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Harmonious Genetic Clustering

Faliang Huang, Xuelong Li, Fellow, IEEE, Shichao Zhang, Senior Member, IEEE, and Jilian Zhang

Abstract—To automatically determine the number of clusters
and generate more quality clusters while clustering data samples,
we propose a harmonious genetic clustering algorithm, named
HGCA, which is based on harmonious mating in eugenic the-
ory. Different from extant genetic clustering methods that only
use fitness, HGCA aims to select the most suitable mate for
each chromosome and takes into account chromosomes gen-
der, age, and fitness when computing mating attractiveness.
To avoid illegal mating, we design three mating prohibition
schemes, i.e., no mating prohibition, mating prohibition based
on lineal relativeness, and mating prohibition based on collateral
relativeness, and three mating strategies, i.e., greedy eugenics-
based mating strategy, eugenics-based mating strategy based on
weighted bipartite matching, and eugenics-based mating strat-
egy based on unweighted bipartite matching, for harmonious
mating. In particular, a novel single-point crossover operator
called variable-length-and-gender-balance crossover is devised
to probabilistically guarantee the balance between population
gender ratio and dynamics of chromosome lengths. We evalu-
ate the proposed approach on real-life and artificial datasets,
and the results show that our algorithm outperforms existing
genetic clustering methods in terms of robustness, efficiency, and
effectiveness.

Index Terms—Data clustering, eugenic theory, genetic cluster-
ing, mating operator.

I. INTRODUCTION

D ATA clustering is one of the classic mainstream research
topics in data mining and machine learning, which
partitions a set of objects into different clusters, such that
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intracluster objects are more similar to each other than inter-
cluster objects. From the optimization point of view, clustering
N objects into K clusters can be considered as a particular
kind of NP-hard problem. In the past few years, tremendous
research effort has been put in population-based-optimization
to address the NP-hard problem [1]-[4] for its excellent
search ability [5]-[8]. However, most of the existing cluster-
ing techniques accept the number of clusters K as an input
parameter, instead of determining it on-the-fly. In real world
applications, it is often impossible for users to set an appro-
priate value of K in advance, because most users have zero
knowledge about their datasets that are to be mined. In general,
an improper K can easily mislead the clustering process and
result in poor clustering outcome. For example, while clus-
tering a set of documents returned from a search engine, the
number of clusters K varies across different queries. Also, if
the data set is represented in high-dimensional feature vec-
tors, it may be impossible in practice to visualize the data for
tracking its number of clusters.

To tackle the issue, we propose a harmonious genetic clus-
tering algorithm, called HGCA, based on eugenic theory [9].
In HGCA, a clustering solution is represented by a real-
coded chromosome with variable length. To improve clustering
performance, we propose a harmonious mating operator to
balance population exploration and exploitation, in order to
guide the population to a better search path by self-adaptive
control of population diversity. Specifically, we first com-
pute mating attractiveness of candidate chromosomes based
on some of their features, including gender, age, and fitness,
instead of only considering fitness. And then, we design a
novel mating operator, which integrates three mating prohi-
bition schemes, i.e., no mating prohibition (NMP), mating
prohibition based on lineal relativeness (MPLR) and mat-
ing prohibition based on collateral relativeness (MPCR), as
well as three mating strategies, namely, greedy eugenics-based
mating strategy (Greedy-EMS), eugenics-based mating strat-
egy based on weighted bipartite matching (WBM-EMS), and
eugenics-based mating strategy based on unweighted bipartite
matching (UBM-EMS), in order to select the most suitable
mate for each chromosome. To improve traditional single-
point crossover operator, we design a novel crossover operator,
called variable-length-and-gender-balance crossover (VGC),
which can probabilistically guarantee balance between ratio
of population gender and dynamics of chromosome lengths.
In HGCA, the number of clusters, K, is determined adap-
tively by the crossover operator VGC. Specifically, K is
implicitly represented as the length of chromosome, variabil-
ity of which can be probabilistically guaranteed, that is, K
is a hidden parameter to be optimized in the search process
of HGCA.
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The contributions of this paper mainly include the
following.

1) We devise a novel crossover operator VGC for automatic
determination of the optimal number of clusters for any
unlabeled dataset.

2) We propose a harmonious mating operator to improve
search performance of genetic algorithm (GA)
optimization-based clustering algorithm.

The rest of this paper is organized as follows. In Section II,
we review related work. Our HGCA approach is presented
in Section III. Section IV reports the experimental results.
Finally, we conclude this paper in Section V.

II. RELATED WORK
A. Metaheuristic Techniques to Determine K

As a challenging problem, determining the number of clus-
ters has been attracting much attention from population-based
optimization research community. We first review some strate-
gies related to GAs for automatically determining K. As
early as 2002, Bandyopadhyay and Maulik [10] attempted
to use GA to automatically determine the number of clus-
ters K. Following the line to utilize excellent search ability
of GAs, some researchers [11], [12] made some efforts to
determine the number of clusters K automatically by using
chromosomes with variable lengths. And the idea of divide-
and-conquer was also integrated into detecting the number of
clusters, for instance, Sheng er al. [13] proposed a hybrid
niching GA to automatically evolve the proper number of
clusters and the appropriate partitioning of dataset by using
weighted sum of several normalized cluster validity indexes.
Shin et al. [14] proposed a two-leveled symbiotic evolution-
ary clustering algorithm to divide a clustering problem with
unknown K into two subproblems: 1) finding the number of
clusters and 2) grouping the data into clusters accordingly.
He and Tan [15] proposed a dynamic genetic clustering algo-
rithm (TGCA) with two-staged selection and mutation to find
the optimal values for both the number of clusters and the
cluster centers. Different from pure metaheuristic techniques,
Liu et al. [16] proposed an approach to combine multiobjective
GA with K-means to determine K. Moreover, another note-
worthy technique to produce an appropriate K is a data-driven
genetic clustering algorithm, automatic genetic clustering for
unknown K [17], which applied noising selection and division-
absorption mutation to automatically determine the optimal
number of clusters.

In addition to GAs-based techniques, other population-based
optimization techniques, such as particle swarm optimization
(PSO), differential evolution (DE), etc., are also frequently
used to automatically determine optimal K. Omran et al. [18]
proposed a dynamic clustering approach DCPSO, which uses
binary PSO to select the best number of clusters with mini-
mal user interference. Masoud et al. [19] proposed a dynamic
clustering algorithm improved version of combinatorial par-
ticle swarm optimization to automatically find the best num-
ber of clusters and categorizes data objects simultaneously.
Das et al. [20] presented an automatic clustering algorithm
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ACDE to apply DE techniques for automatic determination of
the optimal number of clusters for any unlabeled data set.

Similar to the work in [10]-[17], the proposed HGCA is
also a genetic clustering algorithm (GCA), which attempts to
exploit search capability of GA for automatically evolving the
number of clusters as well as proper clustering of any data
set. However, to the best of our knowledge, existing GCAs for
automatic determination of K, including the above algorithms,
have no mating operator to improve the quality of clustering
result.

B. Mating Techniques

Mating is a genetic operator to construct the most suitable
parent chromosome pairs to perform crossover, which involves
evaluation of mating attractiveness and creation of mating pro-
hibition rules. The mating mechanism in natural evolution is
complex [21]. For example, the factors affecting human mar-
riage usually include wealth, health, and physical appearance.
This is why most researchers are reluctant to take any mating
operator into account while devising GAs. And few studies
on mating strategy are classified into exploitation priority and
exploration priority.

Exploitation priority mating strategy is proposed to avoid
generating low population diversity that is caused by too low
population exploitation rate. It can make population inca-
pable of finding some potentially valuable solutions hidden
in fitness landscape, and the search algorithm may con-
verge to locally optimal solution. Eshelman and Schaffer [22]
proposed to prohibit incest to refrain from premature caused
by excessive assimilation, and encouraged chromosomes with
short hamming distance to mate. Matsui [23] presented a
correlative tournament selection operator to choose candi-
date chromosomes with the highest correlation as parents.
Craighurst and Martin [24] put forward the family tree to
disallow incest by the ancestry-based incest law.

Compare to the exploitation priority mating strategy, explo-
ration priority mating strategy attempts to make full use of the
information hidden in the current population in order to speed
up convergence. De et al. [25] proposed to confine mating of
two chromosomes with hamming distance greater than a mini-
mum. Fernandes et al. [26] applied different assortative mating
strategies to address vector quantization. Ochoa er al. [27]
draw a conclusion that GA efficiency is closely related to
mating strategies.

Its worth pointing out that researchers have presented some
approaches by making compromise between the above two
strategies. Ting et al. [28] proposed a tabu GA to prevent
inbreeding. Fernandes and Rosa [29] presented a variable dis-
sortative mating GA to automatically mate candidate parent
chromosomes based on the number of newborn chromosomes
and population diversity.

The studies above show that optimization performance of
GAs can be enhanced to some extent via addition of mating
operator, and this motivates us to introduce mating operator
into the search process for optimal cluster structure hidden in
dataset.

However, most existing mating operators only choose fitness
and distance of chromosomes to evaluate mating attractiveness
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TABLE I
NOTATIONS USED IN THE HGCA ALGORITHM

Symbol Description Symbol Description
D Dataset F Female population
0 Object in D M Male population
h #features of an object X Chromosome
C Set of clusters f Female chromosome
C; The i cluster in C m Male chromosome
O; Center of cluster C; 0 Mating prohibition record
P Population P Mating prohibition scheme

I Dataset to be clustered I

3

I Population initialization I

3

I Fitness evaluation I

+ yes

. . - data
Termination criteria satisfied? }—D
clusters
J no
I Chromosomes mating I

I Chromosomes crossover I

3

I Chromosomes mutation I

3

I Fitness evaluation I

3

I Chromosomes selection I

—{ Mating prohibition records and age update I

Fig. 1. Flowchart of HGCA.

of candidate chromosome pairs, paying no attention to other
important attributes such as gender and age. These result in
poor improvement on convergence rate for GAs. To the best
of our knowledge, we are the first to utilize GA with mating
operator for automatic data clustering.

