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Abstract

In this paper, we propose conducting Robust Graph
Dimensionality Reduction (RGDR) by learning
a transformation matrix to map original high-
dimensional data into their low-dimensional intrin-
sic space without the influence of outliers. To
do this, we propose simultaneously 1) adaptively
learning three variables, i.e., a reverse graph em-
bedding of original data, a transformation matrix,
and a graph matrix preserving the local similari-
ty of original data in their low-dimensional intrin-
sic space; and 2) employing robust estimators to
avoid outliers involving the processes of optimiz-
ing these three matrices. As a result, original data
are cleaned by two strategies, i.e., a prediction of
original data based on three resulting variables and
robust estimators, so that the transformation matrix
can be learnt from accurately estimated intrinsic s-
pace with the helping of the reverse graph embed-
ding and the graph matrix. Moreover, we propose
a new optimization algorithm to the resulting ob-
jective function as well as theoretically prove the
convergence of our optimization algorithm. Exper-
imental results indicated that our proposed method
outperformed all the comparison methods in terms
of different classification tasks.

1 Introduction

The development of modern technology makes high-
dimensional data be obtained easily. Usually, high-
dimensional representation is available to accurately char-
acterize the data and enough training samples are able to
output robust models [Li er al., 2015]. However, the s-
tudy of high-dimensional data often has to face the issue of
curse of dimensionality [Chen et al., 2013], while outlier-
s may make the constructed model deviate to the real mod-
el [Rousseeuw and Leroy, 2005; Huber, 2011]. Hence, it is
very necessary to reduce the dimensions of high-dimensional
data and relieve the influence of outliers for dealing with
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high-dimensional data [Saeys et al., 2008; Nie et al., 2010;
Zhang et al., 2006].

Based on the assumption that high-dimensional data have
low-dimensional intrinsic space, dimensionality reduction
has been designed to handle high-dimensional data via re-
ducing the dimensions of original data. Common dimension-
ality reduction methods include feature selection and sub-
space learning. Feature selection is designed to find a subset
of all features to best represent all the features through pre-
defined search criteria, while subspace learning maps high-
dimensional data to their low-dimensional space so that the
resulting low-dimensional data can reflect essential struc-
tures of original high-dimensional data. To our knowledge,
a few previous methods were designed to consider the in-
fluence of the samples, i.e., ignoring the distribution of dif-
ferent samples, for conducting dimensionality reduction. As
a result, outliers may affect the performance of dimension-
ality reduction models [Nie ef al., 2010; Zhu et al., 2014a;
Zhu et al., 2016].

Manifold learning is one of the most popular methods of
subspace learning, which usually involves two steps for con-
ducting dimensionality reduction [Roweis and Saul, 2000].
Specifically, a graph matrix (such as a sparse k Nearest Neigh-
bor (kKNN) graph) measuring the local or global similarity of
the samples is firstly built on original high-dimensional space,
and then is conducted an eigenvalue decomposition to obtain
the low-dimensional subspace of original high-dimensional
data. Difference among manifold learning methods lies in
the construction of the graph matrix [Zhu et al., 2014b; Zhu et
al.,2017al. A lot of existing manifold learning methods con-
struct the graph matrix on original high-dimensional space,
which often contains redundant features and easily leads to
the issue of curse of dimensionality. The constructed graph
matrix is certainly inaccurate. On the other hand, the goal
of these existing manifold learning methods is to preserve
the local or global similarity of original high-dimensional s-
pace which cannot stand for the real similarity of the data due
to the impact of outliers or redundancy [Zhu et al., 2017c;
Zhu et al., 2018]. As a consequence, the resulting similarity
is also inaccurate.

In this paper, we propose a Robust Graph Dimensionality
Reduction (RGDR) method by simultaneously 1) adaptive-
ly learning three matrices, i.e., the reverse graph embedding
of original data, the transformation matrix mapping original
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high-dimensional data into their low-dimensional space, and
the graph matrix preserving the local similarity of original
data in their low-dimensional intrinsic space; and 2) employ-
ing robust estimators to assign small weights to outliers and
large weights to important samples so that avoiding outliers
involving the processes of learning three matrices. Specifical-
ly, robust estimators assign the samples with large estimation
errors (i.e., outliers) small or even zero weights and the sam-
ples with small estimation errors large weights to avoid the
impact of outliers. Original data are estimated by the multi-
plication of the reverse graph embedding and the transforma-
tion matrix under the helping of the similarity matrix, so that
the similarity matrix is estimated ont the refined original data
to output high-quality transformation matrix.

