
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

VOLUME XX, 2018 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.Doi Number

Transferring Ensemble Representations using
Deep Convolutional Neural Networks for Small-
scale Image Classification
Shuyin Xia*1, Member, IEEE, Yulong Xia1, Hong Yu1, Zhongyang, Xiong2, Qun Liu1, Yi Xia3

，

Yueguo Luo4, Guoyin Wang1, Senior Member, IEEE, Zizhong Chen5, Senior Member, IEEE
1 Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Telecommunications and Posts, Chongqing 400065, China
2 College of Computer Science, Chongqing University, Chongqing 400044, China
3Chongqing Aerospace Polytechnic College，400021, China
4 College of Big Data and Intelligent Engineering, Yangtze Normal University, Chongqing 408100, China
5 Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA

Corresponding author: Shuyin Xia (e-mail: xiasy@ cqupt.edu.cn).

This work was supported in part by National Natural Science Foundation of China under Grant Nos. 61806030& 61876027&61772096&61533020 and the
National Key Research and Development Program of China (grant Nos. 2016QY01W0200& 2016YFB1000905).

ABSTRACT The deep convolutional neural networks (DCNN) require large number of training data to
avoid overfitting, which makes it unsuitable for processing small-scale image datasets. The transfer learning
using DCNN (TCNN) reuses pre-trained layers to generate a mid-level image representation so that the
optimization of more than millions CNN parameters can be avoided. By this way, overfitting problem in
small-scale data can be alleviated. However, although now many public DCNNs have been trained and can
be reused, the existing TCNNs are formed by only a single pre-trained DCNN structure and cannot make
full use of multiple structures of pre-trained DCNNs. At the same time, the existing ensemble CNNs have
not enough good representation ability. To address this problem, we combine the conventional ideas of
ensemble CNNs and propose three ensemble TCNNs (TECNN). They are the voting method based on the
combination of all TCNNs, the PickOver method by finding the optimal combination, and weighted method
by finding weighted combination. Different from the existing ensemble CNNs, the proposed methods do
not need to retrain the component CNNs and generate ensemble transferring representations by transferring
the pre-trained mid-level parameters. The mathematical models of those three methods are also provided.
Their versions of using fine-tuning are also compared in the experiments. In addition, we replace the
Softmax classifier with ensemble linear classifiers in the full-connection layer. They outperform the current
state of the art algorithms on Caltech ImageNet and some internet image data. All this research has released
as an open source library called Transferring Image Ensemble Representations using Deep Convolutional
Neural Networks (TECNN). The source codes and relevant datasets in different versions are available from:
http://www.cquptshuyinxia.com/TECNN.html.

INDEX TERMS Convolutional Neural Networks, deep CNN, transferring CNN, transferring Learning

I. INTRODUCTION
The object recognition represents an important part of the
computer vision. Recently, the robust image descriptors have
been developed significantly, such as SIFT [1] and HOG [2],
bag of features image representations [3], [4], [5], [6],
deformable part models [7] and deep convolutional neural
networks (DCNNs). An enabling factor is the development
of increasingly large and realistic image datasets, providing
an object annotation for training and testing, e.g. Caltech256

[8], Pascal VOC [9] and ImageNet [10]. The CNNs are high-
capacity classifiers with a very large number of parameters
that need to be optimized during the training process. CNNs
have a long history in visual recognition and exhibit record-
shattering results in computer vision [11], [12], image
translations [13], optical character recognition [14], [15], [16]
and many other various fields [17], [18], [19], [20], [21]. The
early CNNs’ performance was limited by a relatively small
size of the standard object recognition datasets. However,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

2

this limitation has changed due to the appearance of the
large-scale ImageNet dataset [10] and enhancement of the
GPU computing power. Krizhevsky et al. achieved a
performance leap in the image classification on the ImageNet
2012 Large-Scale Visual Recognition Challenge (ILSVRC-
2012). They further improved the network performance by
training with 15 million images and 22,000 ImageNet classes
[22]. According to their works, a thorough evaluation of
networks is made in terms of depth incensement by using an
architecture with very small (3x3) convolution filters [23]. In
addition, a significant improvement of the prior art
configurations can be achieved by increasing of the depth to
16-19 layers. Although this result is promising and exciting,
it is also worrisome as millions of annotated images are
required to be collected for each visual recognition task.
Namely, collection of a large corpus of annotated data to
train the CNNs is nearly impossible in real applications, such
as the robotics applications [24] and customized categories of
applications [25]. In other words, the DCNN offers a large
representation space and is very easy to lead to overfitting in
processing small-scale datasets. Although the shallow CNNs
including the ensemble CNNs can avoid overfitting in the
processing of small-scale datasets, it suffers from poor
representation ability due to the small number of parameters
and layers.

To take advantage of the good representation ability of the
DCNN and prevent overfitting by avoiding training too much
parameters, researchers have studied the transfer image
representations of DCNNs for visual recognition tasks with
small sample size. Instead of directly training CNN for a
specific task with a small-scale dataset, Oquab et al. designed
a method that reuses the intermediate layers of a DCNN
trained on the ImageNet dataset to generate a mid-level
image representation of images in the PASCAL VOC dataset
[26]. This transferred representation can significantly
enhance classification accuracy in visual recognitions tasks
with small sample size, such as [27], [28], [29], [30], [31],
[32]. However, the mentioned works almost used only one
single pre-trained DCNN structure although many pre-
trained DCNNs can be efficiently used for transfer learning.

To make full use of the existing pre-trained DCNNs, we
propose here three methods to integrate multiple pre-trained
DCNNs by introducing the ensemble methods of
conventional CNNs.

The contributions of this paper are threefold as follows.
1) We introduce conventional ideas of ensemble CNNs

into TCNNs and propose three ensemble TCNNs (TECNNs).
They are the voting method based on the combination of all
TCNNs, the PickOver method by finding the optimal
combination, and weighted method by finding weighted
combination. Different from the existing ensemble CNNs in
which the component CNNs are retrained, the proposed
methods do not need to retrain the component DCNNs and
generate ensemble transferring representations by
transferring the pre-trained mid-level parameters.

2) Their versions of using fine-tuning are also compared in
the experiments, and the fine-tuning versions achieve a
higher generalizability by using the “root mean square prop”
method to fine-tune the last full-connected layer.

3) Except the ensemble method in the pre-trained
DCNNs, we replace the Softmax classifier with ensemble
linear classifiers in the full-connection layer, and the
proposed methods achieve better performance on some
datasets.

II. RELATED WORK

A. TRANSFERRING DCNN
The key idea of the existing transfer learning DCNN (TCNN)
is that the internal layers of the CNN act as the extractors of a
mid-level image representation. They can be hence pre-
trained with the source dataset and then reused for other
target tasks, as shown in Fig. 1 [26]. First, a network is
trained on the source task (e.g. the ImageNet classification,
top row) with a large amount of available labelled images.
Then, the pre-trained parameters of the internal layers of the
network (C1-FC7) are transferred to the target tasks (bottom
row). To compensate different image statistics, e.g., objects
types, typical viewpoints and imaging conditions, of the
source and target data, an adaptation layer (fully connected
layers FC1) is introduced and trained on the labelled data of
the target task [26]. The TCNN has been widely used in
various fields [33], [34], [35]. By transferring the pre-trained
parameters of the internal layers, the TCNN is not required to
train too many parameters and has deep representation ability.
As a result, the TCNN not only exhibits outstanding
representation ability of the deep CNN, but also alleviates
overfitting for the DCNN process of small-scale datasets.

