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ABSTRACT The deep convolutional neural networks (DCNN) require large number of training data to 
avoid overfitting, which makes it unsuitable for processing small-scale image datasets. The transfer learning 
using DCNN (TCNN) reuses pre-trained layers to generate a mid-level image representation so that the 
optimization of more than millions CNN parameters can be avoided. By this way, overfitting problem in 
small-scale data can be alleviated. However, although now many public DCNNs have been trained and can 
be reused, the existing TCNNs are formed by only a single pre-trained DCNN structure and cannot make 
full use of multiple structures of pre-trained DCNNs. At the same time, the existing ensemble CNNs have 
not enough good representation ability. To address this problem, we combine the conventional ideas of 
ensemble CNNs and propose three ensemble TCNNs (TECNN). They are the voting method based on the 
combination of all TCNNs, the PickOver method by finding the optimal combination, and weighted method 
by finding weighted combination. Different from the existing ensemble CNNs, the proposed methods do 
not need to retrain the component CNNs and generate ensemble transferring representations by transferring 
the pre-trained mid-level parameters. The mathematical models of those three methods are also provided. 
Their versions of using fine-tuning are also compared in the experiments. In addition, we replace the 
Softmax classifier with ensemble linear classifiers in the full-connection layer. They outperform the current 
state of the art algorithms on Caltech ImageNet and some internet image data. All this research has released 
as an open source library called Transferring Image Ensemble Representations using Deep Convolutional 
Neural Networks (TECNN). The source codes and relevant datasets in different versions are available from: 
http://www.cquptshuyinxia.com/TECNN.html.  

INDEX TERMS Convolutional Neural Networks, deep CNN, transferring CNN, transferring Learning 

I. INTRODUCTION 
The object recognition represents an important part of the 
computer vision. Recently, the robust image descriptors have 
been developed significantly, such as SIFT [1] and HOG [2], 
bag of features image representations [3], [4], [5], [6], 
deformable part models [7] and deep convolutional neural 
networks (DCNNs). An enabling factor is the development 
of increasingly large and realistic image datasets, providing 
an object annotation for training and testing, e.g. Caltech256 

[8], Pascal VOC [9] and ImageNet [10]. The CNNs are high-
capacity classifiers with a very large number of parameters 
that need to be optimized during the training process. CNNs 
have a long history in visual recognition and exhibit record-
shattering results in computer vision [11], [12], image 
translations [13], optical character recognition [14], [15], [16] 
and many other various fields [17], [18], [19], [20], [21]. The 
early CNNs’ performance was limited by a relatively small 
size of the standard object recognition datasets. However, 
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this limitation has changed due to the appearance of the 
large-scale ImageNet dataset [10] and enhancement of the 
GPU computing power. Krizhevsky et al. achieved a 
performance leap in the image classification on the ImageNet 
2012 Large-Scale Visual Recognition Challenge (ILSVRC-
2012). They further improved the network performance by 
training with 15 million images and 22,000 ImageNet classes 
[22]. According to their works, a thorough evaluation of 
networks is made in terms of depth incensement by using an 
architecture with very small (3x3) convolution filters [23]. In 
addition, a significant improvement of the prior art 
configurations can be achieved by increasing of the depth to 
16-19 layers. Although this result is promising and exciting, 
it is also worrisome as millions of annotated images are 
required to be collected for each visual recognition task. 
Namely, collection of a large corpus of annotated data to 
train the CNNs is nearly impossible in real applications, such 
as the robotics applications [24] and customized categories of 
applications [25]. In other words, the DCNN offers a large 
representation space and is very easy to lead to overfitting in 
processing small-scale datasets. Although the shallow CNNs 
including the ensemble CNNs can avoid overfitting in the 
processing of small-scale datasets, it suffers from poor 
representation ability due to the small number of parameters 
and layers. 

To take advantage of the good representation ability of the 
DCNN and prevent overfitting by avoiding training too much 
parameters, researchers have studied the transfer image 
representations of DCNNs for visual recognition tasks with 
small sample size. Instead of directly training CNN for a 
specific task with a small-scale dataset, Oquab et al. designed 
a method that reuses the intermediate layers of a DCNN 
trained on the ImageNet dataset to generate a mid-level 
image representation of images in the PASCAL VOC dataset 
[26]. This transferred representation can significantly 
enhance classification accuracy in visual recognitions tasks 
with small sample size, such as [27], [28], [29], [30], [31], 
[32]. However, the mentioned works almost used only one 
single pre-trained DCNN structure although many pre-
trained DCNNs can be efficiently used for transfer learning.  

To make full use of the existing pre-trained DCNNs, we 
propose here three methods to integrate multiple pre-trained 
DCNNs by introducing the ensemble methods of 
conventional CNNs.  

The contributions of this paper are threefold as follows. 
1) We introduce conventional ideas of ensemble CNNs 

into TCNNs and propose three ensemble TCNNs (TECNNs). 
They are the voting method based on the combination of all 
TCNNs, the PickOver method by finding the optimal 
combination, and weighted method by finding weighted 
combination. Different from the existing ensemble CNNs in 
which the component CNNs are retrained, the proposed 
methods do not need to retrain the component DCNNs and 
generate ensemble transferring representations by 
transferring the pre-trained mid-level parameters.  

2) Their versions of using fine-tuning are also compared in 
the experiments, and the fine-tuning versions achieve a 
higher generalizability by using the “root mean square prop” 
method to fine-tune the last full-connected layer. 

3) Except the ensemble method in the pre-trained 
DCNNs, we replace the Softmax classifier with ensemble 
linear classifiers in the full-connection layer, and the 
proposed methods achieve better performance on some 
datasets. 