Compared with previous dimensionality reduction method-
s, our proposed method has the following contributions:

e It learns both the transformation matrix and the graph
matrix on the intrinsic space which is constructed by
the refined original data. It is noteworthy that pre-
vious manifold learning methods [Zhu er al., 2017b;
He er al., 2006; Belkin and Niyogi, 2003] were pro-
posed to construct a fixed or dynamic graph matrix to
measure the similarity using original high-dimensional
data to easily result in inaccurate similarity measure.

e It cleans original data through two strategies. The first
cleaning is to use the reverse graph embedding and the
transformation matrix to predict original data so that
forming a new space where noise and redundancy are
removed. The second cleaning is to employ robust
estimators to relief the influence of outliers for con-
structing dimensionality reduction models. By contrast,
a lot of existing dimensionality reduction methods do
not consider to avoid the influence of outliers, and on-
ly a few of previous methods [Nie er al., 2014; Li er
al., 2017] considered either of these two strategies for
conducting dimensionality reduction [Mao et al., 2015;
Peng and Fan, 2017].

2 Approach

In this paper, we use boldface uppercase letters and bold-
face lowercase letters, respectively, to denote the matrices and
vectors. For a matrix X = [x; ], its i-th row and j-th column
are denoted as x* and X;, respectively, and its Frobenius norm

2
>.i 2 x; ;- Furthermore, we de-

note the transpose, the trace, and the inverse, of a matrix X,
as X7, tr(X), and X!, respectively.

is denoted as ||X]||r =

2.1 Reverse Graph

High-dimensional data in many real-world applications have
been shown to contain low-dimensional intrinsic structures
[Roweis and Saul, 2000; Tenenbaum et al., 2000], such as
teapot image analysis [Weinberger and Saul, 20061, facial ex-
pression image analysis [Song et al., 2007], and human can-
cer analysis [Greaves and Maley, 2012]. Specifically, existing
manifold learning methods (e.g., [Belkin and Niyogi, 2003;
Roweis and Saul, 2000]) were designed to obtain a graph ma-
trix A € R™ " from original data X = [xy, ..., X,] € RP*"
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(where D and n is the number of features and samples, re-
spectively) through two sequential steps: 1) calculating the
similarity between two samples, and 2) keeping the similar-
ity between two samples if each of them is one of kNNs of
the other; otherwise, their similarity is set to zero. After ob-
taining the graph matrix, the following objective function was
used to learn the transformation matrix U € R4*P:

min Z aiyjHUxi — UX]H§ (])

U,uTu=I1 i,j=1

where d (d < D) is the dimensions of intrinsic space
of original high-dimensional data, I is an identity matrix,
and Ux; is the prediction of the i-th sample x;. Recent-
ly, instead of learning a fixed graph matrix, existing litera-
tures were designed to simultaneously learn the graph ma-
trix S and the transformation matrix U [Du and Shen, 2015;
Nie et al., 2016].

In Eq. (1), the similarity a; ; between the i-th sample x;
and the j-th sample x; is learnt from original data matrix X,
which, however, often contains outliers and redundant fea-
tures and thus the similarity matrix A may not reflect the real
similarity measured on the intrinsic structure of the data. To
address this issue, Mao et al. proposed to use reverse graph
embedding to uncover the intrinsic structure of the data be-
fore dimensionality reduction [Mao ef al., 2015]. Specifical-
ly, they assumed that there exists a low-dimensional intrinsic
space, where the new representation of X in the intrinsic s-
pace is denoted as Z € R?*™ via the transformation matrix
W € RP*4, Thus Eq. (1) can be transferred to the following
objective function:

: 2
w5z, (W= Wl @

There are at least two distinguished differences between
Eq. (1) and Eq. (2).

Firstly, in Eq. (2), original data X are refined by WZ, so
‘W is the transformation matrix from Z to WZ, where WZ is
an estimation of X.. Such an estimation is available to remove
the noise of X. It is noteworthy that U is the transformation
matrix from X to UX, where the goal of U is to learn the new
representation of X in their low-dimensional intrinsic space.

Secondly, the graph matrix A in Eq. (1) is learnt from o-
riginal data, whose noise and outliers may degrade its quality.
Moreover, the graph matrix A is fixed, i.e., learning from o-
riginal data independent on the learning of the transformation
matrix. However, the graph matrix S in Eq. (2) is learnt from
the intrinsic space of original data, i.e., preserving the simi-
larity of refined original data and dynamically adjusted by the
update of other variables e.g., W. Even given a random ini-
tialization S, it can be adaptively updated to its optimization
during the dynamically updated processes of all the variables.
By contrast, a bad A will affect all the results of dimensional-
ity reduction. Obviously, the graph matrix S in Eq. (2) should
be better than A in Eq. (1).