ImageNet

C1-C2-C3-C4-C5 FC6 FC7 FC8

Source task

Convolutional layers Fully-connected layers

4096 or 6144-
dimensionality

1：Feature
learning

2：Feature
learning

3：Classifier
learning

Other
data sets

C1-C2-C3-C4-C5 FC6 FC7 FC1

Target task

Convolutional layers Fully-connected layers

4096 or 6144-
dimensionality

Transfer
parameters

House

Car

Motor
-cycle

Bicycle

……

…
…

New adaptation
layers trained on

target task

FIGURE 1. CNN Transferring parameters [26]

B. ENSEMBLE NEURAL NETWORK
Neural network ensemble is a learning strategy in which a
limited number of neural networks receive the same task
training [36]. It was derived from the work of Hansen and
Salamon [37]. In general, two steps are required to construct
a neural network integration including training a few
component neural networks and combining them. The
generalizability of the neural network system can be
significantly improved by combining a series of neural

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

3

networks. This technology recently has become very popular
in neural networks and machine learning community [38]. It
has been successfully applied to various fields, such as the
face recognition [39], [40], [41], medical diagnosis [42],
image retrieval [43], [44] pedestrian detection [45],
biological information processing [46] and medication safety
[47]. Bagging and Boosting represent the most popular
methods for training the component neural networks. The
Bagging is based on the bootstrap sampling proposed by
Breiman [48], [49] which generates several training sets from
the original training set and then trains component neural
networks from them. The Boosting was first proposed by
Schapire [50] and then improved by Freund et al. [51], [52],
which produces a series of neural networks.

ImageNet
C1-C2-C3-C4-C5 FC6 FC7 FC8

Source task

Convolutional layers Fully-connected layers

4096 or 6144-
dimensionality

1：Feature
learning

2：Feature
learning

3:Classifier
learning

Datasets1
C1-C2-C3-C4-C5 FC6 FC7 TFC1

Target task

Convolutional layers Fully-connected layers

4096 or 6144-
dimensionality

Transfer
parameters

 . . .

1:Classifier
learning

ImageNet
C1-C2-C3-C4-C5 FC6 FC7 FC8

Convolutional layers Fully-connected layers

4096 or 6144-
dimensionality

3:Classifier
learning

Datasets1
C1-C2-C3-C4-C5 FC6 FC7 TFCN

Target task

Convolutional layers Fully-connected layers

4096 or 6144-
dimensionality

Ensemble
layer

MoTor
-cycle

Bicycle
……

…

Transfer
parameters2:Feature

learning

…

…

Source task

New
adaptation

layers trained
on target task

New
adaptation

layers trained
on target task

.
FIGURE 2. Transferring Image Ensemble Representations using DCNNs

There are many other methods for training component

neural networks. Hampshire and Waibel [53] use different
target functions to train different neural networks. Cherkauer
[44] trains the network of components for different amounts
of hidden units. Maclin and Shavlik [54] initialize component
networks in different positions in the weight space. Krogh
and Vedelsby [55] use cross-validation to create a component
network. Opitz and Shavlik [56] use genetic algorithms to
train different knowledge-based component networks. Yao
Ming and Liu [57] see all the individuals in the neural
networks of evolution as component networks.

The most popular methods are plurality voting or majority
voting [20] for classification tasks, simple average [58] or
weighted average [59] for regression tasks. Wolpert [60]
combine the learning system into component neural networks.
Merz and Pazzani [61] use the principal component
regression to determine the appropriate constraints of
component network weights and combine them. Jimenez [62]
uses dynamic weights that are determined by the confidence
of the component networks to combine them. Ueda [63] uses
the optimal linear weighting to combine the component
neural networks based on the statistical pattern recognition
theory. There are some ways to use neural networks to

complete tasks in the style of divide-and-conquer [64], [65],
[66].

Currently, however, few ensemble TCNNs are studied.
Those existing ensemble CNNs are designed to retrain and
integrate the CNN classifiers including a large number of
parameters, leading to overfitting in small-scale datasets. In
contrast, the TECNNs are not required to retrain a large
number of parameters in the convolutional layers and can
reuse several types of TCNNs. In this paper, we introduce
three ensemble DCNN methods for transferring learning and
verify their performance.

III. TRANSFERRING ENSEMBLE REPRESENTATIONS
USING DEEP CONVOLUTIONAL NEURAL NETWORKS

A. THE FRAMEWORK OF TRANSFERRING IMAGE
ENSEMBLE REPRESENTATIONS USING DEEP CNN
(TECNN)
Fig. 2 shows the Framework of the Transferring Image
Ensemble Representations using Deep CNN (TECNN). This
framework is constituted of several pre-trained DCNNs, each
of which has a corresponding TCNN. The TECNN is
constituted of several TCNNs. Each convolutional layer of
TCNN is generated by transferring the convolutional layers
of the corresponded pre-trained DCNNs to the new DCNN.
In addition, new adaptation layers are added into each TCNN
and need to be retrained to compensate for different image
statistics (type of objects, typical viewpoints, imaging
conditions) of the source and target data. Moreover, an
ensemble layer is added to integrate the results of the outputs
of those TCNNs. More details and the mathematical model
will be presented in Sec. 3.2.

B. CLASSIFICATION MODEL
Table 1 lists the symbols.

TABLE 1
SYMBOLS USED

Symbol The Meaning of the symbol

n The number of training image samples;

N The number of transferred CNNs;

wi the weights of the adaptive layer in the i-th transferred CNN ;

xj the j-th image sample;

yj the label of the j-th image sample;

TCNNi The i-th transferred CNN;

Take the binary classification problem as an example. A

sample is labeled with +1 or -1. The loss function of the
voting TECNN method can be expressed as follows:

 2

1
[0,1],

{1.., },

arg min (((, ,))
i

i

n

j i i j
j w

v
i N

f x w TCNN y





  (1)

The decision function of this method is expressed as
follows:

ˆ() si gn((((, ,))))j i i jf x label f x w TCNN y  (2)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

4

, where sign(x) is a function described as follows:
1, 0

sign()
-1, 0

if x
x

if x


  

To optimize (1), each TCNN needs to be trained. In (2),
the sign(.) function’s value of the sum of the output labels of
a sample in all TCNNs is considered as its predicted value
when the voting TECNN method is used.

TABLE 2
TRAINING LEARNING OF THE VOTING METHOD

Algorithm 1. Training learning of the Voting Method

Input:

Output:

Input training image dataset D and test image dataset D’, pre-

traineded DCNNs

The labels of samples in D’

1 For i = 1 to the number of pre-trained DCNNs

2 Transfer the middle weights of DCNNi to the transferred

TCNNi;

3 Training and fine-tuning the wi in the i-th TCNNi to

optimize the first part of (1);

4 Optimize the parameters vi for each i according to the

second part of (1);

5 End

TABLE 3
TRAINING LEARNING OF THE PICKOVER

Algorithm 2. Training learning of the PickOver method

Input:

Output:

Input training image dataset D and test image dataset D’, pre-

traineded DCNNs

The labels of samples in D’

1 For i = 1 to the number of pre-trained DCNNs

2 Transfer the middle weights of DCNNi to the transferred

TCNNi;

3 Training and fine-tuning the wi in the i-th TCNNi to optimize

the first part of (2);

4 Optimize the parameters vi for each i according to the second

part of (2);

5 End

TABLE 4
TRAINING LEARNING OF THE WEIGHTED METHOD

Algorithm 3. Training learning of the weighted method

Input:

Output:

Input training image dataset D and test image dataset D’, pre-

traineded DCNNs

The labels of samples in D’

1 For i = 1 to the number of pre-trained DCNNs

2 Transfer the middle weights of DCNNi to the transferred

TCNNi;

3 Training and fine-tuning the wi in the i-th TCNNi to

optimize the first part of (3);

4 Optimize the parameters vi for each i according to the

second part of (3);

5 End

2

1
[0,1],

{1.., },

(((, ,)) +
arg min

| si (* ((, ,))))
i

i

n
j i i j

j w i j i i j
v
i N

f x w TCNN y

gn v label f x w TCNN y



  
 

  
  (3)

, where label (f(xj,wi, TCNNi)) denotes the validation label
of xj in the i-th TCNNi. The loss function in (3) is constituted
with two parts. In (3), the first half is first optimized and the
second is then done. Consequently, the whole loss of (3) can
be minimized. The first half denotes the loss function of each
TCNN, so each TCNN should be optimized on their
corresponding source dataset. The second half denotes the
difference of combination output labels of the combination
TCNNs and the true label. By optimizing the values of vi, the
value of which is set to 0 or 1, the candidate TCNNs are
selected for ensemble.

