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Abstract—Large quantities of mixed-type data, containing
categorical, ordinal and numerical attributes, have commonly
existed in real world. In this paper, a mixed-type data clustering
method, which could deal with the uncertain situation that a
cluster may not have a definite cluster boundary, is proposed
inspired by the theory of three-way decisions. Many existing
studies represent a cluster with a single set based on a two-way
strategy, which does not adequately show the fact that a cluster
may not have a well-defined cluster boundary. In this paper, we
represent a cluster with a pair of sets, i.e., the core region and
fringe region. The three-way clustering is suitable for dealing
with uncertainty because it shows intuitively which objects
are fringe to the cluster. Then, new measurements of distance
between mixed-type data are proposed for different types of
attribute values by means of a weighted tree structure. The
measurement considers the semantic of attributes, the number
of attribute values and the occurrence frequency of attribute
values. Finally, a three-way clustering algorithm for mixed-
type data is proposed. The experimental results show that the
proposed distance measure of mixed-type data is reasonable
and effective, the proposed algorithm is in a better performance
at the accuracy and the average adjusted rand index than the
compared algorithms in most cases.

Keywords-cluster; mixed-type data; three-way decisions; un-
certainty;

I. INTRODUCTION

Cluster analysis is one of the most important techniques

used in data mining and machine learning for grouping, so

that objects in the same group are more similar to each

other than to those outside the group [?], [?]. The data

is characterized by numerical attributes, or characterized

by categorical attributes. Even in some cases, there exists

ordinal relationship between attribute values.

In order to solve the problem of mixed-type data clus-

tering, Huang [?] proposed the famous K-prototypes al-

gorithm that combined K-means with K-modes algorithm.

Then, some derivations of K-prototypes algorithm have been

presented [?], [?], [?]. Pathak and Pal [?] used collaborative

clustering method to find the cluster substructures that are

common to both categorical and numerical part of the mixed

data, then obtained the final clustering result. Chen and

He [?] thought that there are three types of mixed-type

data such as the numerical dominant data, the categorical

dominant data and the balanced data, and they designed the

corresponding measurement function. Lam et al. [?] used

the fuzzy adaptive resonance theory to cluster the mixed-

type data with categorical and numeric features. Aziz [?]

proposed a new dissimilarity measure based on eigenstruc-

ture of the covariance matrix and robust principal component

score to achieve mixed data clustering.

Therefore, for further improving the similarity measure of

mixed-type data containing categorical data and numerical

data as well as ordinal data, Hsu et al. [?], [?] constructed

different tree structures for categorical data and ordinal data,

and the hierarchical distance between attribute values in

the tree structure is used to calculate the distance of data.

However, it is not a convincing method to assign the weights

randomly in advance. Aiming at computing the categorical

data, more and more scholars [?], [?], [?] think that the

number and the occurrence frequency of attribute values

have important influence on similarity measure. Therefore,

it is very important to find an effective measurement which

considers semantics of attribute values and the characteris-

tics of data sets.

On the other hand, many existing clustering approaches

represent a cluster by a single set based on a two-way strate-

gy. That is, one object belongs to a cluster or not belong to a

cluster. However, in the actual production, such as in pattern

recognition system [?], there is not only a situation that one

object definitely belongs to or not belong to a cluster, but

also a situation that one object might or might not belong

to a cluster. The traditional crisp two-way representation

does not adequately show the fact that a cluster may not

have a well-defined cluster boundary. Thus, we proposed

the framework of three-way clustering [?], [?], [?] inspired

by the three-way decisions, which is introduced by Professor

Yao [?], [?]. Three-way decisions extend binary-decisions in

order to overcome some drawbacks of binary-decisions. The

basic ideas of three-way decisions have been widely used

in real-world decision-making problems, such as clustering

analysis, decision making, email spam filtering, three-way

investment decisions and many others [?].

In the three-way clustering, a cluster is represented by a

pair of sets which divide a cluster into three regions, i.e.,

the core region, fringe region and trivial region, instead of

two regions produced by a single set as the other existing
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methods. Objects in the core region are typical elements of

the cluster, objects in the fringe region are fringe elements

of the cluster, and objects in the trivial region do not

belong to the cluster definitely. A cluster is therefore more

realistically characterized by a set of core objects and a set

of boundary objects. The three-way representation intuitively

shows which objects are fringe to the cluster. Obviously, the

classic two-way representation is a special case of three-way

representation when the fringe region is empty.

