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Abstract—How to tackle high dimensionality of data effectively
and efficiently is still a challenging issue in machine learning.
Identifying anomalous objects from given data has a broad range
of real-world applications. Although many classical outlier detec-
tion or ranking algorithms have been witnessed during the past
years, the high-dimensional problem, as well as the size of neigh-
borhood, in outlier detection have not yet attracted sufficient
attention. The former may trigger the distance concentration
problem that the distances of observations in high-dimensional
space tend to be indiscernible, whereas the latter requires appro-
priate values for parameters, making models high complex and
more sensitive. To partially circumvent these problems, espe-
cially the high dimensionality, we introduce a concept called
local projection score (LPS) to represent deviation degree of
an observation to its neighbors. The LPS is obtained from the
neighborhood information by the technique of low-rank approxi-
mation. The observation with high LPS is a promising candidate
of outlier in high probability. Based on this notion, we propose
an efficient and effective outlier detection algorithm, which is
also robust to the parameter k of k nearest neighbors. Extensive
evaluation experiments conducted on twelve public real-world
data sets with five popular outlier detection algorithms show
that the performance of the proposed method is competitive and
promising.

Index Terms—Dimension reduction, high-dimensional data,
k nearest neighbors (kKNN), low-rank approximation, outlier
detection.
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I. INTRODUCTION

ITH the advancement of emerging technologies, an
Wincreasing amount of data is becoming available in
real-world applications. Within the massive data, some of
them induce abnormal behaviors or patterns raised from a
variety of aspects including malfunctional hardware or mali-
cious activities. Such exceptional behaviors or inconsistent
patterns, also known as outliers, anomalies, abnormalities,
novelties, or deviants, do not comply with a well-defined
notion of normal behavior of the data [1], [2]. In reality, they
often exhibit as the representations of noises or interesting
facts, such as cyber-intrusion and terrorist activities, according
to different purposes [3].

Identifying outliers out from data is of great interest to the
communities of machine learning and data mining, because
it can reveal unusual behaviors, interesting patterns, and
exceptional events from data. Indeed, identifying or elimi-
nating outliers becomes an essential preprocessing stage in
data analysis [4]. For example, noise removal can improve
model performance, due to the fact that noises may dis-
turb the discovery of important information, while anomalous
access detection by examining access records in a firewall
at a time can help us to isolate intrusion from network
access.

Outlier detection (also known as anomaly detection) is a
process of unveiling unexpected observations that deviates
so much from the rest of the observations [5]. Since outlier
detection can bring significant benefits to decision analysis,
it has gained considerable interests in a variety of fields and
applied in a large number of domains, such as crime and ter-
rorist detection [6], fault debugging and diagnosis [7], network
intrusion, fraud discovery, medical and health monitoring, sig-
nal analysis, image processing, abnormal weather detection,
anomalous crowd behavior estimation, video surveillance, and
many other areas [1], [2], [8]-[10]. The broad diversity in
real-world applications reflects a fact that outlier detection is
a widely researched topic.

A large body of outlier detection methods have been devel-
oped. Technically, the procedure of detecting outliers consists
of two main stages: 1) outlier ranking and 2) determining,
where the former offers a ranking list of the observations,
each one with a score, based on given metrics. The obser-
vations with high scores rank on the top of the list, if a
larger value stands for a greater variant or anomalous degree.
The latter determines outliers according to the ranking list.
From this perspective, outlier ranking plays a core role in
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detection. Of these, outlier ranking and outlier detection are
two terms used most commonly in the literature; some-
times interchangeably. The outlier detection algorithms can
be roughly categorized into the following groups, such as
statistics-based, distance-based, density-based and clustering-
based methods [1]. Among these detection methods, the
distance-based and density-based detection ones has received
special attraction and extensively studied, due to the fact that
their notions are intuitive and can be easily implemented. The
rank-based detection algorithm (RBDA) [11] and the local out-
lier factor (LOF) [12] are typical examples of these two kinds,
respectively.

There are two main challenges needed to be further investi-
gated for outlier detection. The first one is the high dimen-
sionality of data. The high dimensionality may raise two
pervasive problems: 1) the so-called curse of dimension-
ality and 2) the distance concentration [13]. The former
refers to the fact that the size of observations grows expo-
nentially with the number of dimensions, making the data
sparse, while the latter indicates that the distance or den-
sity metrics fail to capture the neighborhood information,
because all distances between observations tend to become
indiscernible as the dimensionality increases. A common
strategy for the high-dimensional problem in machine learn-
ing is dimension reduction. For instance, Kasun et al. [14]
developed an efficient dimension reduction method by using
extreme learning machine. However, distinguishing out-
liers in a high-dimensional space from normal observa-
tions efficiently and effectively is still difficult. The second
challenge is that albeit their popularity, the distance-based
detection methods only concern global information and their
performance depends on the size of neighborhood, while the
density-based ones are sensitive to parameters defining the
neighborhood [1], [5].

