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Abstract This paper studies a new feature selection method for data classification that effi-
ciently combines the discriminative capability of features with the ridge regression model.
It first sets up the global structure of training data with the linear discriminant analysis that
assists in identifying the discriminative features. And then, the ridge regression model is
employed to assess the feature representation and the discrimination information, so as to
obtain the representative coefficient matrix. The importance of features can be calculated
with this representative coefficient matrix. Finally, the new subset of selected features is
applied to a linear Support Vector Machine for data classification. To validate the efficiency,
sets of experiments are conducted with twenty benchmark datasets. The experimental results
show that the proposed approach performs much better than the state-of-the-art feature
selection algorithms in terms of the evaluating indicator of classification. And the proposed
feature selection algorithm possesses a competitive performance compared with existing
feature selection algorithms with regard to the computational cost.
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1 Introduction

Feature selection is one of important research topics in data mining [8, 14]. It is a process of
selecting a subset of relevant features for use in data mining applications. A feature selec-
tion algorithm can be seen as a two-phase procedure, a search technique for proposing new
feature subsets and an evaluation measure which scores the different feature subsets. Fea-
ture selection takes into account only those presentative features, and leads to the removal
of those irrelevant and redundant features from original features, the dimension reduction,
speeding up the training process and reinforcing the model generalization capability [9,
26]. Although feature selection based data mining methods are approximate solutions, they
generate models significantly approximate to the real ones. Therefore, feature selection has
successfully been applied to, such as dimensionality reduction in computer vision [33, 45,
46], large margin subspace learning in pattern recognition [18], alzheimers disease diagnosis
in biological analysis [24, 42, 47].

This paper studies a new feature selection approach using the discriminative capability
of features and the ridge regression, denoted as DRR-FS, aiming at improving the efficiency
and generalization capability of feature selection algorithms. It first takes into account the
global structures of the data distribution with the Linear Discriminant Analysis (LDA) [31],
with respect to the class label information regarded as the global discrimination information
embedded into the DRR-FS approach. And then, the ridge regression model is incorporated
into the DRR-FS algorithm, so as to yield a coefficient matrix for measuring the importance
of features. And the rank of these features is generated based on the coefficient matrix [27,
34]. Finally, the important feature subsets are selected as the new feature subset to instead
of the original set of features, and applied to the linear Support Vector Machine(SVM) for
data classification [38, 44, 48].

Toevaluate theDRR-FSapproach, sets of experimentswere conductedwith sevenartificial
datasets and twenty open datasets downloaded from the UCI machine learning repository
and the feature selection website. The experimental results illustrated the efficiency of the
designed algorithm for binary and multi-class classification tasks in terms of selecting the
discriminative features, as well as the strengths of the DRR-FS approach as follows.

– The ridge regression model is as a biased estimate model for evaluating the error
between feature variables and the class label information. The experiments showed
the effectiveness of evaluating the represented coefficient error, as well as efficiently
avoiding the over-fitting of the learning process.

– The global structure information of training examples is established with the LDA
method taking into account the class labels. The experiments showed the efficiency of
identifying the discriminative features after embedding the global structure information
into the DRR-FS approach.

The remainder of this paper is organized as follows. Section 2 recalls the work related to
this research. Section 3 elaborates the DRR-FS method. Section 4 describes experimental
design and the analysis of the experimental results. Finally, conclusions this work and future
work are presented in Section 5.

2 Related work

As well known, data mining is the necessity theoretical analysis for the core of big data
[6, 23, 25] and multi-source data [40]. Various kinds of data mining algorithms based on
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different kinds of data types and formats that can be more scientific exhibit the intrinsic
value of the data. And they are precisely estimate data because these are the world’s statis-
ticians universally recognized statistical methods that is to go to deep in internal data and
excavated recognized value [35, 36, 49]. In order to extract the real data of great value, data
pre-processing is an important and essential part of data mining. Simultaneously, feature
selection as an important step in data pre-processing which has become a very hot topic [5].