III. PROPOSED ALGORITHM

To facilitate presentation, we summarize the symbols used
in Table I. We sketch our method HGCA in the flowchart in
Fig. 1. For a dataset to be clustered, we first randomly initialize
a population using real-encoding scheme and assign gender
and age to each chromosome, where each chromosome corre-
sponds to a clustering solution for the dataset. Then we search
for an optimal clustering of the dataset in a loop, performing
operators one by one, i.e., mating (creating potential suit-
able mate pairs using mating strategies), crossover (generating
new population with gender balance and variable chromosome
length), mutation, evaluation, and selection. Finally, we get the
optimal clustering solution by decoding the chromosome with
the best fitness.

A. Chromosome Encoding

In GCAs, popular methods to represent a partition of a
dataset include binary-encoding, integer-encoding, and real-
encoding [1]. Here, we adopt a variable-length and real-
encoding representation scheme, as shown in Fig. 2.

Given a dataset D = (01, 02, ..., 0|p|), where each object
o0 in D can be regarded as a point in Euclidean space R". In
particular, if the input dataset D is a document corpus or an
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Fig. 2. Real-encoding chromosome.

image dataset, some preprocessing techniques such as repre-
sentation and feature selection may be applied to vectorize the
data objects, e.g., documents in corpus or handwritten letters in
image dataset. Assume D is divided into a set C of K clusters,
C = (Cy,C,,...,Cg), the corresponding real-encoding chro-
mosome can be vectorized as x = (01, O», ..., Ok), where
0; = (01, Oj, ..., Ojp) denotes the center of cluster C;.

B. Population Initialization

Studies show that the appropriate initial values of cluster
centers greatly affect the quality of partition clustering [30].
There are many methods for population initialization, among
which random sampling is the most widely used one.

Observation 1: In our preliminary experiment results, we
discover that random sampling may produce some chromo-
somes, in which there may exist some cluster centers that do
not dominate any objects. We call such cluster center invalid
cluster center (ICC).

Definition 1 (ICC): Let O = (01, O3, ..., Ok) be the set of
cluster centers of chromosome x. For cluster center O; € O and
any object o € D, there always exists another cluster center
O; € O such that dist(o, O;) > dist(o, O;) holds. The cluster
center O; is referred to as ICC.

To avoid producing ICCs during population initialization,
we adopt a maximum attribute range partition method for
population initialization [15].

C. Chromosome Attributes

Darwinian evolution indicates that individuals exhibit differ-
ent attributes during natural evolution, and attribute difference
in the individuals plays an important role in their survival and
reproduction. Hence, we endow the chromosomes with fitness,
age, and gender in order to depict their mating behaviors more
reasonably.

1) Chromosome Fitness: In general, chromosome fitness is
used to measure chromosome viability and is evaluated by
the objective function in a clustering problem. The objec-
tive of the clustering problem considered in this paper is
to maximize similarity within each cluster and dissimilarity
between clusters. Many measurements to evaluate clustering
results have been proposed [31]. In this paper, three different
criteria, i.e., Davies—Bouldin index (DBI) [32], cluster simi-
larity (CS) [33], and variance ratio criterion (VRC) [34], are
separately used to compute the fitness of a chromosome. We
experimentally analyze the impact of different fitness measure-
ments on clustering quality in Section IV-B1. We review the
definitions of DBI, CS, and VRC below.

DBI is used to find clusters that are compact and well sep-
arated by minimizing the intracluster distance while maximiz-
ing the intercluster distance. The DBI index of a chromosome
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x with K clusters is defined as follows:

K

1
fitness(x) = T Z

i=1

max M (1)
J=1....K j#i dist(0;, 0))
where S; = (1/|C;|) ZoeCi dist(o, O;) is the average intraclus-
ter distance, o is an object in cluster C;, |C;| is the cardinality
of Cj, dist(+, -) is the Euclidean distance between two vectors.

CS measure is a function of the ratio of the sum of
within-cluster scatter to between-cluster separation, which is
formalized as below

S [ e max dison )|

Y1 min {dist(0:, O,)}

CS =

2

VRC is another criterion used for cluster validation. It con-
siders both the intracluster and intercluster distances. Formally,
VRC is defined as

BCSS

VRC = —— x
K—1

n—K
WCSS

where BCSS is the between cluster sum-of-squares, WCSS is
the within cluster sum-of-squares, and n is the number of data
samples.

2) Chromosome Gender: Chromosome gender is an impor-
tant factor affecting mating behavior of chromosomes.
Dividing a population according to gender has been inves-
tigated extensively and it can bring several advantages for
GAs [35], [36]. For example, Vrajitoru [36] showed that “sex-
ual reproduction with completely separating male and female
organisms has proven to provide several advantages in nature.”
To obtain high quality chromosomes, we propose to attach
a unique gender to each chromosome based on the concept
of gonochorism [37]. Gonochorism describes the situation in
which individuals of a species are of one of the two distinct
sexes and retain that sex throughout their lives. Gonochorous
individuals always produce offspring with sexual reproduction.

We initialize the gender of chromosomes as follows. Let P
be an initial population. We randomly select |(|P|/2)] chro-
mosomes from P to construct female chromosome set F, and
the rest of the population form the male chromosome set M.
It is clear that P = FUM and F N M = ). Random selec-
tion operator is chosen to construct female chromosomes on
account of the following consideration. In GAs, selection pres-
sure controls the selection of individuals from one population
to the next generation, and random selection operator with
weak selection pressure can maintain high population diver-
sity and allow for exploration in the initial stage of population
evolution [50].

In GAs, genetic operators such as crossover and muta-
tion can reproduce newborn chromosomes. For the newborn
chromosomes, we propose to determine the gender of the off-
spring like this: the gender of the offspring resulting from
crossover is determined by the proposed crossover operator
VGC (details given in Section III-E), and the gender of the
offspring resulting from mutation remains the same as that of
their corresponding parent.

3)
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3) Chromosome Age: It is widely known in eugenics that
for all species that practice reproduction, there is a best fertile
period (BFP) in which mating will be more likely to reproduce
high quality offsprings. And studies indicate that utilization of
chromosome age information is helpful to boost search abil-
ity [38], [39]. Hence, we propose a new approach to measure
the influence the chromosome age exerts on mating.

Definition 2 (BFP): Let S be an ordered series of ages of
chromosomes, the BFP can be quantified as an age interval
[/b, ub], where Ib and ub are manually set to be the 15th and
85th percentile of the series S, respectively.

Based on the definition, a new piecewise function fec(.) is
introduced to quantify a chromosome’s ability to reproduce
high quality offspring during its BFP, that is

x.age—Ib .
aTh Ib < x.age < mid
1, x.age = mid
fec(x) = ub—x.age - <ub 4
hmid * mi x.age < u

0, otherwise

where mid is the age when chromosomes are most likely to
reproduce optimal offspring, and x.age is the age of chromo-
some x, which can be computed according to the following
two rules.

Rule 1: If chromosome x is a newborn, then x.age = 0.

Rule 2: If chromosome x is intact from the last generation,

then x.age = x.age + 1.

D. Mating Operator

Most existing mating operators [23]-[25] only choose the
fitness and distance of chromosomes to evaluate the mating
attractiveness of candidate chromosome pairs, paying no atten-
tion to other important attributes such as gender and age.
This results in poor improvement on the convergence rate
of GAs. On the other hand, studies in eugenics [9] indicate
that proper parent chromosomes can improve the quality of
their offsprings. Therefore, we devise a novel mating oper-
ator. In particular, we first introduce chromosome attributes,
i.e., gender, fitness, and age, to evaluate chromosome mating
attractiveness. Then, we represent chromosome mating repul-
siveness with mating prohibition rules. Finally, we present
three mating strategies based on mating attractiveness and
mating repulsiveness.

Compare to the state-of-the-art mating operators, our
proposed mating operator has following advantages: 1) it can
provide suitable mating pairs that may produce better off-
springs, i.e., it may improve performance of GCAs and 2) the
proposed mating operator is more flexible, since it provides
users with three alternative mating strategies, among which
the users can pick up a proper one according to their clus-
tering tasks. However, just as every coin has two sides, the
diversity of mating strategy in the proposed mating operator
brings forward another new problem—how to select a proper
mating strategy for a clustering task. We discuss this in detail
in Sections IV-B2 and IV-B3.

1) Mating Attractiveness: Eugenic studies show that it is
a process of choosing and attracting each other that dioe-
cious chromosomes look for their suitable mates. Motivated
by this, we propose to integrate age, gender, and fitness into
the process of scoring chromosome mating attractiveness.
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First, we consider the impact of age on mating attractive-
ness. We assume that for two heterosexual chromosomes in
their BFP, it is more likely for them to reproduce higher qual-
ity offspring if the age difference between them is small.
Therefore, the impact on mating attractiveness between a
heterosexual chromosome pair (m, f) can be formalized as
follows:

fec(m) * fec(f)
|m.age — f.age|’
Second, chromosome fitness is taken into account while
computing mating attractiveness, because a chromosome tends
to choose other chromosomes with high fitness as its potential
mates. So, the contribution of fitness to mating attractiveness
between the heterosexual chromosome pair (m, f) can be for-
mulated as a function proportional to the fitness of m and f.
Here, a simple average function is adopted for this purpose

AgeAttract(m, f) = &)

FitAttract(m, ) = %(ﬁtness(m) + fitness(f)). (6)

Finally, the above two mating attractiveness measures can
be integrated into a combined index, shown below.