In this paper, we make an attempt to address the above
problems by developing a novel, yet effective learning method
for outlier detection. The proposed method is motivated by
the simple notion that anomalous observations have higher
variances, and deviate from others greatly within the same
neighborhood information. To capture the degree of deviation,
a new metric called local projection score (LPS) is intro-
duced. It is mainly used to measure the degree of deviation
of each observation to the corresponding neighbors which are
projected into a low-dimensional space by dimension reduc-
tion. It should be pointed out that LPS not only takes local
information into account but also can handle high-dimensional
data without specifical requirements on the dimensionality.
This enables us to offer a guideline for ranking and deter-
mining outliers, where the observation having a large LPS
value is therefore a potential outlier with a high proba-
bility. Specifically, our method starts to identify k nearest
neighbors (kNNs) for each observation. The neighborhood
information is then projected into a low-dimensional space via
the technique of low-rank matrix approximation to estimate
LPS of the observation. Subsequently, all the observations are
ranked in a descending order according to their scores. Finally,
the observations with high scores are picked out and taken as
outliers.
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The main contributions of this paper are highlighted as
follows.

1) We propose a novel and effective outlier detection
method, which is capable of handling high-dimensional
data and robust to the parameter k of KNN.

2) Our method adopts a new anomalous score called LPS
to capture the deviation degree of an observation to its
neighbors. The score is consistent with the nuclear norm
of the neighborhood.

3) To obtain the anomalous score for each instance, the
technique of low-rank approximation is exploited. It
aims at projecting the high-dimensional neighborhood
into a low-dimensional space.

The rest of this paper is organized as follows. In Section II,
we briefly review previous research work on outlier detection.
Section III provides basic concepts used and the proposed out-
lier detection method. The experimental results of our method
with the comparing algorithms on real data sets are discussed
in Section IV, followed by the conclusions of this paper in
Section V.

II. RELATED WORK

Over time, a rich number of outlier detection algorithms
have been witnessed in several research communities. In
this section, only the latest work for outlier detection is
reviewed. More details can be found from good survey papers
(see [1], [2], [5]) and references therein.

The outlier detection techniques can be divided into differ-
ent categories, depending on criteria used. For example, like
the categorization of machine learning algorithms, the outlier
detection methods can be roughly classified into supervised,
semi-supervised, and unsupervised scenarios according to the
availability or unavailability of data labels [1]. The supervised
methods concern the data objects tagged with either normal
or abnormal labels, while in the semi-supervised context only
normal objects are labeled. For the unsupervised techniques,
the label information of data is unavailable. Since obtaining the
label information in reality is very expensive, the unsupervised
techniques are more widely applicable than the supervised
ones.

With the techniques adopted, the outlier detection algo-
rithms can be roughly classified as statistics-based, clustering-
based methods, distance-based, density-based, and so on [1].
The statistics-based detection methods, also named as model-
based methods, exploit the statistical property of data, i.e., the
normal observations can fit a statistical model well, while the
abnormal can not, to identify outliers [15], [16]. Most of earlier
studies belong to this kind. However, the underlying assump-
tion often does not hold true, especially, for high-dimensional
data in reality.

The clustering-based detection methods adopt the off-the-
shelf techniques of clustering to identify outliers from given
data, where the observations that do not belong to or close to
any dense or large clusters are regarded to be outliers [17]. To
some extent, the outliers are by-products of clustering. Note
that the clustering techniques are fundamentally different to
outlier detection, since the purpose of clustering is to identify
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clusters, not detect outliers. Thus, the efficiency and effective-
ness of detecting outliers with the clustering techniques are
relatively low.

The basic idea of the distance-based detection algorithms
is that an observation is likely regarded as an outlier if it
is far from its nearest neighbors. Essentially, this kind of
work first gets nearest neighbors for each observation, and
then estimates the distance of the observation to its neighbors.
Subsequently, the distances for all observations are ranked,
and the observations with larger distances are regarded as
outliers. Typical examples of such kind include RBDA [11]
and the local distance-based outlier factor (LDOF) [18]. Since
no assumption about the distribution of data is required,
the distance-based detection algorithms are extensively
studied.

The performance of the distance-based detection methods
greatly relies on the definition of distance and the search effi-
ciency of nearest neighbors. Several attempts have been made
on these aspects. In [19], the distance of an observation to
its kNN, i.e., the maximal distance, was used, while in [20]
the sum of the distances of an observation to its k neighbors
was calculated. Ha et al. [4] estimated the distance to the cen-
ter of gravity, which represents a geometric property of an
observation, of neighbors. Koufakou and Georgiopoulos [3]
discussed the distance definition on mixed type features of
data. Liu and Deng [21] extended the classical LOF to uncer-
tain data. Wang ef al. [22] exploited a minimum spanning
tree to improve the searching efficiency of neighbors in kNN.
Other work focuses on using of variants of kNN to improve the
performance. Recently, Huang et al. [23] adopted the notion of
natural neighbor to obtain the neighborhood information, while
Radovanovi¢ er al. [13] employed reverse nearest neighbors,
rather than nearest neighbors, to determine outliers.