In this paper, for different types of attribute values,

we construct different measurement of distance between

objects, which is based on a weighted tree structure through

considering the influence of the semantics of attribute values,

the number of attribute values and the occurrence frequency

of the attribute values. Then, a novel three-way clustering

algorithm for mixed-type data is proposed.

The remainder of this paper is organized as follows.

Section ?? introduces some basic definitions such as mixed-

type data and the representation of three-way clustering.

Section ?? proposes a novel three-way decision clustering

framework for mixed-type data. Section ?? reports the result-

s of comparative experiments and conclusions are provided

in Section ??.

II. PRELIMINARIES

A. Mixed-type data

Let us consider a universe U = {x1, · · · ,xn, · · · ,xN}
with N objects. A D-dimensional data point xn compris-

es P categorical attributes, Q numerical attributes and T
ordinal attributes, where P + Q + T = D, i.e., xn =
{x1

n, · · · , xP
n , x

P+1
n , · · · , xP+Q

n , xP+Q+1
n , · · · , xD

n }.{
x1
n, x

2
n, · · · , xP

n

}
is a subset of categorical attributes

without sequence meaning, in other words, there is no

order or rank relationship between these attribute values.

The attribute values represent a certain class, coding, s-

tate, etc.
{
xP+1
n , xP+2

n , · · · , xP+Q
n

}
represents a subset of

ordinal attributes which attribute values have meaningful

order or rank. The attribute values are representative by the

sequence of words, symbols, numbers, etc. For example, the

attribute values have the ordinal meaning in the elements

of the set {V ery bad,Bad,Medium,Good, V ery good}.{
xP+Q+1
n , xP+Q+2

n , · · · , xP+Q+T
n

}
is a set of numerical-

valued attributes.

B. Representation of three-way clustering

The purpose of clustering is to divide objects in a universe

into some clusters. If there are K clusters, the family of

clusters, C, is represented as C = {C1, · · · , Ck, · · · , CK}.
In many existing clustering approaches, a cluster is repre-

sented by a single set, where the objects in the set belong

to this cluster definitely and the objects not in the set do

not belong to this cluster definitely. This is a typical result

of two-way decisions. However, this representation is not

adequately show the fact that a cluster may not have a

well-defined cluster boundary, especially in real applications.

Thus, the representation of three-way clustering using a pair

of sets to represent a cluster is more appropriate than the

use of a crisp set, which also directly leads to three-way

decisions based interpretation of clustering.

In contrast to the general crisp representation of a cluster,

we represent a three-way cluster Ck as a pair of sets:

Ck = (Co (Ck) , F r (Ck)) , (1)

where Co (Ck) ⊆ U and Fr (Ck) ⊆ U. let Tr (Ck) =
U− Co (Ck)− Fr (Ck).

If Fr(Ck) = ∅, the representation of Ck in Eq. (??) turns

into Ck = Co(Ck); it is a single set and Tr(Ck) = U −
Co(Ck). This is a representation of two-way decisions. In

other words, the representation of a single set is a special

case of the representation of three-way cluster.

Co (Ck), Fr (Ck), Tr (Ck) naturally form the three re-

gions of a cluster as core region, fringe region and trivial

region respectively. Objects in the core region of a cluster

definitely belong to the cluster, objects in the trivial region

of a cluster definitely do not belong to the cluster Ck, and

objects in the fringe region of a cluster might or might not

belong to the cluster.

These subsets have the following properties.

Co (Ck) ∩ Fr (Ck) = φ,

Co (Ck) ∩ Tr (Ck) = φ,

Fr (Ck) ∩ Tr (Ck) = φ.

(2)

Furthermore, according to Formula (??), we know that

it is enough to represent a cluster expediently by the core

region and the fringe region.

In another way, we can define a cluster by the following

properties:

(i)Co (Ck) �= φ, 0 < k < K,

(ii)Co (Ck) ∪ Fr (Ck) ∪ Tr (Ck) = U.
(3)

Property (i) implies that a cluster cannot be empty. This

makes sure that a cluster is physically meaningful. And

property (ii) states that any object in U must definitely

belong to or might belong to a cluster, which ensures that

every object is properly clustered.