In many real applications, unlabeled data is ubiquitous due to label data is a time and
labor consuming process. Therefore, Feature selection algorithms according to the method
of the label information whether are used for model or not, which extensively worked
in three categories: supervised feature selection algorithms, unsupervised feature selection
algorithms, and semi-supervised feature selection algorithms [41, 43].

Supervised feature selection algorithms utilize the correlation between feature and class
to distinguish the importance of feature. The typical supervised feature selection methods
include: Laplacian Score(LapScore) for feature selection [13] and Fisher Score for feature
selection (fsFisher) [7]. With sparse representation has been successful applied to feature
selection, many regularization formulations have been proposed [19, 29], and Nie et al. pro-
posed to joint �2,1−norm minimization on both loss function and regularization for feature
selection [20]. Recently, Zhu et al. proposed a novel supervised dimensionality reduction
method that Self-taught on the high-dimensional small-sized data and obtained a better
performance than compared algorithms [39]. Germain et al. used the non-negative matrix
factorization(NMF) based algorithms to iteratively optimize the cost function, and proposed
several heuristic stopping criteria to find well correlated with source separation performance
[10].

Unsupervised feature selection algorithms usually take the geometrical structure of the
data distribution into account for selecting the important features. In general, unsupervised
feature selection algorithms are much hard to study due to the lack of labels. However,
there are many typical algorithms have been proposed in these categories, such as max-
imum variance, unsupervised feature selection Principal Component Analysis(PCA) [12],
and unsupervised feature analysis with class margin optimization [30] and so on. Maximum
variance method in terms of the largest variances of the features to select the important fea-
tures, such as unsupervised feature selection method based on PCA use the PCA method to
select a subset of features that can best reconstruct other features [12]. Wang et al. proposed
a new unsupervised feature analysis method that uses the Maximum Margin criterion and
the sparsity-based model to construct a robust unsupervised feature selection framework
[30]. Nonnegative Discriminative Feature Selection(NDFS) is proposed by Li et al. [17].
NDFS effectively combine the learning of the cluster labels and feature selection matrix
which could enhance to select the important discriminative features.

Semi-supervised feature selection algorithms are the effective means for dealing with the
large data which includes unlabeled data is large and labeled data is small. In last decades,
many semi-supervised feature selection algorithms have been proposed. A novel semi-
supervised feature selection method was proposed by Pierre et al. based on spectral analysis
[22]. Bellal et al. proposed a new method which combines a bagged ensemble of standard
semi-supervised approaches with a permutation-based out-of-bag feature importance mea-
sure that takes into account both labeled and unlabeled data [2]. Zeng et al. proposed a novel
semi-supervised feature selection method which uses linear regression to model the correla-
tions between the data samples with supervision information and their class labels, and then,
uses �2,1−norm to guarantee the sparsity of the feature selection matrix and exploit the shar-
ing information between supervised and unsupervised data samples jointly [32]. Alalga et
al. proposed a unified framework for semi-supervised multi-label feature selection, based on
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Laplacian score [1]. The method transforms the labeled part of data into soft constraints and
shows how to integrate them in a measure of feature relevance, according to the available
labels.

3 Proposed approach

3.1 Notation

Throughout the paper, we denote matrices as boldface uppercase letters, vectors as boldface
lowercase letters and scalars as normal italc letters, respectively. For a matrix X = [xij ],
its i-th row and j -th column are denoted as xi and xj , respectively. Also, we denote the

Frobenius norm as ‖X‖F =
√∑

i

∥∥xi
∥∥2
2 =

√∑
j

∥∥xj

∥∥2
2. We further denote the transpose

operator, the trace operator and the inverse of a matrix X as XT and X−1, respectively.