A main challenge for the distance-like detection algorithms
is the high dimensionality of data [5], where the data is often
sparsely distributed and similar to each other, resulting in the
differences of the actual distances for many pairs of obser-
vations are small [2]. In other words, the distance of an
observation to its nearest neighbor is close to the distance to
its farthest neighbor as the dimensionality increases. Hence,
the discriminative effect of the distance-based techniques can
not be observed clearly, especially, in situations where the data
from a mixture of distributions have various degrees of cluster
density. In the literature, subspace learning [5], random sam-
pling [24], and feature selection [25], [26] are three frequently
used strategies to alleviate this problem. Additionally, since the
distances are calculated in terms of global information, instead
of local one, another problem of the distance-based methods
is that they can only identify global outliers and fail for local
ones.

The underlying principle of the density-based detection
approaches is that an outlier lies in a neighborhood with
low density, while a normal observation has a dense neigh-
borhood. Specifically, they first estimate the density of the
neighborhood for each observation, and then it is compared
with that of the densities of the neighbors of the observa-
tion. If the density considerably differs from that around its
neighbors, the observation can be declared an outlier. Due

to its effectiveness and simplification, this kind of detec-
tion approaches has been widely used in reality. LOF [12]
is a representative example of the density-based detection
methods. It takes use of a local density, estimated on reach-
able distance of kNNs, to measure a degree of being outlier.
After LOF was introduced, several variants of LOF have
been developed, including the connectivity-based outlier fac-
tor [27], the influenced outlierness [28], the local correla-
tion integral [29], and the local outlier probabilities [30].
Notwithstanding they are very popular in reality, like the
distance-based methods, the density-based ones are also based
on distance computations. They also encounter the same chal-
lenging problems raised from the high dimensionality of data,
where outlier scores are close to each other. To alleviate this
problem, the high contrast subspace (HiCS) [31] evaluates
and ranks outlier by using HiCSs. However, the density-
based methods are sensitive to parameters used to determine
the size of the neighborhood to be examined, and show
poor performance when the observations have a variety of
densities.

III. OUTLIER DETECTION WITH
LocAL PROJECTION

A. Low-Rank Approximation

How to deal with high-dimensional data is a still challenging
issue in the community of machine learning. A frequently used
solution in reality is to perform dimension reduction, which
projects a high-dimensional space into a low-dimensional one
by mapping techniques. There are several classical dimension
reduction techniques available, such as principle component
analysis, extreme learning machine [14], and linear discrim-
inant anaysis [32]. A popular reduction method is low-rank
matrix approximation, which seeks a reduced rank matrix to
approximately represent the original one [33].

Matrix rank is a fundamental and important concept in linear
algebra. It refers to the number of leading entries which corre-
spond to linearly independent rows or columns of the matrix.
On the other hand, the rank is the number of nonzero singular
values of the matrix. Suppose that the high-dimensional data
are arranged as the columns of a large matrix D € R™ ",
where n and m denote the numbers of observations and fea-
tures (variables), respectively. Considering the technique of
singular value decomposition (SVD), D can be decomposed
as follows:

D = USV’ (1)

where Ue R™" and Ve R™ are left and right
singular vectors, respectively. Se R is the diagonal
matrix consisting of singular values of D, ie, S =
diag{o1, 02,...,0,0,0, ..., 0}, where the singular values are
sorted in decreasing order, o1 > ... > o, > 0. Thus, the rank
of D is r, i.e., rank(D) = r and r < min{n, m}.

The rank is an effective tool to measure the sparsity of
matrix. The lower the rank, the more sparse the matrix. In
real-world applications, data are often generated from low-
dimensional spaces. Thus, the ranks of the corresponding data
matrices are low. However, noises raised from a variety of
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aspects lead to the data matrices with high rank. Hence, it is
necessary to remove noises from the high-dimensional data
matrices and recover the matrices with low rank for data
analysis.

Low-rank approximation is a versatile technique to represent
and recover data within low-dimensional subspaces from high-
dimensional ones. It aims to minimize the matrix discrepancy
between a high-dimensional data matrix D and its reduced
matrix D, i.e., seeking a low rank matrix D for D. Formally,
the mathematical model of low-rank approximation is to find
the matrix D within a low-dimensional subspace, such that the
following constraint is minimized [34]:

in [D—-D
rr]1_;n I ”F
S.t. rank(]_)) <t 2)

where | X||F = ,/); Zj xizj is the Frobenius norm of X. For
the optimization problem above, it is in general combinatorial
and known to be NP-hard. Thus, making the minimization
problem trackable by relaxing the constraint seems to be a
feasible solution. A popular strategy is to transform (2) into
the following convex optimization problem:

min DB,
st B, 3)

where ||D|, is the nuclear norm (also known as trace norm)
denoted as the sum of the top ¢ singular values of D, i.e.,
ID|lx = Z;zl o;. In a sense, getting the top ¢ singular values,
rather than all of them, aims to alleviate the effects of noises
and improve the robustness.

There are several effective solutions for the optimization
problem of (3), such as iterative thresholding, accelerated
proximal gradient, augmented Lagrange multipliers, and alter-
nating direction methods [35], [36]. To better understand the
idea, here we resort to the technique of singular value thresh-
olding (SVT) to solve the nuclear norm minimization problem
conveniently. It is noticeable that (3) has the same solution to
the following optimization problem:

1 - _
min =D —D|% + A|D].. 4)
D 2

For the optimization problem above, the following theorem
holds [36].

