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ABSTRACT The deep convolutional neural networks (DCNN) require large number of training data to
avoid overfitting, which makes it unsuitable for processing small-scale image datasets. The transfer learning
using DCNN (TCNN) reuses pre-trained layers to generate a mid-level image representation so that the
optimization of more than millions CNN parameters can be avoided. By this way, overfitting problem in
small-scale data can be alleviated. However, although now many public DCNNs have been trained and can
be reused, the existing TCNNs are formed by only a single pre-trained DCNN structure and cannot make
full use of multiple structures of pre-trained DCNNs. At the same time, the existing ensemble CNNs have
not enough good representation ability. To address this problem, we combine the conventional ideas of
ensemble CNNs and propose three ensemble TCNNs (TECNN). They are the voting method based on the
combination of all TCNNS, the PickOver method by finding the optimal combination, and weighted method
by finding weighted combination. Different from the existing ensemble CNNs, the proposed methods do
not need to retrain the component CNNs and generate ensemble transferring representations by transferring
the pre-trained mid-level parameters. The mathematical models of those three methods are also provided.
Their versions of using fine-tuning are also compared in the experiments. In addition, we replace the
Softmax classifier with ensemble linear classifiers in the full-connection layer. They outperform the current
state of the art algorithms on Caltech ImageNet and some internet image data. All this research has released
as an open source library called Transferring Image Ensemble Representations using Deep Convolutional
Neural Networks (TECNN). The source codes and relevant datasets in different versions are available from:
http://www.cquptshuyinxia.com/TECNN.html.

INDEX TERMS Convolutional Neural Networks, deep CNN, transferring CNN, transferring Learning

I. INTRODUCTION [8], Pascal VOC [9] and ImageNet [10]. The CNNs are high-

The object recognition represents an important part of the
computer vision. Recently, the robust image descriptors have
been developed significantly, such as SIFT [1] and HOG [2],
bag of features image representations [3], [4], [5], [6],
deformable part models [7] and deep convolutional neural
networks (DCNNSs). An enabling factor is the development
of increasingly large and realistic image datasets, providing
an object annotation for training and testing, e.g. Caltech256
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capacity classifiers with a very large number of parameters
that need to be optimized during the training process. CNNs
have a long history in visual recognition and exhibit record-
shattering results in computer vision [11], [12], image
translations [13], optical character recognition [14], [15], [16]
and many other various fields [17], [18], [19], [20], [21]. The
early CNNs’ performance was limited by a relatively small
size of the standard object recognition datasets. However,
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this limitation has changed due to the appearance of the
large-scale ImageNet dataset [10] and enhancement of the
GPU computing power. Krizhevsky et al. achieved a
performance leap in the image classification on the ImageNet
2012 Large-Scale Visual Recognition Challenge (ILSVRC-
2012). They further improved the network performance by
training with 15 million images and 22,000 ImageNet classes
[22]. According to their works, a thorough evaluation of
networks is made in terms of depth incensement by using an
architecture with very small (3x3) convolution filters [23]. In
addition, a significant improvement of the prior art
configurations can be achieved by increasing of the depth to
16-19 layers. Although this result is promising and exciting,
it is also worrisome as millions of annotated images are
required to be collected for each visual recognition task.
Namely, collection of a large corpus of annotated data to
train the CNNs is nearly impossible in real applications, such
as the robotics applications [24] and customized categories of
applications [25]. In other words, the DCNN offers a large
representation space and is very easy to lead to overfitting in
processing small-scale datasets. Although the shallow CNNss
including the ensemble CNNs can avoid overfitting in the
processing of small-scale datasets, it suffers from poor
representation ability due to the small number of parameters
and layers.

To take advantage of the good representation ability of the
DCNN and prevent overfitting by avoiding training too much
parameters, researchers have studied the transfer image
representations of DCNNs for visual recognition tasks with
small sample size. Instead of directly training CNN for a
specific task with a small-scale dataset, Oquab et al. designed
a method that reuses the intermediate layers of a DCNN
trained on the ImageNet dataset to generate a mid-level
image representation of images in the PASCAL VOC dataset
[26]. This transferred representation can significantly
enhance classification accuracy in visual recognitions tasks
with small sample size, such as [27], [28], [29], [30], [31],
[32]. However, the mentioned works almost used only one
single pre-trained DCNN structure although many pre-
trained DCNNSs can be efficiently used for transfer learning.

To make full use of the existing pre-trained DCNNSs, we
propose here three methods to integrate multiple pre-trained
DCNNs by introducing the ensemble methods of
conventional CNNs.

The contributions of this paper are threefold as follows.

1) We introduce conventional ideas of ensemble CNNs
into TCNNs and propose three ensemble TCNNs (TECNNS).
They are the voting method based on the combination of all
TCNNs, the PickOver method by finding the optimal
combination, and weighted method by finding weighted
combination. Different from the existing ensemble CNNs in
which the component CNNs are retrained, the proposed
methods do not need to retrain the component DCNNs and
generate  ensemble transferring  representations by
transferring the pre-trained mid-level parameters.

2) Their versions of using fine-tuning are also compared in
the experiments, and the fine-tuning versions achieve a
higher generalizability by using the “root mean square prop”
method to fine-tune the last full-connected layer.

3) Except the ensemble method in the pre-trained
DCNNSs, we replace the Softmax classifier with ensemble
linear classifiers in the full-connection layer, and the
proposed methods achieve better performance on some
datasets.