Attract(m, f) = w - FitAttract(m, f) + w> - AgeAttract(m, f)

wi+wy =1
st {wl,wz e [0,1] @)

where wi and wp are weights on fitness attractiveness and
age attractiveness, respectively. Strategies to set the above two
weights play an important role in convergence of clustering
algorithms. A large w; value can lead to premature result,
whereas a small w; value may result in slow convergence rate.
Obviously, it is very difficult for users to determine appropri-
ate value of wj. In this paper, we apply an adaptive strategy
to determine the value of wj. Specifically, if the fitness of
the best chromosome in population has not been improved in
the successive T4, generations, then we set w; = twy, where
7 € [0, 1]. In addition, our preliminary results reveal that influ-
ence of age on mating attractiveness is very small during early
period of the population evolution. Thus, we ignore age influ-
ence in this period. In the implementation, we do not take age
influence into account in the first 7, generations.

2) Mating Prohibition: According to Eugenic theory, fre-
quent inbreeding can decrease genetic diversity and increase
gene expression of bad recessive. To refrain from frequent
inbreeding, we propose two prohibition schemes for chromo-
some mating, i.e., MPLR and MPCR. In MPLR, chromosomes
cannot mate with their parents, and in MPCR, chromo-
somes cannot mate with their parents and their grandparents.
Obviously, prohibition of MPCR is stricter than MPLR. To
implement the above two prohibition schemes, we allocate a
queue Q for each chromosome x to inherit and update its mat-
ing prohibition records. Specifically, in MPLR, x.Q is used to
store the parents of x, and in MPCR, x.Q is used to store the
parents and grandparents of x. To save space, we set |x.Q| = 2
in MPLR and |x.Q| = 6 in MPCR. So, MPLR and MPCR can
be expressed by following rule: for male chromosome m and
female chromosome f, if m € f.Q and f € m.Q, then m cannot
mate with f.
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If we further take into account NMP, then we have a mating
prohibition scheme set MPS = {NMP, MPLR, MPCR}. To
check whether mating between m and f violates a given mating
prohibition scheme p, we define a function mps as

__J 1, if m can mate with f w.r.t scheme p
mpsm. f. p) = {O, otherwise

®)

where p € MPS denotes a mating prohibition scheme.

Given the dynamics of chromosome mating prohibition
records, updating the records is realized by enqueue and
dequeue operator on a queue Q. Specifically, if crossover
between chromosome m and f reproduces their offspring
x and y, then updating record x requires two operations
enqueue(x.Q, m) and enqueue(x.Q,f) in MPLR, and four
operations dequeue(x.Q), dequeue(x.Q), enqueue(x.Q, m), and
enqueue(x.Q, f) in MPCR. Clearly, updating record y needs to
perform similar operations.

3) Mating Strategies: Based on mating attractiveness and
mating prohibition, it is a challenging problem to construct a
set of suitable mate pairs that can offer current parent popu-
lation a better chance of reproducing higher quality offspring.
The problem can be formalized as a chromosome mating
optimization problem, as follows:

2

fi€F.m;eM,mps(f;,m;j,p)=1

max Attract( fis mj) )]

where f; and m; denote a female chromosome in set F and a
male chromosome in set M, respectively.

Obviously, solution to the above optimization problem can
be formalized as a pair set FMate, which is a subset of
Cartesian product M x F. To solve this problem, we propose
three mating strategies, i.e., Greedy-EMS, WBM-EMS, and
UBM-EMS.

a) Greedy-EMS: Greedy-EMS is a greedy strategy to
select a mate with maximal mating attractiveness for a chromo-
some under a certain mating prohibition scheme. Greedy-EMS
strategy can be formulated as

mate(f;) = arg max
mje{mj|mps(fi,mj,p)=1}

Attract(f;, mj).  (10)

Obviously, it is not difficult to construct FMate using this
strategy. Greedy-EMS strategy is simple and easy to imple-
ment, but it has some shortcomings, such as gene drift and
diversity loss.

Example 1: Consider a male chromosome set M = {a, b,
¢, d, e} and a female chromosome set FF = {1, 2, 3,4, 5}.
Mating prohibition scheme NMP can be used between M and
F. According to chromosome mating attractiveness in Fig. 3(a)
and Formula (8), we have a mating pair set FMate = {(a, 2),
(b,2), (c,2), (d,2), (e,2)}. By using population gene diver-
sity formula GD = (# locuses with different value/# total
locuses), we have GD = 45/50 before crossover, and GD =
24/50 after crossover. Comparing these two GDs, we can see
that Greedy-EMS strategy leads to population diversity loss.



Fig. 3. Diversity loss of Greedy-EMS. (a) Mating attractiveness between
female and male chromosomes, where an edge exists if the mating prohibi-
tion conditions are satisfied, and edge weight denotes mating attractiveness
between chromosomes. (b) Mating set constructed by Greedy-EMS, where
red edge denotes the legality between chromosomes. (c) Male chromosome
set. (d) Female chromosome set.

b) WBM-EMS: To overcome the shortcomings of
Greedy-EMS strategy, we propose to model the chromosome
mating optimization problem as a weighted bipartite graph
matching problem. The model is described as follows.

Suppose G = (V, E, W) is a weighted bipartite graph with
vertex set V = F' UM’, where

M|
F = Umate(mi)
i=1
M =M-— {m;|lmate(m;) = @, m; € M}

mate(m;) = {f;|mps(f;, mi. p) = 1 Af; € F}

and E = {e;;(fi <> m)|f; € F' A'mj € mate(f;)} is the edge set
with weight set W = {w;;|w;; = Attract(f;, mj)}.

It is not difficult to prove that the chromosome mating
optimization problem is equivalent to the maximum matching
problem in the weighted bipartite graph G, that is

PMat = arg max Z (wijlwij € PMy)
PMyePM

where PM denotes matching collection of G, PMj denotes
the kth matching in PM. According to graph theory, we have
|PM| = max(|F|!, [M|!). The maximum matching problem in
weighted bipartite is widely studied and many algorithms have
been proposed. Here, we adopt Hungarian algorithm [40] to
acquire the optimal mating pair set FMate. Based on the time
complexity of Hungarian algorithm, we can deduce that time
complexity of WBM-EMS is O(|PM| x |E|?).

Example 2: Suppose chromosome attractiveness between
M ={a,b,c,d,e}and F = {1, 2, 3, 4, 5} is shown in Fig. 3(a).
After applying Hungarian algorithm to Fig. 4(a), we have
the optimal mating pair set {(a, 2), (b, 1), (c, 3), (d, 2), (e, 3)},
represented by the red edges in Fig. 4(b). Similar to
Example 1, we compute gene diversity of the newborn popu-
lation, which is GD = 32/50. Comparing WBM-EMS (Fig. 4)
with Greedy-EMS (Fig. 3), we find that WBM-EMS can suc-
cessfully maintain population diversity level by avoiding too
many male chromosomes mating with several high quality
female chromosomes.

4) UBM-EMS: The time complexity of WBM-EMS is high,
which severely slows down convergence rate of the optimiza-
tion algorithm, although it can effectively circumvent undue
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Fig. 4. Population diversity of WBM-EMS. (a) Mating attractiveness between
female and male chromosome, where an edge exists if the mating prohibi-
tion conditions are satisfied, and edge weight denotes mating attractiveness
between chromosomes. (b) Mating set constructed by WBM-EMS, where red
edges denote the legality between chromosomes.

loss of population diversity. To improve computational effi-
ciency, we further propose UBM-EMS strategy to transform
the weighted bipartite model to an unweighted bipartite model.

Mating relation of heterosexual chromosomes can be mod-
erately simplified by virtue of a threshold function, defined
in Formula (11). That is, the threshold function is used to
filter out the edges with weight smaller than threshold A in
the weighted bipartite graph constructed by WBM-EMS, and
equally assign 1 to the weight of left edges. Then we have a
reduced weighted bipartite G. Comparing Fig. 4(a) with (b),
we can find that the number of deleted edges is 3

o — 1, if Attract(f;, mj) > A
Y710, otherwise.

(1)

If we optimize FMate in WBM-EMS by applying Hungarian
algorithm to the reduced G, we may obtain performance gain
to some extent. However, Hungarian-based algorithms essen-
tially cannot decrease the time complexity, even though the
reduced G has fewer edges. Since the edge weight in the
reduced G equals to one, by adding in a source node s and
a sink node # we can further transform the reduced G into a
flow net graph, as follows:

G = (V,E,W), where V' =V U{s, 1}
E =EU {(s, v’i) Ve F} U {(v/j,t) 2V EM}
Vwi; € w, wii = 1.

Now, the optimization problem has been transformed from
a maximum matching problem on weighted bipartite to a max-
flow problem on flow net graph. And its time complexity
can be further reduced to O(|PM| x |E| * log |PM|) by using
Goldberg algorithm [41]. However, given that all the edge
weights are equal, it is possible to generate multiple flow nets
with equal maximal flow. That is, this property poses another
issue, i.e., how to select the best one from the final flow nets as
a solution to the chromosome mating optimization problem.
To address the issue, we propose a simple greedy approach
below.

Let the final flow nets be NET = {netj, nety, ..., nety},
net; = (V/;, E'y), V. € V', E] C E', the final optimal flow net
is net* = arg max,,,,.ngr|V; |-

Example 3: Suppose chromosome set M and F with mating
attractiveness are depicted in Fig. 5(a). An unweighted bipar-
tite graph [Fig. 5(b)] is obtained by removing the edges with
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Fig. 5. Diversity loss of Greedy-EMS. (a) Mating attractiveness between
female and male chromosomes, where an edge exists if the mating prohibition
conditions are satisfied, and weights denote mating attractiveness between
chromosomes. (b) Mating set constructed by Greedy-EMS, red edges denote
the legality between chromosomes. (c) Male chromosome set. (d) Female
chromosome set.

weight smaller than threshold A = 0.75. By further adding in a
source node s and a sink node ¢, we have a flow net (Fig. 5(c))
and an optimal mating pair set represented by red edge in
Fig. 5(d), which is obtained by applying Goldberg algorithm
to the flow net. Compared to Greedy-EMS and WBM-EMS,
UBM-EMS completely eliminates the loss of population gene
diversity, because GD index remains GD = 41/50 before
performing crossover.