Theorem 1: The solution of (4) is D' = f.(D), where f; (D)
is the SVT operator on D, and f, (D) = Zle(o,- — )\)+uiviT.
oj, u; and v; are the ith singular value, left singular vector and
right singular vector of D, respectively. The function (x)4 is
a thresholding operator on x. It is zero if x < 0, otherwise x.

The above theorem serves as an important role in solving the
nuclear norm minimization problems. Based on the theorem,
we first exploit the technique of SVD to decompose D as
D = USV’, and then pick the singular values that are larger
than A, as well as the corresponding left and right singular
vectors. Without loss of generality, the top ¢ singular values
are larger than L. Afterward the obtained ¢ singular values
and the corresponding singular vectors are organized into a
reduced matrix as D = UIS,VtT. Consequently, the minimal
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Fig. 1. Nearest neighbors of A and B, where k = 3.

error of D to D is given by the singular values that have been
zeroed out in the process as [|[D — D| = Gt2+1 +-- + 02

where r is the rank of D.

B. Local Projection Score

As discussed above, a fundamental assumption underly-
ing the distance-based and the density-based outlier detection
methods is that they exploit neighborhood information of an
observation to determine whether the observation is an out-
lier or not. The sparser the neighborhood of the observation,
the higher probability of being outlier the observation. This
however, is consistent with the optimization problem of the
nuclear norm mentioned above. In fact, the nuclear norm
ID|l, = Y i_, 0; can effectively measure the divergence (or
information amount) of D, since each singular value o; refers
to a scale of D on the ith principle component, yielding the
projections of D onto the subspace spanned by the r singular
vectors of D.

Naturally, we exploit the nuclear norm as our anomalous
score to measure the divergence degree of neighborhood.
Given an observation x, its neighborhood information N (x)
typically comprise nearest neighbors of x. A/(x) can be
obtained by the off-the-shelf learning algorithms like kNN,
ie., N(x) = {x1, X2, ..., X¢}, where Xx; is the ith nearest neigh-
bor of x. For example, the nearest neighbors of A and B in
Fig. 1 are those points marked with solid circles and dashed
circles, respectively, if k = 3 is considered in KNN. It should
be pointed out that for the normal points, their neighbors are
close to each other tightly, whereas the outliers are far from
their neighbors.

To delineate such traits of data distributions, we adopt
the nuclear norm of neighborhood as our anomalous degree
called LPS

Ips(x) = [N ()]s (&)

Basically, the larger the Ips(x) is, the sparser the neighborhood
of x is. The specifical procedure of estimating Ips(x) con-
sists of four steps, i.e., solving the unclear norm minimization
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Fig. 2. Approximate probability density functions of the LPSs for the outlier
and normal points.

problem of (4); projecting A/ (x) into the low-dimensional sub-
space; obtaining the singular values and returning their sum
as the final result. Since A'(x) usually contains less observa-
tions, but with a moderate number of features, it is necessary to
project the neighborhood information into a low-dimensional
subspace. Performing dimension reduction aims at obtaining
a reliable distribution of neighborhood for x and relieving the
effects of noises within N'(x). On the basis of the projec-
tion, the anomalous degree Ips(x), i.e., the unclear norm of
N (x), is derived to measure the deviation degree of x to its
neighborhood N (x).

To better understand this idea, let us revisit the example
of Fig. 1 above. For each (outlier or normal) point, we cal-
culated its LPS based on its neighborhood information. The
mean LPSs of the outlier and normal points are 1.226 and
0.335, respectively. Their probability density functions are
approximately estimated and presented in Fig. 2. According
to the results, we know that the approximate probability den-
sity function of the outliers is significantly different to that
of the normal points. From this view, the LPS is an effec-
tive measurement to distinguish the outliers from the normal
points.

C. Local Projection-Based Outlier Detection

Based on the analyses above, we propose a novel outlier
detection method called local projection-based outlier detec-
tion (LPOD). The central idea of LPOD is the divergence
degree of neighborhood after projected into a low-dimensional
subspace. The implementation details of our detection method
is summarized in Algorithm 1. It comprises two major stages:
1) estimating LPSs and 2) determining outliers according to
the scores. Within the former stage, the neighbors of x are first
obtained by kNN, and subsequently are projected into a low-
dimensional subspace. Once the singular values are available,
the anomalous score Ips(x) of x is estimated.

Suppose that there are n observations represented by m fea-
tures within the data collection D. The time complexity of the
conventional kNN algorithm is O(kn?). If the search technique
of k-d tree is taken, the efficiency of kNN can be improved to
O(knlogn) [37]. For the optimization and projection problems,

Algorithm 1 LPOD
Input: The data collection D, the number of neighbors %,
and the number of outlier candidates s;
Output: The s desired outliers;
Pre-processing the data collection D;
For each observation xeD
Obtaining the nearest neighbors A/(x) of x via kNN;
Solving Eq. (4) on N(x) to extract principle compo-
nents;
Projecting N'(x) into the desired low-dimensional
subspace;
Calculating Ips(x) for x according to Eq. (5);
End For
Sorting local projection scores in a descending order;
Returning top s observations as desired outliers;

it needs to cost O(max(km?2, k*m)) time. Usually & is less
than m. Thus, the time complexity of the proposed method
is O(max(kn®, knm?)) in total. Nevertheless, LPOD can be
finished quickly when comparing to popular outlier detection
algorithms in our experiments.