3.2 Discriminative feature selection algorithm

In this section, we study a supervised learning algorithm via selecting the compactly dis-
criminative features from the original features for improving the classified performance of
the high-dimensional data. Given X ∈ R

n×d represents a data matrix, where n and d are
the numbers of the sample variables and the numbers of the feature variables, respectively.
And Y ∈ R

n×c denotes the indicator matrix of the class label, where c is the number of the
classes. Suppose as follows:

Y = Xwij + ε (1)

where ε represents the representation error, and wij denotes the representation coefficient
element. Therefore, we rewrite it through its matrix form.

Y = XW + E (2)

where E denotes representation error matrix andW is the representation coefficient matrix.
For ensuring the representation error E as small as possible, we use Y − XW to evaluate it
and employ it as the loss term. For making the solution of the loss term always reversible,
so we employ a penalty term in the loss function to avoid it. So the fundamental framework
of this work becomes:

min
W

φ(Y − XW) + λϕ(W) (3)

In view of the successful application of ridge regression algorithm in data mining [21],
and it also satisfies the (3). Hence, in this paper, we rewrite the ridge regression model for
adapting to this work. So the object function of this work as follows:

min
W

‖Y − XW‖2F + λ ‖W‖2F (4)

where λ is a positive parameter for tuning the model, andW ∈ R
d×c is a coefficient matrix

which is reflects the relations between the label and features. The optimal solution of (4)
can be described as a closed solutionW = (XXT +δI)−1XY, where I ∈ Rn×n is an identity
matrix. And the time complexity of the (4) is O(n2). Different form the traditional ridge
regression algorithms, the (4) is a feature-level model for feature selection algorithm.

For taking the label information into account, i.e., the global structures of the data for
improving the performance of our algorithm. Therefore, we think that employs a Fisher‘s
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LDA [16] for our object function, which considers the global data distribution based on
between within class variance and between class variance to find the main relevant class.

However, the Fisher‘s LDA penalize term
WT

∑
gW

WT
∑

hW
is the non-convexity, where

∑
g denotes

the within-class variance and
∑

h denotes the between-class variance. Fortunately, Ye [31]
has proposed a multivariate linear regression model that defines the class label matrix Y =
[yi,k] to replace the Fisher‘s LDA penalized term.

yi,k =
⎧
⎨
⎩

√
n
nk

−
√

nk

n
if l(xi) = k

−
√

nk

n
otherwise

(5)

where nk denotes the sample size of the class k and l(xi) is a class label of xi . So we can
efficiently use the global structure of the data via the class indicator matrix Y, and cannot
transform the original features space into a low dimensional space. Hence, the matrix Y of
the (4) comes from the (5) for considering the global structure of the data.

4 Experimental analysis

To demonstrate the validity of the DRR-FS algorithm, we perform it on twenty open
datasets. The datasets are from the UCI machine learning repository1 and the feature
selection website.2 These datasets include ten binary-class problems and ten multi-class
problems. In order to compactly represent the name of the datasets, we named Hill-valley-
withnoise, GLA-BRA-180, SMK-CAN-187, CLL-SUB-111 as Hill-valley, GLA-BRA,
SMK-CAN, CLL-SUB, respectively. Then we list the details of the experimental data in
Table 1.

Furthermore, we also construct seven artificial data sets which include clean data and
noisy data by the literature [4] for regression experiment and we list the details of artificial
datasets in Table 2. And the method for generating the artificial data sets as follows. s We
constructed these artificial data by the model ofY = XBAT +E. To be specific, for the n×p
matrix X which was constructed by multivariate normal distribution N(0, �x) and �x was
composed of diagonal elements 1 and off-diagonal elements ρx . And for the p × r matrix
B that its first p0 rows were constructed by N(0, 1) and the remain p − p0 rows were set
to be zero. Then the q × r matrix A was generated from N(0, 1). Ultimately, for the n × q
random noise matrix E is constructed by N(0, σ 2�e) and �e has off-diagonal elements ρe

and diagonal elements 1. However, the magnitude of the noise σ 2 has some provisions, i.e.,
trace(CT �xC)

trace(E)
= 1. Furthermore, we will set different parameters by the size of n and p, i.e.,

n > p and n ≤ p.