In (3), some output probability values are lost in the
ensemble process of labels. For example, the output
probability values of a sample are respectively 0.7 and 0.4 in
two TCNNs, so its labels are respectively 1 and -1 in binary
classification problems. The ensemble results of the sample
in the two TCNNs in (3) is equal to 0. If the output
probability values of the sample are changed to be
respectively 0.9 and 0.4, its ensemble result is the same with
the above. Therefore, some output probability values are lost.
Thus, (4) replaces the output label with the output probability
value in the loss goal of (3). In addition, to show the different
importance, in the third method, the test accuracy of a single
TCNN is used as its weight to measure its importance in the
ensemble representations. Therefore, (3) can be transformed
into (4) as follows:

2

1
[0,1],

{1.., },

(((, ,)) +
arg min

* | si gn(*((, ,))) |
i

i

n
j i i j

j w i i j i i j
v
i N

f x w TCNN y

PA v f x w TCNN y



  
 

  
  (4)

, where PAi denotes the validation accuracy of the i-th
transferred TCNNi .

C. ALGORITHM DESIGN
To implement model (1), (2) and (3), three algorithms have
been designed as Table 2, Table3 and Table 4.

D. FINE-TUNING ENSEMBLE METHODS
In Sections III. A, B, C, the fine-tuning mechanism in pre-
trained DCNNs is not used. Using the fine-tuning mechanism
is good for improving the generalizability of TDCNN.
However, it is easy to lead to overfitting in small-scale data
sets if too much layers are fine-tuned. To utilize the
advantage of the fine-tuning mechanism, at the same time,
and optimize as few parameters as possible in the fine-tuning
process, the last full-connected layer is fine-tuned by using
the “root mean square prop” method. The “root mean square
prop” method is proposed by Geoff Hinton in the Coursera.
Although it is not published, it has been widely used in
various fields. The weights of convolutional layers are fixed
in this paper. The fine-turned version of Algorithm 1, 2, 3 are
separately named by putting "+" after these letters.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

5

E. USING VARIOUS LINEAR CLASSIFERS IN THE FULL-
CONNECTION LAYER
The Softmax classifier is a common linear classifier in the
full-connection layer, and some other classifiers are used to
replace the Softmax classifier, such as SVM [66]. Few
studies use the ensemble classifiers in the full-connection
layer. In this paper, we will use the ensemble linear
classifiers to achieve better classification generalizability.
Sign(.) function’s value of the sum of the output value of a
sample in all TCNNs is considered as the output value of the
sample, and its decision function can be expressed as follows:
ˆ() si gn(((, ,))j i i jf x f x w TCNN y  ）

IV. EXPERIMENTS
In this section we first describe details of the pre-trained
CNNs. Next, we show the experimental results of the
proposed transfer learning method on different datasets
collected from the Google, Baidu's picture library and
Caltech. Moreover, to demonstrate the superior efficiency of
the proposed algorithms, we compare them with the TCNN
method [26] and CNNs. The structure of the compared
CNNs is set as follows. The size of the network inputs is
224×224×3 pixels. As the training set is not large, the
structure only contains three convolutional layers. The full
architecture corresponds to C(32,3,3)-R-P-C(32,3,3)-R-P-
C(64,3,3)-R-P-FC(2048)-R-Dropout(0.5)-FC(48)-R-Dropout
(0.5), where C(d,f,s) represents a convolutional layer with d
filters with spatial size of f×f, applied to the input with strides.
Here, FC(n) is a fully connected layer with n nodes, and the
Dropout layer is used to alleviate the overfitting. Moreover,
R indicates the activation layer using the RELU function. All
pooling layers P pool spatially in non-overlapping 2×2
regions. The final layer is connected to a Softmax classifier
with dense connections.

The experiments have been performed on a standalone
desktop computer, configured as follows. We use a CPU
from Intel Core i5-4460 3.20GHz CPU, 8.00GB RAM,
465GB hard drive; 64-bit Windows10 Enterprise Edition
operating system, 64-bit Windows version of python3. 5.2,
and JetBrains PyCharm Community Edition 2016.2 as the
compiling software. The other parameters are same as the
default system configuration.

A. PRE-TRAINED CNNS
We have used five pre-trained DCNNs based on the Keras
framework, namely VGG16 [23], VGG19 [23], ResNet50
[67], InceptionV3 [68], and Xception [69]. Their structures
have been trained by using the dataset ImageNet. The five
per-trained models are combined with the transfer learning
methods in [26] and named as TCNN_VGG16,
TCNN_VGG19, TCNN_ResNet50, TCNN_InceptionV3 and
TCNN_Xception, respectively. In all experiments, to
stabilize the performance analysis of the compared
algorithms, the test accuracy is achieved by averaging over
10 times. In each time, 80% samples are randomly selected

from each dataset as the training set, and the remaining 20%
as the test set. We have also used TensorFlow as the backend,
where the parameters are set as the default values. The target
objects in our datasets are not contained in the training
dataset of the pre-trained DCNNs. So, the transferring
representation ability of those algorithms can be checked.

B. IMAGE CLASSIFICATION ON INTERNET DATA
The experimental data sets have been randomly achieved
from the Google and Baidu's picture library. There are six
classes of picture data, each of which is composed 130
pictures. They include ass, horse, cervus nippon, bimodal
camel, giraffe and sheep. Fig. 3 shows the experimental data.
Each dataset is constituted of two classes, with 260 pictures
in each class. Table 5 lists the experimental datasets. These
datasets are available in http://pan.baidu.com/s/1mihu564.

(a) (b) (c)

(d) (e) (f)

FIGURE 3. Some of the images in the data set. (a)ass, (b)horse, (c)

cervus Nippon,(d)Bactrian camel,(e)giraffe,(f)sheep.

TABLE 5
DATA SETS DETAILS FROM GOOGLE AND BAIDU'S PICTURE LIBRARY

Data set Data1 Data2 Data3 Data4 Data5 Data6
Firstclass
Secondclass

Horse
BactrianCamel

Horse
Ass

Horse
Giraffe

Horse
Sheep

Horse
CervusNippon

Sheep
Giraffe

Data7 Data8 Data9 Data10 Data11 Data12
Sheep
BactrianCamel

Sheep
Ass

Giraffe
Ass

Giraffe
CervusNippon

Sheep
CervusNippon

Giraffe
BactrianCamel

TABLE 6

COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS ON

THE 12 DATA SETS FROM INTERNET

Algorithms Data1 Data2 Data3 Data4 Data5 Data6
CNN 0.8269 0.8461 0.8269 0.8653 0.8076 0.9723
VGG16 0.9769 0.9750 0.9712 0.9654 0.9846 0.9673
VGG19 0.9788 0.9712 0.9692 0.9558 0.9808 0.9577
ResNet50 0.9788 0.9712 0.9692 0.9558 0.9808 0.9577
InceptionV3 0.8423 0.8481 0.8481 0.8212 0.8135 0.8346
Xception 0.7577 0.7654 0.7365 0.7500 0.7635 0.7385
Voting 0.9865 0.9750 0.9654 0.9635 0.9808 0.9654
PickOver 0.9904 0.9923 0.9827 0.9769 0.9962 0.9846
Weighted 0.9904 0.9885 0.9827 0.9769 0.9962 0.9827

The experimental results of all algorithms on all data sets

are shown in Fig. 4. The DCNN has good representation
ability to describe an image; by contrast, the representation
ability of CNNs is lower than the ability of DCNNs.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

6

Therefore, the transfer learning algorithms weighted method,
PickOver method, voting method, TCNNVGG16,
TCNNVGG19 and TCNNResNet50 exhibit higher test
accuracy than the original CNN algorithm in most cases.