Although Eq. (2) has been shown to have distinguish ad-
vantages over previous state-of-the-art dimensionality reduc-
tion methods [Mao et al., 2015]. However, the influence of
outliers should be further relieved as the outliers may result
in refined original data deviating to the ideal one.
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2.2 Robust Dimensionality Reduction

Instead of learning a fixed graph matrix in previous manifold
learning methods, in this paper, we propose to employ ro-
bust estimators to adaptively learning a reverse graph embed-
ding, a transformation matrix, and a graph matrix in a uniform
framework via the following objective function:

i X - WZ
woamn o1(]] )

n n
A D syoa([Wai = Wayl) 0 sl )
i,j5= i=
s.t. Z SZ-T]. = 1, Sii = O7 Sij Z 0
i=1
where ¢; and ¢, are predefined robust estimators [Huber,
2011], all the elements of the column vector 1 € R"*! are

1. The constraint > s71 = 1 in S enables to result in shift
i=1
invariant similarity and the constraint ||s; |3 avoids the trivial
solution.
In Eq. (3), the graph matrix S is adaptively optimized
with the updated W and Z, so the graph matrix is dynami-
n

cally obtained. Moreover, the constraint “Y" s71 =1,s;; =
i=1

0,s;,; > 0” makes different rows have different number of

nonzero elements, i.e., different samples have different num-

bers of nearest neighbors.

In order to avoid the impact of outliers, the most common
way is to predefine robust estimators which regard the sam-
ples with large estimation error as outliers and thus assign
them small or even zero weights to reduce their influence
for dimensionality reduction. Traditional robust estimators
include maximum likelihood type estimator, linear combi-
nations of order statistics, estimator based on rank transfor-
mation, repeated median, and estimator using the least me-
dian of squares, and so on [Huber, 2011; He et al., 2014;
Nikolova and Ng, 2005].

2.3 Objective Function

According to the literatures [Nikolova and Ng, 20031, if a
differentiable function ¢(t;) for a constant ¢; satisfies the fol-
lowing four conditions:

o(t;) > 0;
$(0) = 0;
6(t:) = H(—t:); @

o(t:) > 6(t;) forlts] > 1]

t; is not equivalent to ¢;, then the optimization of the variable
t = [t1,...,t,] in the above function ¢(t) can be optimized
by

min 350, ¢(t:) < min 33, ptf + ¥(p) (5)

where 1 (p) is the conjugate function of ¢(t). Specifically,
the optimization of a differentiable function ¢(t) can be trans-
ferred to adaptively optimize this variable t = [¢1, ..., t,] and
an auxiliary variable p by taking the efficiency of the opti-
mization process into account. To do this, ¥)(p) can be either
an explicit function or an implicit function, as we only need
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to know the minimization function §(t) of ¢)(p) while opti-
mizing p [He et al., 2014].

In this paper, for simplicity, we use the following robust
estimator and the corresponding minimization function to re-
place both ¢4 (z) and ¢5(z), i.e.,

After replacing ¢1(z) and ¢2(x) by Eq. (6) and following
Eq. (5), we transfer Eq. (3) to our final objective function as
follows:

i 3 bil|x; — Wz[3
s WENL 7 0.0 2 Pl — Wil
A Y sijeillWz — W3
=t n (7
+9(b) +9(C) + o ; |3

s.t. Z SzT]' = 1,81‘71' = O,Si,j > 0
i=1
where b € R"*! and C € R™*", respectively, are an auxil-
iary vector and an auxiliary matrix.

According to results of b and C based on literature [He et
al., 2011] and our objective function in Eq. (7), the values
of b and C, respectively, are related to the residuals of (x; —
Wz,;) and (Wz;—Wz;). Specifically, if the residual is large,
the weight will be small or even zero. In this way, outliers
(usually with large residual) can be relieved or even removed
from the construction of dimensionality reduction models.

2.4 Convergence Analysis
By denoting the objective function value of Eq. (7) as
J(W,S,Z,b,C) and the #-th iteration of the variables as
Wi, St, Zt, bt, Ct, we prove the convergence of our pro-
posed method as follows.