With respect to the family of clusters, C, we have

the following family of clusters formulated by three-way

decisions as:

C = {(Co (C1) , F r (C1)) , · · · , (Co (CK) , F r (CK))} .
(4)

Under the representation, we can re-formulate the cluster-

ing as follows. For a clustering, if there exists k �= t, such

that
(1) Co (Ck) ∩ Co (Ct) �= φ, or

(2) Fr (Ck) ∩ Fr (Ct) �= φ, or

(3) Co (Ck) ∩ Fr (Ct) �= φ, or

(4) Fr (Ck) ∩ Co (Ct) �= φ.

(5)

120



As long as one condition is satisfied, it is called an overlap-

ping (or soft) clustering; otherwise, it is a hard clustering.

As long as one condition from Eq. (??) is satisfied, there

must exist at least one object belonging to more than one

cluster.

III. THE PROPOSED METHOD

In this section, we first introduce the measurement of

distance between objects. The different weighted tree are

utilized to represent and measure the distance between

categorical values, ordinal values and numerical values,

respectively. Then, a novel three-way clustering algorithm

for mixed-type data is presented.

A. The measurement of distance

1) Categorical values: The proposed distance measure-

ment borrows the representation of distance hierarchy [?].

Actually, the distance hierarchy structure is a kind of tree in

topological structure. The tree consists of nodes, edges, and

weights as shown in Figure ??. We need to construct a tree

for every categorical attribute. The leaf nodes are composed

of the attribute values. The distance between any two cate-

gorical values is the distance between the two leaf nodes in

the weighted tree. The computing process concludes three

steps: 1) to establish the topological structure according to

the semantic of attribute values; 2) to weight the edges

according to the number of attribute values, the occurrence

frequency of attribute values and the depths of the node; and

3) to compute the distance between leaf nodes on the tree.

Let Catd be the d-th categorical attribute in the original

data set U, and V (Catd) be the domain of Catd. There

are three principles to construct a weighted tree. First, one

leaf node represents one attribute value of Catd; that is to

say, the number of leaf nodes is equal to the cardinality of

V (Catd). Second, if the hierarchy of semantic is deeper, the

corresponding subtree is closer to the right side. Third, on

the same hierarchy, higher the frequency of values is, the

corresponding node is closer to the right side.

To explain the tree, we illustrate an example here. There

is a categorical attribute, i.e., Drink, and it has 8 attribute

values, that is V (Drink) = {boiled water, pepsi, coke, sprite,

strawberry juice, orange juice, green apple juice, red apple

juice}. The semantic of values tell us that {pepsi, coke,

sprite} belong to “carbonated” drinks, {strawberry juice,

orange juice, green apple juice, red apple juice} belong to

“juice”, and {green apple juice, red apple juice} are “apple

juice”. Then, we get the topological structure as shown in

Figure ??. The rootd is Drink, the internal nodes are the

categorical classed and the leaf nodes are the eight values.

The digit under of the leaf nodes is the frequency of the

value in the attribute column. For example, the value “red

apple” appears 40 times.

Figure 1. The weighted tree of categorical values

Let nodehi represents the i-th node at the h lev-

el. For example, in Figure ??, node23 means the node

juice. Let child
(
nodehi

)
be a set of child nodes of

nodehi , and childj
(
nodehi

)
means its the j-th child node,∣∣child (nodehi

)∣∣ is the number of child nodes of nodehi . For

example,
∣∣child (node23

)∣∣ = 3, it means node juice has

three child nodes.

F. Noorbehbahani [?] pointed out that for any categorical

attribute, the more the number of attribute values is, the

smaller the distance between attribute values is. For example,

if a categorical attribute is supposed to have a domain size

of 2, the distance of two unmatched attribute values will be

greater than the case having domain size of 20. We use the

weight on the edge of the parent node and the child node to

represent the distance between them. Then, the number of

children reflects the values of weight. Obviously, the more

the number of child nodes is, the smaller the weight between

parent node and the child node is.