TABLE 7

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL TRANSFERRED

AND ENSEMBLE TRANSFERRED ALGORITHMS ON THE 12 DATA SETS FROM

INTERNET.

Algorithms Data7 Data8 Data9 Data10 Data11 Data12
CNN 0.9230 0.9038 0.9615 0.8653 0.9230 0.9615
VGG16 0.9788 0.9558 0.9750 0.9731 0.9692 0.9731
VGG19 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769
ResNet50 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769
InceptionV3 0.8519 0.8538 0.8481 0.8269 0.8231 0.8346
Xception 0.7385 0.7558 0.7615 0.7846 0.7365 0.7577
Voting 0.9769 0.9731 0.9788 0.9731 0.9635 0.9808
PickOver 0.9865 0.9788 0.9846 0.9865 0.9865 0.9885
Weighted 0.9865 0.9788 0.9865 0.9865 0.9846 0.9885

FIGURE 4. The comparison of test accuracy on different algorithms

TABLE 8

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN DIFFERENT

ALGORITHMS

Algorithms CNN VGG16 VGG19 ResNet50
ACC 0.8907 0.9721 0.9697 0.9697

InceptionV3 Xception Voting PickOver Weighted
0.8372 0.7538 0.9736 0.9862 0.9857

The proposed PickOver and Weighted methods present

higher test accuracy than the CNN on all those datasets.
InceptionV3 and Xception always exhibit the lowest
accuracy. It indicates that these two TCNNs have not good
transferring learning ability because of their relatively small
original training data sets or simple structure or bad structure
design. In addition, by integrating different TCNNs, Voting,
PickOver and Weighted exhibit an obviously higher test
accuracy than other TCNN algorithms.

Tables 6 and 7 provide the detail data, and the boldface is
corresponded with the highest accuracy. As shown in Tables
6 and 7, it has the highest accuracy advantage when
compared with other TCNN algorithms on the data2,
i.e.1.73% higher than the most effective TCNN algorithm (i.e.
VGG16) on data2.

Table 8 presents the average accuracies of the nine
algorithms which are computed from Tables 6 and 7. As
shown in Table 8, the proposed TECNNs have higher test
accuracies than other algorithms, where the PickOver is the

best. The average test accuracy provided by the PickOver is
9.55% higher than the CNN and 1.65% higher than the most
effective TCNN algorithm (i.e. VGG16) in the experiments.

TABLE 9

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Data1 Data2 Data3 Data4 Data5 Data6
CNN 0.8269 0.8461 0.8269 0.8653 0.8076 0.9723
VGG16+ 0.9942 0.9692 1.0000 1.0000 0.9962 0.9981
VGG19+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923
ResNet50+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923
InceptionV3+ 0.7385 0.7231 0.875 0.8135 0.7788 0.8827
Xception+ 0.7308 0.7308 0.7962 0.825 0.7923 0.7500
Voting 0.9923 0.9788 1.0000 0.9981 1.0000 0.9923
PickOver 0.9942 0.9885 1.0000 1.0000 1.0000 0.9981
Weighted 0.9923 0.9788 1.0000 0.9981 1.0000 0.9923

TABLE 10

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Data7 Data8 Data9 Data10 Data11 Data12
CNN 0.9230 0.9038 0.9615 0.8653 0.9230 0.9615
VGG16+ 0.9865 0.9923 0.9942 1.0000 0.9942 0.9923
VGG19+ 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000
ResNet50+ 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000
InceptionV3+ 0.8058 0.8038 0.85 0.8269 0.8558 0.8558
Xception+ 0.7346 0.7692 0.8077 0.7192 0.7327 0.8308
Voting 0.9865 0.9962 1.0000 1.0000 0.9981 0.9981
PickOver 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000
Weighted 0.9904 0.9962 1.0000 0.9981 0.9981 1.0000

TABLE 11

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL

ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms CNN VGG16+ VGG19+ ResNet50+
ACC 0.8907 0.9931 0.9963 0.9963

InceptionV3+ Xception+ Voting PickOver Weighted
0.8175 0.7683 0.9950 0.9971 0.9954

TABLE 12

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN FROM INTERNET

Algorithms Data1 Data2 Data3 Data4 Data5 Data6
VGG16 0.9769 0.9750 0.9712 0.9654 0.9846 0.9673
VGG16+ 0.9942 0.9692 1.0000 1.0000 0.9962 0.9981
VGG19 0.9788 0.9712 0.9692 0.9558 0.9808 0.9577
VGG19+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923
ResNet50 0.9788 0.9712 0.9692 0.9558 0.9808 0.9577
ResNet50+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923
InceptionV3 0.8423 0.8481 0.8481 0.8212 0.8135 0.8346
InceptionV3+ 0.7385 0.7231 0.8750 0.8135 0.7788 0.8827
Xception 0.7577 0.7654 0.7365 0.7500 0.7635 0.7385
Xception+ 0.7308 0.7308 0.7962 0.825 0.7923 0.7500

TABLE 13

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN FROM INTERNET

Algorithms Data7 Data8 Data9 Data10 Data11 Data12
VGG16 0.9788 0.9558 0.9750 0.9731 0.9692 0.9731
VGG16+ 0.9865 0.9923 0.9942 1.0000 0.9942 0.9923
VGG19 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769
VGG19+ 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000
ResNet50 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769
ResNet50+ 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000
InceptionV3 0.8519 0.8538 0.8481 0.8269 0.8231 0.8346
InceptionV3+ 0.8058 0.8038 0.8500 0.8269 0.8558 0.8558
Xception 0.7385 0.7558 0.7615 0.7846 0.7365 0.7577
Xception+ 0.7346 0.7692 0.8077 0.7192 0.7327 0.8308

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

7

Tables 9-11 present the results of both the fine-tuning

DCNNs and their TECNNs. Table 11 shows the average
accuracies. Similar with the TECNNs that does not use fine-
tuning, the PickOver exhibits the best performance in
average. The voting and weighted methods can also achieve
better performance on some cases.

Tables 12-13 show the comparison between the two
methods of using fine-tuning and not using fine-tuning. The
fine-tuning methods are suffixed with “+”. It can be observed
that the VGG16+, VGG19+ and Resnet50+ exhibit higher
accuracies than the versions of not using fine-tuning on all
datasets. The inceptionV3+ and Xception+ achieve higher
accuracies on part of datasets. In average, the fine-tuning
methods exhibit higher generalizability than the version of
not using fine-tuning. However, fine-tuning may lead to
overfitting to an extent, so as shown in Table 13, the methods
of fine-tuning have lower accuracies on few cases. That
indicates the generalizability may be decreased. Table 14
compare the performance between methods of using different
linear classifiers in the full-connection layer. T_SM uses the
Softmax classifier in the full-connection layer， and T_SVM
uses the SVM. T_SM_SVM combines the Softmax and
SVM. It can be observed from Table 14 that, T_SVM and
T_SM_SVM can achieve higher accuracy than the T_SM on
some cases.

TABLE 14
THE EXPERIMENTAL RESULTS ON COMPARISON METHODS

Algorithms Data1 Data2 Data3 Data4 Data5 Data6

T_SM 0.9942 0.9769 1.0000 0.9942 1.0000 0.9962
T__SVM 0.9885 0.9827 1.0000 0.9981 1.0000 0.9923
T_SM_SVM 0.9944 0.9769 1.0000 0.9981 1.0000 0.9923
Algorithms Data7 Data8 Data9 Data10 Data11 Data12
T_SM 0.9942 1.0000 1.0000 1.0000 0.9962 1.0000
T_SVM 0.9942 0.9962 1.0000 0.9962 0.9981 0.9981
T_SM_SVM 0.9985 0.9962 1.0000 0.9962 0.9981 1.0000

C. IMAGE CLASSIFICATION ON CALTECH
These experimental datasets are randomly selected from the
image dataset Caltech256. The datasets are constituted of 17
classes of pictures, and each class contains 130 pictures.
Each dataset is constituted of two classes of pictures with 260
pictures. Table 15 provides the specific information of those
datasets.

