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The K Nearest Neighbor (kNN) method has widely been used in the applications of data mining and machine
learning due to its simple implementation and distinguished performance. However, setting all test data with
the same k value in the previous kNN methods has been proven to make these methods impractical in real
applications. This article proposes to learn a correlation matrix to reconstruct test data points by training
data to assign different k values to different test data points, referred to as the Correlation Matrix kNN
(CM-kNN for short) classification. Specifically, the least-squares loss function is employed to minimize the
reconstruction error to reconstruct each test data point by all training data points. Then, a graph Laplacian
regularizer is advocated to preserve the local structure of the data in the reconstruction process. Moreover,
an �1-norm regularizer and an �2,1-norm regularizer are applied to learn different k values for different test
data and to result in low sparsity to remove the redundant/noisy feature from the reconstruction process,
respectively. Besides for classification tasks, the kNN methods (including our proposed CM-kNN method) are
further utilized to regression and missing data imputation. We conducted sets of experiments for illustrating
the efficiency, and experimental results showed that the proposed method was more accurate and efficient
than existing kNN methods in data-mining applications, such as classification, regression, and missing data
imputation.
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1. INTRODUCTION

Classification is one of most important research topics in data mining (especially for
big data mining) [Sun and Reddy 2013; Wu et al. 2014, 2015; Zhu et al. 2016b; Li et al.
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2015]. The main task of classification is to predict the labels of test data points by in-
ducing all training data points. Over the past few decades, a great many classification
methods have been developed in real applications [Luo et al. 2016; Zhu et al. 2016a; He
et al. 2016; Li et al. 2016], among of which k Nearest Neighbors (kNN) classification
has been regarded as one of the top 10 data-mining algorithms [Wu et al. 2008], due
to its simplicity and efficiency. Thus the kNN method has been successfully developed
in data-mining applications, such as classification, regression, and missing value im-
putation. The key idea of a standard kNN method is to predict the label of a test data
point by the majority rule, that is, the label of the test data point is predicted with the
major class of its k most similar training data points in the feature space [Cheng et al.
2015].

As is well known, kNN classification has at least two open issues to be addressed
[Zhang 2010; Zhu et al. 2007], that is, the similarity measurement between two data
points and the selection of the k value. Many methods have been proposed to address
the first issue, such as Euclidean distance, Mahalanobis distance, and Minkowsky
distance and their variants. The common conclusion of the first issue is that different
applications need different distance measurements [Qin et al. 2007; Zhang et al. 2006;
Zhu et al. 2011]. Accordingly, this article focuses on the second issue, that is, the
selection of k value by simply employing Euclidean distance to calculate the similarity
(or distance) between two data points.

Previous kNN classification methods select the k value by either setting a fixed
constant for all test data or conducting cross-validation to estimate the k value for each
test data point. This often leads to low prediction rate in real classification applications
due to the fact that these methods do not give a consideration to the distribution of the
data [Qin et al. 2007; Zhang et al. 2006]. We illustrate this issue by using two examples
in Figures 1 and 2.

In Figure 1, by setting k = 5 for the whole problem space, two test data points are
assigned to positive class according to the majority rule. From the distribution, k =
5 is suitable for predicting the label of the left test data point, but unsuitable for the
right one. The right test data point should be predicted to negative class. This can be
carried out with k = 3. It indicates that different test data points should take different
numbers of nearest neighbors.

For a similar scenario of regression (or missing value imputation) in Figure 2, it
is reasonable to take k = 3 and k = 2 for the left test data point and the right one,
respectively. This scenario also indicates that different test data points should take
different numbers of nearest neighbors in real kNN prediction applications. It says
that setting k as a fixed constant for all test data points (the whole problem space) can
often lead to low prediction rates in real classification applications.

This article proposes a new kNN method by extending our conference version in
Zhang et al. [2014]1 to address the above issue. This proposed method, referred to
as the Correlation Matrix kNN (CM-kNN for short), is devised to learn different k
values for different test data points by following the distribution of training data. The
goal of our proposed method is to make the best use of prior knowledge inherent in
training data, including the correlation among data points, the removal of noisy data,
and the preservation of the local structures of the data. Specifically, we first design
a reconstruction process between training data and test data to obtain the k value of

1Compared to our conference version in Zhang et al. [2014], we have improved the abstract and introduction,
added the newly literatures to the related work, rearranged the GS-kNN method [Zhang et al. 2014], and
added three comparison methods and 12 real datasets to the experimental part to examine the robustness
and scalability of the proposed approach.
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Fig. 1. Binary classification using the kNN method with a fixed k value, that is, k = 5.

Fig. 2. Regression and missing value imputation using the kNN method with a fixed k value, that is, k = 3.

the kNN method for each test data point. We then use the learned k value to conduct
classification, regression, and missing value imputation by using a standard kNN
method. In the proposed reconstruction process, we advocate an �1-norm regularizer
to result in element-wise sparsity [Luo et al. 2014; Liu et al. 2015; Ye and Li 2016;
Li and Pang 2009] to generate different k values for different test data points. Then
we use an �2,1-norm regularizer to generate the row sparsity to remove the impact
of noisy data points [Yang et al. 2012; Zhu et al. 2013a, 2013b, 2014]. In addition,
we employ a Locality Preserving Projection (LPP) [Niyogi 2004] regularizer (that is, a
graph Laplacian regularizer) to preserve the local structure of training data in the
reconstruction process.