Il. RELATED WORK

A. TRANSFERRING DCNN

The key idea of the existing transfer learning DCNN (TCNN)
is that the internal layers of the CNN act as the extractors of a
mid-level image representation. They can be hence pre-
trained with the source dataset and then reused for other
target tasks, as shown in Fig. 1 [26]. First, a network is
trained on the source task (e.g. the ImageNet classification,
top row) with a large amount of available labelled images.
Then, the pre-trained parameters of the internal layers of the
network (C1-FC7) are transferred to the target tasks (bottom
row). To compensate different image statistics, e.g., objects
types, typical viewpoints and imaging conditions, of the
source and target data, an adaptation layer (fully connected
layers FC1) is introduced and trained on the labelled data of
the target task [26]. The TCNN has been widely used in
various fields [33], [34], [35]. By transferring the pre-trained
parameters of the internal layers, the TCNN is not required to
train too many parameters and has deep representation ability.
As a result, the TCNN not only exhibits outstanding
representation ability of the deep CNN, but also alleviates
overfitting for the DCNN process of small-scale datasets.
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FIGURE 1. CNN Transferring parameters [26]
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B. ENSEMBLE NEURAL NETWORK

Neural network ensemble is a learning strategy in which a
limited number of neural networks receive the same task
training [36]. It was derived from the work of Hansen and
Salamon [37]. In general, two steps are required to construct
a neural network integration including training a few
component neural networks and combining them. The
generalizability of the neural network system can be
significantly improved by combining a series of neural

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

networks. This technology recently has become very popular
in neural networks and machine learning community [38]. It
has been successfully applied to various fields, such as the
face recognition [39], [40], [41], medical diagnosis [42],
image retrieval [43], [44] pedestrian detection [45],
biological information processing [46] and medication safety
[47]. Bagging and Boosting represent the most popular
methods for training the component neural networks. The
Bagging is based on the bootstrap sampling proposed by
Breiman [48], [49] which generates several training sets from
the original training set and then trains component neural
networks from them. The Boosting was first proposed by
Schapire [50] and then improved by Freund et al. [51], [52],
which produces a series of neural networks.
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FIGURE 2. Transferring Image Ensemble Representations using DCNNs

There are many other methods for training component
neural networks. Hampshire and Waibel [53] use different
target functions to train different neural networks. Cherkauer
[44] trains the network of components for different amounts
of hidden units. Maclin and Shavlik [54] initialize component
networks in different positions in the weight space. Krogh
and Vedelsby [55] use cross-validation to create a component
network. Opitz and Shavlik [56] use genetic algorithms to
train different knowledge-based component networks. Yao
Ming and Liu [57] see all the individuals in the neural
networks of evolution as component networks.

The most popular methods are plurality voting or majority
voting [20] for classification tasks, simple average [58] or
weighted average [59] for regression tasks. Wolpert [60]

combine the learning system into component neural networks.

Merz and Pazzani [61] use the principal component
regression to determine the appropriate constraints of
component network weights and combine them. Jimenez [62]
uses dynamic weights that are determined by the confidence
of the component networks to combine them. Ueda [63] uses
the optimal linear weighting to combine the component
neural networks based on the statistical pattern recognition
theory. There are some ways to use neural networks to

complete tasks in the style of divide-and-conquer [64], [65],
[66].

Currently, however, few ensemble TCNNs are studied.
Those existing ensemble CNNs are designed to retrain and
integrate the CNN classifiers including a large number of
parameters, leading to overfitting in small-scale datasets. In
contrast, the TECNNs are not required to retrain a large
number of parameters in the convolutional layers and can
reuse several types of TCNNs. In this paper, we introduce
three ensemble DCNN methods for transferring learning and
verify their performance.

lll. TRANSFERRING ENSEMBLE REPRESENTATIONS
USING DEEP CONVOLUTIONAL NEURAL NETWORKS

A. THE FRAMEWORK OF TRANSFERRING IMAGE
ENSEMBLE REPRESENTATIONS USING DEEP CNN
(TECNN)

Fig. 2 shows the Framework of the Transferring Image
Ensemble Representations using Deep CNN (TECNN). This
framework is constituted of several pre-trained DCNNSs, each
of which has a corresponding TCNN. The TECNN is
constituted of several TCNNs. Each convolutional layer of
TCNN is generated by transferring the convolutional layers
of the corresponded pre-trained DCNNs to the new DCNN.
In addition, new adaptation layers are added into each TCNN
and need to be retrained to compensate for different image
statistics (type of objects, typical viewpoints, imaging
conditions) of the source and target data. Moreover, an
ensemble layer is added to integrate the results of the outputs
of those TCNNs. More details and the mathematical model
will be presented in Sec. 3.2.

B. CLASSIFICATION MODEL
Table 1 lists the symbols.

TABLE 1
SYMBOLS USED
Symbol The Meaning of the symbol
n The number of training image samples;
N The number of transferred CNNs;
w; the weights of the adaptive layer in the i-th transferred CNN ;
X; the j-th image sample;
Vi the label of the j-th image sample;
TCNN; The i-th transferred CNN;

Take the binary classification problem as an example. A
sample is labeled with +1 or -1. The loss function of the
voting TECNN method can be expressed as follows:

argmin Y, 3 {((/(x,,w, TCNN) - y,)’} ()

J=1 W
o

The decision function of this method is expressed as

follows:

f()=sign(}_ (label(f (x,,w,,TCNN,)) - y,)) (2)
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, where sign(x) is a function described as follows:

. Lif x>0
sign(x) =
-l,if x<=0
To optimize (1), each TCNN needs to be trained. In (2),
the sign(.) function’s value of the sum of the output labels of
a sample in all TCNNs is considered as its predicted value

when the voting TECNN method is used.
TABLE 2
TRAINING LEARNING OF THE VOTING METHOD

Algorithm 1. Training learning of the Voting Method

Input: Input training image dataset D and test image dataset D’, pre-
traineded DCNNs
Output:  The labels of samples in D’
1 For i = 1 to the number of pre-trained DCNNs
2 Transfer the middle weights of DCNN; to the transferred
TCNN;;
3 Training and fine-tuning the w; in the i-th TCNN; to
optimize the first part of (1);
4 Optimize the parameters v; for each i according to the
second part of (1);
5 End
TABLE 3

TRAINING LEARNING OF THE PICKOVER

Algorithm 2. Training learning of the PickOver method

Input: Input training image dataset D and test image dataset D’, pre-
Output:  traineded DCNNs
The labels of samples in D’
1 For i =1 to the number of pre-trained DCNNs
2 Transfer the middle weights of DCNN; to the transferred
TCNN;;
3 Training and fine-tuning the w;in the i-th TCNN; to optimize
the first part of (2);
4 Optimize the parameters v; for each i according to the second
part of (2);
5 End