II.  RELATED WORK 

A.  TRANSFERRING DCNN 
The key idea of the existing transfer learning DCNN (TCNN) 
is that the internal layers of the CNN act as the extractors of a 
mid-level image representation. They can be hence pre-
trained with the source dataset and then reused for other 
target tasks, as shown in Fig. 1 [26]. First, a network is 
trained on the source task (e.g. the ImageNet classification, 
top row) with a large amount of available labelled images. 
Then, the pre-trained parameters of the internal layers of the 
network (C1-FC7) are transferred to the target tasks (bottom 
row). To compensate different image statistics, e.g., objects 
types, typical viewpoints and imaging conditions, of the 
source and target data, an adaptation layer (fully connected 
layers FC1) is introduced and trained on the labelled data of 
the target task [26]. The TCNN has been widely used in 
various fields [33], [34], [35]. By transferring the pre-trained 
parameters of the internal layers, the TCNN is not required to 
train too many parameters and has deep representation ability. 
As a result, the TCNN not only exhibits outstanding 
representation ability of the deep CNN, but also alleviates 
overfitting for the DCNN process of small-scale datasets. 
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FIGURE 1. CNN Transferring parameters [26] 

B.  ENSEMBLE NEURAL NETWORK 
Neural network ensemble is a learning strategy in which a 
limited number of neural networks receive the same task 
training [36]. It was derived from the work of Hansen and 
Salamon [37]. In general, two steps are required to construct 
a neural network integration including training a few 
component neural networks and combining them. The 
generalizability of the neural network system can be 
significantly improved by combining a series of neural 
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networks. This technology recently has become very popular 
in neural networks and machine learning community [38]. It 
has been successfully applied to various fields, such as the 
face recognition [39], [40], [41], medical diagnosis [42], 
image retrieval [43], [44] pedestrian detection [45], 
biological information processing [46] and medication safety 
[47]. Bagging and Boosting represent the most popular 
methods for training the component neural networks. The 
Bagging is based on the bootstrap sampling proposed by 
Breiman [48], [49] which generates several training sets from 
the original training set and then trains component neural 
networks from them. The Boosting was first proposed by 
Schapire [50] and then improved by Freund et al. [51], [52], 
which produces a series of neural networks.  
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FIGURE 2.  Transferring Image Ensemble Representations using DCNNs 

 
There are many other methods for training component 

neural networks. Hampshire and Waibel [53] use different 
target functions to train different neural networks. Cherkauer 
[44] trains the network of components for different amounts 
of hidden units. Maclin and Shavlik [54] initialize component 
networks in different positions in the weight space. Krogh 
and Vedelsby [55] use cross-validation to create a component 
network. Opitz and Shavlik [56] use genetic algorithms to 
train different knowledge-based component networks. Yao 
Ming and Liu [57] see all the individuals in the neural 
networks of evolution as component networks. 

The most popular methods are plurality voting or majority 
voting [20] for classification tasks, simple average [58] or 
weighted average [59] for regression tasks. Wolpert [60] 
combine the learning system into component neural networks. 
Merz and Pazzani [61] use the principal component 
regression to determine the appropriate constraints of 
component network weights and combine them. Jimenez [62] 
uses dynamic weights that are determined by the confidence 
of the component networks to combine them. Ueda [63] uses 
the optimal linear weighting to combine the component 
neural networks based on the statistical pattern recognition 
theory. There are some ways to use neural networks to 

complete tasks in the style of divide-and-conquer [64], [65], 
[66].  

Currently, however, few ensemble TCNNs are studied. 
Those existing ensemble CNNs are designed to retrain and 
integrate the CNN classifiers including a large number of 
parameters, leading to overfitting in small-scale datasets. In 
contrast, the TECNNs are not required to retrain a large 
number of parameters in the convolutional layers and can 
reuse several types of TCNNs. In this paper, we introduce 
three ensemble DCNN methods for transferring learning and 
verify their performance. 

III.  TRANSFERRING ENSEMBLE REPRESENTATIONS 
USING DEEP CONVOLUTIONAL NEURAL NETWORKS 

A.  THE FRAMEWORK OF TRANSFERRING IMAGE 
ENSEMBLE REPRESENTATIONS USING DEEP CNN 
(TECNN) 
Fig. 2 shows the Framework of the Transferring Image 
Ensemble Representations using Deep CNN (TECNN). This 
framework is constituted of several pre-trained DCNNs, each 
of which has a corresponding TCNN. The TECNN is 
constituted of several TCNNs. Each convolutional layer of 
TCNN is generated by transferring the convolutional layers 
of the corresponded pre-trained DCNNs to the new DCNN. 
In addition, new adaptation layers are added into each TCNN 
and need to be retrained to compensate for different image 
statistics (type of objects, typical viewpoints, imaging 
conditions) of the source and target data. Moreover, an 
ensemble layer is added to integrate the results of the outputs 
of those TCNNs. More details and the mathematical model 
will be presented in Sec. 3.2. 

B.  CLASSIFICATION MODEL 
Table 1 lists the symbols. 

TABLE 1 
SYMBOLS USED 

Symbol The Meaning of the symbol 

n The number of training image samples; 

N The number of transferred CNNs; 

wi the weights of the adaptive layer in the i-th transferred CNN ; 

xj the j-th image sample; 

yj the label of the j-th image sample; 

TCNNi The i-th transferred CNN; 

 
Take the binary classification problem as an example. A 

sample is labeled with +1 or -1. The loss function of the 
voting TECNN method can be expressed as follows: 

 2

1
[0,1],

{1.., },

arg min (( ( , , ) )
i

i

n

j i i j
j w

v
i N

f x w TCNN y





           ( 1 ) 

The decision function of this method is expressed as 
follows:  

ˆ( ) si gn( ( ( ( , , )) ))j i i jf x label f x w TCNN y        ( 2 ) 
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, where sign(x) is a function described as follows: 
1, 0

sign( )
-1, 0

if x
x

if x


  

 

To optimize (1), each TCNN needs to be trained. In (2), 
the sign(.) function’s value of the sum of the output labels of 
a sample in all TCNNs is considered as its predicted value 
when the voting TECNN method is used. 