Based on the literature [Nikolova and Ng, 2005] and fixing
Witl Stt+l 7Zt+1 and Ct+1, we have

J(Wt—H, St+1’ Zt-i—l7 bt+1, Ct+1)
S J(Wt+17 St+1, Zt—i—l7 bt’ CH—I) (8)

While fixing Wit!, St+1 Z!+1 and b?, we have

J(Wt—O—l’ St—',—l7 Zt+1, bt, Ct+1)
S J(Wt—H, St+l, Zt—i—l7 bt, Ct) (9)

When StT1, Witl bt and C* are fixed, it takes a closed
form solution with respect to Z, so we have

J(Wt+1, St+17 ZH'l, bt, Ct)

S J(Wt“,St“,Zt,bt,Ct) (10)

We optimize W by an eigenvalue decomposition, obvious-
ly, we have

J(Wt—o—l’ St—i—l7 Zt, bt, Ct)

S J(thst+1,zt’bt’ct) (11)

While fixing Wi, Z!, b and C?, it takes a closed form
solution for S, so we have

J(WH, Stt+1 Zt b?, Ct)

S J(Wt7st,zt7bt’ct) (12)
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Datasets Samples | Dimensions | Classes
Usps 1000 256 10
Lung 73 325 7

Ionosphere 351 34 2
Chess 3196 36 2

Table 1: The information of used datasets.

By combining Eq. (8), Eq. (9), Eq. (10), Eq. (11) with Eq.
(12), we have:

J(Wt+1 St+1 Zt+1 bt-l—l Ct+1)
< J(Wt, St Z’t bt bt) ’ (13)

3 Experimental Results

We evaluated our proposed method RGDR by comparing
with one baseline method and four state-of-the-art dimension-
ality reduction methods on four public datasets in term of t-
wo different classification tasks, i.e., binary classification and
multi-classification.

3.1 Experimental Settings

We downloaded two binary-class datasets and two multi-class
benchmark datasets from public website and listed their de-
tails in Table 1.

The comparison methods included a Baseline method, two
subspace learning methods, and two feature selection meth-
ods. Baseline used all features to conduct classification with
Support Vector Machine (SVM). Two feature selection meth-
ods included a filter method Laplacian Score (LS) [He et al.,
2006], and a embedded method General Sparsity Regularized
(GSR) [Peng and Fan, 2017]. Two subspace learning meth-
ods included Convex Sparse Principal Component Analysis
(CSPCA) [Chang et al., 2016], and dimensionality reduction
via Graph Structure Learning (GSL) [Mao et al., 2015].

We employed the 10-fold cross validation method to con-
duct experiments for all the methods. Specifically, in each
experiment, we firstly used every dimensionality reduction
method to reduce the dimensions of the training data, and
then conducted classification using SVM on the reduced data.
In each experiment, we partitioned the whole dataset into ten
subsets where 9 subsets were used for training and the left one
subset was used for testing. During the training process, we
used a 5-fold cross validation method to conduct model selec-
tion. In model selection, we set parameters of all the compar-
ison methods by following their corresponding literature and
set the parameter A in our method as {102,107, ..., 10%},
and selected the parameters’ combination with the best per-
formance for testing. We repeated each experiment ten times
and reported the final results as the average of all ten times.

We evaluated all the methods using classification accura-
¢y (ACC) for both binary classification and multi-class clas-
sification. We also employed other three evaluation metrics
(such as sensitivity (SEN), specificity (SPE) and Area Under
Curve (AUC)) to evaluate the performance of binary classifi-
cation of all the methods.

3.2 Experimental Analysis

We analyzed the classification results of both multi-class clas-
sification and binary classification of all the methods. We also
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explained the parameters sensitivity and convergence of our
proposed method on all four real datasets.

Multi-class Classification

We conducted dimensionality reduction on high-dimensional
data to output a part of all the features (i.e., 20%, 40%, 60%,
and 80% of all the features) to evaluate the classification re-
sults of all the methods. We reported the resulting classifica-
tion accuracy in Figure 1.

Firstly, our RGDR achieved the best classification perfor-
mance, followed by GSL, GSR, CSPCA, LS, and Baseline.
For instance, our method improved on average by 2.49% and
7.20%, respectively, in term of classification accuracy, com-
pared to the best comparison method (i.e., GSL) and the worst
comparison method (i.e., Baseline). The possible reason may
be the advantages of both reverse graph embedding and ro-
bust estimators. Specifically, the methods (such as GSR and
GSL) took one of them into account, so they outperformed
other comparison methods. Moreover, our proposed method
outperformed all the methods by considering both of these
constraints. It indicated that it is reasonable for considering
the reverse graph embedding from dimensionality reduction
which has been concluded in [Mao et al., 2015], and taking
robust estimators into account for avoiding the influence of
outliers for data analysis which has been demonstrated in a lot
of literatures e.g., [He et al., 2014; Nikolova and Ng, 2005;
Black and Rangarajan, 1996].