The aforementioned three mating strategies have different
computational complexity and optimization effectiveness. In
current HGCA, these strategies are selected by data analyst
according to clustering tasks at hand, aiming to facilitate
the selection. In Section IV-B5, we experimentally compare
mating strategies in terms of efficiency and effectiveness.
Indeed, research on how to adaptively choose the most appro-
priate strategy for clustering tasks is important and interesting,
and it is one of our future work.

E. Crossover Operator

In general, after applying mating strategies in constructing
chromosome pairs, GCAs proceed to perform population evo-
lution for the emergence of high quality chromosomes which
may contain better clustering outcomes. Crossover operator
is one of the important subsequent promoters. Unfortunately,
existing crossover operators have some limitations. First, most
existing crossover operators are fixed-length, presuming that
the number of clusters is known in advance. However, as dis-
cussed in introduction, the presumption often fails in real-life
situations. Second, observation 1 shows that evolutionary pop-
ulation may reproduce chromosomes with ICCs. Removal of
all the ICCs is helpful in improving algorithm performance,
but this will result in chromosomes with unequal length,
making the fixed-length crossover operators unsuitable for
performing unequal length crossover. Third, although there
are a few variable-length crossover operators, they all ignore
gender attribute of chromosomes, resulting in unsatisfactory
convergence rate [10]-[15].

To address the above limitations, we propose a VGC,
described in Algorithm 1. Theorems 1 and 2 (see details in
the Appendix) show that different from the existing crossover
operators, VGC is a single point crossover operator that can
guarantee both the variability of chromosome length and gen-
der balance of offspring in probability. That is, the above
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Imi=4  rm=3 If|=6 =4
\ 1
m:Male| 0, | 0, | 0; | O, f:Female| o, | 0, | 0, | O, | O; | Og
/
r=3<5=|f |-1 r=7>5=|f -1
,_m
x:MaIe| o, ‘ O, | O, | Os | O | y:Female | 0,|0,]| 0, |0, |0,

Fig. 6. Crossover process of VGC operator.

Algorithm 1 VGC

Input: parent chromosome pair (m, )

Output: child chromosome x and y

Step 1: Generate random crossover point rm for m and rf for
f

1.1: rm=rand(1, |m| — 1)

1.2: rf=rand(1, |f| — 1)

Step 2: Perform concatenation to produce x and y:
2.1 : x=concat(m[1: rm], frf + 1: |[f]])

2.2 : y=concat(f[1: rf], m[rm + 1: |m|])

Step 3: Determine gender of child chromosome:
3.1 : for o € {x,y} do

3.2 : if |m| > |f] then{

33: if rm > rf then

34 r=rand(1,2\m| — | f])

3.5: if r < |m| — 1 then «o.gender = male
3.6: else a.gender = female

3.7: else a.gender = male

3.8: Jelse {

39: if rm < rf then

3.10: r=rand(1,2|f| — |m|)

3.11: if r < |f] — 1 then a.gender = male
3.12: else «.gender = female

3.13:  else a.gender = male }

two theorems can provide theoretical basis for both avoid-
ing population search ability degradation incurred by gender
imbalance and maintaining dynamics of the number of clus-
ters K. However, determining offspring gender in VGC may
lead to higher computational cost.

We illustrate the details of VGC operator in Example 4. It is
worth mentioning that the valid value of chromosome length is
not an arbitrary integer, but a multiple of the length of cluster
center vector.

Example 4: Suppose male parent chromosome m and female
parent chromosome f partition a given set of objects into 4
clusters and 6 clusters, respectively, i.e., [m| =4 and |f| =6
(see Fig. 6). A random number generator generates random
number rm = 3 as the crossover point for m and rf = 4 as
the crossover point for f. Then child chromosome x and y are
created by performing step 2 in Algorithm 1. Given #|m| < | f|
and rm < rf, step 3 in Algorithm 1 needs another two random
numbers to determine the gender of x and y. Here, we have
r =3 for x, and r = 7 for y, so the gender of x is male and
y is female.
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F. Algorithm Description and Analysis

To facilitate understanding the above discussion, we
describe HGCA in Algorithm 2. From the description, we can
see that HGCA mainly consists of two major steps. Step 1 con-
cerns initializing related parameters such as population size,
selection probability, etc., and randomly partitioning the input
dataset with population initialization, while step 2 is responsi-
ble for searching the optimal partition of the dataset by a loop
that mainly includes temporary population generation, mating,
crossover, mutation, evaluation, selection adaptive adjustment
of weight, and obtaining the dataset partition by decoding the
chromosome with best fitness.

Time complexity of HGCA can be computed as follows. We
first compute CPU cost of step 1. Apparently, time complexity
in parameter initialization in step 1.1 is O(1), and let the max-
imum number of clusters resulting from generating random
partitions be K, the time complexity of population initializa-
tion in step 1.2 is O(N * K). Thus, the overall time complexity
of step 1 is O(N * K). And time complexity of step 2 is
relatively complicated. With the definition of DBI, we can
compute time complexity of step 2.1 as O(K * |D| x N). CPU
cost of temporary population generation in step 2.2 is simply
O(N). Although there are three candidate mating strategies,
we choose candidate Greedy-EMS for simplicity, and time
complexity of step 2.3 can be calculated as O(|F' gen 1) accord-
ing to Section III-D3. CPU cost of VGC operator in step 2.4
can be estimated as 0(|M§en|). Similarly, time complexity of
mutation operator in step 2.5, fitness evaluation in step 2.6,
selection operator in step 2.7 and age update in step 2.9 can
be estimated, respectively, as below

O(|Mgen U Fgen|) ~ O(N)

O(K *ID| » ‘(MC + Mty + Fien + Fln)

~ O(K * |D| % N)
0( Megen U Mg, U Mg, ) ~ O(N)
O(|(Mgen N Mgen+1) U (Fgen N Feen+1)|) = ON).
Therefore, time complexity of decoding the best chromo-
some in step 2.11 is O(N*K). Hence, time complexity of step 2

is O(K % |D| % N * G,). From the above analysis, we conclude
that time complexity of HGCA is O(K * |D| % N x G,).

gen gen

)

IV. EXPERIMENTAL STUDY

In this section, we empirically evaluate the proposed algo-
rithm from two aspects. First, we apply our novel algorithm to
automatically search the number of clusters and cluster cen-
ters, and subsequently evaluate its effectiveness and efficiency.
Second, we experimentally investigate the impact of mating
prohibition schemes and mating strategies on the quality of
clustering result.

A. Experiment Datasets and Setup

We evaluate HGCA using artificial datasets [8], [43] and
real-world datasets [44], [45], [49]. Statistics of the datasets
are summarized in Table II. From Fig. 7, we can see that
there are different degrees of overlapping between clusters for
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Algorithm 2 HGCA

Input: dataset D

Qutput: clusters of D

Step 1: Parameters and population initialization;

1.1: parameters initialization for N,G,,Pc,Py,Tnax,TwsA,T, and
current iteration gen = 0 (Details in Table III);

1.2: Population initialization: P = Fy U My with N chromo-
somes, where My and Fy denote male population and female
population respectively, and |Fy| = |Mp|, for each chromo-
some x € P, let x.age = 0;

Step 2: optimal partition search:

2.1: Compute fitness of chromosomes in population P;

2.2: Temporary population generation: select chromosomes
from male population Mg, and female population Fy,, to con-
struct candidate male mating population M;,en and candidate
female mating population F' ém with probability p.;

2.3: Mating operator: select a harmonious mating strategy, i.e.
Greedy-EMS, WBM-EMS or UBM-EMS, to construct FMate
according to Fy,, and Mg,,;

2.4: Crossover operator: for every pair in FMate perform

VGC operator and produce male offspring Mg, and female

offspring Fg,,, update mating prohibition record of chromo-
somes in Mg,, U Fy,,;

2.5: Mutation operator: mutate chromosomes in Mge, U Fgep
with probability p, and construct male offspring Mgy, and
female offspring Fl,,;

2.6: Evaluation of chromosomes: compute fitness of chromo-
somes in (M;,en + Mg, + Fgpp + ans

in chromosomes;

2.7: Selection operator: select [N x 0.4] best chromosomes
Mgen +M§en +M§”€n to construct Mge,y1 and ran-
domly select |N x 0.1] chromosomes from the rest of
(Mge” + Mgen + M;;Zrz)
structed;

2.8: Adaptive adjustment of weight: if gen < T,, then w; = 1
, elseif fitness of the best chromosome has not been improved
in successive Tmax generations then wy = twy;

2.9: Update of chromosome age: for each chromosome x €
(Mge,, N Mge,,_,_]) U (Fgen N Fgen+l) do x.age = x.age + 1;
2.10: gen = gen + 1;

2.11: Repeat from step 2.1 to step 2.10 until gen >= G,,, and
return the clustering outcome corresponding to the chromo-

some with best fitness.

and remove the ICCs

from (

into Mgepy1, similarly, Fge,q1 is con-

each artificial dataset with Gaussian or ellipsoid distribution.
And real-world datasets are used as evaluation benchmarks
when comparing with some state-of-the-art clustering meth-
ods. Dataset Iris and Letter are both from the UCI repository.
Iris contains 50 instances from three classes, where each class
refers to a type of iris plant and one class is linearly separa-
ble from the other two, and the two classes are not linearly
separable from each other. Letter contains 20000 character
images, where each corresponds to one of the 26 capital let-
ters in the English alphabet. 20Newsgroups is a collection
of 18846 newsgroup documents partitioned almost evenly
across 20 different newsgroups [26]. Vowel, consisting of 871
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TABLE 1T
DESCRIPTION OF THE EXPERIMENT DATASETS
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TABLE III
PARAMETER SETTINGS

Fig. 7.