TABLE 2 
TRAINING LEARNING OF THE VOTING METHOD 

Algorithm 1. Training learning of the Voting Method 

Input: 

 

Output: 

Input training image dataset D and test image dataset D’, pre-

traineded DCNNs 

The labels of samples in D’ 

1 For i = 1 to the number of pre-trained DCNNs 

2 Transfer the middle weights of DCNNi to the transferred  

TCNNi; 

3 Training and fine-tuning the wi in the i-th TCNNi to  

optimize the first part of (1); 

4 Optimize the parameters vi for each i according to the  

second part of (1); 

5 End  

TABLE 3 
TRAINING LEARNING OF THE PICKOVER 

Algorithm 2. Training learning of the PickOver method 

Input: 

Output: 

Input training image dataset D and test image dataset D’, pre- 

traineded DCNNs 

The labels of samples in D’ 

1 For i = 1 to the number of pre-trained DCNNs 

2 Transfer the middle weights of DCNNi to the transferred 

TCNNi; 

3 Training and fine-tuning the wi in the i-th TCNNi to optimize 

the first part of (2); 

4 Optimize the parameters vi for each i according to the second 

part of (2); 

5 End  

TABLE 4 
TRAINING LEARNING OF THE WEIGHTED METHOD 

Algorithm 3. Training learning of the weighted method 

Input: 

 

Output: 

Input training image dataset D and test image dataset D’, pre-

traineded DCNNs 

The labels of samples in D’ 

1 For i = 1 to the number of pre-trained DCNNs 

2 Transfer the middle weights of DCNNi to the transferred  

TCNNi; 

3 Training and fine-tuning the wi in the i-th TCNNi to  

optimize the first part of (3); 

4 Optimize the parameters vi for each i according to the  

second part of (3); 

5 End  

 

2

1
[0,1],

{1.., },

(( ( , , ) ) +
arg min

| si ( * ( ( , , )) ))
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i
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j i i j

j w i j i i j
v
i N

f x w TCNN y

gn v label f x w TCNN y



  
 

  
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, where label (f(xj,wi, TCNNi)) denotes the validation label 
of xj in the i-th TCNNi.  The loss function in (3) is constituted 
with two parts. In (3), the first half is first optimized and the 
second is then done. Consequently, the whole loss of (3) can 
be minimized. The first half denotes the loss function of each 
TCNN, so each TCNN should be optimized on their 
corresponding source dataset. The second half denotes the 
difference of combination output labels of the combination 
TCNNs and the true label. By optimizing the values of vi, the 
value of which is set to 0 or 1, the candidate TCNNs are 
selected for ensemble. 

In (3), some output probability values are lost in the 
ensemble process of labels. For example, the output 
probability values of a sample are respectively 0.7 and 0.4 in 
two TCNNs, so its labels are respectively 1 and -1 in binary 
classification problems. The ensemble results of the sample 
in the two TCNNs in (3) is equal to 0. If the output 
probability values of the sample are changed to be 
respectively 0.9 and 0.4, its ensemble result is the same with 
the above. Therefore, some output probability values are lost. 
Thus, (4) replaces the output label with the output probability 
value in the loss goal of (3). In addition, to show the different 
importance, in the third method, the test accuracy of a single 
TCNN is used as its weight to measure its importance in the 
ensemble representations. Therefore, (3) can be transformed 
into (4) as follows: 

2

1
[0,1],

{1.., },

(( ( , , ) ) +
arg min

* | si gn( *( ( , , ) )) |
i

i

n
j i i j

j w i i j i i j
v
i N

f x w TCNN y

PA v f x w TCNN y



  
 

  
        (4 ) 

, where PAi denotes the validation accuracy of the i-th 
transferred TCNNi .  

C.  ALGORITHM DESIGN 
To implement model (1), (2) and (3), three algorithms have 
been designed as Table 2, Table3 and Table 4. 

D.  FINE-TUNING ENSEMBLE METHODS 
In Sections III. A, B, C, the fine-tuning mechanism in pre-
trained DCNNs is not used. Using the fine-tuning mechanism 
is good for improving the generalizability of TDCNN. 
However, it is easy to lead to overfitting in small-scale data 
sets if too much layers are fine-tuned. To utilize the 
advantage of the fine-tuning mechanism, at the same time, 
and optimize as few parameters as possible in the fine-tuning 
process, the last full-connected layer is fine-tuned by using 
the “root mean square prop” method. The “root mean square 
prop” method is proposed by Geoff Hinton in the Coursera. 
Although it is not published, it has been widely used in 
various fields. The weights of convolutional layers are fixed 
in this paper. The fine-turned version of Algorithm 1, 2, 3 are 
separately named by putting "+" after these letters.  
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E. USING VARIOUS LINEAR CLASSIFERS IN THE FULL-
CONNECTION LAYER 
The Softmax classifier is a common linear classifier in the 
full-connection layer, and some other classifiers are used to 
replace the Softmax classifier, such as SVM [66]. Few 
studies use the ensemble classifiers in the full-connection 
layer. In this paper, we will use the ensemble linear 
classifiers to achieve better classification generalizability. 
Sign(.) function’s value of the sum of the output value of a 
sample in all TCNNs is considered as the output value of the 
sample, and its decision function can be expressed as follows: 
ˆ( ) si gn( ( ( , , ) )j i i jf x f x w TCNN y  ） 

IV.  EXPERIMENTS 
In this section we first describe details of the pre-trained 
CNNs. Next, we show the experimental results of the 
proposed transfer learning method on different datasets 
collected from the Google, Baidu's picture library and 
Caltech. Moreover, to demonstrate the superior efficiency of 
the proposed algorithms, we compare them with the TCNN 
method [26] and CNNs. The structure of the compared 
CNNs is set as follows. The size of the network inputs is 
224×224×3 pixels. As the training set is not large, the 
structure only contains three convolutional layers. The full 
architecture corresponds to C(32,3,3)-R-P-C(32,3,3)-R-P-
C(64,3,3)-R-P-FC(2048)-R-Dropout(0.5)-FC(48)-R-Dropout 
(0.5), where C(d,f,s) represents a convolutional layer with d 
filters with spatial size of f×f, applied to the input with strides. 
Here, FC(n) is a fully connected layer with n nodes, and the 
Dropout layer is used to alleviate the overfitting. Moreover, 
R indicates the activation layer using the RELU function. All 
pooling layers P pool spatially in non-overlapping 2×2 
regions. The final layer is connected to a Softmax classifier 
with dense connections. 

The experiments have been performed on a standalone 
desktop computer, configured as follows. We use a CPU 
from Intel Core i5-4460 3.20GHz CPU, 8.00GB RAM, 
465GB hard drive; 64-bit Windows10 Enterprise Edition 
operating system, 64-bit Windows version of python3. 5.2, 
and JetBrains PyCharm Community Edition 2016.2 as the 
compiling software. The other parameters are same as the 
default system configuration. 