Thus, derived from [?], we first define the weight function

f(nodehi ) as follows. The function compute the weight

coefficient in view of influence by the number of children

on an internal node (nodehi ).

f(nodehi ) =

⎧⎨
⎩

1, x ≤ θ1
1− ξ1 (x− θ1) , θ1 < x ≤ θ2

1− ξ1 (θ2 − θ1)− ξ2 (x− θ2) , x > θ2
(6)

where x =
∣∣child (nodehi

)∣∣, ξ1, ξ2 ∈ (0, 1), θ1, θ2 ∈ N+.

According to Eq. (??), we know that with the growth of

the number of child nodes, the weight coefficient between

parent node and child node is getting smaller.

Meanwhile, according to the conclusions in [?], [?], [?],

we know that for categorical attribute Catk, the partition

ability for clustering is affected by the occurrence frequency

of its attribute values in the data set.

Let fr
(
nodehi

)
represent its occurrence frequency in a

data set. When it is a leaf node, fr
(
nodehi

)
is the frequency

of the value. When it is an internal node, fr
(
nodehi

)
is
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the sum of the occurrence frequency of its all children.

In other words, fr
(
nodehi

)
is the occurrence frequency in

the subtree whose root is the node nodehi . For example,

in Figure ??, fr (carbonated) = fr (pepsi) + fr (coke) +
fr (sprite)=100.

On the other hand, we find that the weight between parent

node and child node is relevant to the levels (depths) where

they are in the tree. For example, in Figure ??, although

“strawberry juice”, “orange juice”, “green apple juice”, “red

apple juice” are all belong to “juice”, the distance between

“strawberry juice” and “orange juice” should be bigger than

the distance between “green apple juice” and “red apple

juice”. Because “green apple juice” and “red apple juice”

are both belong to “apple juice” while “strawberry juice”

and “orange juice” are just belong to “juice”. In other words,

“green apple juice” and “red apple juice” are more similar

than “strawberry juice” and “orange juice”.

Based on the above analysis, the influence factors in

weight between parent node and its child node contain the

number of child nodes, the frequency and the level of nodes.

Let w(nodehi , childj(node
h
i )) be the weight between

nodehi and its j-th child node childj
(
nodehi

)
. It is calcu-

lated as follows.

w(nodehi , childj(node
h
i )) =

f
(
nodehi

) · fr(childj(nodehi ))
fr(nodehi )

hη
.

(7)

where η ∈ N+.

The role of η is to make sure that the distance between

leaf nodes in deeper level is smaller. In Figure ??, according

to Eq. (??), let θ1 = 3, η = 2. Thus the weight between

“apple juice” and “red apple juice” could be calculated as:

w(apple juice, red apple juice)

=
f (apple juice) · fr(red apple juice)

fr(apple juice)

32
=

1 · 4060
32

= 0.074.

In the same way, other weights could be calculated as shown

in Figure ??.

Let dist(Catdu, root
d) be the distance between Catdu and

the root node, so the value of dist(Catdu, root
d) is the

sum of weights on edges from Catdu to the root node. For

example, in Figure ??, dist(coke, drink) = 0.075+0.333 =
0.408.

Let Catdu and Catdv be two different attribute values

which are the leaf nodes of the tree. Let CAN
(
Catdu, Catdv

)
be the closest ancestor node for Catdu, Catdv . For ex-

ample, in Figure ??, CAN (pepsi, coke) = carbonated,

CAN (boiled water, orange) = Drink.

Let Cdist(Catdu, Catdv) be the distance between Catdu
and Catdv , then we have the following formula:

Cdist(Catdu, Catdv) =∣∣dist(Catdu, root
d) + dist(Catdv, root

d)

−2× dist(CAN
(
Catdu, Catdv

)
, rootd)

∣∣
(8)

For instance, in Figure ??, the distance between “straw-

berry juice” and “red apple juice” is calculated as:

Cdist (strawberry juice, red apple juice)

= |dist (strawberry juice,Drink)+

dist (red apple juice,Drink)−
2× dist (juice,Drink)|

= |(0.5 + 0.067) + (0.5 + 0.1 + 0.074)− 2× 0.5| = 0.241

In the same way, we can compute the distance between

the other categorical attribute values according to Eq. ??.
2) Ordinal values: The measurement for ordinal attribute

values is similar to categorical attributes, which is also based

on a weighted tree structure. The distance between two

attribute values is the length of the weighted path linked the

two values. The computing process concludes three similar

steps as used in the measurement of categorical attributes.