Two parameters involved in LPOD are required to be
assigned appropriate values. The first one is the number of
desirable nearest neighbors, i.e., k (1 < k < n). As we know,
kNN is sensitive to noises if the value of k is too small.
Contrastively, when k is large, the probability density func-
tion of Ips(x) will be flat, making the identification of outliers
difficult. An empirical solution for determining the value of k
is cross validation [38]. The simulation experiments presented
in the next section show that assigning a value ranging from
five to ten to k is properly.

Another parameter of LPOD is the number of desirable
outliers, i.e., s. Since ground truth is usually unknown in real-
world applications, how many outliers exist within data is a
question. Given a data collection, the number of outliers can be
estimated empirically. Let y; and y, be Gaussian random vari-
ables represented outlier and normal data, respectively, where
v~ N(,ul,alz) and yp ~ N(uz,%z). Thus, the total data
distribution is their mixed one y = (1 — 6)y; + 6y2, where
6 €10, 1] and P(O = 1) = . As we know, y is still a Gaussian
variable. Under this context, ¢ can be approximately estimated
by using machine learning algorithms, e.g., expectation max-
imization. Once ¢ is available, the number of desired outliers
is determined as s = ne. For simplicity, s is often prespecified
as a const value (e.g., 20 or 50) in the literature.

IV. EXPERIMENTAL STUDY

To evaluate the effectiveness and efficiency of the proposed
method, we carried out a series of comparison experiments
with five popular outlier detection algorithms on twelve real-
world data sets. This section reports the details of experimental
settings and discusses the experimental results.

A. Experimental Settings

1) Experimental Data: The comparison experiments were
conducted on two synthetic data sets and 12 real-world data
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TABLE I
BRIEF DESCRIPTION OF EXPERIMENTAL DATA

Data sets Observations Variables Outliers
Ann-thyroid 7200 6 534
Banknote 1372 4 610
Diabetes 768 8 268
Digits 10992 16 1143
HAR 10299 561 1406
Tonosphere 351 34 126
Iris 150 4 50
Leukemia 72 7129 25
Ovarian 202 15154 40
Prostate 84 12600 25
Shuttle 58000 8 3511
Wine 178 12 48

sets, including Ann-thyroid, Banknote, Diabetes, Digits, human
activity recognition HAR, lonosphere, Iris, Leukemia, Ovarian,
Prostate, Shuttle, and Wine, with different types and sizes.
These data sets were frequently used in the literature to
test the performance of detection methods. All data sets,
except Leukemia, Ovarian, and Prostate, were downloaded
from the website of UCI Machine Learning Repository.!
The Leukemia, Ovarian, and Prostate data sets are avail-
able at the website of I’R Data Mining Department’s Dataset
Respository.?

Since the data sets above are originally used for classifica-
tion, in the literature, a commonly used strategy is to make a
technical trick on the data sets for outlier detection, where the
minor class in each data set is considered as outlier and the
remaining data as the normal ones. After reformulated, they
can be used to evaluate the performance of outlier detection
methods. For example, 610 observations with the “1” class
in the banknote data set were treated as outliers, while the
rest observations with the “0” class were the normal ones.
On the Wine and the Iris data sets, the observations with the
third class were considered as outliers. Since the third class
in Ann-thyroid involves most of the observations, it was taken
as normal and others were outliers. For the Shuttle data, there
are seven classes, and near 94% observations are labeled with
the first and fourth classes. Thus, the observations with the
first and fourth classes were regarded as normal and the rest
were outliers in the experiments. The same technical trick were
made on the other data sets.

Table I summarizes brief information of the data sets, where
the Observations, Variables, and Outliers columns denote the
total numbers of observations, variables and true outliers,
respectively. From this table, one may observe that the experi-
mental data sets vary from the quantities of outliers and differ
greatly in the sizes of observations and variables.

2) Evaluation Metrics: To make a comprehensive com-
parison, three performance evaluation metrics were adopted
in the experiments. They were precision (Pr), area under
receiver operating characteristic (ROC) curve (AUC) and rank
power (RP) [5]. The criterion of precision is frequently used
one to assess the performance of learning algorithms. It refers
to a ratio of the number of true outliers detected by an outlier

1 http://archive.ics.uci.edu/ml/
2http://datam.i2r.a— star.edu.sg/datasets/krbd/index.html
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detection algorithm over the total number of outlier candidates,
that is

Pr= (6)

k
s
where k is the number of true outliers found within s out-
lier candidates. This criterion is also called precision@k in
the literature, because s is fixed during the evaluation experi-
ments [2]. The ROC curve is a graphical plot of true positive
rate versus false positive rate. Since outlier detection methods
calculate anomalous scores for observations, AUC, a summary
statistic of the ROC curve, is also used to numerically evaluate
the performances of the outlier detection algorithms [24].