A.  PRE-TRAINED CNNS 
We have used five pre-trained DCNNs based on the Keras 
framework, namely VGG16 [23], VGG19 [23], ResNet50 
[67], InceptionV3 [68], and Xception [69]. Their structures 
have been trained by using the dataset ImageNet. The five 
per-trained models are combined with the transfer learning 
methods in [26] and named as TCNN_VGG16, 
TCNN_VGG19, TCNN_ResNet50, TCNN_InceptionV3 and 
TCNN_Xception, respectively. In all experiments, to 
stabilize the performance analysis of the compared 
algorithms, the test accuracy is achieved by averaging over 
10 times. In each time, 80% samples are randomly selected 

from each dataset as the training set, and the remaining 20% 
as the test set. We have also used TensorFlow as the backend, 
where the parameters are set as the default values. The target 
objects in our datasets are not contained in the training 
dataset of the pre-trained DCNNs. So, the transferring 
representation ability of those algorithms can be checked. 

B.  IMAGE CLASSIFICATION ON INTERNET DATA 
The experimental data sets have been randomly achieved 
from the Google and Baidu's picture library. There are six 
classes of picture data, each of which is composed 130 
pictures. They include ass, horse, cervus nippon, bimodal 
camel, giraffe and sheep. Fig. 3 shows the experimental data. 
Each dataset is constituted of two classes, with 260 pictures 
in each class. Table 5 lists the experimental datasets. These 
datasets are available in http://pan.baidu.com/s/1mihu564. 

 

 
(a)                         (b)              (c) 

 
(d)                       (e)           (f) 

FIGURE 3. Some of the images in the data set. (a)ass, (b)horse, (c) 

cervus Nippon,(d)Bactrian camel,(e)giraffe,(f)sheep. 
 

TABLE 5 
DATA SETS DETAILS FROM GOOGLE AND BAIDU'S PICTURE LIBRARY 

Data set Data1 Data2 Data3 Data4 Data5 Data6 
Firstclass 
Secondclass 

Horse 
BactrianCamel 

Horse 
Ass 

Horse 
Giraffe 

Horse 
Sheep 

Horse 
CervusNippon 

Sheep 
Giraffe 

Data7 Data8 Data9 Data10 Data11 Data12 
Sheep 
BactrianCamel 

Sheep 
Ass 

Giraffe 
Ass 

Giraffe 
CervusNippon 

Sheep 
CervusNippon 

Giraffe 
BactrianCamel 

 
TABLE 6 

COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS ON 

THE 12 DATA SETS FROM INTERNET 

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 
CNN 0.8269 0.8461 0.8269 0.8653 0.8076 0.9723 
VGG16 0.9769 0.9750 0.9712 0.9654 0.9846 0.9673 
VGG19 0.9788 0.9712 0.9692 0.9558 0.9808 0.9577 
ResNet50 0.9788 0.9712 0.9692 0.9558 0.9808 0.9577 
InceptionV3 0.8423 0.8481 0.8481 0.8212 0.8135 0.8346 
Xception 0.7577 0.7654 0.7365 0.7500 0.7635 0.7385 
Voting 0.9865 0.9750 0.9654 0.9635 0.9808 0.9654 
PickOver 0.9904 0.9923 0.9827 0.9769 0.9962 0.9846 
Weighted 0.9904 0.9885 0.9827 0.9769 0.9962 0.9827 

 
The experimental results of all algorithms on all data sets 

are shown in Fig. 4. The DCNN has good representation 
ability to describe an image; by contrast, the representation 
ability of CNNs is lower than the ability of DCNNs. 
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Therefore, the transfer learning algorithms weighted method, 
PickOver method, voting method, TCNNVGG16, 
TCNNVGG19 and TCNNResNet50 exhibit higher test 
accuracy than the original CNN algorithm in most cases. 

 
TABLE 7 

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL TRANSFERRED 

AND ENSEMBLE TRANSFERRED ALGORITHMS ON THE 12 DATA SETS FROM 

INTERNET. 

Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
CNN 0.9230 0.9038 0.9615 0.8653 0.9230 0.9615 
VGG16 0.9788 0.9558 0.9750 0.9731 0.9692 0.9731 
VGG19 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769 
ResNet50 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769 
InceptionV3 0.8519 0.8538 0.8481 0.8269 0.8231 0.8346 
Xception 0.7385 0.7558 0.7615 0.7846 0.7365 0.7577 
Voting 0.9769 0.9731 0.9788 0.9731 0.9635 0.9808 
PickOver 0.9865 0.9788 0.9846 0.9865 0.9865 0.9885 
Weighted 0.9865 0.9788 0.9865 0.9865 0.9846 0.9885 

 
FIGURE 4. The comparison of test accuracy on different algorithms 

 
TABLE 8 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN DIFFERENT 

ALGORITHMS  

Algorithms CNN VGG16 VGG19 ResNet50 
ACC 0.8907 0.9721 0.9697 0.9697 

InceptionV3 Xception Voting PickOver Weighted 
0.8372 0.7538 0.9736 0.9862 0.9857 

 
The proposed PickOver and Weighted methods present 

higher test accuracy than the CNN on all those datasets. 
InceptionV3 and Xception always exhibit the lowest 
accuracy. It indicates that these two TCNNs have not good 
transferring learning ability because of their relatively small 
original training data sets or simple structure or bad structure 
design. In addition, by integrating different TCNNs, Voting, 
PickOver and Weighted exhibit an obviously higher test 
accuracy than other TCNN algorithms.  

Tables 6 and 7 provide the detail data, and the boldface is 
corresponded with the highest accuracy. As shown in Tables 
6 and 7, it has the highest accuracy advantage when 
compared with other TCNN algorithms on the data2, 
i.e.1.73% higher than the most effective TCNN algorithm (i.e. 
VGG16) on data2. 

Table 8 presents the average accuracies of the nine 
algorithms which are computed from Tables 6 and 7. As 
shown in Table 8, the proposed TECNNs have higher test 
accuracies than other algorithms, where the PickOver is the 

best. The average test accuracy provided by the PickOver is 
9.55% higher than the CNN and 1.65% higher than the most 
effective TCNN algorithm (i.e. VGG16) in the experiments.  