Let Ordd be the d-th ordinal attribute, its attribute values

have meaning of order or rank. For example, let us observe

an ordinal attribute, degree, its attribute values conclude

{Very Bad, Bad, No Comment, Good, Very Good}. Set y
be the size of the domain of Ordd. In the example, y = 5.

According to the semantic of attribute values, the weighted

tree could be constructed as shown in Figure ?? and there

are five nodes. That is to say, the root of the tree is “No

Comment”, the left branch is about the negative rank, the

right branch is the positive rank. The smaller rank one has

the smaller depth. In fact, the structure also can be seen as

a line, which is a kind of special tree.

Figure 2. The tree structure of ordinal values

Let w
(
Ordd

)
be the weight function between two adja-

cent nodes in the tree. Inspired by Eq. ??, the w
(
Ordd

)
could be defined as:

w
(
Ordd

)
=

⎧⎨
⎩

1, y ≤ ϑ1

1− ζ1 (y − ϑ1) , ϑ1 < y ≤ ϑ2

1− ζ1 (ϑ2 − ϑ1)− ζ2 (y − ϑ2) , y > ϑ2

(9)

where ζ1, ζ2 ∈ (0, 1), ϑ1, ϑ2 ∈ N+.

In fact, the weight between any two adjacent nodes is

same by Eq. ??. The main reason to regard the above three

situations is to harmonize the proportion among different

type values. For example, in Figure ??, if ϑ1 = 3, ϑ2 = 10
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and ζ1 = 0.35, the weight between two adjacent nodes is

0.3.

Let Orddu and Orddv be two different attribute values in

the tree. Let LMN be the left-most node. For example, in

Figure ??, LMNd = V ery Bad. Let dist(Orddu, LMNd)
be the distance between Orddu and LMNd. The val-

ue of dist(Orddu, LMNd) is the sum of weights on

edges from Orddu to LMNd. For example, in Figure ??,

dist(Good, LMNd) = dist(Good, V ery Bad) = 0.9.

Let Odist(Orddu, Orddv) be the distance between Orddu
and Orddv . It is calculated by the following formula:

Odist(Orddu, Orddv) =
|dist(Orddu, LMNd)− dist(Orddv, LMNd)|. (10)

In the example, we have the distance between Good and

Bad as:

Odist (Good,Bad) =
|dist(Good, V ery Bad)− dist(Bad, V ery Bad)|
= |0.9− 0.3| = 0.6.

3) Numerical values: In many cases, the distance be-

tween any two categorical or ordinal attributes is relatively

small to the distance between numerical values. Therefore,

the difference produced by categorical and ordinal attributes

will be eliminate if the numerical attribute values are too

large. In order to decrease the influence, it is necessary to

carry out normalization for numerical attributes.

Let Numd be the d-th numerical attribute, and Numd
i

is the i-th attribute value. μ represents the mean of its

attribute values, δ is the standard deviation. The Z-score

normalization function is as follow:

fnumd

(
Numd

i

)
=

Numd
i − μ

δ
. (11)

Let Ndist(Numd
u, Numd

v) be the distance between

Numd
u and Numd

v . Then, it is computed by the following

formula:

Ndist(Numd
u, Numd

v)

=
∣∣fnumd

(
Numd

u

)− fnumd

(
Numd

v

)∣∣ . (12)

4) Distance between objects: For any object xn in

a universe U, where
{
x1
n, · · · , xP

n

}
,
{
xP+1
n , · · · , xP+Q

n

}
,{

xP+Q+1
n , · · · , xP+Q+T

n

}
represent the categorical attribute

values, ordinal attribute values, numerical attribute values

of xn respectively. P , Q and T represent the number of

different attribute types.

Let Dist (xi,xj) be the distance between objects xi and

xj. We have the measurement of distance as follows.

Dist (xi,xj) =

√√√√
P∑

p=1

Cdist2
(
xp
i , x

p
j

)

+

√√√√
Q∑

q=1

Odist2
(
xP+q
i , xP+q

j

)

+

√√√√ T∑
t=1

Ndist2
(
xP+Q+t
i , xP+Q+t

j

)
.