4.1 Experimental Setting

In our experiments, we employ fsFisher, fsTest, LapScore, L21R21, SD, MI algorithms as
our compared algorithms. We introduce them as follows:

fsFisher [11]: This method used Fisher’s score to evaluate for each feature individually,
and then sorted the features in an ascending order according to the score.

1http://archive.ics.uci.edu/ml/
2http://featureselection.asu.edu/datasets.php
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Table 1 The detail of open
datasets Datasets Samples(n) Features(d) Class

Breastcancer 569 30 2

Covertype 571 54 2

GLI-85 85 22283 2

Hill-valley 1212 100 2

Ionosphere 351 34 2

Spambase 4601 57 2

Sonar 208 60 2

Splice 1000 60 2

Specft 80 44 2

SMK-CAN 187 19993 2

CLL-SUB 111 11340 3

GLA-BRA 180 49151 4

TOX-171 171 5748 4

Landsat 4435 36 6

Satimage 620 36 6

orlraws10P 100 10304 10

pixraw10P 100 10000 10

warpAR10P 130 2400 10

warpPIE10P 210 2420 10

Isolet 7797 617 26

fsTest [28]: This method used Ttest’s score for each feature to evaluation individually.
Moreover, it sorted the features according to the score in an ascending order.

LapScore [15]: This conducted supervised feature selection with an assumption that data
of the same class tend to distribute to each other in the feature space while those of
different classes are apart from each other. The importance of a feature is evaluated by
its power of a Laplacian score.

L21R21 [37]: This method utilized the sample self-representation structure to select an
representation response matrix, then get the proposed structure embed into the sparse
learning model for feature selection. The importance of a feature is evaluated by its
coefficient in the response matrix.

Table 2 The detail of artificial
datasets Datasets Samples(n) Features(d) Class

1a-data 100 30 10

1b-data 100 30 10

1c-data 100 30 10

1d-data 100 30 10

2a-data 100 100 10

2b-data 100 300 30

3-data 100 100 10

World Wide Web (2018) 21:1545–15621550



SD [3]: This method got a mapping function to process the original data, then the high
scores and low scores correspond to the importance of the strength and the property.
Ultimately, extracted features by the top-ranking scores.

MI [3]: This method used the logarithmic compression to process the original data from
the beginning, then there was a mapping function utilized mapping process for the
original data. Lastly, it can get the importance of features by the top-ranking scores.

In these experiments, we employ 10-fold partitioning and cross-validation of the data. In
other words, each dataset is split randomly into ten subsets, and one of those sets is reserved
as a test set, the rest data is regarded as training set, the whole process of partitioning is done
in a completely random and arbitrary manner. The classification accuracy on each dataset
was obtained via 10-fold cross validation. Running with the various algorithms were carried
out on the same training sets and evaluated on the same test samples. We repeated the whole
process ten times to avoid the possible bias in our experiments. Our experiments carried out
in MATLAB2012a on windows 7 system running on a PC.

We used classification accuracy as the evaluation for the classification task. The
classification accuracy is defined as follows:

Accuracy = Ncorrect

N
(6)

where N is the number of all samples, Ncorrect is the number of correct classification
samples. The higher accuracy the algorithm is, the better performance of classification it is.

In additional, we used other three additional measures (e.g., sensitivity (SEN), specificity
(SPE) and Area Under Curve (AUC)) to evaluate binary classification. In binary classifica-
tion, the outcomes were denoted as either Positive (P) or Negative (N). We parted the results
into four groups, i.e., True Positive (TP), False Positive (FP), True Negative (TN), and False
Negative (FN). Therefore, we defined SEN as:

SEN = NT P

NP

(7)

where NT P means the number of TP, and NP means the number of actual positive labels.
SPE was defined as:

SPE = NT N

NN

(8)

where NT N means the number of TN, and NN means the number of actual negative labels.
AUC was defined as:

AUC = S0 − NP (NP +1)
2

NP NN

(9)

where S0 =
NP∑
i=1

ri and ri denotes the i-th positive sample sort position.