TABLE 4
TRAINING LEARNING OF THE WEIGHTED METHOD

Algorithm 3. Training learning of the weighted method

Input: Input training image dataset D and test image dataset D’, pre-
traineded DCNNs
Output: The labels of samples in D’
1 For i =1 to the number of pre-trained DCNNs
2 Transfer the middle weights of DCNN,; to the transferred
TCNN;;
3 Training and fine-tuning the w; in the i-th TCNN; to
optimize the first part of (3);
4 Optimize the parameters v; for each i according to the
second part of (3);
5 End

((.f(xfawiﬂTCNM)_yf)2+

arg min
BT 21 i gnty, *label (£, o, TOVN,))—,)
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, Where label (f(x;,w;, TCNN;)) denotes the validation label
of x; in the i-th TCNN.. The loss function in (3) is constituted
with two parts. In (3), the first half is first optimized and the
second is then done. Consequently, the whole loss of (3) can
be minimized. The first half denotes the loss function of each
TCNN, so each TCNN should be optimized on their
corresponding source dataset. The second half denotes the
difference of combination output labels of the combination
TCNNS s and the true label. By optimizing the values of v;, the
value of which is set to 0 or 1, the candidate TCNNs are
selected for ensemble.

In (3), some output probability values are lost in the
ensemble process of labels. For example, the output
probability values of a sample are respectively 0.7 and 0.4 in
two TCNN:S, so its labels are respectively 1 and -1 in binary
classification problems. The ensemble results of the sample
in the two TCNNs in (3) is equal to 0. If the output
probability values of the sample are changed to be
respectively 0.9 and 0.4, its ensemble result is the same with
the above. Therefore, some output probability values are lost.
Thus, (4) replaces the output label with the output probability
value in the loss goal of (3). In addition, to show the different
importance, in the third method, the test accuracy of a single
TCNN is used as its weight to measure its importance in the
ensemble representations. Therefore, (3) can be transformed
into (4) as follows:

. ((f (x,sw,, TCNN,) =y )"+

remin . [Z] {PA,*|sign<vi*(f'(x,.,vvi,TCNN,>—yj>)|} (4)

ie{l..N},

, where PA; denotes the validation accuracy of the i-th
transferred TCNN;.

C. ALGORITHM DESIGN
To implement model (1), (2) and (3), three algorithms have
been designed as Table 2, Table3 and Table 4.

D. FINE-TUNING ENSEMBLE METHODS

In Sections III. A, B, C, the fine-tuning mechanism in pre-
trained DCNNSs is not used. Using the fine-tuning mechanism
is good for improving the generalizability of TDCNN.
However, it is easy to lead to overfitting in small-scale data
sets if too much layers are fine-tuned. To utilize the
advantage of the fine-tuning mechanism, at the same time,
and optimize as few parameters as possible in the fine-tuning
process, the last full-connected layer is fine-tuned by using
the “root mean square prop” method. The “root mean square
prop” method is proposed by Geoff Hinton in the Coursera.
Although it is not published, it has been widely used in
various fields. The weights of convolutional layers are fixed
in this paper. The fine-turned version of Algorithm 1, 2, 3 are
separately named by putting "+" after these letters.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



Access

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE

IEEE Access

Multidisciplinary ; Rapid Review : Open Access Journal

E. USING VARIOUS LINEAR CLASSIFERS IN THE FULL-
CONNECTION LAYER

The Softmax classifier is a common linear classifier in the
full-connection layer, and some other classifiers are used to
replace the Softmax classifier, such as SVM [66]. Few
studies use the ensemble classifiers in the full-connection
layer. In this paper, we will use the ensemble linear
classifiers to achieve better classification generalizability.
Sign(.) function’s value of the sum of the output value of a
sample in all TCNNS is considered as the output value of the

sample, and its decision function can be expressed as follows:

fx)=sign(Y(f(x,,w,, TCNN,) = )

IV. EXPERIMENTS

In this section we first describe details of the pre-trained
CNNs. Next, we show the experimental results of the
proposed transfer learning method on different datasets
collected from the Google, Baidu's picture library and
Caltech. Moreover, to demonstrate the superior efficiency of
the proposed algorithms, we compare them with the TCNN
method [26] and CNNs. The structure of the compared
CNNs is set as follows. The size of the network inputs is
224x224x3 pixels. As the training set is not large, the
structure only contains three convolutional layers. The full
architecture corresponds to C(32,3,3)-R-P-C(32,3,3)-R-P-
C(64,3,3)-R-P-FC(2048)-R-Dropout(0.5)-FC(48)-R-Dropout
(0.5), where C(d,f,s) represents a convolutional layer with d

filters with spatial size of fx{, applied to the input with strides.

Here, FC(n) is a fully connected layer with n nodes, and the
Dropout layer is used to alleviate the overfitting. Moreover,
R indicates the activation layer using the RELU function. All
pooling layers P pool spatially in non-overlapping 2x2
regions. The final layer is connected to a Softmax classifier
with dense connections.

The experiments have been performed on a standalone
desktop computer, configured as follows. We use a CPU
from Intel Core i5-4460 3.20GHz CPU, 8.00GB RAM,
465GB hard drive; 64-bit Windowsl0 Enterprise Edition
operating system, 64-bit Windows version of python3. 5.2,
and JetBrains PyCharm Community Edition 2016.2 as the
compiling software. The other parameters are same as the
default system configuration.

A. PRE-TRAINED CNNS

We have used five pre-trained DCNNs based on the Keras
framework, namely VGG16 [23], VGG19 [23], ResNet50
[67], InceptionV3 [68], and Xception [69]. Their structures
have been trained by using the dataset ImageNet. The five
per-trained models are combined with the transfer learning
methods in [26] and named as TCNN_VGGI6,
TCNN_VGG19, TCNN_ResNet50, TCNN_InceptionV3 and
TCNN_Xception, respectively. In all experiments, to
stabilize the performance analysis of the compared
algorithms, the test accuracy is achieved by averaging over
10 times. In each time, 80% samples are randomly selected

from each dataset as the training set, and the remaining 20%
as the test set. We have also used TensorFlow as the backend,
where the parameters are set as the default values. The target
objects in our datasets are not contained in the training
dataset of the pre-trained DCNNs. So, the transferring
representation ability of those algorithms can be checked.

