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Abstract Multi-output regression aims at learning a mapping from feature variables to
multiple output variables. It is significant to utilize variety of inherent relational structure
information of observations to conduct multi-output regression task when learning a best
mapping from high-dimensional data. In this paper, we propose a new multi-output regression
method, which simultaneously takes advantage of the low-rank constraint, sample selection,
and feature selection in a unified framework. We first take the effect of low-rank constraint to
search the correlation of output variables and impose ℓ2,p-norm regularization on the coeffi-
cient matrix to capture the correlation between features and outputs. And then, the ℓ2,p-norm
on the loss function is designed to discover the correlation between samples, so as to select
those informative samples to learn the model for improving predictive capacity. Thirdly,
orthogonal subspace learning is exploited to ensure multi-output variables share the same
low-rank structure of data by rotating the results of feature selection. In addition, to get the
optimal solution of the objective function, we propose an effective iterative optimization
algorithm. Finally, we conduct sets of experimental results on real datasets, and show the
proposed method outperforms the state-of-the-art methods in terms of aCC and aRMSE.

Keywords Multi-output regression . Low-rank regression . Feature selection . Orthogonal
subspace learning

1 Introduction

Multi-output regression [4], also known as multi-target and multi-response regression, is a
significant research topic in machine learning and statistics. It aims at simultaneously
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predicting multiple real-value output variables from the same feature variables (can be
regarded as the input variables). As the matter of fact, multi-output regression is encountered
frequently in various fields of applications, such as ecological model requires to predict many
kinds of conditions or quality of the vegetation [18]; stock analysis needs to predict many
attributions of stocks, i.e., the price of a stock in the future via utilizing the related economic
variables and prices happened in the past [22]; supervised analysis simultaneously estimates
some different biophysical parameters from the remote sensing images [25]; and so on.

As known, the data used for multi-output regression have high-dimensional features and its
quantity is large scale, due to the development of science and technology. Therefore, it comes
to a big challenge of leveraging the large amount of high-dimensional data to conduct multi-
output regression effectively. Many previous works have given attentions to find the relational
structure of high-dimensional data for adding the effect of algorithm, for instance manifold
structure [5], low-rank structure [1, 9, 16], and so on. And, most methods always effectively
complete the task of dealing with high-dimensional data and removing the interference of
noise by conducting feature reduction [12, 13, 19, 38]. As well as, we desire to search for all
the most possible relational structures of information inherent in these data for improving the
multi-output regression model.

To deal with big scale of high-dimensional data for multi-output regression effective-
ly, we fully consider the three kinds of inhered information of the data, interpretation as
Fig. 1, i.e., the relationship of output and output, the relationship of feature and output,
the relationship of sample and sample, and then we propose a new method leveraging
these triple relational structure information into a unified framework called Low-rank
Feature Reduction for multiple-output regression (shorted for LFR). The rationale of the
proposed solution for multi-output regression is to simultaneously conducting feature
selection and sample selection in the low-rank regression model. Specially, we employ
the low-rank constraint on the rank of the coefficient matrix to perform the searching of
relation structure among multiple output variables. Meantime, the unimportant features
should not participate in the learning of regression model, due to the redundant features
always hold little informative to explore the relational structures and sometimes cost
more computational cost. Therefore, we also conduct feature selection by imposing an
ℓ2,p-norm regularization term to penalize all coefficients in the same row of the regres-
sion coefficient matrix for the removal of the noisy features. Additionally, we also
employ the ℓ2,p-norm on the loss function to conduct sample selection, aiming at finding
the relation structure among samples and eliminating the helpless samples, i.e., the
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Fig. 1 An illustration of the three kinds of relational structures inhered in high-dimensional data. The red dotted
rectangles, the blue solid rectangles, and the green dash rectangles, imply the relationship of sample-sample,
feature-output, output-output, respectively
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outliers. Although the derived objective function is hard to deal with as which is convex
and non-smooth, we further propose a novel iterative algorithm to optimize it efficiently.