Both the precision and AUC criteria do not consider charac-
ters of outlier ranking. Intuitively, an outlier ranking algorithm
will be regarded more effective if it ranks true outliers in the
top while normal observations in the bottom of the list of
outlier candidates. Rank power is such this metric. Let k be
the number of true outliers found within s outlier candidates
achieved by an algorithm, and R(x;) be the rank of the ith
true outlier x; in the list. The rank power of the algorithm is
defined as

RP = w @)
2%y i R(xp)
For a fixed value of s, a larger RP indicates better performance.
Especially when the s outlier candidates are true outliers, RP
equals to 1.

3) Comparing Algorithms: In the experiments, the
proposed method, LPOD, is used to compare with five popular
and typical outlier detection algorithms, including LOF [12],
LDOF [18], LoOP [30], SOD [30], and HiCS [31]. As
discussed above, these detection algorithms stand for dif-
ferent outlier ranking techniques and have relatively better
performance, resulting in they are widely used in reality. For
example, LOF and LoOP are the density-based detection meth-
ods, LDOF is the distance-based detection algorithm, while
HiCS and SOD belong to the subspace-based outlier detection
techniques. More details of these outlier detection algorithms
are provided in the related work section or references therein.

The comparison experiments were carried out under the
framework of environment for developing KDD-applications
supported by index-structures,’ which implements the off-the-
shelf outlier detection algorithms. During the whole experi-
mental procedures, the parameters involved within the outlier
detection algorithms were assigned to default values or sug-
gested values in the literature. The evaluation experiments
were conducted on a Pentium IV, with a CPU clock rate of
1.7 GHz, 1 GB main memory.

B. Experimental Results and Discussions

1) Synthetic Data: To test the effectiveness of LPOD in
various scenarios, we used two synthetic data sets with dif-
ferent cluster patterns, densities and sizes. In each data set,
six outliers were located in nearby places of normal clusters
with different densities. The first synthetic data set consists of

3http://elki.dbs.iﬁAlrnu.de/
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Fig. 3. Outliers marked with triangle were ranked on the top by LPOD.
(a) Synthetic data 1. (b) Synthetic data 2.

515 observations grouped into two small clusters and one large
cluster distributed normally. The second one has 473 observa-
tions grouped into five clusters with different densities. These
two data sets involve the low density pattern problem and the
global outlier detection task. They were also used to verify the
performance of outlier detection algorithms in [22].

After the proposed method performed on the synthetic data
sets, the placed outliers were identified easily by LPOD. They
had the highest anomalous scores and ranked on the top in
the list. The results are provided in Fig. 3, where the trian-
gle points are the placed outliers identified by LPOD and the
accompanied number indicates its rank in the list. According
to the figure, it can be easily observed from Fig. 3 that the
proposed method can detect all outliers out by ranking them
on the top in the synthetic data sets.

2) Real-World Data: In the comparison experiments, we
first evaluated the performance of the outlier detection algo-
rithms with the precision criterion. Specifically, we first per-
formed the outlier detection algorithms on each data set, and
ranked the observations according to the corresponding scores.
Then we got top s (s = 20, 50, and 100, respectively) candidate

outliers. Among them, true outliers were counted to estimate
the precision.

Table II reports the precision (%) of outlier identification
achieved by the comparing algorithms when top s (s = 20,
50, and 100, respectively) outlier candidates were picked out.
In the table, the bold value indicates that the performance is
the best one among the comparing algorithms on the data set
(the same row). For example, our method achieved the best
performance, 70%, on the Iris data, when top 20 outlier can-
didates considered, that is, 14 true outliers were successfully
identified by LPOD. Since there are only 72 observations in
Leukemia, we only got 72 suspicious outliers at the final stage.
Thus, the result of the top 72, rather than 100, is given in
Table II. Similar case is to the Prostate data set, which has
only 84 observations.

From the experimental results, one may observe that com-
pared to the popular outlier detection algorithms, our method,
LPOD, has predominant performance to identify outliers. For
instance, LPOD achieved the best performance on ten data
sets when s = 20,50 and 100. For instance, LPOD iden-
tified 4 and 38 true outliers among the top 20 and 100
candidates on the Ann-thyroid data set, respectively, while
the others identified no more than 2 and 30 true outliers,
respectively.

On the HAR and Wine data sets, LPOD had relatively poor
performance. The reason is that the class distributions are
insignificantly different to each other, making outlier identi-
fication more difficult when using ANN. Thus, the methods
using local techniques, such as SOD and LDOF, had better
performance. Even so, LPOD was still superior to LOF, LDOF,
LoOP, and HiCS on the HAR data set significantly, and slightly
worse than SOD.

As discussed above, most of outlier detection methods first
rank suspicious observations according to anomalous scores
and then determine outliers based on prespecified conditions
or apriori knowledge. The precision criterion, which simply
measures how many true outliers have been identified, how-
ever, does not take the ranking aspect into account. A good
ranking method will rank true outliers on the top of the lists of
suspicious observations, and the higher the order, the better the
performance of ranking method. To measure the rank order of
true outliers, we also adopted the measurement of rank power
to validate the performance of the outlier detection methods.

Specifically, we performed the outlier detection methods on
each data set to rank the observations in a descending order
according to the corresponding ranking scores. Then we got
the top 50 suspicious outliers and estimated the value of rank
power for each detection method. Table IIl shows the rank
power of the top 50 (i.e., s = 50) outliers achieved by the
outlier detection algorithms with £k = 5 on the experimental
data.