B. IMAGE CLASSIFICATION ON INTERNET DATA

The experimental data sets have been randomly achieved
from the Google and Baidu's picture library. There are six
classes of picture data, each of which is composed 130
pictures. They include ass, horse, cervus nippon, bimodal
camel, giraffe and sheep. Fig. 3 shows the experimental data.
Each dataset is constituted of two classes, with 260 pictures
in each class. Table 5 lists the experimental datasets. These
datasets are available in http://pan.baidu.com/s/1mihu564.

FIGURE 3. Some of the images in the data set. (a)ass, (b)horse, (c)
cervus Nippon,(d)Bactrian camel,(e)giraffe,(f)sheep.

TABLE 5
DATA SETS DETAILS FROM GOOGLE AND BAIDU'S PICTURE LIBRARY

Data set  Datal Data2 Data3 Data4 Data5 Data6

Firstclass Horse Horse Horse  Horse  Horse Sheep

Secondclass  BactrianCamel Ass Giraffe  Sheep  CervusNippon Giraffe

Data7 Data8 Data9 Datal0 Datall Datal2

Sheep Sheep Giraffe  Giraffe Sheep Giraffe

BactrianCamel Ass Ass CervusNippon CervusNippon BactrianCamel
TABLE 6

COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS ON
THE 12 DATA SETS FROM INTERNET

Algorithms Datal Data2 Data3 Data4 DataS Data6
CNN 0.8269 0.8461 0.8269 0.8653 0.8076 0.9723
VGG16 0.9769 0.9750 0.9712 0.9654 0.9846 0.9673
VGG19 09788 09712 0.9692 0.9558 0.9808 0.9577
ResNet50 0.9788 09712 0.9692 0.9558 0.9808 0.9577
InceptionV3 0.8423 0.8481 0.8481 0.8212 0.8135 0.8346
Xception 0.7577 0.7654 0.7365 0.7500 0.7635 0.7385
Voting 0.9865 0.9750 0.9654 0.9635 0.9808 0.9654
PickOver 0.9904 0.9923 0.9827 0.9769 0.9962 0.9846
Weighted 0.9904 0.9885 0.9827 0.9769 0.9962 0.9827

The experimental results of all algorithms on all data sets
are shown in Fig. 4. The DCNN has good representation
ability to describe an image; by contrast, the representation
ability of CNNs is lower than the ability of DCNNSs.
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Therefore, the transfer learning algorithms weighted method,
PickOver method, voting method, TCNNVGGIS6,
TCNNVGG19 and TCNNResNet50 exhibit higher test
accuracy than the original CNN algorithm in most cases.

TABLE 7
COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL TRANSFERRED
AND ENSEMBLE TRANSFERRED ALGORITHMS ON THE 12 DATA SETS FROM

best. The average test accuracy provided by the PickOver is
9.55% higher than the CNN and 1.65% higher than the most
effective TCNN algorithm (i.e. VGG16) in the experiments.

TABLE 9
COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS
AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

INTERNET.
Algorithms Data7 Data8 Data9 Datal0 Datall Datal2
CNN 0.9230 09038 0.9615 0.8653 0.9230 0.9615
VGG16 0.9788 0.9558 0.9750 0.9731 0.9692 0.9731
VGG19 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769
ResNet50 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769
InceptionV3 0.8519 0.8538 0.8481 0.8269 0.8231 0.8346
Xception 0.7385 0.7558 0.7615 0.7846 0.7365 0.7577
Voting 0.9769 0.9731 09788 0.9731 0.9635 0.9808
PickOver 0.9865 0.9788 0.9846 0.9865 0.9865 0.9885
Weighted 0.9865 0.9788 0.9865 0.9865 0.9846 0.9885
.
—_—

M
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—— TCNNVGG16
—— TCNNVGG18
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FIGURE 4. The comparison of test accuracy on different algorithms

Algorithms Datal Data2 Data3 Data4 DataS Data6
CNN 0.8269 0.8461 0.8269 0.8653 0.8076 0.9723
VGG16+ 0.9942 0.9692 1.0000 1.0000 0.9962 0.9981
VGG19+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923
ResNet50+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923
InceptionV3+ 0.7385 0.7231 0.875 0.8135 0.7788 0.8827
Xception+ 0.7308 0.7308 0.7962 0.825  0.7923 0.7500
Voting 0.9923 0.9788 1.0000 0.9981 1.0000 0.9923
PickOver 0.9942 0.9885 1.0000 1.0000 1.0000 0.9981
Weighted 0.9923 0.9788 1.0000 0.9981 1.0000 0.9923
TABLE 10

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS
AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Data7 Data8 Data9 Datal0 Datall Datal2
CNN 0.9230 0.9038 0.9615 0.8653 0.9230 0.9615
VGG16+ 0.9865 0.9923 0.9942 1.0000 0.9942 0.9923
VGG19+ 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000
ResNet50+ 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000
InceptionV3+ 0.8058 0.8038 0.85 0.8269 0.8558 0.8558
Xception+ 0.7346  0.7692 0.8077 0.7192 0.7327 0.8308
Voting 0.9865 0.9962 1.0000 1.0000 0.9981 0.9981
PickOver 0.9904 0.9962 1.0000 1.0000 0.9981 1.0000
Weighted 0.9904 0.9962 1.0000 0.9981 0.9981 1.0000
TABLE 11

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL
ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