The rest of this article is organized as follows. Section 2 briefly recalls the reports on
the kNN method from research areas of classification, regression, and missing value
imputation. Then the CM-kNN classification method is described in Section 3. The
proposed approach is evaluated by conducting sets of experiments in Section 4. This
research is concluded in Section 5.

2. RELATED WORK

Because of its high performance in real applications [Blanzieri and Melgani 2008; Ni
and Nguyen 2009; Fan et al. 2015] and nonparametric setting [Mary-Huard and Robin
2009; Li et al. 2008], the kNN method was regarded as one of the top 10 algorithms
in data mining and has been widely developed in data-mining applications, such as
classification, regression, and missing value imputation [Dong et al. 2015b]. For sim-
plification, this section briefly recalls the related work on kNN classification, kNN
imputation, and kNN regression.

2.1. kNN Classification

The kNN classifier has shown remarkable performance on data with a large example
size, such as approaching infinity, in which its error rate approximately reaches the
Bayes optimization under very mild conditions. However, the performance of the kNN
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classification can be affected by some issues, such as the selection of the k value, the
selection of distance measures, and so on. Recently, many techniques have been devel-
oped to overcome these issues. For example, the kNN incorporating Certainty Factor
(kNN-CF) classification method can incorporate the certainty factor measure into the
conventional kNN method so it can be applied to the beginning of the kNN classifi-
cation to meet the need of imbalanced learning [Zhang 2010]. Moreover, the kNN-CF
classification method can be easily extended to the dataset with skewed class distribu-
tion. Song et al. proposed two novel kNN approaches, that is, Locally Informative-kNN
and Globally Informative-kNN, respectively, via designing new measure metrics for
selecting a subset of the most informative data point from neighborhoods [Song et al.
2007]. Vincent and Bengio modified the conventional kNN method to be the K-local
Hyperplane Distance Nearest Neighbor (HkNN) method, which applied the collection
of 15–70 nearest neighbors from each class to span a linear subspace for that class,
followed by conducting classification based on distance to the linear subspaces [Vincent
and Bengio 2001]. Wang proposed a new measure to define the similarity between two
data points using the number of neighborhoods for conducting a new kNN classifier
[Wang 2006]. Zhang et al. [2016] proposed a novel k Nearest Neighbor algorithm, which
is based on sample self-representation, sparse learning, and the technology of decision
tree. Sun et al. [2015] studied a new type of query based on the k-Nearest Neigh-
bor temporal aggregate, which organizes the locations by integrating the spatial and
temporal aggregate information. Tang et al. [2011] studied a new type of query that
finds the k Nearest Neighboring Trajectories (k-NNT) with the minimum aggregated
distance to a set of query points.

2.2. kNN Missing Data Imputation

Missing data can be found everywhere in real applications and often lead to inaccu-
rate results, lessening the learning performance in machine learning and data mining.
Recently, missing value imputation has been shown to be a very important solution
to deal with missing data, especially kNN-based methods. For example, Zhang et al.
proposed a Grey-Based kNN Iteration Imputation method [Zhang et al. 2007], which
efficiently reduced the time complexity and got over the slow convergence rate of the
classical missing value imputation method, that is, the EM (Expectation Maximiza-
tion) algorithm. Based on nearest-neighbor imputation, Chen and Shao proposed some
jackknife variance estimators, which are asymptotically unbiased and consistent for
the example means [Chen and Shao 2001]. Meesad and Hengpraprohm proposed an
imputation method combing the kNN-based feature selection with kNN-based impu-
tation. Differing from the conventional kNN method, their method first conducts fea-
ture selection, and then estimates missing values [Meesad and Hengpraprohm 2008].
Garcı́a-Laencina et al. proposed to employ mutual information to design a feature-
weighted distance metric for conducting kNN [Garcı́a-Laencina et al. 2009]. Most re-
cently, Zhang proposed a Shell Neighbors imputation method to select the left and right
nearest neighbors of missing data for imputing missing data [Zhang 2011].

2.3. kNN Regression

The kNN method for solving regression problems is still popular in machine learning
and data mining. However, the drawbacks of conventional kNN regression usually
include low efficiency, ignoring feature weights in distance calculation, and so on.
To address these issues, many approaches have been designed. For example, Hamed
et al. proposed an interval regression method based on the conventional kNN method
by taking advantage of the possibility distribution to choose the value of k of kNN
method due to the limited example size [Hamed et al. 2012]. Based on the observation
that conventional kNN regression is sensitive to the selection of similarity metric,
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Yao proposed a general kNN framework to infer the similarity metric as a weighted
combination of a set of base similarity measures [Yao and Ruzzo 2006]. Navot et al.
proposed a new nearest neighbor method to capture complete dependency of the target
function [Navot et al. 2006].

From the above three research directions and publications, previous studies on kNN
methods always separately focused on classification, regression, and missing value
imputation. In this article, we study a kNN approach for taking into account the
drawbacks of the conventional kNN method, such as the fixed k value in the kNN
method, the removal of noisy data points, and the preservation of the local structures
of data. In particular, we apply the proposed kNN apporach to simultaneously conduct
classification, regression, and missing value imputation.