The experimental results in Table III indicate that like the
criterion of precision, LPOD outperformed the popular detec-
tion methods on all data sets, except HAR and Wine. For
example, the rank power of LPOD on Leukemia was 0.67,
while the largest one of the popular detection methods was
0.44, which was achieved by LOF. It is noticeable that both
LPOD and SOD achieved relatively high values of rank power
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TABLE 1T
PRECISION (%) OF THE OUTLIER DETECTION ALGORITHMS ON THE EXPERIMENTAL DATA

Data set Top s LOF LDOF LoOP HiCS SOD LPOD
20 0.0 5.0 10.0 0.0 10.0 20.0
Ann-thyroid 50 12.0 6.0 18.0 2.0 30.0 30.0
100 19.0 12.0 17.0 13.0 30.0 38.0
20 10.0 5.0 0.0 5.0 10.0 10.0
Banknote 50 14.0 14.0 6.0 22.0 20.0 22.0
100 19.0 21.0 22.0 26.0 21.0 37.0
20 30.0 30.0 35.0 45.0 55.0 60.0
Diabetes 50 34.0 30.0 32.0 38.0 54.0 58.0
100 30.0 38.0 34.0 40.0 47.0 61.0
20 5.0 15.0 5.0 15.0 15.0 20.0
Digits 50 4.0 14.0 8.0 16.0 14.0 20.0
100 7.0 10.0 7.0 15.0 16.0 22.0
20 0.0 10.0 0.0 0.0 90.0 85.0
HAR 50 4.0 12.0 8.0 4.0 94.0 86.0
100 4.0 16.0 5.0 10.0 91.0 83.0
20 95.0 95.0 95.0 50.0 100 100
Ionosphere 50 94.0 82.0 88.0 54.0 100 100
100 81.0 65.0 74.0 37.0 86.0 95.0
20 30.0 15.0 35.0 25.0 60.0 70.0
Iris 50 28.0 28.0 28.0 28.0 50.0 62.0
100 30.0 32.0 28.0 32.0 37.0 49.0
20 45.0 45.0 45.0 35.0 40.0 75.0
Leukemia 50 38.0 34.0 36.0 34.0 40.0 46.0
72 34.7 34.7 34.7 34.7 34.7 34.7
20 20.0 15.0 20.0 45.0 25.0 45.0
Ovarian 50 30.0 24.0 26.0 32.0 30.0 44.0
100 31.0 23.0 26.0 20.0 31.0 35.0
20 25.0 35.0 30.0 50.0 80.0 80.0
Prostate 50 30.0 32.0 28.0 36.0 50.0 50.0
84 25.0 25.0 25.0 25.0 25.0 25.0
20 45.0 10.0 10.0 50.0 45.0 50.0
Shuttle 50 32.0 16.0 14.0 28.0 50.0 54.0
100 25.0 19.0 20.0 30.0 48.0 57.0
20 15.0 25.0 20.0 30.0 10.0 15.0
Wine 50 16.0 26.0 26.0 28.0 12.0 20.0
100 26.0 32.0 25.0 27.0 21.0 30.0
TABLE III

RANK POWER OF THE TOP 50 (1.E., s = 50) OUTLIER CANDIDATES

ACHIEVED BY THE OUTLIER DETECTION ALGORITHMS WITH k = 5

Data set LOF LDOF LoOP HiCS SOD LPOD
Ann-thyroid 0.16 0.09 0.17 0.29 0.09 0.34
Banknote 0.17 0.18 0.16 0.20 0.23 0.30
Diabetes 0.35 0.31 0.36 0.54 0.39 0.64
Digits 0.07 0.13 0.08 0.16 0.17 0.21
HAR 0.04 0.14 0.08 0.94 0.03 0.86
Ionosphere 0.94 0.93 0.92 1.00 0.58 1.00
Iris 0.29 0.29 0.30 0.48 0.28 0.63
Leukemia 0.44 0.40 0.43 0.37 0.40 0.67
Ovarian 0.27 0.23 0.25 0.30 0.42 0.44
Prostate 0.26 0.33 0.27 0.81 0.43 0.85
Shuttle 0.34 0.18 0.17 0.52 0.31 0.59
Wine 0.22 0.31 0.25 0.17 0.28 0.28

on Prostate, Ionosphere, and HAR, while the others had poor
performance. This implies a fact that there exists redundant
information at the aspect of dimensions within these data,
leading to good performance of the subspace-based detection
methods. As aforementioned discussion, the class distribu-
tions of Wine are insignificant different to each other. Thus,
LDOF had better performance than LPOD. Even so, LPOD
was still better than LOF, SOD, and LoOP on Wine. It should
be pointed out that LOF, HiCS, and LoOP had relatively poor
performance in most cases. As an example, the rank power of
HiCS on the lonosphere data was 0.58, which was the lowest
one, whereas the others were larger than 0.90.