TABLE 8 Algorithms CNN VGG16+ VGG19+ ResNet50+
COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN DIFFERENT ACC 0.8907 0.9931 0.9963 0.9963
ALGORITHMS InceptionV3+ Xceptiont+ Voting PickOver Weighted
Algorithms CNN VGG16 VGG19 ResNet50 0.8175 0.7683 0.9950 0.9971 0.9954
ACC 0.8907 0.9721 0.9697 0.9697
InceptionV3  Xception Voting PickOver  Weighted TABLE 12
0.8372 0.7538 0.9736 0.9862 0.9857 COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN FROM INTERNET
Algorithms Datal Data2 Data3 Data4 DataS Data6
. . VGG16 0.9769 0.9750 0.9712 0.9654 0.9846 0.9673
~The proposed PickOver and Weighted methods present  yey61 09942 0.9692  1.0000 1.0000 0.9962 0.9981
higher test accuracy than the CNN on all those datasets. VGG19 09788 09712 09692 0.9558 09808 0.9577
InceptionV3 and Xception always exhibit the lowest VGG19+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923
accuracy. It indicates that these two TCNNs have not good ~ ResNetS0 09788 09712 09692 0.9558 0.9808 0.9577
t ferri 1 . bilitv b f thei lativel 0 ResNetS0+ 0.9923 0.9885 1.0000 0.9981 1.0000 0.9923
ransterring learning ability because of their relatively sma TnceptionV3 0.8423 0.8481 0.8481 0.8212 0.8135 0.8346
original training data sets or simple structure or bad structure InceptionV3+ 0.7385 0.7231 0.8750 0.8135 0.7788 0.8827
design. In addition, by integrating different TCNNs, Voting, Xeeption 0.7577 0.7654 0.7365 0.7500 0.7635 0.7385
PickOver and Weighted exhibit an obviously higher test Xceptiorrt 0.7308 0.7308 0.7962 0.825  0.7923 0.7500
accuracy than other TCNN algorithms. TABLE 13
Tables 6 and 7 provide the detail data, and the boldface is COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN FROM INTERNET
corresponded with the highest accuracy. As shown in Tables Algorithms Data7 Data8 Data9 Datal0 Datall Datal2
6 and 7, it has the highest accuracy advantage when VGG16 0.9788 0.9558 0.9750 0.9731 0.9692 0.9731
Compared with other TCNN algorithms on the data2, VGG16+ 0.9865 0.9923 0.9942 1.0000 0.9942 0.9923
. % higher than th t effective TCNN al ith . VGG19 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769
i..1.73% higher than the most effective algorithm (ie.  ygG19+ 0.9904 0.9962  1.0000 1.0000 0.9981 1.0000
VGG16) on data2. ResNet50 0.9654 0.9615 0.9750 0.9750 0.9692 0.9769
Table 8 presents the average accuracies of the nine ResNetS0+ 0.9904 0.9962 é-ggg? 1.0000 g-:gg} é-gggg
. . InceptionV3 0.8519 0.8538 0. 0.8269 0. .
algorlthms which are computed from Tables 6 apd 7. As IncentionV3+ 0.8058 08038 0.8500 0.8269 0.8558 0.8558
shown in Table 8, the proposed TECNNs have higher test Xception 0.7385 0.7558 07615 0.7846 0.7365 0.7577
accuracies than other algorithms, where the PickOver is the Xception+ 0.7346  0.7692 0.8077 0.7192 0.7327 0.8308
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Tables 9-11 present the results of both the fine-tuning
DCNNs and their TECNNs. Table 11 shows the average
accuracies. Similar with the TECNNs that does not use fine-
tuning, the PickOver exhibits the best performance in
average. The voting and weighted methods can also achieve
better performance on some cases.

Tables 12-13 show the comparison between the two
methods of using fine-tuning and not using fine-tuning. The
fine-tuning methods are suffixed with “+”. It can be observed
that the VGG16+, VGG19+ and Resnet50+ exhibit higher
accuracies than the versions of not using fine-tuning on all
datasets. The inceptionV3+ and Xception+ achieve higher

corresponds to the highest accuracy of the algorithms. Table
18 provides the average accuracies of the nine algorithms
achieved from Tables 16 and 17. As shown in Table 18, the
proposed three TECNNs have higher test accuracies than
other algorithms, where the weighted method is the best. The
proposed PickOver provides 5.85% higher accuracy than the
most effective TCNN algorithm, TCNNVGG19.

The PickOver and Weighted methods have the similar
mechanism to find the best combination of TECNNSs. So,
they present almost the same performance on many datasets.
Despite of this, they exhibit different performance on some
datasets, such as the experimental results in Table 16 and 17.

accuracies on part of datasets. In average, the fine-tuning TABLE 15
methods exhibit higher generalizability than the version of DATA SETS SELECTED FROM THE CALTEC
. N . Data set Datal Data2 Data3 Data4 Data5  Data6
not using fine-tuning. However, ﬁne-tumng may lead to Firstolass _BascballGlove Bread maker Hammock  Ladder Lightning M
overfitting to an extent, so as shown in Table 13, the methods Second lass Billiards Grapes HotTub  Lighthouse Mars Minaret
of fine-tuning have lower accuracies on few cases. That Data7  Data$ Data9  Datal0 Datall  Datal2
indicates the generalizability may be decreased. Table 14 Mussels  Teepee Lighting  Billiards ~ Hammock  Ladder
. . Raccoon  Treadmill Clutter &Mars Mattress Treadmill
compare the performance between methods of using different
linear classifiers in the full-connection layer. T_SM uses the TABLE 16
Softmax classifier in the full-connection layer, and T_SVM COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS
uses the SVM. T_SM_SVM combines the Softmax and Algorithms Datal  Data2 Data3 Data4 Data5 Data6
SVM. It can be observed from Table 14 that, T SVM and ‘C}(‘félﬁ ggﬁg 8351‘2; 82328 ggggg gg‘z‘gg 8233
T _SM_SVM can achieve higher accuracy than the T _SM on VGG19 09346 09154 09327 09404 09231 0.9288
some cases. ResNetS0 0.9346 09154 09327 09404 09231 0.9288
TABLE 14 InceptionV3 0.8481 0.8731 0.8827 0.8865 0.8769 0.8846
THE EXPERIMENTAL RESULTS ON COMPARISON METHODS Xception  0.7904  0.8038 0.8038 0.8077 0.7846  0.8019
Algorithms Datal Data2 Data3 Data4 Data5 Data6 Vf)ting 09558 09423  0.9481 0.9692  0.9500 0.9519
T_SM 0.9942 0.9769 1.0000 0.9942 1.0000 0.9962 &‘f!‘?}:eg 3'3‘9‘2‘3‘ 8‘3332 8‘332‘7‘ 3'3‘%; 3'3323 8‘33‘2‘3
T_SVM 0.9885 0.9827 1.0000 0.9981 1.0000 0.9923 elghtec > : : : : :
T SM_SVM 0.9944 0.9769 1.0000 0.9981 1.0000 0.9923
Algorithms Data7 Data8 Data9 Datal0) Datall Datal2 COMPARISONS OF TEST ACC T:‘CBLE 17 D ALGO s
T SM 0.9942 1.0000 1.0000 1.0000 0.9962 1.0000 A T R T RN ALOORITHM
T SVM 0.9942 0.9962 1.0000 0.9962 0.9981 0.9981 Algorithms | Data7 Data8 Data9 Datal( Datall  Datal2
T_SM_SVM 0.9985 0.9962 1.0000 0.9962 0.9981 1.0000 CNN 0.8461 0.9038 ~ 1.0000  0.9807  0.8846  0.3461
VGG16 0.9346 0.9327 0.9250 09135 0.9231 0.9288
VGG19 0.9288 0.9308 0.9269 0.9154 0.9250 0.9269
C. IMAGE CLASSIFICATION ON CALTECH ResNet50 0.9288 0.9308 0.9269 0.9154 0.9250 0.9269
These experimental datasets are randomly selected from the 1;0‘3!":‘_’“‘73 8223; 8%2? 858; 82?23 853;3 82382
. . ception . . . . . .
image datase.t Caltech256. The datasets are.constltutet.i of 17 Voting 09558 09500 09500 09519 09519 0.9553
classes of pictures, and each class contains 130 pictures. PickOver |0.9481 09481 09442 09288 09365  0.9423
Each dataset is constituted of two classes of pictures with 260 Weighted | 0.9865 0.9788 0.9865  0.9865  0.9846  0.9885
pictures. Table 15 provides the specific information of those
datasets. TABLE 18
Fig. 5 presents the experimental results. Similar with Fig. 4, COMPARISONS OF AVERAGZIEZT{QE;LJSRACY BETWEEN DIFFERENT
our proposed algorithms and other TCNN algonthr.ng, Algorithms NN VGGl6 NGG1o ResNetS
TCNNVGG16, TCNNVGG19 and TCNNResNet50, exhibit ACC 0.9038 0.9261 0.9274 0.9274
higher test accuracies than the conventional CNN on most of InceptionV3 _ Xception Voting PickOver _ Weighted
the datasets except data2, data9 and data 10. The weighted 0.8745 0.8001 0.9527 0.9418 0.9859