(13)

B. The three-way clustering algorithm

In this subsection, we will adopt an evaluation function-

based three-way cluster model [?], which produces three

regions by using an evaluation function and a pair of

thresholds on the values of the evaluation function. Suppose

there are a pair of thresholds (α, β) and α ≥ β. Although

evaluations based on a total order are restrictive, the model

based on two thresholds has a computational advantage.

One can obtain the three regions by simply comparing the

evaluation value with a pair of thresholds. Based on an

evaluation function v(x), we get the following three-way

decision rules:

Co(Ck) = {x ∈ U|v(x) ≥ α},
F r(Ck) = {x ∈ U|β ≤ v(x) < α},
T r(Ck) = {x ∈ U|v(x) < β}.

(14)

In fact, the evaluation function v(x) can be a risk decision

function, a similarity function, a distance function and so

on. In other words, the evaluation function will be specified

accordingly when an algorithm is devised.

In this paper, a three-way clustering algorithm for mixed-

type data (shorted by TWD-MD) is proposed and depicted

in Algorithm ??. The basic idea of the algorithm is to

find the center of K clusters first. In fact, there is a

bunch of clustering approaches to determine the center. In

our experiments, we adopt the outstanding density peaks

clustering method [?]. Then, the left work is to decide the

left objects where to go. Line 3 to Line 8 describe how to

decide the left objects to the core region or fringe region of

corresponding cluster.

In order to make decisions, we find the neighbors

Xi−Neighbor within the neighbor radius Rth of the object

xi. The neighbors are find by the following formula:

Xi−Neighbor = {xj |dist(xi,xj) ≤ Rth}. (15)

Then, the object xi is assigned to the core region or

fringe region of the corresponding clusters according to

the proportion of each cluster in the neighbor objects set

Xi−Neighbor. That is, the proportion is defined as follows:

P (Xi−Neighbor|Ck) =
|{xj |xj ∈ Xi−Neighbor ∧ xj ∈ Ck}|

|Xi−Neighbor| .

(16)
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According to the above formula, the three-way decision

rules is given as follows:

if P (Xi−Neighbor|Ck) ≥ α,
the object is decided to Co(Ck);

if β ≤ P (Xi−Neighbor|Ck) < α,
the object is decided to Fr(Ck);

if P (Xi−Neighbor|Ck) < β,
the objecis decided to Tr(Ck).

(17)

How to decide the threshold α and β automatically is

still a unsolved problem. We can decide the thresholds by

experience or through active learning method in future work.

Algorithm 1: the three-way clustering algorithm for

mixed-type data

Input: K, Rth, α, β;

Output: C =
{{Co(C1), F r(C1)}, · · · , {Co(CK), F r(CK)}}.

1 to compute the distance matrix between objects using

Formula ??);

2 to obtain the K center and the initial two-way

clustering result using the method in [?];

3 for every xi which is not a center do
4 to computer Xi−Neighbor according to Eq. ??);

5 for every Ck in the initial result do
6 for every xi do
7 to computer P (Xi−Neighbor|Ck) by Eq. ??;

8 to decide the object to the corresponding core

region, fringe region or trivial region according

to the three-way rules ??.

IV. EXPERIMENTS

In this section, we validate the proposed method on some

real-world datasets. The proposed algorithm is implemented

in Visual Studio 2012 development environment using C++

programming language. All experiments are tested in a PC

with Intel(R) Core(TM) i5-4430S CPU @ 2.70GHz, 8G

RAM.

A. Three-way clustering result simulations

In order to visualize intuitively the difference between

three-way clustering and the traditional two-way clustering,

a synthetic two dimensions data set with 1000 points is em-

ployed in this subsection. The two-way clustering algorithm

is the method in [?]. The results are depicted in Figure ??
and Figure ??, respectively.

Figure 3. The result of the reference [?] on a synthetic dataset

Figure 4. The three-way clustering result on a synthetic dataset

From Figure ??, we see that these points are clustered into

two clusters and each point is belong to only one cluster.

Figure ?? shows that compared with the traditional two-

way clustering, three-way clustering algorithm represents the

core region and the fringe region of every cluster correctly.

Of course, the overlapping ones of two classes are also

shown up. There are 80 points in the fringe region of clusters

C1 and 85 points in the fringe region of clusters C2, and

the two clusters have 8 overlapping points.