Note that LPOD exploits kNN to get neighborhood infor-
mation for an observation, and the others also take use of kNN
as a basis to determine suspicious outliers. Thus, the value of
k may bring impacts on the outlier detection algorithms. To
testify the effects of k to the outlier detection algorithms, we
conducted additional experiments with different values of k
for the detection algorithms, and computed their correspond-
ing AUC values, respectively. Fig. 4 presents the varieties of
AUC values of the outlier detection algorithms with different
values of k, ranging from 5 to 50.

From the experimental results in Fig. 4, one may observe
that the number of nearest neighbors, k, had less impacts on
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Fig. 4. AUC of the outlier detection algorithms with different values of &, ranging from 5 to 50, of ANN.

the performance of our detection method, i.e., LPOD. Indeed,
the AUC values of LPOD on the nine data sets changed gently
along with & increasing. Although the AUC values of LPOD on
lonosphere and Ovarian changed decreasingly, they were not
the worst ones in comparing to the others. Roughly speaking,
our method tended to be stable when k reached 25 around.
Another interesting fact in Fig. 4 is that the AUC values of
LPOD were larger than those of the comparing detection algo-
rithms on the experimental data, except Ann-thyroid, HAR, and
lonosphere. Although SOD had the largest values of AUC on
the HAR, its performance changed greatly along with different
k on nine over twelve data sets, especially Banknote, Iris, and
Wine. In addition, k brought great effects to HiCS, that is, the
performance of HiCS heavily relied on the value of k. LoOP,

LDOF, and LOF had similar performance with respect to the
AUC values.

The performance of LPOD was stable when there are less
outliers in data, while the others were sensitive to the values
of k. As a matter of fact, the AUC values of the compar-
ing algorithms varied greatly on five over twelve data sets,
including Banknote, Iris, Leukemia, Prostate, and Wine, as k
increasing. On the rest data sets, their performance varied gen-
tly. The reason is that there are less outliers within these data
sets, resulting in the traditional outlier detection algorithms are
sensitive to the values of k.

Time complexity is an important aspect that should be
taken into consideration by an outlier detection algorithm
for its practicable applications. We made a relatively naive
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TABLE IV
TiME COST (S) OF THE OUTLIER DETECTION ALGORITHMS ON THE EXPERIMENTAL DATA

Data set LOF LDOF LoOP HiCS SOD LPOD
Ann-thyroid 3.18 3.47 3.18 58.07 63.97 0.27
Banknote 0.11 0.16 0.11 2.30 1.76 0.45
Diabetes 0.05 0.05 0.05 1.81 0.18 0.24
Digits 14.31 15.07 14.29 109.33 225.07 6.72
HAR 11.09 11.13 11.11 2138.77 11.79 3.54
Ionosphere 0.03 0.03 0.03 1.77 0.05 0.11
Iris 0.08 0.09 0.05 0.86 0.27 0.06
Leukemia 0.22 1.58 0.22 7650.75 0.41 8.52
Ovarian 35.25 114.66 35.33 38623.91 45.43 62.97
Prostate 5.13 32.58 5.02 18903.36 9.01 22.08
Shuttle 49.60 49.90 49.82 457.39 225.72 22.11
Wine 0.05 0.16 0.05 2.61 0.33 0.09
comparison of efficiencies of the outlier detection algorithms ACKNOWLEDGMENT

by estimating time costs elapsed during the comparison exper-
iments. Table IV records the elapsed time (s) of the outlier
detection algorithms on the experimental data, where k=5.
The run time in Table IV shows that comparing to the popu-
lar outlier detection algorithms, the efficiency of LPOD was
promising, although it was slower than LOF, LDOF, and
LoOP in several cases. For example, LPOD finished within
ten seconds on nine over twelve data sets. Additionally, the
efficiency of LPOD was significantly better than HiCS and
comparable to SOD in most cases. To some extent, the exist-
ing difference between LPOD and LOF is reasonable because
they adopt different versions of kNN, which take a major
role in the comparing algorithms from the view of time
cost.

V. CONCLUSION

In this paper, we develop an efficient and effective learning
method to identify outliers out from normal observations. The
main idea of the proposed method is to exploit local neigh-
borhood information of an observation to determine whether
it is an outlier or not. To capture the neighborhood informa-
tion exactly, a concept called LPS is introduced to measure
the anomalous degree of a suspicious observation. The obser-
vation with high LPS is a promising candidate of outlier in
high probability. Formally, the LPS is consistent with the
concept of nuclear norm and can be obtained by the tech-
nique of low-rank matrix approximation. Moreover, unlike
existing distance-based and density-based detection methods,
the proposed method is robust to the parameter k of kNN
embedded within LPOD. To demonstrate the effectiveness
of our proposed method, we performed a comprehensive
experiment with five popular outlier detection algorithms
on a number of public real-world data sets. The experi-
mental results of the numerical comparison show that the
LPS is good at ranking the best candidates for being out-
liers, and the performance of LPOD is promising at many
aspects.

Since LPOD exploits kNN to get neighborhood informa-
tion, its efficiency relies on kANN and its performance will be
affected by the distance formulation of kNN to some extent. In
our future work, we will take these aspects into consideration
and extend LPOD to the scenarios of big data.

The authors would like to thank the anonymous refer-
ees and the associate editor for their valuable comments
and constructive suggestions, which have improved this paper
greatly.
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