the core region or
fringe region of the corresponding clusters according to
the proportion of each cluster in the neighbor objects set
Xi_Neighbor- That is, the proportion is defined as follows:

5)

_ HX]‘X] € Xi—Neighbm- A X S Ck}|

P(XifNeighbor‘Ck) ‘X;N iohb ‘
! (16)



According to the above formula, the three-way decision
rules is given as follows:

Zf P(Xi—Neighbor|Ck) Z «,

the object is decided to Co(Cy);
Zf 5 S P(XifNeighbor‘Ola <a,

the object is decided to Fr(Cy);
Zf P(XifNeighbor|Ck) < ﬂa

the objecis decided to Tr(Cl).

)

How to decide the threshold « and S automatically is
still a unsolved problem. We can decide the thresholds by
experience or through active learning method in future work.

Algorithm 1: the three-way clustering algorithm for
mixed-type data

Input: K, Ry, «, 53;

Output: C =

{Co(Ch), Fr(Ch)}, -+, {Co(Ck), Fr(Ck)}}-

1 to compute the distance matrix between objects using
Formula ??);

2 to obtain the K center and the initial two-way
clustering result using the method in [?];

3 for every x; which is not a center do

4 L to computer X;_ neighbor according to Eq. 2?);

5 for every Cy, in the initial result do

6 for every x; do
7 to computer P(X;_ neighbor|Cx) by Eq. 2?;
8 to decide the object to the corresponding core

region, fringe region or trivial region according
to the three-way rules ??.

IV. EXPERIMENTS

In this section, we validate the proposed method on some
real-world datasets. The proposed algorithm is implemented
in Visual Studio 2012 development environment using C++
programming language. All experiments are tested in a PC
with Intel(R) Core(TM) i5-4430S CPU @ 2.70GHz, 8G
RAM.

A. Three-way clustering result simulations

In order to visualize intuitively the difference between
three-way clustering and the traditional two-way clustering,
a synthetic two dimensions data set with 1000 points is em-
ployed in this subsection. The two-way clustering algorithm
is the method in [?]. The results are depicted in Figure ??
and Figure ??, respectively.
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Figure 3. The result of the reference [?] on a synthetic dataset

- Co(C1)

Fr(C1)
« Co(C2)
« Fr(C2)

0 1 2 3 4 5 6 7

Figure 4. The three-way clustering result on a synthetic dataset

From Figure ??, we see that these points are clustered into
two clusters and each point is belong to only one cluster.
Figure ?? shows that compared with the traditional two-
way clustering, three-way clustering algorithm represents the
core region and the fringe region of every cluster correctly.
Of course, the overlapping ones of two classes are also
shown up. There are 80 points in the fringe region of clusters
C1 and 85 points in the fringe region of clusters C2, and
the two clusters have 8 overlapping points.

B. The accuracy on UCI data sets

For mixed-type data clustering, the distance measure
between objects directly affects the correctness of clustering
results. In turn, the accuracy of clustering results reflects
the performance of measurement. Thus, we test the accu-
racy on the proposed method TWD-MD and the compared
algorithms such as k-means mixed algorithm [?] and Paired
k-means algorithm [?].

We need to note that the results of the compared algorithm
are from the original references respectively. TABLE ??
describes the information of five data sets from UCI data
[?]. The comparative results are shown in Figure ??.

From Figure ??, we see that the accuracy of the proposed
algorithm is higher than the contrastive algorithms except for
data set Iris. Let us observe the five data sets, we find that the
Iris only has numerical attribute values. This shows that the
proposed measurement, which is based on the weighted tree
structure, has more precise measurement effect on mixed-
type data.



Table I
DATASETS CHARACTERISTICS
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Figure 5. The results of different algorithms on Accuracy

C. The ARI on UCI data sets

For mixed-type data clustering, the Average adjusted Rand
Index (ARI) is another important indicator to estimate the
clustering result. The higher the value of ARI is, the more
accurate the clustering result is.

In this subsection, we compare the proposed algorithm
TWD-MD with CoupledMC algorithm [?] and EGMCM
algorithm [?]. We also adopt the results of the compared
algorithm from the original references. TABLE ?? gives the
information of the five data sets. The values of ARI of the
proposed algorithm and contrastive algorithms are shown in
TABLE ?2.

Table II
DATASETS CHARACTERISTICS

e . Attribute Number e
Data sets Size Cat Ord Nom Clusters
Heart Disease
(Switzerland) 303 3 3 3 2
Heart Disease
(VA) 303 5 3 5 5
Climate Model
Simulation 540 0 0 18 2
Crashes
QSAR
BioCdegradation 1055 8 8 25 2
Contraceptive
Method Choice 1473 4 4 ! 3

. Attribute Number Data sets CoupledMC | EGMCM TWD-MD
Data sets Size Clusters -
Cat Ord | Num Heart Disease 0.18 0.26 0.24
Iris 150 0 0 4 3 (Switzerland) : - :
Teaching Assistant Heart Disease (VA) 0.02 0.12 0.15
) 151 4 0 1 3 :
Evaluation Climate Model
- - . . 0.01 0.11 0.2
Congressional Voting Simulation Crashes
435 16 2
Records QSAR 0 0.23 0.48
Credit Approval 690 9 6 2 BioCdegradation : :
Adult 48842 7 1 6 2 Contraceptive
Method Choice 0.04 0.01 0.19
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From TABLE ??, we see that the ARI of the proposed
algorithm is the best one in most cases. It is shown that the
proposed method is good at clustering mixed-type data.

V. CONCLUSIONS

The data is characterized by numerical attributes, categor-
ical attributes or ordinal attributes. The main objective of this
paper is to propose a new way for clustering the mixed-type
data. Thus, we proposed different measurements of distance
for different types of attribute values by considering the
semantic of attributes, the number of attribute values and the
occurrence frequency of attribute values. The measurements
borrow the representation of weighted tree structures.

Besides, we constructed the clustering result based on
the representation of three-way cluster, which is suitable for
dealing with uncertainty because it shows intuitively which
objects are fringe to the cluster. That is, a cluster is presented
by a pair of sets instead of a single set as used by many
existing methods. Three regions just reflect the relationships
between an object and a cluster, namely, an object definitely
in a cluster, an object definitely not in a cluster, an object
might be in a cluster or not.

Then, a three-way clustering algorithm for mixed-type
data was proposed. The algorithm first finds the center
of K clusters by using a method such as the outstanding
density peaks clustering method [?]. Then, we build the
three-way decision rules based on the proposed measure-
ment of distance to obtain the three-way clustering result.
The experimental results show that the proposed distance
measure is reasonable and effective for mixed-type data,
and the proposed algorithm is in a better performance at
the accuracy and the average adjusted rand index than the
compared algorithms in most cases.

We also find that the proposed algorithm is not always
the best one though it is doing well for mixed-type data
sets. The thresholds used in the experiments are set by
experience, how to decide them automatically is one of the
further research work.
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