method presents higher test accuracy than the conventional
CNNs on all datasets only except data9. In addition, the
TECNNs have higher test accuracies than the TCNN
algorithms. Different from the case in Fig. 3, the weighted
method almost has the highest test accuracy instead of the
PickOver method. It shows that the proposed three TECNN
algorithms have different ensemble advantages for different
datasets. Tables 16 and 17 provide details. The boldface

It can be observed from Tables 19, 20, 21 that, similar
with the experimental results in Tables 9, 10, 11, the
PickOver exhibits the best performance in comparison with
other methods. The voting and weighted methods can
achieve better performance on some cases. Tables 22, 23
show that the T SVM exhibits the highest classification

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2912908, IEEE
Access

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

accuracy than other two methods. Tables 24, 25 show that
the fine-tuning methods achieve better generalizability; at the
same time, fine-tuning may lead to overfitting on some cases,
so classification accuracy is decreased.

TABLE 19
COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS
AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

TABLE 22
COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS
AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Datal Data2 Data3 Data4 Data5 Data6
T_SM 0.9885 0.9865 0.9962 0.9808 0.9942 1.0000
T_SVM 0.9923 0.9942 0.9904 0.9846 0.9942 1.0000
T _SM_SVM 0.9942 0.9942 0.9904 0.9808 0.9942 1.0000
_Algorithms Data7 Data8 Data9 Datal0) Datall Datal2
T_SM 0.9942 1.0000 1.0000 1.0000 0.9865 0.9519
T_SVM 1.0000 1.0000 1.0000 0.9981 0.9827 0.9577
T SM_SVM 1.0000 1.0000 1.0000 0.9981 0.9846 0.9538

Algorithms Datal Data2 Data3 Data4 Data5 Data6
CNN 0.8461 0.9038 1.0000 0.9807 0.8846 0.8461
VGGl6+ 0.9981 0.9942 0.9981 0.9712 0.9923 0.9981
VGG19+ 0.9942 0.9923 0.9885 0.9923 1.0000 1.0000
ResNetS0+ 0.9942  0.9923 0.9885 0.9923 1.0000 1.0000
InceptionV3+ 0.8231 09173 0.7442 0.8212 0.9558 0.8635
Xception+ 0.7500 0.9308 0.6981 0.7596 0.8865 0.8019
Voting 0.9923  0.9923 0.9942 0.9827 0.9923 1.0000
PickOver 0.9981 0.9942 0.9981 0.9923 1.0000 1.0000
Weighted 0.9904 0.9923 0.9981 0.9808 0.9942 1.0000
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FIGURE 5. The comparison of test accuracy on different algorithms

TABLE 23
COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL
ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms T SM T _SVM T _SM_SVM
ACC 0.9899 0.9912 0.9909
TABLE 24

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF
USING FINE-TUNING AND NOT USING FINE-TUNING

Algorithms Datal Data2 Data3 Data4d DataS Data6
VGG16 0.9135 0.9173 0.9250 0.9538 0.9250 0.9212
VGG16+ 0.9981 0.9942 0.9981 0.9712 0.9923 0.9981
VGG19 0.9346 0.9154 0.9327 0.9404 0.9231 0.9288
VGG19+ 0.9942  0.9923 0.9885 0.9923 1.0000 1.0000
ResNet50 0.9346 09154 0.9327 0.9404 0.9231 0.9288
ResNet50+ 0.9942  0.9923 0.9885 0.9923 1.0000 1.0000
InceptionV3 0.8481 0.8731 0.8827 0.8865 0.8769 0.8846
InceptionV3+ 0.8231 09173 0.7442 0.8212 0.9558 0.8635
Xception 0.7904 0.8038 0.8038 0.8077 0.7846 0.8019
Xceptiont 0.7500 0.9308 0.6981 0.7596 0.8865 0.8019
TABLE 25