The main contributions of our LFR method are described as follow:

& This work uses an ℓ2,p-norm regularization term to make row-sparse of the coefficient
matrix, so that it can effectively take advantage of the correlation between features and
multiple outputs, and select useful features to improve the predictive ability of model.
Moreover, it can avoid encountering the problem of Bcurse of dimension^ in high-
dimensional data.

& In our framework, we innovative combine the ℓ2,p-norm with loss function term to
search the correlation among samples. Then, the proposed method can effectively
remove the interference of outliers and select more informative samples to im-
prove the capability of regression model. This idea is always neglected by existing
regression methods.

& The proposed method makes use of a low-rank constraint on the rank of coefficient matrix
to construct the low-rank regression model, as mentioned in previous literatures, which has
the ability to find the correlation among multiple outputs effectively. Therefore, we can
reduce the number of model’s parameters and improve the model’s predictive accuracy.

The rest of the paper is organized as follow: we will briefly summarize reviews of
the previous feature selection and low-rank regression for multi-output regression task
in Section 2. And we detailly introduce the proposed multi-output regression method
for high-dimensional data, and present an effective algorithm to get the optimal
solution of the objective function in Section 3. We conduct extensive experiments
to demonstrate the effectiveness of our algorithm in Section 4. Finally, the conclusion
is drawn in Section 5.

2 Related works

The traditional linear regression is an useful approach of settling the problem of single-output
regression, but when confronts with the multiple-output regression, it usually obtains the
solution via separately conducting the single-regression to predict each output variable. In
fact, there are always some inhered correlation structures in multiple output variables [21].
However, the traditional linear regression method does not take advantage of the fact that
multiple outputs are likely correlation.

Some researchers [27] wanted to break out the obstacle by adding the process of
sparse learning on the traditional linear regression, which is equivalent to conduct feature
selection to seek for the relationship of the regression coefficients. This kind of methods
usually can obtain the faithful results, but they still do not catch the correlation among
multiple outputs. To do this for improving the regression model, Aderson, et al. [1],
proposed an effective way of using a low-rank constraint on the rank of coefficient
matrix. After that, researchers [2] proposed imposing the trace-norm regularization on the
coefficient matrix to discover the low-rank structure existing among the multiple outputs.
However, the method can not explicitly select or tune the rank of the coefficient matrix.
Izenwan, et al. [16], proposed the so-called reduced-rank regression (RRR) method, in
which the low-rank constraint implies that the coefficient matrix can be expressed as the
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product of two matrices owned a lower artificial fixed rank. And this method can effectively
reduce the effective number of parameters to be estimated to improve the efficiency of
estimation, and also can explicitly select the rank of the coefficient matrix. However, these
high-dimensional data have large amount of features, some of them might have unrelated
information for regression prediction and may result in more unnecessary computational cost.

At that point, some researchers [5] proposed some methods leveraged the additional process
of sparse learning along with the low-rank regression modal to seek for the relationship
between features and outputs, that is, conducting feature selection to select some features with
more useful information for improving the model. But, there are usually involved many
outliers and corrupted samples by noise in data, which might have a bad effect on the learning
of multi-output regression model.

Our work pursues to obtain a better multi-output regression model for large amount of high-
dimensional data. Therefore, we not only consider the triple relational structures in data, but
also remove the interference of redundant features and outlier samples for improving the
predictive capacity and efficient of model.

3 Method

In this section, we consider three kinds of inhered relational structure information in data, as
described in Fig. 1. Firstly, we leverage these correlations in the data to construct multi-output
regression model. Then, we apply the proposed iterative algorithm to optimize objective
function for obtaining the optimal solution. Finally, we analyse the convergence of the
objective function.

3.1 Notations

In this paper, we denote matrices as boldface uppercase letters, vectors as boldface lowercase
letters, and scalars as normal italic letters, respectively. For a matrix X = [xij], its i-th row and j-
th column are denoted as xi and xj, respectively. Also we denote the Frobenius norm, ℓ1-norm,

ℓ2-norm, ℓ2,1-norm, and ℓ2,p-norm of a matrix X as Xk kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i xi
�� ��2

2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ j x j

�� ��2
2

q
,

‖X‖1 =∑i∑j|xij|, ‖X‖2 =∑i∑j|xij|
2, Xk k2;1 ¼ ∑i xik k22 ¼ ∑i

ffiffiffiffiffiffiffiffiffiffi
∑ jx

2
i j

q
, and ‖X‖2,P = [∑i(∑j|xij|

2)p/

2]1/p, respectively. We further denote the transpose operator, the trace operator, and the inverse
of a matrix X as XT, tr(X), and X− 1, respectively.