Secondly, different numbers of kept features outputted d-
ifferent classification performance. In some cases, the clas-
sification results of some dimensionality reduction method-
s were worse than Baseline which used all the features to
conduct SVM classification. This is because some useful
features may be removed while reducing the dimensions of
high-dimensional data. However, dimensionality reduction
in these cases is still necessary as reduced data may improve
the computation efficiency and reduce store cost [Peng and
Fan, 2017; Zhu et al., 2017b; Nie et al., 2014]

Binary Classification
We reported the classification results of binary classification
of all the methods on two real datasets in Table 2.

Similar to the results of multi-class classification, our pro-
posed method still achieved the best classification perfor-
mance in term of four evaluation metrics, followed by GSL,
GSR, CSPCA, LS, and Baseline. More specifically, our pro-
posed method improved on average by 2.3 %, 1.4%, 3.5%,
and 2.3%, respectively, in term of classification accuracy, sen-
sitivity, specificity, and AUC, compared to the average of all
the comparison methods. This contributed to the fact that our
proposed method simultaneously considered two strategies to
remove noise and redundancy of original high-dimensional
data, while other methods either did not take any one into ac-
count or only considered one of them. This verified again that
it is reasonable to simultaneously consider the reverse graph
embedding and the influence of outliers for dimensionality
reduction.

Parameters Sensitivity
Our objective function in Eq. (7) has two parameters to be
tuned, i.e., A and o. Based on the literature [Nie et al., 2016],
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Datasets Ionosphere Chess
ACC  SEN SPE AUC | ACC  SEN SPE AUC

Baseline | 0.8474 0.9244 0.7378 0.7200 | 0.9203 0.9181 0.9227 0.9521
LS 0.9402 09733 0.8810 0.8967 | 0.9537 0.9617 0.9450 0.9913
GSR 0.9430 0.9778 0.8810 0.8993 | 0.9596 0.9599 0.9594 0.9925
GSL 0.9459 0.9778 0.8889 0.8514 | 0.9615 0.9599 0.9633 0.9930
CSPCA | 0.9430 0.9733 0.8889 0.8851 | 0.9603 0.9587 0.9620 0.9931
RGDR 0.9544 0.9822 0.9048 0.8828 | 0.9637 0.9623 0.9653 0.9934

Table 2: Classification results of multi-class classification on two real datasets.

< . " —=—Baseline < 0.80 x"
0.89 ---LS .
i ---GSR
GSL 0.75¢°
0.87 /. CSPCA
r&' *RGDR
0.7
20 40 0 80 %0 40 0 80
The selected features(%) The selected features(%)
(a) Usps (b) Lung
Figure 1: Classification accuracy of all the methods on two multi-class datasets.
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Figure 2: ACC results of our proposed method for different values of the parameter A on all datasets.
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Figure 3: The variations of the Objective Function Values (OFV) of our proposed method on all the datasets.
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the value of o can be worked out. In this section, we var-
ied the values of \ with the range of {1072,107%,...,10%}
to investigate the variations of the classification accuracy of
our method while keeping the left features as 80% of all the
features. We listed the results on four datasets in Figure 2.
From Figure 2, our method was not sensitive to the pa-
rameter setting. For example, the classification accuracy only
changed about 2% on the datasets such as Usps, lonosphere,
and Chess. It indicates the robustness of our proposed method
on both multi-class classification and binary classification.

Convergence Analysis

We proposed a new method to optimize our proposed ob-
jective function Eq. (7) and theoretically proved its conver-
gence. We experimentally verified the convergence of objec-
tive function by investigating the variations of the objective
function values of Eq. (7) at different iterations. We report-
ed the results on all the datasets in Figure 3 while setting the

. _ B 2
stop criteria of our algorithm as H”b](ttlb)—o’”% < 1075,
7 (t)

where obj(t) is the objective function value of Eq. (7) in the
t-iteration.

From Figure 3, we had at least two observations: 1) the
proposed algorithm sharply decreased the objective function
values in the first several iterations and then began to stable;
and 2) objective function converges within tens iterations on
all the datasets. These conclusions indicated that our method
had solved the proposed objective function in Eq. (7) and
achieved fast convergence.

4 Conclusion

This paper has proposed a novel robust graph dimensionality
reduction method using two strategies to remove the influ-
ence of noise and outliers in original high-dimensional da-
ta. Specially, the reverse graph embedding strategy makes
the transformation matrix to be constructed from the low-
dimensional intrinsic space, while robust estimators avoid the
learning of three matrices (such as the reverse graph embed-
ding, the transformation matrix, and the graph matrix) to be
involved by the outliers. Experimental results demonstrated
the effectiveness and robustness of the proposed method for
two kinds of classification tasks, compared to the state-of-the-
art dimensionality reduction methods.
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