Fig. 5 presents the experimental results. Similar with Fig. 4,
our proposed algorithms and other TCNN algorithms,
TCNNVGG16, TCNNVGG19 and TCNNResNet50, exhibit
higher test accuracies than the conventional CNN on most of
the datasets except data2, data9 and data 10. The weighted
method presents higher test accuracy than the conventional
CNNs on all datasets only except data9. In addition, the
TECNNs have higher test accuracies than the TCNN
algorithms. Different from the case in Fig. 3, the weighted
method almost has the highest test accuracy instead of the
PickOver method. It shows that the proposed three TECNN
algorithms have different ensemble advantages for different
datasets. Tables 16 and 17 provide details. The boldface

corresponds to the highest accuracy of the algorithms. Table
18 provides the average accuracies of the nine algorithms
achieved from Tables 16 and 17. As shown in Table 18, the
proposed three TECNNs have higher test accuracies than
other algorithms, where the weighted method is the best. The
proposed PickOver provides 5.85% higher accuracy than the
most effective TCNN algorithm, TCNNVGG19.

The PickOver and Weighted methods have the similar
mechanism to find the best combination of TECNNs. So,
they present almost the same performance on many datasets.
Despite of this, they exhibit different performance on some
datasets, such as the experimental results in Table 16 and 17.

TABLE 15

DATA SETS SELECTED FROM THE CALTEC
Data set Data1 Data2 Data3 Data4 Data5 Data6
First class
Second lass

BaseballGlove
Billiards

Bread maker
Grapes

Hammock
Hot Tub

Ladder
Lighthouse

Lightning
Mars

Mattress
Minaret

Data7 Data8 Data9 Data10 Data11 Data12
Mussels
Raccoon

Teepee
Treadmill

Lighting
Clutter

Billiards
&Mars

Hammock
Mattress

Ladder
Treadmill

TABLE 16

COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS

Algorithms Data1 Data2 Data3 Data4 Data5 Data6
CNN 0.9230 0.9807 0.8076 0.8653 0.9423 0.8653
VGG16 0.9135 0.9173 0.9250 0.9538 0.9250 0.9212
VGG19 0.9346 0.9154 0.9327 0.9404 0.9231 0.9288
ResNet50 0.9346 0.9154 0.9327 0.9404 0.9231 0.9288
InceptionV3 0.8481 0.8731 0.8827 0.8865 0.8769 0.8846
Xception 0.7904 0.8038 0.8038 0.8077 0.7846 0.8019
Voting 0.9558 0.9423 0.9481 0.9692 0.9500 0.9519
PickOver 0.9404 0.9308 0.9404 0.9615 0.9365 0.9442
Weighted 0.9923 0.9885 0.9827 0.9769 0.9962 0.9827

TABLE 17

COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS

Algorithms Data7 Data8 Data9 Data10 Data11 Data12
CNN 0.8461 0.9038 1.0000 0.9807 0.8846 0.8461
VGG16 0.9346 0.9327 0.9250 0.9135 0.9231 0.9288
VGG19 0.9288 0.9308 0.9269 0.9154 0.9250 0.9269
ResNet50 0.9288 0.9308 0.9269 0.9154 0.9250 0.9269
InceptionV3 0.8865 0.8788 0.8615 0.8769 0.8577 0.8808
Xception 0.8327 0.7846 0.7923 0.8154 0.7750 0.8096
Voting 0.9558 0.9500 0.9500 0.9519 0.9519 0.9558
PickOver 0.9481 0.9481 0.9442 0.9288 0.9365 0.9423
Weighted 0.9865 0.9788 0.9865 0.9865 0.9846 0.9885

TABLE 18

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN DIFFERENT

ALGORITHMS

Algorithms CNN VGG16 VGG19 ResNet50
ACC 0.9038 0.9261 0.9274 0.9274

InceptionV3 Xception Voting PickOver Weighted
0.8745 0.8001 0.9527 0.9418 0.9859

It can be observed from Tables 19, 20, 21 that, similar
with the experimental results in Tables 9, 10, 11, the
PickOver exhibits the best performance in comparison with
other methods. The voting and weighted methods can
achieve better performance on some cases. Tables 22, 23
show that the T_SVM exhibits the highest classification

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

8

accuracy than other two methods. Tables 24, 25 show that
the fine-tuning methods achieve better generalizability; at the
same time, fine-tuning may lead to overfitting on some cases,
so classification accuracy is decreased.

TABLE 19

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Data1 Data2 Data3 Data4 Data5 Data6
CNN 0.8461 0.9038 1.0000 0.9807 0.8846 0.8461
VGG16+ 0.9981 0.9942 0.9981 0.9712 0.9923 0.9981
VGG19+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000
ResNet50+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000
InceptionV3+ 0.8231 0.9173 0.7442 0.8212 0.9558 0.8635
Xception+ 0.7500 0.9308 0.6981 0.7596 0.8865 0.8019
Voting 0.9923 0.9923 0.9942 0.9827 0.9923 1.0000
PickOver 0.9981 0.9942 0.9981 0.9923 1.0000 1.0000
Weighted 0.9904 0.9923 0.9981 0.9808 0.9942 1.0000

FIGURE 5. The comparison of test accuracy on different algorithms

TABLE 20

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Data7 Data8 Data9 Data10 Data11 Data12
CNN 0.8461 0.9038 1.0000 0.9807 0.8846 0.8461
VGG16+ 0.9981 1.0000 1.0000 0.9981 0.9788 0.9462
VGG19+ 1.0000 1.0000 1.0000 0.9981 0.9885 0.9462
ResNet50+ 1.0000 1.0000 1.0000 0.9981 0.9885 0.9462
InceptionV3+ 0.6808 0.8538 0.9712 0.9365 0.7904 0.7404
Xception+ 0.6385 0.8077 0.8981 0.9442 0.7577 0.7462
Voting 1.0000 1.0000 1.0000 1.0000 0.9865 0.9538
PickOver 1.0000 1.0000 1.0000 1.0000 0.9885 0.9635
Weighted 1.0000 1.0000 1.0000 0.9981 0.9846 0.9615

TABLE 21
COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL

ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms CNN VGG16+ VGG19+ ResNet50+
ACC 0.9038 0.9894 0.9917 0.9917

InceptionV3+ Xception+ Voting PickOver Weighted
0.8415 0.8016 0.9912 0.9946 0.9917

TABLE 22
COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Data1 Data2 Data3 Data4 Data5 Data6

T_SM 0.9885 0.9865 0.9962 0.9808 0.9942 1.0000
T_SVM 0.9923 0.9942 0.9904 0.9846 0.9942 1.0000
T_SM_SVM 0.9942 0.9942 0.9904 0.9808 0.9942 1.0000
Algorithms Data7 Data8 Data9 Data10 Data11 Data12
T_SM 0.9942 1.0000 1.0000 1.0000 0.9865 0.9519
T_SVM 1.0000 1.0000 1.0000 0.9981 0.9827 0.9577
T_SM_SVM 1.0000 1.0000 1.0000 0.9981 0.9846 0.9538

TABLE 23

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL

ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

 Algorithms T_SM T_SVM T_SM_SVM
ACC 0.9899 0.9912 0.9909

TABLE 24

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF

USING FINE-TUNING AND NOT USING FINE-TUNING

Algorithms Data1 Data2 Data3 Data4 Data5 Data6
VGG16 0.9135 0.9173 0.9250 0.9538 0.9250 0.9212
VGG16+ 0.9981 0.9942 0.9981 0.9712 0.9923 0.9981
VGG19 0.9346 0.9154 0.9327 0.9404 0.9231 0.9288
VGG19+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000
ResNet50 0.9346 0.9154 0.9327 0.9404 0.9231 0.9288
ResNet50+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000
InceptionV3 0.8481 0.8731 0.8827 0.8865 0.8769 0.8846
InceptionV3+ 0.8231 0.9173 0.7442 0.8212 0.9558 0.8635
Xception 0.7904 0.8038 0.8038 0.8077 0.7846 0.8019
Xception+ 0.7500 0.9308 0.6981 0.7596 0.8865 0.8019