 
TABLE 9 

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS 

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS  

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 
CNN 0.8269 0.8461 0.8269 0.8653 0.8076 0.9723 
VGG16+ 0.9942 0.9692 1.0000 1.0000 0.9962 0.9981 
VGG19+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923 
ResNet50+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923 
InceptionV3+ 0.7385 0.7231 0.875 0.8135 0.7788 0.8827 
Xception+ 0.7308 0.7308 0.7962 0.825 0.7923 0.7500 
Voting 0.9923 0.9788 1.0000 0.9981 1.0000 0.9923 
PickOver 0.9942 0.9885 1.0000 1.0000 1.0000 0.9981 
Weighted 0.9923 0.9788 1.0000 0.9981 1.0000 0.9923 

 
TABLE 10 

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS 

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS 

Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
CNN 0.9230 0.9038 0.9615 0.8653 0.9230 0.9615 
VGG16+ 0.9865 0.9923 0.9942 1.0000 0.9942 0.9923 
VGG19+ 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000 
ResNet50+ 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000 
InceptionV3+ 0.8058 0.8038 0.85 0.8269 0.8558 0.8558 
Xception+ 0.7346 0.7692 0.8077 0.7192 0.7327 0.8308 
Voting 0.9865 0.9962 1.0000 1.0000 0.9981 0.9981 
PickOver 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000 
Weighted 0.9904 0.9962 1.0000 0.9981 0.9981 1.0000 

 
TABLE 11 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL 

ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS  

Algorithms CNN VGG16+ VGG19+ ResNet50+ 
ACC 0.8907 0.9931 0.9963 0.9963 

InceptionV3+ Xception+ Voting PickOver Weighted 
0.8175 0.7683 0.9950 0.9971 0.9954 

 
TABLE 12 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN FROM INTERNET 

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 
VGG16 0.9769 0.9750 0.9712 0.9654 0.9846 0.9673 
VGG16+ 0.9942 0.9692 1.0000 1.0000 0.9962 0.9981 
VGG19 0.9788 0.9712 0.9692 0.9558 0.9808 0.9577 
VGG19+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923 
ResNet50 0.9788 0.9712 0.9692 0.9558 0.9808 0.9577 
ResNet50+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923 
InceptionV3 0.8423 0.8481 0.8481 0.8212 0.8135 0.8346 
InceptionV3+ 0.7385 0.7231 0.8750 0.8135 0.7788 0.8827 
Xception 0.7577 0.7654 0.7365 0.7500 0.7635 0.7385 
Xception+ 0.7308 0.7308 0.7962 0.825 0.7923 0.7500 

 
TABLE 13 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN FROM INTERNET 

Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
VGG16 0.9788 0.9558 0.9750 0.9731 0.9692 0.9731 
VGG16+ 0.9865 0.9923 0.9942 1.0000 0.9942 0.9923 
VGG19 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769 
VGG19+ 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000 
ResNet50 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769 
ResNet50+ 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000 
InceptionV3 0.8519 0.8538 0.8481 0.8269 0.8231 0.8346 
InceptionV3+ 0.8058 0.8038 0.8500 0.8269 0.8558 0.8558 
Xception 0.7385 0.7558 0.7615 0.7846 0.7365 0.7577 
Xception+ 0.7346 0.7692 0.8077 0.7192 0.7327 0.8308 
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Tables 9-11 present the results of both the fine-tuning 

DCNNs and their TECNNs. Table 11 shows the average 
accuracies. Similar with the TECNNs that does not use fine-
tuning, the PickOver exhibits the best performance in 
average. The voting and weighted methods can also achieve 
better performance on some cases. 

Tables 12-13 show the comparison between the two 
methods of using fine-tuning and not using fine-tuning. The 
fine-tuning methods are suffixed with “+”. It can be observed 
that the VGG16+, VGG19+ and Resnet50+ exhibit higher 
accuracies than the versions of not using fine-tuning on all 
datasets.  The inceptionV3+ and Xception+ achieve higher 
accuracies on part of datasets. In average, the fine-tuning 
methods exhibit higher generalizability than the version of 
not using fine-tuning. However, fine-tuning may lead to 
overfitting to an extent, so as shown in Table 13, the methods 
of fine-tuning have lower accuracies on few cases. That 
indicates the generalizability may be decreased. Table 14 
compare the performance between methods of using different 
linear classifiers in the full-connection layer. T_SM uses the 
Softmax classifier in the full-connection layer， and T_SVM 
uses the SVM. T_SM_SVM combines the Softmax and 
SVM. It can be observed from Table 14 that, T_SVM and 
T_SM_SVM can achieve higher accuracy than the T_SM on 
some cases. 

TABLE 14  
THE EXPERIMENTAL RESULTS ON COMPARISON METHODS 

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 

T_SM 0.9942 0.9769 1.0000 0.9942 1.0000 0.9962 
T__SVM 0.9885 0.9827 1.0000 0.9981 1.0000 0.9923 
T_SM_SVM 0.9944 0.9769 1.0000 0.9981 1.0000 0.9923 
Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
T_SM 0.9942 1.0000 1.0000 1.0000 0.9962 1.0000 
T_SVM 0.9942 0.9962 1.0000 0.9962 0.9981 0.9981 
T_SM_SVM 0.9985 0.9962 1.0000 0.9962 0.9981 1.0000 

C.  IMAGE CLASSIFICATION ON CALTECH 
These experimental datasets are randomly selected from the 
image dataset Caltech256. The datasets are constituted of 17 
classes of pictures, and each class contains 130 pictures. 
Each dataset is constituted of two classes of pictures with 260 
pictures. Table 15 provides the specific information of those 
datasets. 

Fig. 5 presents the experimental results. Similar with Fig. 4, 
our proposed algorithms and other TCNN algorithms, 
TCNNVGG16, TCNNVGG19 and TCNNResNet50, exhibit 
higher test accuracies than the conventional CNN on most of 
the datasets except data2, data9 and data 10. The weighted 
method presents higher test accuracy than the conventional 
CNNs on all datasets only except data9. In addition, the 
TECNNs have higher test accuracies than the TCNN 
algorithms. Different from the case in Fig. 3, the weighted 
method almost has the highest test accuracy instead of the 
PickOver method. It shows that the proposed three TECNN 
algorithms have different ensemble advantages for different 
datasets. Tables 16 and 17 provide details. The boldface 

corresponds to the highest accuracy of the algorithms. Table 
18 provides the average accuracies of the nine algorithms 
achieved from Tables 16 and 17. As shown in Table 18, the 
proposed three TECNNs have higher test accuracies than 
other algorithms, where the weighted method is the best. The 
proposed PickOver provides 5.85% higher accuracy than the 
most effective TCNN algorithm, TCNNVGG19.  