Artificial datasets. (a) DSI. (b) DS2. (c) DS3. (d) DS4.

Indian Telugu vowel sounds, has three features correspond-
ing to the first, second, and third vowel frequencies, and there
are six overlapping classes. Animal(PHOG) is a large-scale
dataset of animal images, which consists of six features, 50
classes, and 30475 samples, where we choose visual feature
PyramidHOG(PHOG) to represent each sample. Moreover,
in our experiments the dimensionality of 20newsgroups and
Animal(PHOG) are reduced to 50 and 30, respectively, by
latent semantic indexing and convolutional neural network
techniques in a preprocessing step. Since all the cluster-
ing algorithms depend on initializations, we repeat all the
methods 50 times using random initialization and report the
average performance. The parameters of HGCA are given
in Table III.

It is well-known that how to reasonably determine and
adjust parameters for GAs, for example, population size,
crossover probability, mutation probability, etc., is an open
problem in evolutionary computation [52], [53]. We give the
detailed parameter setting in Table III. The rationale for choos-
ing the values in Table III is that through extensive preliminary
experiments on widely-used datasets, including small datasets
such as Wine, Glass, Seeds, Iris, Lungcancer, Parkinsons, etc.,
and small samples from large scale datasets such as C-Cube,
20Newsgroups, Letter, and Animal(PHOG), we observe that
although different datasets have different parameter settings
that produce high-quality clusters, the parameter setting in
Table III can produce better clusters in most cases.

Type Dataset #instances | #attributes | #clusters Parameter | Value | Description
Iris 150 4 3 N 60 Population size
Real-life Vowel 871 36 6 Gn 200 Number of iteration
C-Cube 10000 34 10 P, 0.75 Selection probability
20Newsgroups 18846 50 20 P, 0.05 Mutation probability
Letter 20000 16 26 Tax 20 Number of successive generations in which fit-
Animal(PHOG) 30475 30 50 ness of the best chromosome has not been im-
DS1 300 2 6 proved
Artificial DS2 500 2 9 T, 10 Number of the previous generations where age
DS3 5000 2 15 influence is ignored
DS4 5000 2 15 1 0.75 | Threshold for UBM-EMS
T 0.85 Adjustment factor for fitness attractiveness weight

B. Experimental Results

1) Comparison of Clustering Performance: In order to
empirically evaluate clustering performance of HGCA, we
focus on three major aspects: 1) the ability to find the
optimal number of clusters; 2) quality of the solution mea-
sured by DBI, CS, and VRC; and 3) computational cost to
find the solution. And we empirically compare our HGCA
algorithm with four state-of-the-art metaheuristic clustering
algorithms (MCAs), i.e., ACDE [20], genetic clustering for
unknown K (GCUK) [10], TGCA [15], DCPSO [18], and two
non-MCAs, i.e., Shi and Malik (SM) [46] and K-means.

a) Comparison of search ability for K: In this section,
we evaluate the search ability for the number of clusters K, by
comparing HGCA with the four MCAs only, since K-means
accepts K as an input parameter specified by the user. To make
comparison quantitatively, we introduce an index R, as
defined in (12), to denote the ratio of how many times the
correct number of clusters K is identified. The results on real-
world and artificial datasets are given in Tables IV and V,
respectively

Runs having the correct number of clusters
c =

x 100.
(12)

Total runs

From the results we can see that first, for datasets with clear
cluster boundaries, such as artificial dataset DS1, R. of HGCA
is similar to those of the four MCAs. However, for datasets
with moderately overlapping clusters such as DS3 and Iris,
HGCA achieves a similar R, as that of TGCA, which is greater
than those of ACDE, DCPSO, and GCUK. For instance, we
find that GCUK and DCPSO yield two clusters on average on
Iris, i.e., one of the clusters corresponds to the Setosa class,
whereas the other corresponds to the combination of Veriscolor
and Virginica. For those datasets with heavily blurry cluster
boundaries, such as artificial dataset DS4 and real-life datasets
Vowel, C-Cube, 20Newsgroups, Letter, and Animal(PHOG),
we find that R. of HGCA, without exception, is greater than
those R s of the other four MCAs.

Second, no matter which measure we adopted, e.g., DBI,
CS, or VRC, for chromosome fitness, R, of HGCA on most
datasets is larger than those of the other four MCAs, although
different measures may have different influence on R, of all
the five clustering algorithms. Compared with the other four
MCAs, HGCA is more robust in chromosome fitness selection



208

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 1, JANUARY 2018

TABLE 1V
EXPERIMENT RESULTS ON REAL-LIFE DATASETS USING FITNESS INDEX DBI, CS, AND VRC

. DBI CS VRC
Dataset Algorithm R, Fitness R, Fitness R, Fitness

HGCA 93 | 0.414+0.038 | 91 | 0.613+£0.075 | 90 571.28+8.45
TGCA 91 | 0.466+0.042 | 91 | 0.631+0.098 | 86 | 560.63+12.19
Iris GCUK 23 1 0.536+0.051 | 25 | 0.734+0.104 | 24 [ 554.77+14.62
DCPSO 21 | 0.495+0.129 | 22 | 0.746+0.186 | 27 | 545.29+22.81

ACDE 90 | 0.478+0.088 | 87 | 0.666+0.098 | 85 | 555.24x11.73

HGCA 70 | 0.632+0.031 | 71 | 1.021+0.045 | 69 | 593.35+12.25

Vowel TGCA 62 | 0.702+0.036 | 65 | 1.393+0.048 | 66 | 585.25+14.07
GCUK 20 | 0.743£0.043 | 23 | 1.287+x0.053 | 31 580.27+13.4

DCPSO 22 | 0.767+0.059 | 27 | 1.335+0.054 | 37 | 545.49+21.13

ACDE 65 | 0.684+0.078 | 63 | 1.404+0.043 | 61 | 595.61+17.05
HGCA 76 | 0.834+0.034 | 79 | 1.551+0.084 | 70 | 593.61+38.06

C-Cube TGCA 69 | 0.905+0.035 | 68 | 1.987+0.097 | 66 | 552.02+41.25
GCUK 43 | 1.101+£0.036 | 48 | 2.373+0.108 | 42 | 517.43+£56.72

DCPSO 32 1 0.972+0.047 | 52 | 2.506+0.129 | 37 [ 523.95+86.88
ACDE 64 | 0.945+0.037 | 70 | 2.287+0.077 | 65 | 541.38+36.49

HGCA 66 | 1.183+0.189 | 61 | 1.145+0.297 | 65 | 584.73+26.37
20Newsgroups TGCA 60 | 1.309+0.226 | 56 | 1.555+0.097 | 53 [ 518.07+49.16
GCUK 24 | 1.356+0.246 | 27 | 1.962+0.879 | 31 | 488.24+78.23

DCPSO 20 | 1.582+0.254 | 31 1.788+0.955 | 29 | 504.76+95.57
ACDE 63 | 1.247+0.208 | 54 | 1.644+0.694 | 57 | 536.69+52.04

HGCA 62 | 1.235+0.204 | 60 | 1.332+0.282 | 59 | 592.22+29.58

Letter TGCA 52 | 1.399+0.215 | 49 | 1.461+0.135 | 46 | 527.61+51.45
GCUK 24 | 1.472+0.237 | 31 1.994+0.657 | 30 | 479.03+86.05
DCPSO 20 | 1.634+0.266 | 34 | 1.686+0.863 | 35 | 523.29+90.92

ACDE 48 | 1.278+0.213 | 52 | 1.573+0.705 | 49 | 545.81+68.27
HGCA 53 | 1.825+0.189 | 54 | 1.963+0.297 | 52 | 652.85+59.82
Animal(PHOG) TGCA 32 | 2.006+0.226 | 34 | 2.208+0.097 | 35 | 613.51+72.46
GCUK 26 | 2.182+0.246 | 25 | 2.818+0.879 | 30 [ 571.44+78.23
DCPSO 28 | 2.424+0.254 | 29 | 2.367+0.955 | 31 | 610.05+86.89
ACDE 35 | 1.985+0.208 | 34 | 2.199+0.694 | 33 [ 621.18+62.04

TABLE V
EXPERIMENT RESULTS ON ARTIFICIAL DATASETS USING FITNESS INDEX DBI, CS, AND VRC

. DBI CS VRC
Dataset | Algorithm R, Fitness R, Fitness R, Fitness
HGCA 97 | 0.3517+0.036 | 95 | 0.3625+0.029 | 96 523.48+11.32
DS1 TGCA 97 | 0.3524+0.035 | 94 | 0.3787+0.032 | 96 514.78+21.25
GCUK 95 | 0.4325+0.038 | 96 | 0.4361+0.031 | 95 487.79+20.74
DCPSO 94 | 0.4117+0.043 | 95 | 0.4208+0.048 | 94 502.82+29.97
ACDE 94 1 0.3724+0.029 | 95 [ 0.3876+0.034 | 93 516.06+13.46
HGCA 66 | 0.5802+0.035 | 65 | 0.5935+0.041 | 63 388.79+14.57
DS2 TGCA 62 | 0.6057+0.038 | 61 | 0.6007+0.039 | 58 361.51+20.16
GCUK 49 | 0.6116+0.036 | 47 | 0.6329+0.037 | 44 340.23+18.75
DCPSO 57 | 0.6005+0.042 | 52 | 0.6251+0.046 | 54 357.77+25.59
ACDE 61 | 0.6021+£0.033 | 58 [ 0.6014+0.036 | 55 376.01+£15.34
HGCA 62 | 0.5438+0.047 | 56 | 0.8864+0.056 | 58 | 2376.49+195.51
DS3 TGCA 62 | 0.6057+0.038 | 61 | 0.6007+0.039 | 55 | 2294.72+219.33
GCUK 45 1 0.5951+0.059 | 43 | 0.9711+£0.073 | 46 2024+274.68
DCPSO 49 | 0.5825+0.076 | 51 | 0.9096+0.082 | 52 | 1983.75+236.44
ACDE 52 ] 0.5901+0.049 | 48 [ 0.8723+0.053 | 51 | 2250.13+208.84
HGCA 51 0.644+0.033 49 0.695+0.036 | 47 | 2186.49+156.54
DS4 TGCA 46 | 0.652+0.044 | 44 | 0.7209+0.045 | 45 [ 2039.11+190.19
GCUK 35 0.692+0.047 34 | 0.9626+0.049 | 39 1967+197.06
DCPSO 48 0.666+0.051 43 0.714+0.059 | 47 | 2015.58+213.35
ACDE 49 | 0.668+0.045 47 0.785+0.047 40 | 2112.67+194.26

when detecting the optimal cluster number. In order to better
analyze robustness, we average R s of the five MCAs on all
datasets and the results are depicted in Fig. 8. From Fig. §,
we can see that in terms of search ability for optimal number
of clusters, HGCA significantly outperforms other four MCAs
in terms of fitness robustness.