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF
USING FINE-TUNING AND NOT USING FINE-TUNING

Algorithms Data7 Data8 Data9 Datal0 Datall Datal2
VGG16 0.9346  0.9327 0.9250 0.9135 0.9231 0.9288
TABLE 20 VGG16+ 0.9981  0.9942  0.9981 0.9712 0.9923 0.9981
COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS VGG19 0.9288 0.9308 09269 09154 0.9250 0.9269
AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS VGG19+ 0.9942  0.9923 0.9885 0.9923 1.0000 1.0000
Algorithms Data7 Data8 Data9 Datal0 Datall Datal2 ResNetS0 0.9288 0.9308 0.9269 09154 0.9250 0.9269
CNN 0.8461 0.9038 1.0000 0.9807 0.8846 0.8461 ResNet50+ 0.9942  0.9923  0.9885 0.9923 1.0000 1.0000
VGG16+ 0.9981 1.0000 1.0000 0.9981 0.9788 0.9462 InceptionV3 0.8865 0.8788 0.8615 0.8769 0.8577 0.8808
VGG19+ 1.0000 1.0000 1.0000 0.9981 0.9885 0.9462 InceptionV3+ 0.8231 09173 0.7442  0.8212 0.9558 0.8635
ResNet50+ 1.0000 1.0000 1.0000 0.9981 0.9885 0.9462 Xception 0.8327 0.7846 0.7923 0.8154 0.7750 0.8096
InceptionV3+ 0.6808 0.8538 0.9712 0.9365 0.7904 0.7404 Xception+ 0.7500 0.9308 0.6981 0.7596 0.8865 0.8019
Xception+ 0.6385  0.8077 0.8981 0.9442 0.7577 0.7462
Voting 1.0000 1.0000 1.0000 1.0000 0.9865 0.9538
PickOver 1.0000 1.0000 1.0000 1.0000 0.9885 0.9635
Weighted 1.0000 1.0000 1.0000 0.9981 0.9846 0.9615 D. IMAGE CLASSIFICATION ON IMAGENET
In this section, to generate small data sets, two classes of data
TABLE 21

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL
ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms CNN VGG16+  VGG19+ ResNet50+
ACC 0.9038 0.9894 0.9917 0.9917

InceptionV3+ Xception+ Voting PickOver Weighted
0.8415 0.8016 0.9912 0.9946 0.9917

are randomly selected from the latest ImageNet to form each
dataset, where the ImageNet is available at: http://www.image-
net.org. The content of the ImageNet is continuously updated,
and the generated datasets used in this section are not included
in the original trained datasets for the five TCNNs, which are
trained by the 2014 version of ImageNet. Therefore, the
original datasets and target datasets are different. Table 26 lists
these datasets. Similar with the experiments, to generate small-
scale datasets, each class contains 130 images that are
randomly selected, and each dataset is formed by 260 images.
Moreover, 80% of each dataset, i.e. 208, were used for training,
and the remaining 20% were used for the test. The training
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structure of the CNN is the same as the previous.

TABLE 26
EXPERIMENTAL DATA SETS FROM IMAGENET

Data set Datal Data2 Data3 Data4 DataS Data6
Firstclass  Bicycle Bicycle Bicycle Bicycle Bicycle  Container
Second lass Container TronNail Masks Necklace ~ Nipple House

House TronNail
Data7 Data8 Data9 Datal( Datall Datal2
Container Container Container ~ IronNail TronNail TronNail
House Masks House House Masks Necklace Nipple

Necklace Nipple

Fig. 6 presents the experimental results. It can be seen that the
proposed algorithms and other TCNN algorithms, i.e.,
TCNNVGG16, TCNNVGG19 and TCNNResNet50, have
higher test accuracies than the conventional CNNs on most
datasets except data8. The test accuracies of the proposed
TECNNs are higher than the conventional CNNs on all
datasets. In addition, the proposed TECNNs provide higher
test accuracies than the TCNN .
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FIGURE 6. The comparison of test accuracy on different algorithms

TABLE 27
COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS
Algorithms Datal Data2 Data3 Datad DataS Data6
CNN 0.8430 0.8807 0.9076 0.8243  0.9023  0.8253
VGG16 09673 09654 09712 09788 09731 0.9327
VGG19 0.9654 09769 0.9788 0.9962 0.9788 0.9308
ResNetS0 0.9654 09769 09788 0.9962 0.9788 0.9308
InceptionV3 0.9308 0.9115 0.8519 09212 0.9481 09192
Xception 0.8058 0.8519 0.7827 0.8654 0.9269  0.8327
Voting 0.9731 09827 09788 0.9981 0.9865 0.9577
PickOver 0.9673 0.9885 0.9769 1.0000 0.9962 0.9827
Weighted  0.9769  0.9846  0.9808 0.9942  0.9904  0.9654

Tables 27 and 28 provide the details. Table 29, derived from
Tables 27 and 28, presents the average accuracies of the eight
algorithms. As shown in Table 29, the proposed three TECNNs
have higher test accuracies than other algorithms, in which the
voting method is the best. In particular, the proposed voting
method provide 0.85% higher accuracy than other most
effective TCNN algorithm (i.e. TCNN_VGG19) in this
experiment. As shown in Tables 27 and 28, the proposed
weighted method presents the highest accuracy in comparison
with other TCNN algorithms on the data6, i.e. 5% higher than

the most effective TCNN algorithm TCNN_VGG16 on datal2.

Similar with the experimental results, Tables 30, 31, 32

still exhibit better generalizability of the PickOver in
comparison with other methods. Tables 33-34 show that the
T SM has the highest classification accuracy in these
ImageNet datasets. As shown in Tables 35-36, different
from the experimental results on the Caltech, the two
TCNNs, i.e. InceptionV3 and Xception, exhibit higher
classification accuracy than the version of using fine-tuning.
It indicates that fine-tuning lead to obvious overfitting.