B. The accuracy on UCI data sets

For mixed-type data clustering, the distance measure

between objects directly affects the correctness of clustering

results. In turn, the accuracy of clustering results reflects

the performance of measurement. Thus, we test the accu-

racy on the proposed method TWD-MD and the compared

algorithms such as k-means mixed algorithm [?] and Paired

k-means algorithm [?].

We need to note that the results of the compared algorithm

are from the original references respectively. TABLE ??
describes the information of five data sets from UCI data

[?]. The comparative results are shown in Figure ??.

From Figure ??, we see that the accuracy of the proposed

algorithm is higher than the contrastive algorithms except for

data set Iris. Let us observe the five data sets, we find that the

Iris only has numerical attribute values. This shows that the

proposed measurement, which is based on the weighted tree

structure, has more precise measurement effect on mixed-

type data.
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Table I
DATASETS CHARACTERISTICS

Data sets Size
Attribute Number

Clusters
Cat Ord Num

Iris 150 0 0 4 3

Teaching Assistant
Evaluation

151 4 0 1 3

Congressional Voting
Records

435 16 0 0 2

Credit Approval 690 9 0 6 2

Adult 48842 7 1 6 2

Figure 5. The results of different algorithms on Accuracy

C. The ARI on UCI data sets

For mixed-type data clustering, the Average adjusted Rand

Index (ARI) is another important indicator to estimate the

clustering result. The higher the value of ARI is, the more

accurate the clustering result is.

In this subsection, we compare the proposed algorithm

TWD-MD with CoupledMC algorithm [?] and EGMCM

algorithm [?]. We also adopt the results of the compared

algorithm from the original references. TABLE ?? gives the

information of the five data sets. The values of ARI of the

proposed algorithm and contrastive algorithms are shown in

TABLE ??.

Table II
DATASETS CHARACTERISTICS

Data sets Size
Attribute Number

Clusters
Cat Ord Num

Heart Disease
(Switzerland)

303 5 3 5 2

Heart Disease
(VA)

303 5 3 5 5

Climate Model
Simulation

Crashes
540 0 0 18 2

QSAR
BioCdegradation

1055 8 8 25 2

Contraceptive
Method Choice

1473 4 4 1 3

Table III
THE RESULTS OF DIFFERENT ALGORITHMS ON ARI

Data sets CoupledMC EGMCM TWD-MD

Heart Disease
(Switzerland)

0.18 0.26 0.24

Heart Disease (VA) 0.02 0.12 0.15
Climate Model

Simulation Crashes
0.01 0.11 0.2

QSAR
BioCdegradation

0 0.23 0.48

Contraceptive
Method Choice

0.04 0.01 0.19

From TABLE ??, we see that the ARI of the proposed

algorithm is the best one in most cases. It is shown that the

proposed method is good at clustering mixed-type data.

V. CONCLUSIONS

The data is characterized by numerical attributes, categor-

ical attributes or ordinal attributes. The main objective of this

paper is to propose a new way for clustering the mixed-type

data. Thus, we proposed different measurements of distance

for different types of attribute values by considering the

semantic of attributes, the number of attribute values and the

occurrence frequency of attribute values. The measurements

borrow the representation of weighted tree structures.

Besides, we constructed the clustering result based on

the representation of three-way cluster, which is suitable for

dealing with uncertainty because it shows intuitively which

objects are fringe to the cluster. That is, a cluster is presented

by a pair of sets instead of a single set as used by many

existing methods. Three regions just reflect the relationships

between an object and a cluster, namely, an object definitely

in a cluster, an object definitely not in a cluster, an object

might be in a cluster or not.

Then, a three-way clustering algorithm for mixed-type

data was proposed. The algorithm first finds the center

of K clusters by using a method such as the outstanding

density peaks clustering method [?]. Then, we build the

three-way decision rules based on the proposed measure-

ment of distance to obtain the three-way clustering result.

The experimental results show that the proposed distance

measure is reasonable and effective for mixed-type data,

and the proposed algorithm is in a better performance at

the accuracy and the average adjusted rand index than the

compared algorithms in most cases.

We also find that the proposed algorithm is not always

the best one though it is doing well for mixed-type data

sets. The thresholds used in the experiments are set by

experience, how to decide them automatically is one of the

further research work.
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