Third, R, on real-life datasets gradually decreases with
the number of true clusters hidden in those datasets, but
R, of HGCA increases slowly compared with the other four
MCAs. For instance, in Letter with 26 clusters R. of HGCA

with fitness DBI is 62 and the largest R, value of other
four MCAs is 48; while in Animal(PHOG) with 50 clus-
ters HGCA’s R, is 53 and the largest R, of the other four
MCAs is 35.

From the above analysis, we conclude that HGCA is supe-
rior to the state-of-the-art MCAs for identifying the optimal
number of clusters. This means that introduction of genetic
operators into clustering algorithms is beneficial to find-
ing the correct number of clusters of datasets. Nevertheless,
we admit that it is tricky to identify the real number of
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TABLE VI
t-TEST RESULTS OF NMI OF HGCA AND THE OTHER FOUR MCAS ON REAL-LIFE DATASETS
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Dataset Criterion HGCA TGCA GCUK DCPSO ACDE P 95% CI Sig.
DBI 0.9337:0.019 | 0.9012x0.022 | 0.8621x0.023 | 0.8735x0.048 | 0.8891x0.025 | <0.0001 | [0.0294,0.0405] | +
TIris CS 0.9354:0.019 | 0.89430.029 | 0.8524=0.026 | 0.8635x0.046 | 0.8883x0.0093 | <0.0001 | [0.0385,0.0512] |
VRC | 0.9214=0.0181 | 0.91580.031 | 0.8485x0.025 | 0.8396x0.037 | 0.8726x0.011 | 0.0307 | [-0.0067,0.0216] | X
DBI 0.6523:0.021 | 0.6136x0.025 | 0.5708=0.023 | 0.5963x0.026 | 0.6022+0.027 | <0.0001 | [0.0289,0.0507] |
Vowel CS 0.6537:0.021 | 0.6201x0.028 | 0.5884=x0.026 | 0.5776x0.034 | 0.5971x0.025 | <0.0001 | [0.0301,0.0528] |
VRC 0.6479:0.019 | 0.6054x0.021 | 0.5655=0.018 | 0.5726£0.029 | 0.5969£0.027 | <0.0001 | [0.0213,0.0429] v
DBI 0.5452:0.021 | 0.503720.031 | 0.4526x0.027 | 0.48717x0.031 | 0.4852+0.019 | <0.0001 | [0.0074,0.0253] |
C-Cube CS 0.5208:0.026 | 0.4823=0.044 | 0.48070.035 | 0.5018£0.076 | 0.5014x0.032 | <0.0001 | [0.0215,0.0404] | v
VRC 0.5313:0.041 | 0.4908+0.037 | 0.5168x0.057 | 0.50257x0.088 | 0.4807x0.034 | <0.0001 | [0.0167,0.0369] |
DBI 0.5143:0.056_| 0.49150.074 | 0.4634x0.062 | 0.4806x0.089 | 0.4857+0.061 | <0.0001 | [0.0114,0.0436] |
20Newsgroups CS 0.4986:0.052 | 0.4709%0.043 | 0.4627x0.048 | 04719x0.078 | 0.4814x0.0502 | <0.0001 | [0.0118,0.0367] | v
VRC 0.4822:0.056 | 0.46620.060 | 0.4551=0.077 | 0453220.082 | 0.4740.064 0.1307 | [-0.0034,00197] | x
DBI 0.5207:0.055 | 0.49770.078 | 0.4801=0.065 | 0.4847x0.082 | 0.4922+0.063 | <0.0001 | [0.0107,0.0385] |
Letter CS 0.5104x0.053 | 0.4888x0.051 | 0.4627x0.056 | 0.4781x0.066 | 0.4991=0.049 | <0.0001 | [0.0126,0.0352] | V
VRC 0.5018:0.059 | 0.4806x0.062 | 0.4775x0.071 | 0.4841x0.077 | 0.4972+0.061 | 0.1458 | [-0.0042,0.0181] | x
DBI 0.5025:0.071 | 0.47730.083 | 0.4358=0.084 | 04712£0.092 | 0.4803x0.078 | <0.0001 | [0.0098, 0.0246] |
Animal(PHOG) CS 0.490120.073 | 047110075 | 04317z0.088 | 04732£0.089 | 0479320091 | <0.0001 | [0.0222,0.0419] |
VRC 0.4903x0.072_| 0.4685x0.077 | 04265£0.073 | 0.4594=x0.083 | 0.4838x0.074 | <0.0001 | [0.0037,0.0246] |
TABLE VII
t-TEST RESULTS OF NMI OF HGCA AND THE OTHER FOUR MCAS ON ARTIFICIAL DATASETS
Dataset | Criterion HGCA TGCA GCUK DCPSO ACDE P 95% CI Sig.
DBI 0.93=0.019 0.928+0.027 0.907:0.028 0918+0.034 | 0.9224x0.021 | 0.3256 | [0.0004,0.0126] | x
DS1 CS 0.9224:0.014 | 0.921x0.025 | 0.91530.0208 | 0.912%0.023 0.907=0.023 0.2986 | [-0.0013,00115] | x
VRC 0.9212+0.021 0.919%0.031 0901120014 | 0916420025 | 09105x0.028 | 04834 | [-0.0017,0.0097] | X
DBI 0.884:0.033 | 0.841x0.0016 | 0.8306=0.011 | 0.8421x0.035 | 0.8513x0.0182 | <0.0001 | [0.0200, 0.0444] | +
DS2 CS 0.8759:0.0249 | 0.843%0.027 0.835£0.025 0.841:0.031 | 0.8429£0.0208 | <0.0001 | [0.0215, 0.0414] |
VRC 0.8687:0.026 | 0.856=0.012 | 0.8395x0.014 | 0.8431=0.0195 | 0.8407x0.026 | <0.0001 | [0.0145,0.0348] | V
DBI 0.946+0.02 0.931+0.024 0.926+0.018 0.935+0.028 | 0.9377+0.022 0.108 | [-0.0019,0.0187] | x
DS3 CS 0.9414:0.0281 | 092900263 | 0.921=0.0258 | 0.9276x0.0234 | 0918£0.0247 | 0.0190 | [0.0021,0.0249] | X
VRC | 0.9417x0.0209 | 0.9304x0.0275 | 0.9305x0.0231 | 0.9315x0.0246 | 0.928+0.0211 | 0.0294 | [0.001, 0.0193] X
DBI 0.9314£0.019 | 0.91720.031 0.908+0.023 0911x0.045 | 0.911x0.0119 | <0.0001 | [0.0098,0.0247] |
DS4 CS 0.919x0.0219 | 0.892%0.038 0.894x0.038 0.902+0.048 0.896=0.024 | <0.0001 | [0.0084,0.0263] |
VRC 0.929:0.021 0.902%0.027 0.881£0.032 0.903%0.028 0.906=0.013 | <0.0001 | [0.0151,0.0306] | V
80 .
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70 : random partitioning
N\ N \
00 \% N N\,
§Z %Z % NMI(C", C")
* X/ N o
N\ ‘ _ [Cu0Cal 1 ((IDUCHOCA
40 %% %%E é 22 cuecr e log( [C G ) a3
S \% \%E o S Glog(Gl) 1y Gl joe( 1G]
30 %% §%E // CneC T 198\ D] c,ect o] 108\ D]
N Y/
» \ B \ N\ S .
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0 §%§ &% % To verify the clustering quality, we use #-test to compare
DBI cs VRC the means of the results produced by HGCA and the best one
Fitness among the four MCAs and the two non-MCAs. t-test assumes
that the data have been sampled from a normally distributed
Fig. 8. R, of HGCA, TGCA, GCUK, DCPSO, and ACDE with respect to . ..
fitness. population. From the central limit theorem, one may note that

clusters, given the unsatisfactory performance of all algo-
rithms on datasets with various degree of overlapping between
clusters.

b) Comparison of clustering quality: A good clustering
algorithm not only can automatically identify the optimal num-
ber of clusters, but obtain high-quality clusters. To evaluate
quality of data clusters resulting from clustering algorithms,
we use the normalized mutual information (NMI) in [47],
given in Formula (13), to measure the agreement between user-
labeled clusters and the calculated clusters. Obviously, NMI
value is 1 when a clustering solution perfectly matches the

as sample size increases, the sampling distribution of the mean
approaches a normal distribution regardless of the shape of
the original population. A sample size around 40 allows the
normality assumptions conducive to performing the 7-test [48].
The experiment results on all of the datasets are shown in
Tables VI-VIIL. From these tables, we obtain the following
observations.