3. CM-KNN APPROACH

3.1. Notations

In this article, we denote matrices as bold uppercase letters, vectors as bold lowercase
letters, and scalars as normal italic letters, respectively. For a matrix X = [xij], its
ith row and jth columns are denoted as xi and x j , respectively. Also we denote the
Frobenius norm, �2-norm, �1-norm, and �2,1-norm of a matrix X, respectively, as ||X||F =√∑

i ||xi||22 =
√∑

j ||x j ||22, ||X||2 =
√∑

i
∑

j |xij |2, ||X||1 = ∑
i
∑

j |xij |, and ||X||2,1 =∑
i ||xi||2 = ∑

i

√∑
j x2

i j . We further denote the transpose operator, the trace operator,

and the inverse of a matrix X as XT , Tr(X), and X−1, respectively.

3.2. Reconstruction

Let X ∈ Rn×d denote the set of training data points, where n is the number of training
data points and d is the dimensionality of features, and assume Y ∈ Rd×m denotes the
matrix of test data, where m is the number of test data. In this article, we use training
data points X to reconstruct each test data yi so the distance between XT wi and yi,
where wi ∈ Rn denotes the reconstruction weights of training data points, is as small
as possible. This leads to the least-squares loss function [Zhu et al. 2014] as follows:

min
W

m∑
i=1

||XT wi − yi||22 = min
W

||XT W − Y||2F , (1)

where ||.||F denotes the Frobenius matrix norm and W ∈ Rn×m denotes reconstruction
weight matrix or the correlations between training data points and test data.

Obviously, the optimization function in Equation (1) is convex and smooth, and the
optimal weight matrix W is obtained as W∗ = (XXT )−1XY. However, XXT is not always
invertible in real applications. To this end, the conventional objection function is added
to the smooth regularization term, for example, an �2-norm,

min
W

||XT W − Y||2F + ρ||W||22, (2)

where ||W||2 is an �2-norm regularization term and ρ is a tuning parameter. Usually,
Equation (2) is called ridge regression, and its close solution is W∗ = (XXT + ρI)−1XY.
Although the ridge regression in Equation (2) can solve the singular issue in Equa-
tion (2), the solution W∗ does not satisfy our requirement because each element in W∗
may be non-zero value. However, we expect to generate the sparsity for the correlation
between training data points and the test data. In this way, all of the test data can be
represented by partial training data points. Therefore, an �1-norm regularization term
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is proposed to replace the �2-norm regularization term, and it is defined as follows:

R1(W) = ||W||1. (3)

The �1-norm has been proved to lead the optimal sparse W∗ [Zhu et al. 2016a; Wang
et al. 2014; Zhang et al. 2011]. Moreover, the corresponding objective function is also
called the Least Absolute Shrinkage and Selection Operator (LASSO) [Zhu et al. 2013a,
2014; Dong et al. 2015a]. It can generate element-wise sparsity in the optimal W∗, that
is, irregular sparsity in the elements of the matrix W∗.

We also consider removing the noisy data points that are almost irrelevant to all test
data during the reconstruction process. Consider the �2,1-norm regularization term: It
leads to the reconstruction process to generate the sparseness through the whole rows
of W, that is, row sparsity for short [Zhu et al. 2016b; Chen et al. 2016; Li et al. 2016].
It is defined as follows:

R2(W) = ||W||2,1. (4)
Moreover, this article considers to hold the local consistency of the structures of the

data during the reconstruction process, in particular to preserve the local consistency
of the structures of the features in the data points [Shi et al. 2013]. To this end, a
LPP regularization term is added to the objective function Equation (2). It is defined
as follows:

R3(W) = Tr(WT XLXT W), (5)
where L ∈ R

d×d is a Laplacian matrix, and L = D - S with a similarity matrix S ∈ R
d×d

and a diagonal matrix D ∈ R
d×d. The LPP is a nonlinear dimensionality reduction

method, and the goal of LPP is to ensure that k Nearest Neighbors of original data are
correspondingly preserved in the new space after conducting dimensionality reduction.

To meet all of the above requirements, our final objective function is thus formulated
as follows:

min
W

||XT W − Y||2F + ρ1 R1(W) + ρ2 R2(W) + ρ3 R3(W). (6)

After optimizing Equation (6) with the proposed optimization method shown in Sec-
tion 3.3, we obtain the optimal of W∗, that is, the reconstruction weights or the cor-
relations between training data points and test data. The element wi j of W∗ denotes
the correlation between ith training data point and jth test data. The positive weight
(that is, wi j > 0) indicates that there is positive correlation between ith training data
point and jth test data, whereas the negative weight (that is, wi j < 0) means nega-
tive correlation. In particular, the zero weight (that is, wi j = 0) means that there is
no correlation between ith training data point and jth test data. In this case, the ith
training data point should not be used for predicting the jth test data. That is, we use
only those related training data points, that is, the training data points with nonzero
coefficient, to predict a test data, rather than using all training data points to predict
the test data. In this way, Equation (6) takes into account the distribution of data and
prior knowledge for selecting the k value for each test data.