TABLE 25

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF

USING FINE-TUNING AND NOT USING FINE-TUNING

Algorithms Data7 Data8 Data9 Data10 Data11 Data12
VGG16 0.9346 0.9327 0.9250 0.9135 0.9231 0.9288
VGG16+ 0.9981 0.9942 0.9981 0.9712 0.9923 0.9981
VGG19 0.9288 0.9308 0.9269 0.9154 0.9250 0.9269
VGG19+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000
ResNet50 0.9288 0.9308 0.9269 0.9154 0.9250 0.9269
ResNet50+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000
InceptionV3 0.8865 0.8788 0.8615 0.8769 0.8577 0.8808
InceptionV3+ 0.8231 0.9173 0.7442 0.8212 0.9558 0.8635
Xception 0.8327 0.7846 0.7923 0.8154 0.7750 0.8096
Xception+ 0.7500 0.9308 0.6981 0.7596 0.8865 0.8019

D. IMAGE CLASSIFICATION ON IMAGENET
In this section, to generate small data sets, two classes of data
are randomly selected from the latest ImageNet to form each
dataset, where the ImageNet is available at: http://www.image-
net.org. The content of the ImageNet is continuously updated,
and the generated datasets used in this section are not included
in the original trained datasets for the five TCNNs, which are
trained by the 2014 version of ImageNet. Therefore, the
original datasets and target datasets are different. Table 26 lists
these datasets. Similar with the experiments, to generate small-
scale datasets, each class contains 130 images that are
randomly selected, and each dataset is formed by 260 images.
Moreover, 80% of each dataset, i.e. 208, were used for training,
and the remaining 20% were used for the test. The training

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

9

structure of the CNN is the same as the previous.

TABLE 26
EXPERIMENTAL DATA SETS FROM IMAGENET

Data set Data1 Data2 Data3 Data4 Data5 Data6
First class
Second lass

Bicycle
Container
House

Bicycle
IronNail

Bicycle
Masks

Bicycle
Necklace

Bicycle
Nipple

Container
House
IronNail

Data7 Data8 Data9 Data10 Data11 Data12
Container
House Masks

Container
House
Necklace

Container
House
Nipple

IronNail
Masks

IronNail
Necklace

IronNail
Nipple

Fig. 6 presents the experimental results. It can be seen that the
proposed algorithms and other TCNN algorithms, i.e.,
TCNNVGG16, TCNNVGG19 and TCNNResNet50, have
higher test accuracies than the conventional CNNs on most
datasets except data8. The test accuracies of the proposed
TECNNs are higher than the conventional CNNs on all
datasets. In addition, the proposed TECNNs provide higher
test accuracies than the TCNNs.

FIGURE 6. The comparison of test accuracy on different algorithms

TABLE 27
COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS

Algorithms Data1 Data2 Data3 Data4 Data5 Data6
CNN 0.8430 0.8807 0.9076 0.8243 0.9023 0.8253
VGG16 0.9673 0.9654 0.9712 0.9788 0.9731 0.9327
VGG19 0.9654 0.9769 0.9788 0.9962 0.9788 0.9308
ResNet50 0.9654 0.9769 0.9788 0.9962 0.9788 0.9308
InceptionV3 0.9308 0.9115 0.8519 0.9212 0.9481 0.9192
Xception 0.8058 0.8519 0.7827 0.8654 0.9269 0.8327
Voting 0.9731 0.9827 0.9788 0.9981 0.9865 0.9577
PickOver 0.9673 0.9885 0.9769 1.0000 0.9962 0.9827
Weighted 0.9769 0.9846 0.9808 0.9942 0.9904 0.9654

Tables 27 and 28 provide the details. Table 29, derived from

Tables 27 and 28, presents the average accuracies of the eight
algorithms. As shown in Table 29, the proposed three TECNNs
have higher test accuracies than other algorithms, in which the
voting method is the best. In particular, the proposed voting
method provide 0.85% higher accuracy than other most
effective TCNN algorithm (i.e. TCNN_VGG19) in this
experiment. As shown in Tables 27 and 28, the proposed
weighted method presents the highest accuracy in comparison
with other TCNN algorithms on the data6, i.e. 5% higher than
the most effective TCNN algorithm TCNN_VGG16 on data12.

Similar with the experimental results, Tables 30, 31, 32

still exhibit better generalizability of the PickOver in
comparison with other methods. Tables 33-34 show that the
T_SM has the highest classification accuracy in these
ImageNet datasets. As shown in Tables 35-36, different
from the experimental results on the Caltech, the two
TCNNs, i.e. InceptionV3 and Xception, exhibit higher
classification accuracy than the version of using fine-tuning.
It indicates that fine-tuning lead to obvious overfitting.

TABLE 28

COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS

Algorithms Data7 Data8 Data9 Data10 Data11 Data12
CNN 0.8261 0.9807 0.8846 0.9047 0.8461 0.9230
VGG16 0.9615 0.9750 0.9808 0.9019 0.9442 0.9385
VGG19 0.9596 0.9827 0.9788 0.9481 0.9750 0.9615
ResNet50 0.9596 0.9827 0.9788 0.9481 0.9750 0.9615
InceptionV3 0.9442 0.9750 0.9500 0.7577 0.8577 0.8462
Xception 0.8923 0.9019 0.8981 0.7269 0.7077 0.6462
Voting 0.9865 0.9942 0.9904 0.9481 0.9750 0.9635
PickOver 0.9904 1.0000 0.9865 0.9404 0.9615 0.9385
Weighted 0.9923 1.0000 0.9769 0.9423 0.9673 0.9558

TABLE 29
COMPARISONS OF AVERAGE TEST ACCURACY

Algorithms CNN VGG16 VGG19 ResNet50
ACC 0.8790 0.9575 0.9694 0.9694

InceptionV3 Xception Voting PickOver Weighted
0.9011 0.8199 0.9779 0.9774 0.9772

TABLE 30

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Data1 Data2 Data3 Data4 Data5 Data6
CNN 0.8430 0.8807 0.9076 0.8243 0.9023 0.8253
VGG16+ 0.9808 0.9942 0.9750 0.9981 0.9962 0.9981
VGG19+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000
ResNet50+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000
InceptionV3+ 0.8212 0.8519 0.8365 0.8712 0.9346 0.8577
Xception+ 0.7442 0.8577 0.7154 0.8423 0.9096 0.7500
Voting 0.9885 0.9981 0.9904 1.0000 0.9962 1.0000
PickOver 0.9885 1.0000 0.9962 1.0000 0.9962 1.0000
Weighted 0.9865 0.9981 0.9865 1.0000 0.9962 0.9962

TABLE 31

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Data7 Data8 Data9 Data10 Data11 Data12
CNN 0.8261 0.9807 0.8846 0.9047 0.8461 0.9230
VGG16+ 0.9942 1.0000 0.9981 0.9885 0.9692 0.9654
VGG19+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731
ResNet50+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731
InceptionV3+ 0.8404 0.9 0.8827 0.675 0.7288 0.6577
Xception+ 0.7577 0.8 0.8019 0.6673 0.6442 0.6519
Voting 1.0000 1.0000 0.9981 0.9904 0.9788 0.9673
PickOver 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731
Weighted 1.0000 1.0000 0.9981 0.9885 0.9827 0.9750

TABLE 32

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL

ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms CNN VGG16+ VGG19+ ResNet50+
ACC 0.8790 0.9881 0.9936 0.9936

InceptionV3+ Xception+ Voting PickOver Weighted
0.8215 0.7619 0.9923 0.9942 0.9923