Furthermore, the average correlation coefficient (aCC) and average root mean squared
error (aRMSE) were employed to evaluate the performance for regression analysis. The
aCC evaluation index indicates the correlation between prediction and observation, and its
formula is defined as follows:

aCC = 1
d

d∑
i=1

CC = 1
d

d∑
i=1

∑Ntest
l=1 (y

(l)
i −ȳi )(ŷ

(l)
i − ¯̂yi )√∑Ntest

l=1 (y
(l)
i −ȳi )

2 ∑Ntest
l=1 (ŷ

(l)
i − ¯̂yi )

2 (10)
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In the following, aRMSE is defined as the squared root of predicted value and the ground-
truth. Its formula is defined as follows:

aRMSE = 1
d

d∑
i=1

RMSE = 1
d

d∑
i=1

√∑Ntest
l (y

(l)
i −ŷ

(l)
i )

2

Ntest
(11)

where Ntest means the size of test data set, then y
(l)
i and ŷ

(l)
i denote the vectors of the actual

and predicted targets for x(l), respectively. Besides, ȳ and ¯̂y be the vectors of averages of the
actual and predicted targets, respectively. A larger aCC shows better correlation coefficient
results, while a smaller aRMSE means better robust.

4.2 Experimental results

In this section, we evaluated the performance of the DRR-FS approach by comparing two
comparison algorithms on real and artificial datasets, in terms of two data mining tasks, i.e.,
classification and regression.

4.2.1 Binary classification results

We summarized the experimental results of the binary classification Accuracy in Table 3,
and the results of the binary classification in terms of SEN, SPE, AUC in Table 4. Besides,
we also summarized the time consuming of binary data sets in Table 5.

From Table 3, we easily recognized that the proposed DRR-FS approach achieved the
best classification accuracy in the most of methods for binary classification tasks except
Hill-valley dataset. On the Hill-valley dataset, both fsTtest method and MI method have
the same performance compared with our method that only increased 3.38%. Especially,
on the binary datasets of GLI-85, Hill-valley, Ionosphere, Specft that our method gets the
better results more than 90%. In addition, MI and SD compared with fsFisher and fsTtest
which can have better effects, that is to say the general mapping method is superior to the
conducted score method on most of the binary classification tasks. Moreover, our method
also got the best performance by SEN, SPE and AUC evaluation indices on the most binary

Table 5 The performance of the binary classification in terms of time consuming (/seconds)

Datasets fsFisher fsTtest LapScore L21R21 SD MI DRR-FS

Breastcancer 0.0065 5.8e-03 0.0283 0.0389 0.0042 3.3e-03 1.1e-03

Covertype 0.0063 0.0011 0.0189 0.0353 0.0097 0.0102 3.7e-04

GLI-85 4.3200 0.1987 0.2103 3.4530 2.9570 3.0423 0.0352

Hill-valley 0.0147 0.0035 0.1228 0.2186 0.0216 0.0225 5.8e-03

Ionosphere 0.0035 4.2e-04 0.0217 0.0208 0.0032 0.0042 2.4e-04

Spambase 0.0123 0.0034 0.9210 0.3118 0.0271 0.0276 0.0142

Sonar 0.0133 0.0011 0.0287 0.0969 0.0100 0.0101 3.6e-04

Splice 0.0117 0.0028 0.0815 0.0947 0.0155 0.0156 1.6e-04

Specft 0.0075 7.1e-04 0.0157 0.0561 0.0070 0.0112 1.6e-04

SMK-CAN 2.2573 0.2143 0.2596 12.1924 1.5738 2.2955 0.0496

The significance of bold denotes the best performance among seven algorithms in terms of each evaluation
index

World Wide Web (2018) 21:1545–1562 1555



Ta
bl
e
6

T
he

pe
rf
or
m
an
ce

of
m
ul
ti-
cl
as
s
cl
as
si
fi
ca
tio

n
in

te
rm

s
of

ac
cu
ra
cy

(m
ea
n±

ST
D
)
(/
%
)