To better understand the characteristics of the proposed method, we assume the
optimal W∗ ∈ R5×3 as follows:

W∗ =

⎡
⎢⎢⎢⎣

0 0.2 0
0 0 0
0 0.7 0.6

0.3 0.9 0
0.4 0 0

⎤
⎥⎥⎥⎦ .

In this example, we have five training data points and three test data. According to
the proposed method, the values in the first column of W∗ indicates the correlations
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ALGORITHM 1: The Pseudo of Objective Function Equation (6).
Input: X, Y;
Output: W(t) ∈ Rn×m;

1 Initialize W1 ∈ Rn×m, t = 1;
2 while not converge do
3 Calculate the diagonal matrices D(t)

i (1 ≤ i ≤ m) and D̃(t), where the kth diagonal
element of D(t)

i is 1
2|w(t)

ki | and the kth diagonal element of D̃(t) is 1
2||(w(i))k||2

;

4 For each i(1 ≤ i ≤ m), w(t+1)
i = (XXT + ρ1D(t)

i + ρ2D̃(t) + ρ3XLXT )−1Xyi ;
5 t = t + 1;
6 end

between the first test data and five training data points. As a result, there are only two
non-zero values in the first column, that is, w14 and w15. This indicates that the test
data are only related to the last two training data points, that is, the fourth training
data point and the fifth training data point. More specifically, in the kNN algorithm,
we only need to regard the last two training data points as the nearest neighbors of the
first test data, that is, the corresponding value of k as 2. Meanwhile, according to the
values of the second column of W∗, we only need to regard three training data points
as the nearest neighbors of the second test data, that is, the corresponding value of k
is 3. Obviously, for the third test data, it should be predicted by the third training data
point. The corresponding value of k is 1. In this way, the nearest neighbors of each test
data are obtained. Moreover, the value of k in the kNN algorithm differs and is learned
according to the distribution of data.

Furthermore, on one hand, we find the sparsity of W∗ is irregular, that is, there is
sparsity in elements of the matrix W∗. On the other hand, we also find that the values
in the second row of W∗ are all zero, and this indicates that the second training data
point is unrelated to all test data. We can regard the second training data points as
the noisy training data point. Actually, the �1-norm in Equation (6) ensures that we
product zero values in elements, while the �2,1-norm in Equation (6) ensuresthat we
remove the impact of the noisy training data points. Furthermore, the LPP term in
Equation (6) ensures that we further improve the performance of the kNN algorithm.

3.3. Optimization

The objective function Equation (6) is convex but non-smooth, and this article employs
the framework of Iteratively Reweighted Least Square [Daubechies et al. 2010] to
optimize Equation (6) as follows.

We first take the derivative with respect to each row wi(1 ≤ i ≤ m) and then set it to
zero as follows:

XXT wi − Xyi + ρ1Diwi + ρ2D̃wi + ρ3XLXT wi = 0, (7)

where Di(1 ≤ i ≤ m) is a diagonal matrix with the kth diagonal element as 1
2|wki | , and

D̃ is a diagonal matrix with the kth diagonal element as 1
2||wk||2 . We further change

Equation (7) to Equation (8) as follows:

wi = (XXT + ρ1Di + ρ2D̃ + ρ3XLXT )−1Xyi. (8)

In Equation (8), D and D̃ are unknown and depend on W. According to Zhu et al.
[2013b], we design an iteration method listed in Algorithm 1 and give the proof of the
convergence of the proposed Algorithm 1 as follows.
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THEOREM 3.1. Algorithm 1 decreases the objective value in Equation (6) in each
iteration.

PROOF. According to Step 2 in Algorithm 1, we have

W(t+1) = min
W

T r((XT W − Y)T (XT W − Y))

+ ρ1

m∑
i=1

wT
i D(t)

i wi + ρ2TrWT D̃(t) + ρ3XLXT .

Therefore, we have

Tr((XT W(t+1) − Y)T (XT W(t+1) − Y)) + ρ1

m∑
i=1

(w(t+1)
i )T D(t)

i w(t+1)
i

+ ρ2Tr(W(t+1))T D̃tW(t+1) + ρ3XLXT

≤ Tr((XT W(t) − Y)T (XT W(t) − Y)) + ρ1

m∑
i=1

(w(t)
i )T D(t)

i w(t)
i

+ ρ2Tr(W(t))T D̃tW(t) + ρ3XLXT

⇒ Tr((XT W(t+1) − Y)T (XT W(t+1) − Y))

+ ρ1

n∑
i=1

n∑
j=1

⎛
⎝ (w(t+1)

i j )
2

2||w(t)
i j ||

− ||w(t+1)
i j || + ||w(t+1)

i j ||
⎞
⎠

+ ρ2

d∑
k=1

(
||(w(t+1))k||22
2||(w(t))k||2

− ||(w(t+1))k||2 + ||(w(t+1))k||2
)

+ ρ3XLXT

≤ Tr((XT W(t) − Y)T (XT W(t) − Y))

+ ρ1

n∑
i=1

n∑
j=1

⎛
⎝||w(t)

i j || + (w(t)
i j )