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

10

TABLE 33
COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Data1 Data2 Data3 Data4 Data5 Data6

T_SM 0.9962 0.9981 0.9942 1.0000 0.9962 0.9923
T_SVM 0.9827 1.0000 0.9942 1.0000 0.9962 0.9962
T_SM_SVM 0.9827 0.9981 0.9923 1.0000 0.9962 0.9962
Algorithms Data7 Data8 Data9 Data10 Data11 Data12
T_SM 1.0000 1.0000 0.9942 0.9904 0.9904 0.9692
T_SVM 1.0000 0.9962 0.9981 0.9827 0.9885 0.9712
T_SM_SVM 1.0000 1.0000 0.9981 0.9865 0.9846 0.9750

TABLE 34
COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL

ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

ON THE 12 DATA SETS FROM IMAGENET

 Algorithms T_SM T_SVM T_SM_SVM
ACC 0.9934 0.9921 0.9925

TABLE 35

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF

USING FINE-TUNING AND NOT USING FINE-TUNING

Algorithms Data1 Data2 Data3 Data4 Data5 Data6
VGG16 0.9673 0.9654 0.9712 0.9788 0.9731 0.9327
VGG16+ 0.9808 0.9942 0.9750 0.9981 0.9962 0.9981
VGG19 0.9654 0.9769 0.9788 0.9962 0.9788 0.9308
VGG19+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000
ResNet50 0.9654 0.9769 0.9788 0.9962 0.9788 0.9308
ResNet50+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000
InceptionV3 0.9308 0.9115 0.8519 0.9212 0.9481 0.9192
InceptionV3+ 0.8212 0.8519 0.8365 0.8712 0.9346 0.8577
Xception 0.8058 0.8519 0.7827 0.8654 0.9269 0.8327
Xception+ 0.7442 0.8577 0.7154 0.8423 0.9096 0.7500

TABLE 36

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF

USING FINE-TUNING AND NOT USING FINE-TUNING

Algorithms Data7 Data8 Data9 Data10 Data11 Data12
VGG16 0.9615 0.9750 0.9808 0.9019 0.9442 0.9385
VGG16+ 0.9942 1.0000 0.9981 0.9885 0.9692 0.9654
VGG19 0.9596 0.9827 0.9788 0.9481 0.9750 0.9615
VGG19+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731
ResNet50 0.9596 0.9827 0.9788 0.9481 0.9750 0.9615
ResNet50+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731
InceptionV3 0.9442 0.9750 0.9500 0.7577 0.8577 0.8462
InceptionV3+ 0.8404 0.9000 0.8827 0.6750 0.7288 0.6577
Xception 0.8923 0.9019 0.8981 0.7269 0.7077 0.6462
Xception+ 0.7577 0.8000 0.8019 0.6673 0.6442 0.6519

V. CONCLUSIONS
To make full use of the existing multiple TCNNs and
improve their generalizability, this study proposes three
ensemble TCNNs by introducing the ensemble ideas. The
experimental results show that these TECNNs exhibit better
generalizability than the conventional CNNs and a single
TCNN. In comparison with the CNN and five widely used
TCNNs, the proposed TECNNs enhance the average test
accuracy by 1.65%, 5.85% and 7.58% respectively on the
internet datasets and two benchmark small-scale datasets,
and the highest test accuracy by 1.73%, 7.12% and 8.85%.

Due to space limitations, only some common ensemble
methods are combined into the proposed TECNNs. In the
future, we will introduce more ensemble technologies to
achieve better performance.

VI. REFERENCES
[1] Lowe, David G. "Distinctive Image Features from Scale-Invariant

Keypoints." International Journal of Computer Vision 2004:91-110.

[2] Dalal, et al. "Histograms of Oriented Gradients for Human

Detection." IEEE Computer Society Conference on Computer Vision

and Pattern Recognition IEEE, 2005:886-893.

[3] Csurka, G. "Visual categorization with bags of keypoints."

Workshop on Statistical Learning in Computer Vision Eccv

44.247(2004):1--22.

[4] S. Lazebnik, C. Schmid, and J. Ponce. “Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories”.

In CVPR, 2006

[5] F. Perronnin, J. S´anchez, and T. Mensink. “Improving the fisher

kernel for large-scale image classification”. In ECCV, 2010

[6] J. Sivic and A. Zisserman. “Video Google: A text retrieval approach

to object matching in videos”. In ICCV, 2003

[7] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan.

“Object detection with discriminatively trained part based models”.

IEEE PAMI, 32(9):1627–1645, 2010

[8] GriffinGS, HolubAD, and PeronaP. "Caltech-256 Object Category

Dataset." California Institute of Technology (2007).

[9] Everingham, Mark, et al. "The Pascal, Visual Object Classes (VOC)

Challenge." International Journal of Computer Vision

88.2(2010):303-338.

[10] Deng, Jia, et al. "ImageNet: A large-scale hierarchical image

database." Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on IEEE, 2009:248-255.

[11] F. Rosenblatt. “The perceptron: A perceiving and recognizing

automaton”. Technical Report 85-460-1, Project PARA, Cornell

Aeronautical Lab, 1957

[12] D.H. Hubel and T.N. Wiesel. “Receptive fields of single neurones in

the cat’s striate cortex”. Journal of Physiology, 148:574–591, 1959

[13] K. Fukushima. “Neocognitron: A self-organizing neural network

model for a mechanism of pattern recognition unaffected by shift in

position”. Biological cybernetics, 36(4):193–202, 1980

[14] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. “Learning

representations by back-propagating errors”. Nature, 323(6088):533–

536, 1986

[15] K.J. Lang and G.E. Hinton. “A time delay neural network

architecture for speech recognition”. TechnicalReportCMUCS-88-

152, CMU, 1988

[16] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R.E. Howard, W.

Hubbard, and L.D. Jackel. “Backpropagation applied to handwritten

zip code recognition”. Neural Computation, 1(4):541–551, Winter

1989

[17] LÉcun, Yann, et al. "Gradient-based learning applied to document

recognition." Proceedings of the IEEE 86.11(1998):2278-2324.

[18] Simard, Patrice Y., D. Steinkraus, and J. C. Platt. "Best Practices for

Convolutional Neural Networks Applied to Visual Document

Analysis." International Conference on Document Analysis and

Recognition IEEE Computer Society, 2003:958.

[19] Osadchy, Margarita, Y. L. Cun, and M. L. Miller. "Synergistic Face

Detection and Pose Estimation with Energy-Based Models." Journal

of Machine Learning Research 8.1(2006):1197-1215.

[20] Vaillant, R, C. Monrocq, and Y. L. Cun. "An original approach for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

11

the localization of objects in images." International Conference on

Artificial Neural Networks IET, 1993:26-30.

[21] Lecun, Yann, F. J. Huang, and L. Bottou. "Learning methods for

generic object recognition with invariance to pose and lighting."

Computer Vision and Pattern Recognition, 2004. CVPR 2004.

Proceedings of the 2004 IEEE Computer Society Conference on

IEEE, 2004:II-97-104 Vol.2.

[22] A.Krizhevsky, I.Sutskever, and G.E.Hinton. “Imagenet classification

with deep convolutional neural networks”. InNIPS, 2012

[23] K. Simonyan and A. Zisserman. “Very deep convolutional networks

for large-scale image recognition”. In ICLR, 2015.

[24] Held, David, S. Thrun, and S. Savarese. "Robust single-view

instance recognition." IEEE International Conference on Robotics

and Automation IEEE, 2016:2152-2159.

[25] Wang, Yu Xiong, and M. Hebert. "Model recommendation:

Generating object detectors from few samples." IEEE Conference on

Computer Vision and Pattern Recognition IEEE Computer Society,

2015:1619-1628.

[26] Oquab, Maxime, et al. "Learning and Transferring Mid-level Image

Representations Using Convolutional Neural Networks." Computer

Vision and Pattern Recognition IEEE, 2014:1717-1724.

[27] Razavian, Ali Sharif, et al. "CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition." (2014):512-519.