TABLE 28
COMPARISONS OF TEST ACCURACY BETWEEN DIFFERENT ALGORITHMS
Algorithms Data7 Data8 Data9 Datal0 Datall Datal2
CNN 0.8261 0.9807 0.8846 0.9047 0.8461 0.9230
VGG16 0.9615 0.9750 0.9808 0.9019 0.9442 0.9385
VGG19 0.9596 0.9827 097838 0.9481 0.9750 0.9615
ResNet50 0.9596 0.9827 097838 0.9481 0.9750 0.9615
InceptionV3 0.9442  0.9750 0.9500 0.7577 0.8577 0.8462
Xception 0.8923 0.9019 0.8981 0.7269 0.7077  0.6462
Voting 0.9865 0.9942 0.9904 0.9481 0.9750 0.9635
PickOver 0.9904 1.0000 0.9865 0.9404 0.9615 0.9385
Weighted 0.9923  1.0000 0.9769 0.9423 0.9673  0.9558
TABLE 29
COMPARISONS OF AVERAGE TEST ACCURACY
Algorithms CNN VGG16 VGG19 ResNet50
ACC 0.8790 0.9575 0.9694 0.9694
InceptionV3  Xception Voting PickOver Weighted
0.9011 0.8199 0.9779 0.9774 0.9772
TABLE 30

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS
AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Datal Data2 Data3 Data4 DataS Data6
CNN 0.8430 0.8807 0.9076 0.8243 0.9023 0.8253
VGG16+ 0.9808 0.9942 0.9750 0.9981 0.9962 0.9981
VGG19+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000
ResNet50+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000
InceptionV3+ 0.8212 0.8519 0.8365 0.8712 0.9346 0.8577
Xception+ 0.7442 0.8577 0.7154 0.8423 0.9096 0.7500
Voting 0.9885 0.9981 0.9904 1.0000 0.9962 1.0000
PickOver 0.9885 1.0000 0.9962 1.0000 0.9962 1.0000
Weighted 0.9865 0.9981 0.9865 1.0000 0.9962 0.9962
TABLE 31

COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS
AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Data7 Data8 Data9 Datal0 Datall Datal2
CNN 0.8261 0.9807 0.8846 0.9047 0.8461 0.9230
VGG16+ 0.9942  1.0000 0.9981 0.9885 0.9692 0.9654
VGG19+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731
ResNetS0+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731
InceptionV3+ 0.8404 0.9 0.8827 0.675  0.7288 0.6577
Xceptiont 0.7577 0.8 0.8019 0.6673  0.6442 0.6519
Voting 1.0000 1.0000 0.9981 0.9904 0.9788 0.9673
PickOver 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731
Weighted 1.0000 1.0000 0.9981 0.9885 0.9827 0.9750
TABLE 32

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL
ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms CNN VGG16+  VGG19+ ResNetS0+
ACC 0.8790 0.9881 0.9936 0.9936

InceptionV3+ Xception+ Voting PickOver Weighted
0.8215 0.7619 0.9923 0.9942 0.9923
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TABLE 33
COMPARISONS OF TEST ACCURACY BETWEEN TRADITIONAL ALGORITHMS
AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS

Algorithms Datal Data2 Data3 Data4 Data5 Data6
T _SM 0.9962 0.9981 0.9942 1.0000 0.9962 0.9923
T_SVM 0.9827 1.0000 0.9942 1.0000 0.9962 0.9962
T SM_SVM 0.9827 0.9981 0.9923 1.0000 0.9962 0.9962
_Algorithms Data7 Data8 Data9 Datal0 Datall Datal2
T _SM 1.0000 1.0000 0.9942 0.9904 0.9904 0.9692
T_SVM 1.0000 0.9962 0.9981 0.9827 0.9885 0.9712
T SM_SVM 1.0000 1.0000 0.9981 0.9865 0.9846 0.9750
TABLE 34

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN TRADITIONAL
ALGORITHMS AND FINE-TUNING ENSEMBLE TRANSFERRED ALGORITHMS
ON THE 12 DATA SETS FROM IMAGENET

Algorithms T SM T SVM T SM_SVM
ACC 0.9934 0.9921 0.9925
TABLE 35

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF
USING FINE-TUNING AND NOT USING FINE-TUNING

Algorithms Datal Data2 Data3 Data4 DataS Data6
VGG16 0.9673 09654 0.9712 09788 0.9731 0.9327
VGG16+ 0.9808 0.9942 0.9750 0.9981 0.9962 0.9981
VGG19 0.9654 09769 0.9788 0.9962 0.9788 0.9308
VGG19+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000
ResNetS0 0.9654 09769 0.9788 0.9962 0.9788 0.9308
ResNet50+ 0.9808 1.0000 0.9962 1.0000 0.9962 1.0000
InceptionV3 0.9308 09115 0.8519 0.9212 0.9481 0.9192
InceptionV3+ 0.8212 0.8519 0.8365 0.8712 0.9346 0.8577
Xception 0.8058 0.8519 0.7827 0.8654 0.9269 0.8327
Xeeption+ 0.7442 0.8577 0.7154 0.8423 0.9096 0.7500
TABLE 36

COMPARISONS OF AVERAGE TEST ACCURACY BETWEEN METHODS OF
USING FINE-TUNING AND NOT USING FINE-TUNING

Algorithms Data7 Data8§ Data9 Datal0 Datall Datal2
VGG16 0.9615 0.9750 0.9808 0.9019 0.9442 0.9385
VGG16+ 0.9942  1.0000 0.9981 0.9885 0.9692 0.9654
VGG19 0.9596 0.9827 0.9788 0.9481 0.9750 0.9615
VGG19+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731
ResNetS0 0.9596 0.9827 0.9788 0.9481 0.9750 0.9615
ResNetS0+ 1.0000 1.0000 0.9981 0.9904 0.9885 0.9731
InceptionV3 0.9442 0.9750 0.9500 0.7577 0.8577 0.8462
InceptionV3+ 0.8404 0.9000 0.8827 0.6750 0.7288 0.6577
Xception 0.8923 0.9019 0.8981 0.7269 0.7077 0.6462
Xception+ 0.7577 0.8000 0.8019 0.6673 0.6442 0.6519

V. CONCLUSIONS
To make full use of the existing multiple TCNNs and
improve their generalizability, this study proposes three
ensemble TCNNs by introducing the ensemble ideas. The
experimental results show that these TECNNSs exhibit better
generalizability than the conventional CNNs and a single
TCNN. In comparison with the CNN and five widely used
TCNNs, the proposed TECNNs enhance the average test
accuracy by 1.65%, 5.85% and 7.58% respectively on the
internet datasets and two benchmark small-scale datasets,
and the highest test accuracy by 1.73%, 7.12% and 8.85%.
Due to space limitations, only some common ensemble
methods are combined into the proposed TECNNSs. In the
future, we will introduce more ensemble technologies to
achieve better performance.
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