2

2||w(t+t)
i j ||

− ||w(t)
i j ||

⎞
⎠

+ ρ2

d∑
k=1

(
||(w(t))k||2 + ||(w(t))k||22

2||(w(i))k||2
− ||(w(t))k||2

)
+ ρ3XLXT

⇒ Tr((XT W(t+1) − Y)T (XT W(t+1) − Y)) + ρ1

d∑
i=1

m∑
j=1

||w(t+1)
i j ||

+ ρ2

d∑
K=1

||(w(t+1))k||2 + ρ3XLXT

≤ Tr((XT W(t) − Y)T (XT W(t) − Y)) + ρ1

d∑
i=1

m∑
j=1

||w(t)
i j ||

+ ρ2

d∑
k=1

||(w(t))k||2 + ρ3XLXT .
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According to the literature [Zhu et al. 2013a, 2014], for any vectors w and w0, we
have

||w||2 − ||w||22
2||w0||2 ≤ ||w0||2 − ||w0||22

2||w0||2 .

So Algorithm 1 decreases the objective value in each iteration. W(t) and D(t)
i (1 ≤ i ≤ n)

will satisfy the Equation (8) at the convergence. As the objective function Equation (6)
is convex, the W satisfying Equation (6) is a global optimum solution. Therefore, Algo-
rithm 1 will converge to the global optimum of the objective function Equation (6).

3.4. Algorithm

In the proposed method, we first use the learned k values for kNN method, that is, the
CM-kNN method, and then apply it for three different tasks, classification, regression,
and missing value imputation. The pseudo of CM-kNN is presented in Algorithm 2.

ALGORITHM 2: The Pseudo of the CM-kNN Algorithm.
Input: X, Y;
Output:
switch task do

case 1
Class labels;

endsw
case 2

Predicted value;
endsw
case 3

Imputation value;
endsw

endsw
1 Normalizing X and Y;
2 Optimizing Equation (6) to obtain the optimal solution W;
3 Obtaining the optimal k value for test data based on W;
4 switch task do
5 case 1
6 Obtaining class labels via majority rule;
7 endsw
8 case 2
9 Obtaining prediction value via Equation (9);

10 endsw
11 case 3
12 Obtaining imputation value via Equation (9);
13 endsw
14 endsw

First, the proposed CM-kNN method employs the majority rule for predicting the
class label of the test data.

Second, in both the regression task and the missing value imputation task, the
proposed CM-kNN method considers that the bigger the correlation between the test
data and its nearest neighbors, the larger the contribution of this nearest neighbor to
the test data. Therefore, this article proposes a weighted method for both the regression
and missing value imputation. Specifically, the weighted predictive value of the jth test
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Table I. Simulation Configuration

Dataset Instance Feature Class Application
Climate 540 17 2 Classification
German 1,000 24 2 Classification

Blood 748 4 2 Classification
Australian 690 14 2 Classification

Seeds 210 7 3 Classification
SPECTF 267 44 2 Classification
Balance 625 4 3 Classification
Fertility 100 9 2 Classification
Gisette 13,500 5,000 2 Classification

DCCclients 30,000 24 2 Classification
Mpg 398 7 — Regression/Imputation

Housing 506 13 — Regression/Imputation
Bodyfat 252 14 — Regression/Imputation

ConcreteSlump 103 7 — Regression/Imputation
Abalone 4,177 8 — Regression/Imputation
Pyrim 74 27 — Regression/Imputation

Triazines 186 60 — Regression/Imputation
Mg 1,385 6 — Regression/Imputation

Buzz 140,000 77 — Regression/Imputation
KEGG 53,414 24 — Regression/Imputation

data is defined as follows:

predictValue weight =
n∑

i=1

(
wi j∑n
i=1 wi j

× ytrain(i)

)
, (9)

where n is the number of training data points and ytrain(i) represents the true value of
the ith training data point.

4. EXPERIMENTS

We evaluate the proposed CM-kNN method with the state-of-the-art kNN methods on
20 datasets for three data-mining applications, classification, regression, and missing
value imputation.

4.1. Experimental Setting

The used datasets were mainly downloaded from the UCI (University of California
Irvine) dataset2 and the LIBSVM (A Library for Support Vector Machines) website.3
These datasets include all different types of data, such as a low-dimensional dataset
anda high-dimensional dataset, binary datasets and multi-class datasets, imbalance
datasets, and so on, and are used to evaluate the robust of the proposed method. Among
of them, both the Climate dataset containing 46 positive samples and 494 negative
samples and the German dataset including 700 positive samples and 300 negative
samples can be regarded as imbalance datasets. It is noteworthy that there are no
missing values in the original datasets, and we randomly selected some independent
values to be missed according the literature on missing value imputations [Zhang et al.
2007]. Table I summarize these datasets as follows.