First, compared with the other four MCAs, HGCA has
larger NMIs on most datasets. And #-test result indicates
that HGCA shows an overwhelming advantage over those
four MCAs on datasets with fuzzy cluster boundaries, e.g.,
on dataset C-Cube, Vowel, etc., although its clustering qual-
ity is not significantly better than those four MCAs on four
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TABLE VIII

Dataset HGCA K-Means SM 95% CI P Sig.
Iris 0.935+0.017 | 0.728+0.066 | 0.754+0.014 | [0.1556, 0.1992] < 0.0001 v
Vowel 0.652+0.021 0.547+0.017 | 0.616+0.015 | [0.0778, 0.0943] < 0.0001 vV
C-Cube 0.536+0.036 | 0.423+0.049 | 0.481+0.037 | [0.0643, 0.0861] < 0.0001 v
20Newsgroups 0.512+0.043 | 0.386+0.065 | 0.459+0.051 [0.0415, 0.0637] < 0.0001 vV
Letter 0.521+0.054 | 0.354+0.052 | 0.473+0.046 | [0.0552, 0.0824] < 0.0001 v
Animal(PHOG) | 0.501+0.071 0.343+0.064 | 0.438+0.061 [0.0529, 0.0965] < 0.0001 vV
DS1 0.93+0.019 0.927+0.057 | 0.928+0.013 [-0.015, 0.0216] 0.7244 X
DS2 0.884+0.033 | 0.831+0.037 | 0.852+0.027 | [0.0365, 0.0679] < 0.0001 v
DS3 0.946+0.02 0.934+0.025 | 0.941+0.021 [0.0057, 0.0262] 0.0037 X
DS4 0.931+0.019 | 0.902+0.021 0.913+0.023 [0.0214, 0.0376] < 0.0001 v
. . TABLE IX
datasets with clear cluster structures, e.g., on artificial dataset RUNNING TIME OF HGCA, TGCA, GCUK, ACDE,
DS1 and DS3. AND DCPSO ON DATASETS
Second, results in Table VIII also show that in most
. . e Dataset TGCA | GCUK | ACDE | DCPSO | HGCA
datasets, i.e., all real-life datasets and artificial datasets DS2 Tris 1354 1936 1936 1834 871
and DS4, HGCA outperforms the non-MCAs, i.e., K-means Vowel 116.08 129.87 110.63 135.52 103.46
. . . . . C-Cube 1806.42 | 2105.93 | 1828.41 | 1826.85 | 1749.43
and SM, in terms of clustering quality. Interestingly, SM is 20Newsgroups | 3829.55 | 3978.82 | 3943.65 | 3875.14 | 3536.48
overwhelmingly stable in clustering. The explanation is that Letter 301674 | 3108.44 | 2925.15 | 2833.61 | 2625.02
. . . . . . . Animal(PHOG) | 520523 | 5697.85 | 5167.94 | 5038.62 | 4874.27
low-dimensional manifold embedded in the high-dimensional DS 557 1694 563 14.86 1539
vector space produced by spectral mapping makes cluster DS2 32.09 35.18 29.76 28.23 24.01
bound ) hich i the clusteri tabilit DS3 690.58 | 72543 | 70357 | 685.66 | 682.15
oundary more clear, which improves the clustering stability Ds4 93660 | 91473 | 85004 | 82755 | 77898

of SM.

Third, all MCAs, i.e., HGCA, TGCA, DCPSO, ACDE, and
GCUK, can produce better clustering quality than K-means
on most datasets, but there are some exceptions where
K-means performs better, for example, GCUK and ACDE on
DS4, and GCUK on DS3. This demonstrates that population
intelligence-based optimization techniques can facilitate search
for optimal cluster structure.

Fourth, different fitness evaluation functions also play an
important role in searching for clusters hidden in datasets, for
instance, DBI fitness outperforms the other two fitness indexes
on most of the datasets.

Finally, comparing NMI in Tables VI-VIII and R. in
Tables IV and V, we can see that determining optimal assign-
ment of data objects to clusters and detecting optimal number
of clusters are different, since larger R. does not necessarily
correspond to larger NMI.

From the aforementioned observations, it is not difficult to
conclude that: 1) MCAs are better in discovering cluster struc-
ture of datasets than non-MCAs, meaning that introduction
of metaheuristic operators can improve clustering quality and
2) comparing with TGCA, ACDE, DCPSO, and GCUK, our
approach performs the best in terms of clustering quality.

c) Comparison of CPU time: In this section, we inves-
tigate the efficiency of HGCA, by comparing running time of
HGCA and the other four evolutionary algorithms, i.e., TGCA,
GCUK, ACDE, and DCPSO. For the sake of fairness, we first
need to introduce a time measurement. Obviously, the number
of iterations or generations cannot be used as a time measure,
since the algorithms perform different amount of work in their
inner loops and they have different population sizes. Hence,
we choose the elapsed CPU time as a measure instead of num-
ber of generations or iterations. Moreover, we use a maximum
number of iterations, specified by user, as termination condi-
tion for the four algorithms. We record the running time of
the three algorithms according to Rule 3, shown below.

Rule 3: If the termination condition of the algorithm has
been satisfied but its clustering quality index NMI has not
achieved the corresponding value in Tables VI and VII, then
we do not record the running time. In other words, if its clus-
tering quality index NMI has achieved the corresponding value
in Tables VI and VII before the termination condition is met,
then we break the loop and record the time used in the loop.

The experiment results are listed in Table IX. From the
table, we can see that CPU time of HGCA is as good as
TGCA, GCUK, ACDE, and DCPSO on datasets with easily
discernable clusters, such as Iris, DS1, and DS3. However,
HGCA exhibits remarkable advantages on datasets with indis-
tinguishable clusters such as Letter, C-Cube, 20Newsgroups,
and Animal(PHOG). Explanation to this observation is obvi-
ous. For datasets with easily discernable clusters, even algo-
rithms with fair optimization ability can efficiently discover
the cluster structures with given NMI, since it is difficult for
HGCA to show its time performance advantage. However,
datasets with complex and ambiguous cluster structure will
benefit the optimization ability of HGCA. From the above
observations, we conclude that for datasets with either clear
cluster structures or ambiguous cluster structures, HGCA per-
forms as good as or even better than the other four MCAs in
terms of CPU time used in clustering.

2) Effectiveness of Crossover Operator VGC: In this sec-
tion, we examine whether and to what extent VGC affects clus-
tering quality of HGCA. Given that VGC operator is closely
related to gender attribute of chromosomes, we remove gender
information of chromosomes in population, and replace mating
strategy and VGC with traditional selection operator (roulette
wheel selection) and crossover operator (two-point crossover),
respectively. We call this simplified HGCA SHGCA. From
Table X, we can see that for both artificial and real-life
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TABLE X
EFFECTIVENESS OF VGC
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TABLE XII
IMPACT OF PROHIBITION SCHEMES ON THE CLUSTERING QUALITY

EFFECTIVENESS OF HARMONIOUS MATING STRATEGY

Dataset HGCA SHGCA
Iris 0.9337+0.019 | 0.8724+0.021
Vowel 0.6523+0.021 | 0.5813+0.049
C-Cube 0.5452+0.021 | 0.4698+0.028
20Newsgroups 0.5143+0.056 | 0.4784+0.061
Letter 0.5207+0.055 | 0.4902+0.063
Animal(PHOG) | 0.5025+0.071 | 0.4405+0.075
DS1 0.93+0.019 0.928+0.021
DS2 0.884+0.033 0.8415+0.013
DS3 0.946+0.02 0.925+0.019
DS4 0.9314+0.019 0.911+0.022

TABLE XI

Dataset HGCA SHGCA2
Iris 0.9337+0.019 | 0.8736+0.022
Vowel 0.6523+0.021 | 0.5907+0.071
C-Cube 0.5452+0.021 0.4714+0.034
20Newsgroups 0.5143+0.056 0.4812+0.065
Letter 0.5207+0.055 | 0.4881+0.067
Animal(PHOG) | 0.5025+0.071 0.4433+0.086
DS1 0.93+£0.019 0.915+0.024
DS2 0.884+0.033 0.854+0.017
DS3 0.946+0.02 0.924+0.018
DS4 0.9314+0.019 0.918+0.026

Dataset NMP MPLR MPCR

Iris 0.9118+0.0645 | 0.9274+0.0381 | 0.9356+0.042
Vowel 0.611+0.0802 0.645+0.0337 0.6534+0.028
C-Cube 0.5165+0.049 0.5304+0.036 0.5356+0.026
20Newsgroups 0.4806+0.0517 | 0.4908+0.0236 | 0.5103+0.014
Letter 0.494+0.0732 0.502+0.068 0.521+0.054
Animal(PHOG) 0.4513+0.098 0.485+0.084 0.501+0.071
DS1 0.936::0.027 0.934+0.016 0.935+0.017
DS2 0.841+0.065 0.884+0.039 0.876+0.022

DS3 0.912+0.0456 0.946+0.0333 0.935+0.0197
DS4 0.907+0.0561 0.9314+0.0308 | 0.9185+0.019

TABLE XIII

IMPACT OF MATING STRATEGIES ON CLUSTERING QUALITY

Dataset Greedy-EMS UBM-EMS WBM-EMS
Iris 0.9054+0.0972 | 0.9388+0.0253 | 0.9127+0.0306
Vowel 0.617+0.0914 0.6535+0.0289 | 0.6321+0.0304
C-Cube 0.5034+0.0875 | 0.5295+0.0486 | 0.5284+0.0532
20Newsgroups 0.4751+0.0693 | 0.5121+0.0472 | 0.4708+0.0408
Letter 0.5026+0.0897 0.521+0.053 0.528+0.0471
Animal(PHOG) | 0.4689+0.0881 0.501+0.071 0.5083+0.0653
DS1 0.931+0.023 0.933+0.016 0.935+0.018
DS2 0.852+0.094 0.8860.063 0.873+0.065
DS3 0.915+0.0747 0.942+0.0365 0.931+0.0402
DS4 0.902+0.0885 0.9307+0.0462 0.912+0.0476

datasets, HGCA outperforms SHGCA in terms of average
and standard error of NMI. This indicates that dividing chro-
mosome population into male and female subpopulations and
introduction of VCG based on gender attribute of chromosome
are beneficial to boosting clustering validity and stability of
GCAs.