D
at
as
et
s

fs
Fi
sh
er

fs
T
te
st

L
ap
Sc
or
e

L
21
R
21

SD
M
I

D
R
R
-F
S

C
L
L
-S
U
B

78
.3
8±

7.
16

65
.3
2±

17
.4
0

72
.9
8±

6.
80

73
.0
6±

13
.6
8

78
.3
0±

8.
27

80
.9
4±

7.
95

85
.7
6±

4.
24

G
L
A
-B
R
A

73
.2
2±

8.
58

72
.8
6±

11
.1
5

74
.9
4±

9.
00

66
.6
2±

6.
72

71
.0
3±

6.
12

67
.9
8±

10
.7
4

75
.7
9±

5.
83

T
O
X
-1
71

98
.3
0±

2.
60

98
.3
0±

2.
60

97
.7
1±

3.
75

98
.3
4±

2.
34

98
.5
8±

1.
91

98
.2
6±

3.
64

98
.7
7±

1.
75

L
an
ds
at

80
.3
8±

1.
90

80
.4
9±

1.
49

80
.2
5±

2.
12

67
.9
8±

1.
26

79
.2
1±

2.
06

79
.5
1±

2.
39

80
.9
7±

1.
42

Sa
tim

ag
e

86
.4
3±

3.
89

82
.5
7±

6.
25

86
.1
5±

4.
10

84
.5
1±

4.
38

84
.8
6±

2.
99

84
.7
0±

3.
45

87
.1
2±

3.
55

or
lr
aw

s1
0P

88
.6
8±

3.
58

87
.6
4±

4.
08

86
.3
4±

3.
88

83
.2
5±

4.
24

87
.0
5±

4.
21

87
.5
3±

4.
83

92
.9
0±

2.
55

pi
xr
aw

10
P

93
.1
7±

3.
15

95
.5
2±

2.
31

93
.7
3±

3.
51

86
.3
5±

3.
15

88
.2
1±

5.
32

87
.6
3±

4.
88

95
.3
7±

1.
47

w
ar
pA

R
10
P

90
.0
5±

3.
74

89
.6
1±

4.
13

90
.8
1±

2.
88

88
.7
1±

3.
57

91
.2
1±

3.
54

91
.7
5±

3.
10

97
.8
3±

1.
12

w
ar
pP

IE
10
P

96
.6
3±

2.
51

94
.3
1±

2.
11

93
.7
1±

3.
01

91
.2
3±

4.
21

92
.5
1±

3.
31

92
.1
3±

3.
70

96
.5
4±

2.
42

Is
ol
et

95
.5
8±

0.
64

92
.4
7±

0.
9

93
.0
5±

1.
08

89
.7
5±

1.
31

95
.0
6±

0.
84

95
.3
3±

0.
52

96
.0
7±

0.
19

T
he

si
gn
if
ic
an
ce

of
bo
ld

de
no
te
s
th
e
be
st
pe
rf
or
m
an
ce

am
on
g
se
ve
n
al
go
ri
th
m
s
in

te
rm

s
of

ea
ch

ev
al
ua
tio

n
in
de
x

World Wide Web (2018) 21:1545–15621556



datasets in Table 4. Ultimately, we compared the time consuming for each algorithm mod-
eling of each desired in Table 5, on the Spambase dataset that our method could not get
the short time, but compared with other datasets that our DRR-FS approach could get the
shortest time consuming.

4.2.2 Multi-class classification results

We summarized the experimental results of the multi-class classification accuracy in
Table 6, and the results of the multi-class classification in terms of time consuming in
Table 7.