We employed the 10-fold cross-validation method on all methods. Specifically, we first
randomly partitioned the whole dataset into 10 subsets and then selected one subset

2UCI Repository of Machine Learning Datasets (http://archive.ics.uci.edu).
3LIBSVM Data: Classification, Regression, and Multi-label (http: //www.csie.ntu.edu.tw).
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for testing and the remaining 9 subsets for training. We repeated the whole process
10 times to avoid the possible bias during dataset partitioning for cross-validation.
The final result was computed by averaging results from all experiments; that is, we
repeated the experiments on each dataset 10 times, and regarded the average perfor-
mance as the reported results. We used classification accuracy as the evaluation for
the classification task. The higher the accuracy of the algorithm, the better the perfor-
mance of the classification. We used correlation coefficient and root mean square error
(RMSE) [Qin et al. 2007; Zhu et al. 2011] to evaluate the performance of both regres-
sion and missing value imputation. The correlation coefficient indicates the correlation
between prediction and observation. Generally, the larger the correlation coefficient,
the more accurate the prediction. RMSE is defined as follows:

RMSE =
√√√√1

n

n∑
i=1

(yi − ŷi)
2
, (10)

where n represents the number of data points, yi represents the ground truth of the
ith test data, and ŷi represents the predicted value. The smaller the RMSE, the better
the algorithm.

4.2. Competing Methods

In our experiments, we selected state-of-the-art methods, including the standard kNN
method, the kNN with cross-validation determined parameter k (we briefly denote
it as CV-kNN), the L-kNN method [Zhang et al. 2014, 2016] (compared to CM-kNN,
it doesn’t consider the importance of removing the noisy data points), the LL-kNN
method (compared to CM-kNN, it doesn’t consider the importance of preserving the
local consistency of the structures of the data), the kNN-based Applicability Domain
approach (AD-kNN) [Sahigara et al. 2014], and the Large Margin Nearest Neighbor
approach (LMNN) [Weinberger and Saul 2006].

—kNN: kNN is a classical classification method. It uses the k nearest neighbors to
classify the test sample. In the experiments, we set k = 5.

—CV-kNN: CV-kNN is an improved kNN method. It uses cross-validation to determine
parameter k, that is, k = 1, 2, . . . , 10, and the square root of the sample size.

—The L-kNN method [Zhang et al. 2014, 2016], that is, Equation (6) with the setting
ρ2 = 0, on which we would like to show the importance of removing the noisy data
points.

—The LL-kNN method, that is, Equation (6) with the setting ρ3 = 0, on which we would
like to show the importance of preserving the local consistency of the structures of
the data.

—AD-kNN: AD-kNN integrates salient features of the kNN approach and adaptive
kernel methods for conducting probability density estimation. Following the litera-
ture, we set the parameter k of AD-kNN with the Monte Carlo validation method by
setting the maximum number of neighbors as 20 [Sahigara et al. 2014].

—LMNN: LMNN learns a Mahanalobis distance metric for k nearest neighbor (kNN)
classification by semi-definite programming. The metric is trained with the goal
that the k nearest neighbors always belong to the same class while examples from
different classes are separated by a large margin [Weinberger and Saul 2006].

4.3. Experimental Analysis

4.3.1. Classification. We listed the classification performance (including the mean of
classification accuracy in 10 iterations and the corresponding STandard Deviation
(STD)) of all algorithms on the 10 datasets in Table II, the last line in the table
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Table II. The Result of Classification Accuracy (Mean±STD)

Dataset kNN CV-kNN L-kNN LL-kNN AD-kNN LMNN CM-kNN
Climate 0.896 ± 0.03 0.904 ± 0.03 0.927 ± 0.03 0.927 ± 0.03 0.922 ± 0.03 0.924 ± 0.03 0.940 ± 0.03
German 0.673 ± 0.06 0.688 ± 0.05 0.711 ± 0.06 0.710 ± 0.05 0.695 ± 0.06 0.683 ± 0.06 0.724 ± 0.05

Blood 0.751 ± 0.05 0.760 ± 0.06 0.782 ± 0.06 0.775 ± 0.06 0.768 ± 0.06 0.761 ± 0.05 0.801 ± 0.06
Australian 0.782 ± 0.05 0.800 ± 0.05 0.813 ± 0.05 0.810 ± 0.04 0.797 ± 0.05 0.794 ± 0.05 0.842 ± 0.05

Seeds 0.842 ± 0.07 0.862 ± 0.07 0.885 ± 0.04 0.881 ± 0.04 0.866 ± 0.06 0.859 ± 0.07 0.890 ± 0.04
SPECTF 0.744 ± 0.05 0.740 ± 0.04 0.781 ± 0.07 0.751 ± 0.05 0.770 ± 0.07 0.767 ± 0.08 0.807 ± 0.08
Balance 0.820 ± 0.04 0.835 ± 0.03 0.850 ± 0.04 0.838 ± 0.02 0.843 ± 0.04 0.838 ± 0.03 0.850 ± 0.04
Fertility 0.850 ± 0.08 0.877 ± 0.08 0.880 ± 0.10 0.880 ± 0.10 0.873 ± 0.14 0.870 ± 0.09 0.880 ± 0.10
Gisette 0.822 ± 0.04 0.832 ± 0.03 0.858 ± 0.04 0.859 ± 0.03 0.841 ± 0.03 0.845 ± 0.05 0.894 ± 0.03

DCCclients 0.763 ± 0.06 0.788 ± 0.05 0.808 ± 0.06 0.814 ± 0.04 0.800 ± 0.65 0.786 ± 0.06 0.837 ± 0.03
AVERAGE 0.794 ± 0.05 0.809 ± 0.05 0.829 ± 0.06 0.825 ± 0.05 0.818 ± 0.12 0.813 ± 0.06 0.847 ± 0.05

showed the average performance of each method on 10 datasets. We also reported the
classification accuracy in each iteration in Figure 3.