The PickOver and Weighted methods have the similar 
mechanism to find the best combination of TECNNs. So, 
they present almost the same performance on many datasets. 
Despite of this, they exhibit different performance on some 
datasets, such as the experimental results in Table 16 and 17. 

 
TABLE 15 

DATA SETS SELECTED FROM THE CALTEC 
Data set Data1 Data2 Data3 Data4 Data5 Data6 
First class 
Second lass 

BaseballGlove 
Billiards 

Bread maker 
Grapes 

Hammock 
Hot Tub 

Ladder 
Lighthouse 

Lightning 
Mars 

Mattress 
Minaret 

Data7 Data8 Data9 Data10 Data11 Data12 
Mussels 
Raccoon 

Teepee 
Treadmill 

Lighting 
Clutter 

Billiards 
&Mars 

Hammock 
Mattress 

Ladder 
Treadmill 

 
TABLE 16 

COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS 

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 
CNN 0.9230 0.9807 0.8076 0.8653 0.9423 0.8653 
VGG16 0.9135 0.9173 0.9250 0.9538 0.9250 0.9212 
VGG19 0.9346 0.9154 0.9327 0.9404 0.9231 0.9288 
ResNet50 0.9346 0.9154 0.9327 0.9404 0.9231 0.9288 
InceptionV3 0.8481 0.8731 0.8827 0.8865 0.8769 0.8846 
Xception 0.7904 0.8038 0.8038 0.8077 0.7846 0.8019 
Voting 0.9558 0.9423 0.9481 0.9692 0.9500 0.9519 
PickOver 0.9404 0.9308 0.9404 0.9615 0.9365 0.9442 
Weighted 0.9923 0.9885 0.9827 0.9769 0.9962 0.9827 

 
TABLE 17 

COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS  

Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
CNN 0.8461 0.9038 1.0000 0.9807 0.8846 0.8461 
VGG16 0.9346 0.9327 0.9250 0.9135 0.9231 0.9288 
VGG19 0.9288 0.9308 0.9269 0.9154 0.9250 0.9269 
ResNet50 0.9288 0.9308 0.9269 0.9154 0.9250 0.9269 
InceptionV3 0.8865 0.8788 0.8615 0.8769 0.8577 0.8808 
Xception 0.8327 0.7846 0.7923 0.8154 0.7750 0.8096 
Voting 0.9558 0.9500 0.9500 0.9519 0.9519 0.9558 
PickOver 0.9481 0.9481 0.9442 0.9288 0.9365 0.9423 
Weighted 0.9865 0.9788 0.9865 0.9865 0.9846 0.9885 

 
TABLE 18 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN DIFFERENT 

ALGORITHMS  

Algorithms CNN VGG16 VGG19 ResNet50 
ACC 0.9038 0.9261 0.9274 0.9274 

InceptionV3 Xception Voting PickOver Weighted 
0.8745 0.8001 0.9527 0.9418 0.9859 

 

It can be observed from Tables 19, 20, 21 that, similar 
with the experimental results in Tables 9, 10, 11, the 
PickOver exhibits the best performance in comparison with 
other methods. The voting and weighted methods can 
achieve better performance on some cases. Tables 22, 23 
show that the T_SVM exhibits the highest classification 
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accuracy than other two methods. Tables 24, 25 show that 
the fine-tuning methods achieve better generalizability; at the 
same time, fine-tuning may lead to overfitting on some cases, 
so classification accuracy is decreased. 

 
TABLE 19 

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS 

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS  

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 
CNN 0.8461 0.9038 1.0000 0.9807 0.8846 0.8461 
VGG16+ 0.9981 0.9942 0.9981 0.9712 0.9923 0.9981 
VGG19+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000 
ResNet50+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000 
InceptionV3+ 0.8231 0.9173 0.7442 0.8212 0.9558 0.8635 
Xception+ 0.7500 0.9308 0.6981 0.7596 0.8865 0.8019 
Voting 0.9923 0.9923 0.9942 0.9827 0.9923 1.0000 
PickOver 0.9981 0.9942 0.9981 0.9923 1.0000 1.0000 
Weighted 0.9904 0.9923 0.9981 0.9808 0.9942 1.0000 

 

 
FIGURE 5. The comparison of test accuracy on different algorithms 

 
TABLE 20 

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS 

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS  

Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
CNN 0.8461 0.9038 1.0000 0.9807 0.8846 0.8461 
VGG16+ 0.9981 1.0000 1.0000 0.9981 0.9788 0.9462 
VGG19+ 1.0000 1.0000 1.0000 0.9981 0.9885 0.9462 
ResNet50+ 1.0000 1.0000 1.0000 0.9981 0.9885 0.9462 
InceptionV3+ 0.6808 0.8538 0.9712 0.9365 0.7904 0.7404 
Xception+ 0.6385 0.8077 0.8981 0.9442 0.7577 0.7462 
Voting 1.0000 1.0000 1.0000 1.0000 0.9865 0.9538 
PickOver 1.0000 1.0000 1.0000 1.0000 0.9885 0.9635 
Weighted 1.0000 1.0000 1.0000 0.9981 0.9846 0.9615 

TABLE 21 
COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL 

ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS  

Algorithms CNN VGG16+ VGG19+ ResNet50+ 
ACC 0.9038 0.9894 0.9917 0.9917 

InceptionV3+ Xception+ Voting PickOver Weighted 
0.8415 0.8016 0.9912 0.9946 0.9917 

 

 

 

 

TABLE 22 
COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS 

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS  

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 

T_SM 0.9885 0.9865 0.9962 0.9808 0.9942 1.0000 
T_SVM 0.9923 0.9942 0.9904 0.9846 0.9942 1.0000 
T_SM_SVM 0.9942 0.9942 0.9904 0.9808 0.9942 1.0000 
Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
T_SM 0.9942 1.0000 1.0000 1.0000 0.9865 0.9519 
T_SVM 1.0000 1.0000 1.0000 0.9981 0.9827 0.9577 
T_SM_SVM 1.0000 1.0000 1.0000 0.9981 0.9846 0.9538 