3.2 LFR method for multiple-output regression

Given a training dataset D = {(x1, y1),⋯, (xn, yn)} = (X,Y) ∈ Rn × (d + c), where (xi, yi) denotes a
sample, xi ∈ R1 × d(i = 1,⋯, n) denotes a input feature vector with d dimensional features,
yi ∈ R1 × c(i = 1,⋯, n) denotes a output variable owned c outputs, and n is the number of
samples, let X = [x1,⋯, xi,⋯, xn] ∈ Rn × d and Y = [y1,⋯, yi,⋯, yn] ∈ Rn × c respectively be the
feature matrix (also known as input matrix) and output matrix. The purpose of multi-output
regression is to find a model that can exactly predict the Y via the X in dataset D, that is

xi →
predict

yi
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It is known that the linear regression model finds the linear relation between xi and yi, i.e.,

Yi j ¼ XiW j þ ei j; i ¼ 1;⋯; n and j ¼ 1;⋯; cð Þ
WhereW denotes the regression coefficient matrix and eij means the error term. As there are n
samples in the dataset, therefore the model can be described in matrix notation as follow,

Y ¼ XWþ E

where E ∈ Rn × c is the error matrix. However, we require the predictive outputs Ŷ =XW got
closest to the ground truth outputs Y, i.e., the E obtains the minimal values. This problem is
often solved via the least square loss function, that is

min
W

Y−XWk k2F ð1Þ

The solution of Eq. (1) isW = (XTX)− 1XTY. Note that, it is equivalent to transfer the multi-
output regression problem to the single-output regression problem. However, there are always
some underlying relational structures among large number of outputs. Therefore, imposing a
low-rank constraint on the rank of W in Eq. (1) is used to obtain the possible correlation
among multiple outputs, i.e.,

min
W

Y−XWk k2F ; s:t:; rank Wð Þ≤min d; cð Þ ð2Þ

From the above equation, it is easy to know the rank of the regression coefficient matrix can
be explicitly determined and the number of the effective number of parameters is reduced (for
example, only r features are selected by the model), and hence the model predictive efficiency
is improved. To get clearer interpretation of using the low-rank constraint
rank(W) = r ≤min(d, c), the W can be expressed as a product of two rank r matrixes, i.e.,

W ¼ BAT ð3Þ
Where B ∈ Rd × r and A ∈ Rc × r. For the fixed r, then the Eq. (2) becomes as the following
optimization problem

min
A;B

Y−XBAT
�� ��2

F ð4Þ

Feature selection is often used to select some discriminating features from the high-
dimensional data to reduce the dimension of data [31]. Consequently, it can lead to
reduce the computational cost of various analyses for high-dimensional data, and simul-
taneously eliminate the noise in data. Therefore, conducting feature selection can result
in a better model performance in practice. Accordingly, feature selection has been getting
more and more widely adopted in many applications [11, 12, 14, 35, 37, 39] for high-
dimensional data analysis.

Recently, sparse-based feature selection algorithms [6, 13, 26, 28, 32, 36] have
already attracted increasing researchers’ attentions. Such methods always can exploit
the correlation among features and imply the fact that real high-dimensional data could
be represented by sparse features. Researchers [9, 34] attempted to imposing an ℓ2,1-
norm regularization on the coefficient matrix to conduct effectively feature selection. But
researchers [29] showed that feature selection via utilizing an ℓ2,p-norm regularization
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always outperforms feature selection via using the ℓ2,1-norm regularization and other
popular feature selection methods. Just as the interpretation in Fig. 2a, if the feature has
little information to help predict output variables, then all elements of the correspond row
in matrix B are 0, otherwise, not all are 0.