[28] Azizpour, Hossein, et al. "Factors of Transferability for a Generic

ConvNet Representation." IEEE Transactions on Pattern Analysis &

Machine Intelligence 38.9(2015):1790-1802.

[29] Yosinski, Jason, et al. "How transferable are features in deep neural

networks?." 27(2014):3320-3328.

[30] Songfan Yang, and Deva Ramanan. "Multi-scale recognition with

DAG-CNNs." (2015):1215-1223.

[31] Hafemann, Luiz G, et al. "Transfer learning between texture

classification tasks using Convolutional Neural Networks."

International Joint Conference on Neural Networks IEEE, 2015:1-7.

[32] Ross Girshick, et al. "Rich Feature Hierarchies for Accurate Object

Detection and Semantic Segmentation." (2013):580-587.

[33] Zhang, R., et al. "Automatic Detection and Classification of

Colorectal Polyps by Transferring Low-level CNN Features from

Non-Medical Domain." IEEE Journal of Biomedical & Health

Informatics PP.99(2016):1-1.

[34] Zengxi Li, et al. "Compact convolutional neural network transfer

learning for small-scale image classification." IEEE International

Conference on Acoustics, Speech and Signal Processing IEEE,

2016:2737-2741.

[35] Liu, Fayao, G. Lin, and C. Shen. "CRF learning with CNN features

for image segmentation." Pattern Recognition 48.10(2015):2983-

2992.

[36] Sollich P. Learning with Ensembles; How over-fitting can be

useful[J]. Advances in Neural Information Processing Systems, 1996,

8:190-196.

[37] Hansen, L. K, and P. Salamon. "Neural network ensembles." Pattern

Analysis & Machine Intelligence IEEE Transactions on

12.10(2002):993-1001.

[38] Sharkey, Amanda J. Combining Artificial Neural Nets: Ensemble

and Modular Multi-Net Systems. Springer-Verlag New York, Inc.

1999.

[39] Liu, Kuang, M. Zhang, and Z. Pan. "Facial Expression Recognition

with CNN Ensemble." International Conference on Cyberworlds

IEEE, 2016:163-166.

[40] Antipov, Grigory, S. A. Berrani, and J. L. Dugelay. "Minimalistic

CNN-based ensemble model for gender prediction from face images

☆." Pattern Recognition Letters 70.C(2016):59-65.

[41] Ding, Changxing, and D. Tao. "Trunk-Branch Ensemble

Convolutional Neural Networks for Video-based Face Recognition."

IEEE Transactions on Pattern Analysis & Machine Intelligence

PP.99(2016):1-1.

[42] Wan, Tao, et al. "Automated grading of breast cancer histopathology

using cascaded ensemble with combination of multi-level image

features." Neurocomputing 229.C(2017):34-44.

[43] Huang, Hsin Kai, et al. "Mixture of deep CNN-based ensemble

model for image retrieval." Consumer Electronics, 2016 IEEE,

Global Conference on IEEE, 2016:1-2.

[44] Liu, Kuang, M. Zhang, and Z. Pan. "Facial Expression Recognition

with CNN Ensemble." International Conference on Cyberworlds

IEEE, 2016:163-166.

[45] Hu, Qichang, et al. "Pushing the Limits of Deep CNNs for Pedestrian

Detection." IEEE Transactions on Circuits & Systems for Video

Technology PP.99(2016):1-1.

[46] Shibuya, Tetsuo. "Malphite: A convolutional neural network and

ensemble learning based protein secondary structure predictor."

IEEE International Conference on Bioinformatics and Biomedicine

IEEE, 2015:1260-1266.

[47] Akhtyamova, Liliya, A. Ignatov, and J. Cardiff. "A Large-Scale CNN

Ensemble for Medication Safety Analysis." International Conference

on Applications of Natural Language to Information Systems

Springer, Cham, 2017:247-253.

[48] Breiman, Leo. "Bagging predictors." Machine Learning

24.2(1996):123-140.

[49] Efron, and Bradley. An introduction to the bootstrap. Chapman &

Hall, 1995.

[50] Schapire, Robert E. "The strength of weak learnability." Symposium

on Foundations of Computer Science IEEE Computer Society,

1989:28-33.

[51] Freund, Y. "Boosting a Weak Learning Algorithm by Majority."

1990:202-216.

[52] Yoav Freund, and Robert E. Schapire. A Decision-Theoretic

Generalization of On-Line Learning and an Application to Boosting

☆ , ☆ ☆ . Computational Learning Theory. Springer Berlin

Heidelberg, 1995:119-139.

[53] Hampshire Ii, J. B, and A. H. Waibel. A novel objective function for

improved phoneme recognition using time. IEEE Press, 1990.

[54] Maclin, Richard, and J. W. Shavlik. "Combining the predictions of

multiple classifiers: using competitive learning to initialize neural

networks." International Joint Conference on Artificial Intelligence

Morgan Kaufmann Publishers Inc. 1995:524-530.

[55] Krogh, Anders, and J. Vedelsby. "Neural network ensembles, cross

validation and active learning." International Conference on Neural

Information Processing Systems MIT Press, 1994:231-238.

[56] Jin, Yaochu, and B. Sendhoff. "Reducing Fitness Evaluations Using

Clustering Techniques and Neural Network Ensembles." Genetic and

Evolutionary Computation - GECCO 2004, Genetic and

Evolutionary Computation Conference, Seattle, Wa, Usa, June 26-30,

2004, Proceedings DBLP, 2004:688-699.

[57] Yao, Xin, and Y. Liu. Making use of population information in

evolutionary artificial neural networks. IEEE Press, 1998.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

12

[58] Opitz, David W, and J. W. Shavlik. "Actively Searching for an

Effective Neural Network Ensemble." Connection Science 8.3-

4(1996):337-354.

[59] Perrone, Michael P., and L. N. Cooper. When networks disagree:

Ensemble methods for hybrid neural networks. How We Learn; How

We Remember: Toward An Understanding Of Brain And Neural

Systems:Selected Papers of Leon N Cooper. 1993:342-358.

[60] David H. Wolpert. "Stacked Generalization." Neural Networks

5.2(2011):241-259.

[61] C.J. Merz, M.J. Pazzani, Combining neural network regression

estimates with regularized linear weights, in: M.C. Mozer, M.I.

Jordan, T. Petsche (Eds.), Advances in Neural Information

Processing Systems 9, Denver, CO, MIT Press, Cambridge, MA,

1997, pp.564-570.

[62] Jimenez, D. "Dynamically weighted ensemble neural networks for

classification." IEEE International Joint Conference on Neural

Networks Proceedings, 1998. IEEE World Congress on

Computational Intelligence IEEE, 1998:753-756 vol.1.

[63] Ueda, Naonori. Optimal Linear Combination of Neural Networks for

Improving Classification Performance. IEEE Computer Society,

2000.

[64] Jacobs, Robert A, et al. "Adaptive mixtures of local experts." Neural

Computation 3.1(2014):79-87.

[65] Jordan, Michael I, and R. A. Jacobs. "Hierarchical mixtures of

experts and the EM algorithm. " Proc. of Ieee/inns Joint Conference

on Neural Networks, Nagoya, Japan 1993:181-214.

[66] Agarap A F. An Architecture Combining Convolutional Neural

Network (CNN) and Support Vector Machine (SVM) for Image

Classification[J]. 2017.

[67] Zhou, Zhi Hua, J. Wu, and W. Tang. Corrigendum: Corrigendum to

"Ensembling neural networks: Many could be better than all"

[Artificial Intelligence 137 (1-2) (2002) 239-263]. Elsevier Science

Publishers Ltd. 2010.

[68] Kaiming He, et al. "Deep Residual Learning for Image Recognition."

(2015):770-778.

[69] Szegedy, Christian, et al. "Rethinking the Inception Architecture for

Computer Vision." Computer Vision and Pattern Recognition IEEE,

2016:2818-2826.