 
TABLE 23 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL 

ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS  

   Algorithms T_SM T_SVM T_SM_SVM 
ACC 0.9899 0.9912 0.9909 

 
TABLE 24 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF 

USING FINE-TUNING AND NOT USING FINE-TUNING  

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 
VGG16 0.9135 0.9173 0.9250 0.9538 0.9250 0.9212 
VGG16+ 0.9981 0.9942 0.9981 0.9712 0.9923 0.9981 
VGG19 0.9346 0.9154 0.9327 0.9404 0.9231 0.9288 
VGG19+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000 
ResNet50 0.9346 0.9154 0.9327 0.9404 0.9231 0.9288 
ResNet50+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000 
InceptionV3 0.8481 0.8731 0.8827 0.8865 0.8769 0.8846 
InceptionV3+ 0.8231 0.9173 0.7442 0.8212 0.9558 0.8635 
Xception 0.7904 0.8038 0.8038 0.8077 0.7846 0.8019 
Xception+ 0.7500 0.9308 0.6981 0.7596 0.8865 0.8019 

 
TABLE 25 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF 

USING FINE-TUNING AND NOT USING FINE-TUNING  

Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
VGG16 0.9346 0.9327 0.9250 0.9135 0.9231 0.9288 
VGG16+ 0.9981 0.9942 0.9981 0.9712 0.9923 0.9981 
VGG19 0.9288 0.9308 0.9269 0.9154 0.9250 0.9269 
VGG19+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000 
ResNet50 0.9288 0.9308 0.9269 0.9154 0.9250 0.9269 
ResNet50+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000 
InceptionV3 0.8865 0.8788 0.8615 0.8769 0.8577 0.8808 
InceptionV3+ 0.8231 0.9173 0.7442 0.8212 0.9558 0.8635 
Xception 0.8327 0.7846 0.7923 0.8154 0.7750 0.8096 
Xception+ 0.7500 0.9308 0.6981 0.7596 0.8865 0.8019 

 

D.  IMAGE CLASSIFICATION ON IMAGENET 
In this section, to generate small data sets, two classes of data 
are randomly selected from the latest ImageNet to form each 
dataset, where the ImageNet is available at: http://www.image-
net.org. The content of the ImageNet is continuously updated, 
and the generated datasets used in this section are not included 
in the original trained datasets for the five TCNNs, which are 
trained by the 2014 version of ImageNet. Therefore, the 
original datasets and target datasets are different. Table 26 lists 
these datasets. Similar with the experiments, to generate small-
scale datasets, each class contains 130 images that are 
randomly selected, and each dataset is formed by 260 images. 
Moreover, 80% of each dataset, i.e. 208, were used for training, 
and the remaining 20% were used for the test. The training 
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structure of the CNN is the same as the previous. 
 

TABLE 26 
EXPERIMENTAL DATA SETS FROM IMAGENET 

Data set Data1 Data2 Data3 Data4 Data5 Data6 
First class 
Second lass 

Bicycle 
Container 
House  

Bicycle 
IronNail 

Bicycle 
Masks 

Bicycle 
Necklace 

Bicycle 
Nipple 

Container 
House  
IronNail 

Data7 Data8 Data9 Data10 Data11 Data12 
Container 
House  Masks 

Container 
House 
Necklace 

Container 
House  
Nipple 

IronNail 
Masks 

IronNail 
Necklace 

IronNail  
Nipple 

 
Fig. 6 presents the experimental results. It can be seen that the 
proposed algorithms and other TCNN algorithms, i.e., 
TCNNVGG16, TCNNVGG19 and TCNNResNet50, have 
higher test accuracies than the conventional CNNs on most 
datasets except data8. The test accuracies of the proposed 
TECNNs are higher than the conventional CNNs on all 
datasets. In addition, the proposed TECNNs provide higher 
test accuracies than the TCNNs.  

 

FIGURE 6. The comparison of test accuracy on different algorithms 
 

TABLE 27 
COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS  

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 
CNN 0.8430 0.8807 0.9076 0.8243 0.9023 0.8253 
VGG16 0.9673  0.9654  0.9712  0.9788  0.9731  0.9327  
VGG19 0.9654  0.9769  0.9788  0.9962  0.9788  0.9308  
ResNet50 0.9654  0.9769  0.9788  0.9962  0.9788  0.9308  
InceptionV3 0.9308  0.9115  0.8519  0.9212  0.9481  0.9192  
Xception 0.8058  0.8519  0.7827  0.8654  0.9269  0.8327  
Voting 0.9731  0.9827  0.9788  0.9981  0.9865  0.9577  
PickOver 0.9673  0.9885  0.9769  1.0000  0.9962  0.9827  
Weighted 0.9769  0.9846  0.9808  0.9942  0.9904  0.9654  

 
Tables 27 and 28 provide the details. Table 29, derived from 

Tables 27 and 28, presents the average accuracies of the eight 
algorithms. As shown in Table 29, the proposed three TECNNs 
have higher test accuracies than other algorithms, in which the 
voting method is the best. In particular, the proposed voting 
method provide 0.85% higher accuracy than other most 
effective TCNN algorithm (i.e. TCNN_VGG19) in this 
experiment. As shown in Tables 27 and 28, the proposed 
weighted method presents the highest accuracy in comparison 
with other TCNN algorithms on the data6, i.e. 5% higher than 
the most effective TCNN algorithm TCNN_VGG16 on data12. 

Similar with the experimental results, Tables 30, 31, 32 

still exhibit better generalizability of the PickOver in 
comparison with other methods. Tables 33-34 show that the 
T_SM has the highest classification accuracy in these 
ImageNet datasets. As shown in Tables 35-36, different 
from the experimental results on the Caltech, the two 
TCNNs, i.e. InceptionV3 and Xception, exhibit higher 
classification accuracy than the version of using fine-tuning. 
It indicates that fine-tuning lead to obvious overfitting. 