According to Table II and Figure 3, we have the following observations:

—The proposed CM-kNN method achieved the best classification accuracy, compared
to kNN, CV-kNN, L-kNN, LL-kNN, AD-kNN, and LMNN. For example, the CM-kNN
method improved 5.3% (vs. kNN), 3.8% (vs. CV-kNN), 1.8% (vs. L-kNN), 2.2% (vs.
LL-kNN), 2.9% (vs. AD-kNN), and 3.4% (vs. LMNN) on average for classification
accuracy on 10 datasets. In addition, according to Figure 3, CM-kNN almost had
higher accuracy than five comparison methods in each iteration.

—CM-kNN outperformed L-kNN because our CM-kNN used an �2,1-norm regularizer
to remove noisy data points. For example, our method improved by 3.6% and 2.9%,
respectively, compared to L-kNN, on the Gisette dataset and the DCCclients dataset.
This indicates that both the Gisette dataset and DCCclients dataset may contain
noisy data points. Moreover, the Gisette dataset might have more noisy data points.

—CM-kNN outperformed LL-kNN because our CM-kNN used the LPP term to preserve
the local consistency of the structures of the data. For example, the CM-kNN method
improved by 3.5% and 3.2%, respectively, compared to LL-kNN, on the Gisette dataset
and the Australian dataset.

—The methods (including CM-kNN, CV-kNN, L-kNN, LL-kNN, AD-kNN, and LMNN)
were better than the standard kNN method. This indicates that using different k
values in kNN classification (such as CM-kNN, CV-kNN, L-kNN, LL-kNN, and AD-
kNN) can achieve better classification performance.

4.3.2. Regression and Missing Value Imputation. Regression is similar to missing value
imputation, so we discuss them in the same section. Tables III and IV showed the results
of both RMSE (mean±STD) and correlation coefficient (mean±STD) of all algorithms
on 10 datasets; the last lines in the tables showed the average performance of each
method on 10 datasets. Figure 4 shows the prediction performance of RMSE in each
iteration and Figure 5 shows the prediction performance of correlation coefficient in
each iteration.

From Tables III and IV, we found that the proposed CM-kNN had the best prediction
performance, followed by L-kNN, LL-kNN, AD-kNN, CV-kNN, or LMNN and kNN.
Figures 4 and 5 also intuitively showed that the proposed CM-kNN achieved the best
performance in each iteration, in terms of either RMSE or correlation coefficient, on 10
datasets.

In terms of RMSE, the proposed CM-kNN on average reduced 0.392, 0.231, 0.107,
0.106, 0.153, and 0.166 on 10 datasets, compared to kNN, CV-kNN, L-kNN, LL-kNN,
AD-kNN, and LMNN, respectively. In particlular, the most distinguish improvement
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Fig. 3. Classification accuracy of each iteration in 10 iterations of all methods at 10 datasets.
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Table III. The Results of RMSE (Mean±STD)

Dataset kNN CV-kNN L-kNN LL-kNN AD-kNN LMNN CM-kNN
Mpg 4.129 ± 0.49 3.835 ± 0.31 3.737 ± 0.26 3.834 ± 0.39 3.788 ± 0.33 3.921 ± 0.27 3.599 ± 0.29

Housing 5.750 ± 1.16 5.157 ± 0.92 4.887 ± 0.84 5.067 ± 0.82 4.973 ± 0.97 5.032 ± 0.92 4.782 ± 0.74
Bodyfat 0.005 ± 0.00 0.004 ± 0.00 0.004 ± 0.00 0.004 ± 0.00 0.005 ± 0.00 0.005 ± 0.00 0.002 ± 0.00

ConcreteSlump 5.855 ± 1.18 5.453 ± 1.47 5.085 ± 1.38 4.921 ± 1.33 5.168 ± 1.27 5.334 ± 1.25 4.708 ± 1.43
Abalone 2.891 ± 0.17 2.785 ± 0.26 2.814 ± 0.18 2.749 ± 0.20 2.864 ± 0.21 2.794 ± 0.22 2.698 ± 0.19
Pyrim 0.070 ± 0.01 0.066 ± 0.08 0.061 ± 0.01 0.056 ± 0.01 0.055 ± 0.64 0.057 ± 0.05 0.053 ± 0.01

Triazines 0.148 ± 0.03 0.133 ± 0.19 0.129 ± 0.03 0.123 ± 0.03 0.131 ± 0.02 0.134 ± 0.03 0.114 ± 0.03
Mg 0.151 ± 0.01 0.168 ± 0.20 0.139 ± 0.01 0.141 ± 0.01 0.146 ± 0.01 0.148 ± 0.01 0.135 ± 0.01

Buzz 1.751 ± 0.34 1.585 ± 0.32 1.126 ± 0.42 1.093 ± 0.25 1.287 ± 0.32 1.105 ± 0.22 0.903 ± 0.24
KEGG 0.377 ± 0.78 0.324 ± 0.49 0.296 ± 0.89 0.282 ± 0.76 0.322 ± 0.72 0.335 ± 0.80 0.211 ± 0.71