As for the performance of multi-class classification tasks and time consuming, respec-
tively, showed the best results in Tables 6 and 7. Such as, except the pixraw10P and
warpPIE10P dataset, compared with our method only increased by 0.15% and 0.09%,
respectively, appeared in the fsTtest and fsFisher algorithm. At the same time, our method
got the lower results than 90% in the CLL-SUB, GLA-BRA, Landsat, Satimage dataset, but
the proposed method still had the best effects compared other methods. Furthermore, com-
pared with the binary tasks, in contrast, the general conducted score method is superior to
the mapping method, i.e., the fsFisher and fsTtest compared with MI and SD which have
better effects due to the multi-class classification tasks. From Table 7, it is showed the mod-
eling time of one cross-validation of all methods that our method can get the shortest time
consuming for the most of multi-class datasets. However, in the Lamdsat, warpAR10P and
Isolet dataset, our method only get the second least time consuming.

4.2.3 Multi-output regression results

We summarized the artificial datasets results of the multi-output regression with aCC and
aRMSE evaluation indices, respectively, correspond to the clean and noisy data in Tables 8
and 9. And the evaluation of different methods is based on two widely used regression me-
trics, i.e., aCC (average correlation coefficient) and aRMSE (average root mean squared error).

From Table 8, it showed that the performance of multi-output regression with clean data
by aCC and aRMSE evaluation indices. In our method that it got lower results on 2a-data,

Table 7 The performance of the multi-class classification in terms of time consuming (/s)

Datasets fsFisher fsTtest laplacian L21R21 SD MI DRR-FS

CLL-SUB 2.7987 0.1067 0.1755 2.1900 1.6475 1.668 0.026

TOX 2.1753 0.0614 0.1306 3.9796 0.8769 0.8693 0.0248

GLA-BRA 13.4785 5.2967 0.3116 20.1474 4.6235 6.0365 0.2319

Landsat 0.0151 0.0015 0.8347 0.1779 0.0183 0.0226 0.0198

Satimage 0.0219 0.0011 0.0501 0.0407 0.0098 0.0106 0.0011

orlraws10P 8.3125 2.1723 0.5231 2.8121 0.8102 0.6580 0.0140

pixraw10P 13.8171 4.6521 0.7620 3.8462 1.3512 0.9412 0.0350

warpAR10P 5.2581 0.7842 0.0257 0.2812 2.2710 2.0764 0.0287

warpPIE10P 3.5414 2.0681 0.5610 0.8741 0.7544 0.8741 0.1202

Isolet 0.7949 0.0352 2.8202 9.0898 0.8374 0.9245 0.0652

The significance of bold denotes the best performance among seven algorithms in terms of each evaluation
index
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2b-data and 3-data dataset compared with other datasets which average on 99.985%, respec-
tively, decreased by 5.485%, 34.725% and 22.565%. However, the proposed method still
achieved best consequences than any other contrast algorithms. Moreover, our DRR-FS
approach can get the best results with aCC and the less results with aRMSE. Furthermore, in
Table 9, we can come into the conclusion that the proposed DRR-FS approach outperforms
other methods on most of the multi-output regression with seven noisy artificial datasets in
terms of aCC and aRMSE evaluation indices. Due to the aCC evaluation that the DRR-FS
approach gets the lower results on the 1b-data and 1c-data set in accordance with fsFisher
method. Since all artificial datasets are constructed with too many noisy features and out-
lier samples to make useful features hardly extract. However, with aRMSE evaluation
index, our method has the best performance compared with all methods among multi-output
datasets.

In a word, our proposed method achieved the best performance, compared to the compar-
ison methods on different kinds of classes classification and regression tasks. The reason is
that the DRR-FS approach takes full account of the depth structure of the coefficient matrix
between the number of samples and the number of features are unequal, so that we can get
two corresponding different solutions.

5 Conclusion & future work

In this work, we focused on the problem of discriminative feature selection and ridge regres-
sion that samples and features have unequal numbers. The proposed method utilizes LDA
and ridge regression method to deeply analysis of the number of samples and the number
of features that have a deeply analysis of the representative coefficient matrix. In the future
work, we will consider this correlation application for semi-supervised and unsupervised
structure.
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