 
TABLE 28 

COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS 

Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
CNN 0.8261 0.9807 0.8846 0.9047 0.8461 0.9230 
VGG16 0.9615  0.9750  0.9808  0.9019  0.9442  0.9385  
VGG19 0.9596  0.9827  0.9788  0.9481  0.9750  0.9615  
ResNet50 0.9596  0.9827  0.9788  0.9481  0.9750  0.9615  
InceptionV3 0.9442  0.9750  0.9500  0.7577  0.8577  0.8462  
Xception 0.8923  0.9019  0.8981  0.7269  0.7077  0.6462  
Voting 0.9865  0.9942  0.9904  0.9481  0.9750  0.9635  
PickOver 0.9904  1.0000  0.9865  0.9404  0.9615  0.9385  
Weighted 0.9923  1.0000  0.9769  0.9423  0.9673  0.9558  

TABLE 29 
COMPARISONS OF AVERAGE TEST ACCURACY  

Algorithms CNN VGG16 VGG19 ResNet50 
ACC 0.8790 0.9575 0.9694 0.9694 

InceptionV3 Xception Voting PickOver Weighted 
0.9011 0.8199 0.9779 0.9774 0.9772 

 
TABLE 30 

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS 

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS  

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 
CNN 0.8430 0.8807 0.9076 0.8243 0.9023 0.8253 
VGG16+ 0.9808 0.9942 0.9750 0.9981 0.9962 0.9981 
VGG19+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000 
ResNet50+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000 
InceptionV3+ 0.8212 0.8519 0.8365 0.8712 0.9346 0.8577 
Xception+ 0.7442 0.8577 0.7154 0.8423 0.9096 0.7500 
Voting 0.9885 0.9981 0.9904 1.0000 0.9962 1.0000 
PickOver 0.9885 1.0000 0.9962 1.0000 0.9962 1.0000 
Weighted 0.9865 0.9981 0.9865 1.0000 0.9962 0.9962 

 
TABLE 31 

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS 

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS  

Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
CNN 0.8261 0.9807 0.8846 0.9047 0.8461 0.9230 
VGG16+ 0.9942 1.0000 0.9981 0.9885 0.9692 0.9654 
VGG19+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731 
ResNet50+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731 
InceptionV3+ 0.8404 0.9 0.8827 0.675 0.7288 0.6577 
Xception+ 0.7577 0.8 0.8019 0.6673 0.6442 0.6519 
Voting 1.0000 1.0000 0.9981 0.9904 0.9788 0.9673 
PickOver 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731 
Weighted 1.0000 1.0000 0.9981 0.9885 0.9827 0.9750 

 
TABLE 32 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL 

ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS  

Algorithms CNN VGG16+ VGG19+ ResNet50+ 
ACC 0.8790 0.9881 0.9936 0.9936 

InceptionV3+ Xception+ Voting PickOver Weighted 
0.8215 0.7619 0.9923 0.9942 0.9923 
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TABLE 33 
COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS 

AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS 

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 

T_SM 0.9962 0.9981 0.9942 1.0000 0.9962 0.9923 
T_SVM 0.9827 1.0000 0.9942 1.0000 0.9962 0.9962 
T_SM_SVM 0.9827 0.9981 0.9923 1.0000 0.9962 0.9962 
Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
T_SM 1.0000 1.0000 0.9942 0.9904 0.9904 0.9692 
T_SVM 1.0000 0.9962 0.9981 0.9827 0.9885 0.9712 
T_SM_SVM 1.0000 1.0000 0.9981 0.9865 0.9846 0.9750 

TABLE 34 
COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL 

ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS 

ON THE 12 DATA SETS FROM IMAGENET 

   Algorithms T_SM T_SVM T_SM_SVM 
ACC 0.9934 0.9921 0.9925 

 
TABLE 35 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF 

USING FINE-TUNING AND NOT USING FINE-TUNING  

Algorithms Data1 Data2 Data3 Data4 Data5 Data6 
VGG16 0.9673  0.9654  0.9712  0.9788  0.9731  0.9327  
VGG16+ 0.9808 0.9942 0.9750 0.9981 0.9962 0.9981 
VGG19 0.9654  0.9769  0.9788  0.9962  0.9788  0.9308  
VGG19+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000 
ResNet50 0.9654  0.9769  0.9788  0.9962  0.9788  0.9308  
ResNet50+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000 
InceptionV3 0.9308  0.9115  0.8519  0.9212  0.9481  0.9192  
InceptionV3+ 0.8212 0.8519 0.8365 0.8712 0.9346 0.8577 
Xception 0.8058  0.8519  0.7827  0.8654  0.9269  0.8327  
Xception+ 0.7442 0.8577 0.7154 0.8423 0.9096 0.7500 

 
TABLE 36 

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF 

USING FINE-TUNING AND NOT USING FINE-TUNING  

Algorithms Data7 Data8 Data9 Data10 Data11 Data12 
VGG16 0.9615  0.9750  0.9808  0.9019  0.9442  0.9385  
VGG16+ 0.9942 1.0000 0.9981 0.9885 0.9692 0.9654 
VGG19 0.9596  0.9827  0.9788  0.9481  0.9750  0.9615  
VGG19+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731 
ResNet50 0.9596  0.9827  0.9788  0.9481  0.9750  0.9615  
ResNet50+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731 
InceptionV3 0.9442  0.9750  0.9500  0.7577  0.8577  0.8462  
InceptionV3+ 0.8404 0.9000 0.8827 0.6750 0.7288 0.6577 
Xception 0.8923  0.9019  0.8981  0.7269  0.7077  0.6462  
Xception+ 0.7577 0.8000 0.8019 0.6673 0.6442 0.6519 

V.  CONCLUSIONS 
To make full use of the existing multiple TCNNs and 
improve their generalizability, this study proposes three 
ensemble TCNNs by introducing the ensemble ideas. The 
experimental results show that these TECNNs exhibit better 
generalizability than the conventional CNNs and a single 
TCNN. In comparison with the CNN and five widely used 
TCNNs, the proposed TECNNs enhance the average test 
accuracy by 1.65%, 5.85% and 7.58% respectively on the 
internet datasets and two benchmark small-scale datasets, 
and the highest test accuracy by 1.73%, 7.12% and 8.85%.  

Due to space limitations, only some common ensemble 
methods are combined into the proposed TECNNs. In the 
future, we will introduce more ensemble technologies to 
achieve better performance.  
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