AVERAGE 2.113 ± 0.42 1.951 ± 0.42 1.828 ± 0.04 1.827 ± 0.38 1.874± 0.45 1.887 ± 0.38 1.721 ± 0.37

Table IV. The Results of Correlation Coefficient (Mean±STD)

Dataset kNN CV-kNN L-kNN LL-kNN AD-kNN LMNN CM-kNN
Mpg 0.834 ± 0.04 0.846 ± 0.04 0.862 ± 0.03 0.860 ± 0.03 0.854 ± 0.03 0.842 ± 0.03 0.880 ± 0.02

Housing 0.766 ± 0.10 0.809 ± 0.09 0.843 ± 0.06 0.830 ± 0.06 0.821 ± 0.05 0.825 ± 0.06 0.859 ± 0.05
Bodyfat 0.976 ± 0.01 0.982 ± 0.01 0.985 ± 0.01 0.983 ± 0.01 0.980 ± 0.01 0.980 ± 0.01 0.993 ± 0.01

ConcreteSlump 0.698 ± 0.07 0.736 ± 0.06 0.750 ± 0.07 0.779 ± 0.06 0.750 ± 0.07 0.730 ± 0.07 0.792 ± 0.06
Abalone 0.701 ± 0.02 0.721 ± 0.04 0.737 ± 0.02 0.742 ± 0.02 0.734 ± 0.02 0.725 ± 0.02 0.751 ± 0.01
Pyrim 0.813 ± 0.08 0.847 ± 0.09 0.888 ± 0.05 0.908 ± 0.04 0.862 ± 0.09 0.870 ± 0.08 0.917 ± 0.03

Triazines 0.531 ± 0.07 0.650 ± 0.12 0.676 ± 0.10 0.709 ± 0.09 0.680 ± 0.07 0.672 ± 0.03 0.754 ± 0.08
Mg 0.722 ± 0.06 0.733 ± 0.06 0.747 ± 0.04 0.746 ± 0.05 0.741 ± 0.04 0.740 ± 0.05 0.767 ± 0.04

Buzz 0.756 ± 0.07 0.790 ± 0.06 0.815 ± 0.08 0.824 ± 0.07 0.813 ± 0.73 0.805 ± 0.06 0.847 ± 0.07
KEGG 0.809 ± 0.23 0.834 ± 0.24 0.875 ± 0.35 0.860 ± 0.21 0.872 ± 0.25 0.852 ± 0.32 0.896 ± 0.20

AVERAGE 0.761 ± 0.08 0.795 ± 0.08 0.818 ± 0.08 0.816 ± 0.06 0.811 ± 0.14 0.804 ± 0.07 0.846 ± 0.06

is on the ConcreteSlump dataset, in which the proposed CM-kNN reduced 1.147 (vs.
the kNN method), 0.745 (vs. CV-kNN), 0.377 (vs. L-kNN), 0.213 (vs. LL-kNN), 0.46 (vs.
AD-kNN), and 0.626 (vs. LMNN).

Regarding the evaluation of correlation coefficient, our CM-kNN averagely improved
by 8.5%, 5.08%, 2.78%, 2.15%, 3.49%, and 4.15% on 10 datasets, compared to kNN,
CV-kNN, L-kNN, LL-kNN, AD-kNN, and LMNN. In particular, CM-kNN achieved
the most remarkable improvement (22.4%, 10.4%, 7.8%, 4.5%, 7.4%, and 8.3% on the
\textit{Tr}iazines dataset), compared to kNN, CV-kNN, L-kNN, LL-kNN, AD-kNN, and
LMNN, respectively.

In a nutshell, in the three tasks, the proposed CM-kNN showed a distinct differ-
ence versus the competing methods, according to the last row of Tables II–IV, which
represent the averaged result over 10 datasets of the competing methods. Specifically,
the proposed CM-kNN outperformed L-kNN because it considers removing the noisy
data points during the process of selecting k values for test data, and outperformed LL-
kNN because it considers preserving the local consistency of the structures of the data.
Moreover, the methods (including CM-kNN, CV-kNN, L-kNN, LL-kNN, and AD-kNN)
are superior to kNN, which indicates that the methods tha used a varied k value are
preferred in real applications.

5. CONCLUSION

In this article, we have proposed a new kNN method, referred to as CM-kNN, for the
applications of classification, regression, and missing data imputation. Compared to
the conventional kNN classification, there are two significant improvements in our
CM-kNN approach. First, the proposed method learned different k values for each
test data point by making the best use of prior knowledge of the data. Second, the
proposed method is robust to the noisy datasets. Experiments on real datasets have
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Fig. 4. RMSE of each iteration in 10 iterations of all methods at 10 datasets.
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Fig. 5. Correlation Coefficient of each iteration in 10 iterations of all methods at 10 datasets.
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demonstrated that, compared with extant kNN methods, the proposed method achieved
high accuracy and efficiency in the applications of classification, regression, and miss-
ing data imputation.

In the future work, we will focus on designing a nonlinear transformation matrix to
learn the correlation between test data and training data.
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