3) Effectiveness of Mating Strategy: Mating strategy is the
core feature of HGCA, and it is necessary to empirically justify
its effectiveness in clustering performance improvement. To
this end, we replace mating strategy used in HGCA with
a traditional selection operator, i.e., roulette wheel selection
(RWS) [51]. Specifically, we use RWS to generate female
parents F and male parents M from current female subpopula-
tion and male subpopulation, respectively, and construct parent
chromosome pairs FMate in the order that they appear in F and
M. For instance, let M = {a, b, c,d, e} and F = {1, 2, 3,4, 5},
we have FMate = {(a, 1), (b, 2), (¢, 3), (d, 4), (e, 5)}. We call
this simplified HGCA SHGCA2. The experiment results are
given in Table XI. From Table XI, we can see that for all the
datasets, HGCA can discover much higher quality, in terms
of average and standard error of NMI, cluster patterns than
SHGCAZ2. The rationale is that SHGCA?2 cannot take mating
attractiveness between heterosexual chromosomes into con-
sideration while constructing potential crossover pairs, which
degrades its ability to search for optimal cluster structures from
datasets.

4) Comparison of Mating Prohibition Schemes: As an
important part of HGCA, mating prohibition schemes may
affect clustering quality. In this section, we conduct some
experiments to verify the impact of the three schemes NMP,
MPLR, and MPCR on clustering quality. From Table XII, we
can see that in terms of mean value of NMI, NMP is the best
on DS1, whereas MPLR performs the best on DS2, DS3, and
DS4, and MPCR is the best across all real-life datasets. This
means that none of the three schemes consistently performs

the best in improving clustering quality. The ability of mating
prohibition scheme to improve clustering quality depends on
the cluster structure of a dataset. Therefore, how to adaptively
select a good mating prohibition scheme is an important issue,
which belongs to our future work. On the other hand, when
examining the stability of the three schemes using standard
deviation (SD), we can see that MPCR is the most stable one,
followed by MPLR which is more stable than NMP. However,
we do not observe a similar trend on Iris and DS1 though.
This suggests that the stricter a mating prohibition scheme,
the more stable it will be.

5) Comparison of Mating Strategies: Mating strategies are
also very important to clustering quality of HGCA. According
to population diversity loss caused by the three mating strate-
gies, we can see that WBM-EMS is able to avoid premature
and achieve the optimal clustering result. And we have veri-
fied this through experiment results given in Table XIII, where
the mean values of NMI of WBM-EMS are the largest almost
on all datasets, except for DS1. Also, SD of NMI of the three
mating schemes shows that clustering stability of WBM-EMS
and UBM-EMS surpasses that of Greedy-EMS. Meanwhile,
by comparing WBM-EMS with UBM-EMS we discover that
although clustering quality of WBM-EMS is better than that of
UBM-EMS, the performance gain is marginal, and clustering
stabilities of both methods are roughly the same.

To provide better guidance for users to make a choice
among the three mating strategies, we also conduct detailed
experiments to investigate the time cost of the three strate-
gies. Table XIV compares the time costs of Greedy-EMS,
WBM-EMS, and UBM-EMS. From Table XIV, we can see
that in general, CPU time costs increase steadily for Greedy-
EMS, UBM-EMS, and WBM-EMS, and the gaps between
CPU time of Greedy-EMS, UBM-EMS, and WBM-EMS are
relatively small on datasets with easily discernable clusters
such as DS1. However, a noticeable gap in time costs occurs
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TABLE XIV
RUNNING TIME OF THE THREE MATING STRATEGIES

Dataset Greedy-EMS | UBM-EMS | WBM-EMS

Tris 16.24 17.49 18.71
Vowel 87.18 95.54 103.46
C-Cube 1519.93 1737.77 2386.92
20Newsgroups 3108.47 3576.55 4789.76
Letter 1886.25 2625.02 4205.49
Animal(PHOG) 2761.51 4874.27 8523.72

DS1 14.58 15.07 15.29

DS2 19.75 22.93 24.01
DS3 591.03 647.59 682.15
DS4 588.23 734.96 778.98

on datasets with fuzzy cluster boundaries such as C-Cube,
20Newsgroups, and DS4. Rationale to the above observation
is that the number of mating pairs with attractiveness greater
than threshold A decreases on high dimensional datasets, which
degrades the efficiency of UBM-EMS. Moreover, regardless of
which mating strategy we use, i.e., Greedy-EMS, UBM-EMS,
and WBM-EMS, the time cost of HGCA on larger datasets
such as Animal(PHOG) and 20Newsgroups is still a bit high.
Hence, improvement of the efficiency of HGCA is left in our
future work.

From the above discussion, we can see that it is tricky to
choose suitable mating strategy for a clustering task. However,
the experiment results suggest that it is more appropriate to
choose UBM-EMS, which can obtain good clustering results
without incurring high computational cost in most cases.

V. CONCLUSION

In this paper, we have presented a novel GCA to auto-
matically select the number of clusters K, and the generated
clusters are better than those produced by the state-of-the-art
methods. Our main finding is that traditional variable length
coding solution can incur an exponential time complexity due
to larger search space. Motivated by eugenic theory, our algo-
rithm uses harmonious mating and crossover operator to guide
the population into better convergence path and thus improves
clustering quality. We have conducted extensive experiments
to evaluate our novel method on real-life and artificial datasets,
and the results show that HGCA can divide the data into
meaningful clusters without knowing the number of clus-
ters in advance. We have also compared our algorithm with
some existing state-of-the-art algorithms, and the results con-
firm that our approach is more effective and efficient for data
clustering.

APPENDIX

Theorem 1: The length of newborn chromosomes produced
by VGC is variable with probability 1 —(2/max(|m|, | f]) — 1).

Proof: Without loss of generality, suppose x is a new-
born chromosome. From concatenation operation in step 2
of Algorithm 2, we can deduce that length of x is [x|] =
rm—+|f|—rf. If length of a newborn chromosome is equal, i.e.,
either |x| = | f] or |x| = |m| holds, then we have the following
two derivatives.

D x| =I[fl = x| = rm +|f| = 1f = rm =1f.

2) xl=Iml= x| =rm+|f|—1f = |ml—rm=|f|—1f.
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From derivatives 1) and 2), we conclude that both before and
after two random crossover points (rm, rf), the lengths of chro-
mosome segments are equal. And it is not difficult to find that
the probabilities of the occurrence of derivative 1) and deriva-
tive 2) are the same. Since the probability of the equation
rm = rf holds, due to

1

Prob(rm = rf) = Wlfl)—l

so we have

Prob((|x| = [fD U (Ix| = [ml])) max(ml 17D =1
Therefore, the length of a newborn chromosome is variable
with probability 1 — (2/max(|m]|, |f]) — 1). |

Theorem 2: The gender proportion of offspring gener-
ation generated by VGC operator is equal in probabil-
ity to the gender proportion of the chromosomes parent
generation.

Proof: Without loss of generality, let a and b be two chro-
mosomes of a parent generation, their corresponding clusters
satisfy |a] > |b|, and gene length of a new chromosome of
the offspring generation containing a be a’ € [1, |a| — 1] and
containing b be b’ € [1,|b| — 1]. According to the rule of
judging the gender of chromosomes of offspring generation
(step 3 of Algorithm 1), to prove Theorem 2 we have to prove
that the probability of being a’s gender is 0.5. In other words,
the probability of being b’s gender is 0.5. It is easy to find that
there is only one case for a chromosome to be the a’s gender,
based on which the probability is relatively easy to compute.
Therefore, we need to compute the probability of occurrence
of the event “a chromosome of offspring generation being da's
gender.”

We denote the probability of occurrence of the event a chro-
mosome of off-spring generation being d's gender by p,, the
probability of occurrence of the event “the gene length of the
chromosomes of off-spring generation” by p,~;, the probabil-
ity of occurrence of the event “the chromosome of off-spring
generation being d's gender, when a' > b’ for the gene length
of the chromosomes of offspring generation” by pyj.>1. Then
the above probabilities satisfy p, = pa>p X Paja'=b'-

According to the crossover rule in Algorithm 1, when the
event “a’ > b’ for the gene length of the chromosomes of off-
spring generation” happened, if a randomly generated number
re[l,2 x |a| — |b|] satisfies r < |a|, then the event the chro-
mosome of off-spring generation being d's gender happens,
i.e., we have the probability pgjs>p = (la| — 1/2 x |a|] — |b]).

Since @’ € [1, |a| — 1] and b’ € [1, |b| — 1], there are (|a| —
1)(|b| — 1) combinations of the gene length &’ and b’ of the off-
spring generation. Consider the gene length o’. Assume that
the other gene length of a chromosome a of parent generation
isd”’, then @’ = |a|—a”, which means that @’ > b’ is equivalent
to |a| —a’ > b/, ie., d is equivalent to |a| > a” + b'. The
possible combinations of ” and b’ are

po=1 a' €1, lal — 1]
=2 a’ e€[l,lal —2]

b =1|b—1 d" ell,lal— b+ 11.
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There are  ((|b] — D)(Jla| — 1+ |a| — |b| + 1)/2) =
()] — 1)(2 x |a| = 1b])/2) combinations in total.
Then we are able to compute the probability
Pazp = (16| = D@2 x |a| —1b))/2)/(lal — D(b| — 1)) =

(2 x |a] — |b]/2 x (Ja] — 1)), and then compute p,, which
S Pa = Pazp X Paazy = 2 la] = [bl/2 x (la] = 1)) x
(la] = 1/2 x |la| — |b]) = (1/2) = 0.5. In other words, the
gender proportion of offspring generation generated by VGC
operator is equal in probability to the gender proportion of
the chromosomes parent generation. |
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