The ℓ2,p-norm is defined as

Wk k2;P ¼
X

i

X
j
wi j
�� ��2� �p=2

" #1=p

¼
�Xd

i¼1

Wi
�� ��p�1=p

Where W ∈ Rd × c denotes an arbitrary matrix, p(0 < p < 2) is a parameter. The ℓ2,p -norm can
effectively make some matrix’s rows shrink to zero, i.e., it makes W row-sparse. And the
nonzero row is corresponding to the selected features.

To exclude the redundant features, it is significant to perform feature selection. From the
Fig. 1, note that excluding a feature corresponds to setting an entire row of the matrix B as
zeros. Therefore, we add an ℓ2,p-norm regularization term on the matrix B and one orthogonal
constraint to keep the low-rank structure of data by rotating the results of feature selection.
Specifically, we solve

min
A;B

Y−XBAT
�� ��2

F þ λ Bk k2;P; s:t:; ATA ¼ I ð5Þ

Where λ is the tuning parameter and the constraint ATA = I is introduced for identifiability
purpose, I ∈ Rr × r denotes the identity matrix. Note that p(0 < p < 2) is a tuning parameter which
controls the degree of correlated structures among features. After that, the redundant features
will be excluded in the low-rank regression. Moreover, the orthogonal rotation constraint
ATA = I is used to conduct a subspace learning to enhance the performance of the feature
selection process.

After the above steps, we can leverage the correlation among multiple outputs via the low-
rank regression and the relationship of feature-output via imposing an ℓ2,p-norm regularization
on the matrix B. However, there are many predict-helpless samples in large amount of high
dimensional data, i.e., the outlier samples, which might be the obstacle of model’s learning.
Thus it is necessary to remove the useless samples in the dataset. To this end, an effective
method [19] of taking advantage of the likely sample-sample relationship may impose an ℓ2,p-
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Fig. 2 An illustration to the ℓ2,p-norm regularization, especially, the blue dash rectangles in (a) imply the
corresponding features can be eliminated. The green dash rectangles in (b) imply the corresponding samples can
be removed

17466 Multimed Tools Appl (2017) 76:17461–17477



norm on the predict-output matrix (Y −XBAT). Therefore we consider the following final
optimization problem

min
A;B

Y−XBAT
�� ��

2;p þ λ Bk k2;P; s:t:; ATA ¼ I ð6Þ

Where, parameter p = 1, the ℓ2,p-norm will be transferred to the standard ℓ2,1-norm. Regarding
Ŷ =Y −XBAT as the predict-output matrix, then we impose the ℓ2,p-norm regularization on the
matrix Ŷ to obtain its row-sparse. An interpretation of sample selection as Fig. 2b, i.e., all
outputs in the same row of the matrix Ŷ are 0, which represents the corresponding sample is
useless to prediction and should be removed.

According to the above analyses, we know that the Eq. (6) considers simultaneously the
process of low-rank and subspace learning to improve the performance of prediction. Specif-
ically, we use a rank constraint rank(BAT) = r ≤min(d, c) to limit the rank of A and B. Where,
the low-rank constraint on B is used to select the high related features by consider the
correlation among features, and then remove the redundancy or irrelevant features. Further,
the sparsity of features and samples are realized by ℓ2,p-norm penalizing each row of Eq. (6)
regression model. Therefore, we can select the representative features and samples by the
sparse regression model. Especially the distribution of low-rank representation structures may
different from each other after conducting feature selection, therefore the subspace learning is
used to maintain the structure of multi-output by rotating the output matrix.

3.3 Optimization

Equation (6) is convex but non-smooth due to involving in the ℓ2,p-norm term. As a result, we
propose an algorithm of iteratively optimizing with respect to A and B. In detail, we iteratively
conduct the following two steps until satisfy the predefined conditions:

1) Update B with the fixed A
Since the constraint AAT = I, such that there is an orthogonal matrix (A,A⊥), where A⊥

is a matrix with orthogonal column. Then the optimization problem of Eq. (6) is
equivalent to the following problem:

min
B

Y−XBAT
�� ��

2;p þ λ Bk k2;P ¼ min
B

Y−XBAT	 

A;A⊥ð Þ�� ��

2;p þ λ Bk k2;P
¼ min

B
YA−XBk k2;p þ YA⊥k k2;p

� �
þ λ Bk k2;P

ð7Þ

Therefore, we fixed A, the above Eq. (7) can be reduced to

min
B

YA−XBk k2;p þ λ Bk k2;P ð8Þ

At the following section, we will prove the convergence of the value of Eq. (8). Note
that Eq. (8) can be rewritten as follow

min
B

tr YA−XBð ÞTN YA−XBð Þ
h i

þ λtr BTQB
	 
 ð9Þ
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Where both N ∈ Rn × n and Q ∈ Rd × d are diagonal matrix with respectively diagonal

elements Nii ¼ p
2 YA−XBð Þk

ik2−p2 i ¼ 1;⋯; nð Þ and Q j j ¼ p
2 B jk k2−p2

j ¼ 1;⋯; dð Þ. By set-

ting the derivative of Eq. (9) w.r.t. B to zero, then we have

B ¼ XTNXþ λQ
	 
−1

XTNYA ð10Þ
2) Update A with the fixed B

As matrix B is fixed, thus the optimization problem in Eq. (6) can be reduced to

min
A

Y−~X∼AT
�� ��

2;p; s:t:; ATA ¼ I ð11Þ

Where ~X∼ ¼ XB∈Rn�r. According to literature [15], the Eq. (11) is an orthogonal
Procrustes problem, such that the optimal solution of A is UVT, where U ∈ Rn × r and
V ∈ Rr × r are obtained from the singular value decomposition of YTX =UDVT, where
D ∈ Rr × r is a diagonal matrix.

The discussion above leads to the following algorithm 1 [20, 30].

3.4 Proving of the convergence

It can be proved that the objective function value in Eq. (8) monotonically decreases in each of
iteration. Note that, the objective function (8) is equivalent to

min
B

tr YA−XBð ÞTN YA−XBð Þ
h i

þ λtr BTQB
	 


Algorithm 1 the pseudo code of solving Eq.(6)

Input: n dRX , n cRY , , p , r
Output: c rRA , d rRB

1. Initialize the iterative number t=0;

2. Initialize (0)A as a random diagonal matrix;

3. While the value of objective function (6) not converged do;

4. Update ( 1)tB via Eq.(10);

5. Update ( 1)tA via Eq.(11);

6. Compute the diagonal matrix ( 1)tN as 
2

2

( 1, , )
2 ( )

ii pi

p i nN
YA XB

;

7. Compute the diagonal matrix ( 1)tQ as
2

2

( 1, , )
2

ii pj

p j dQ
B

;

8. Compute the value of objective function (6);

9. t=t+1;

End.
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Therefore, we have

tr YA�
tþ1ð Þ

−XB tþ1ð Þ

0
@

1
A

T

Nt YA tþ1ð Þ−XB tþ1ð Þ
	 
2

4
3
5þ λtr B tþ1ð ÞTQtB tþ1ð Þ

	 


≤ tr YAt−XBtð ÞTNt YAt−XBtð Þ
h i

þ λtr Bt
TQtBt

	 


⇒
Xn

i¼1

yiA tþ1ð Þ−xiB tþ1ð Þ
�� ��2 2−pð Þ

2

2
.
p

� �
yiAt−xiBtk k2−p2

þ
Xd

i¼1

bi tþ1ð Þ
�� ��2 2−pð Þ

2

2
.
p

� �
bit

�� ��2−p
2

≤
Xn

i¼1

yiAt−xiBtk k2 2−pð Þ
2

2
.
p

� �
yiAt−xiBtk k2−p2

þ
Xd

i¼1

bit
�� ��2 2−pð Þ

2

2
.
p

� �
bit

�� ��2−p
2

⇒
Xn

i¼1

yiA tþ1ð Þ−xiB tþ1ð Þ
�� ��2−p

2
−
Xn

i¼1

yiA tþ1ð Þ−xiB tþ1ð Þ
�� ��2−p

2

þ
Xn

i¼1

yiA tþ1ð Þ−xiB tþ1ð Þ
�� ��2 2−pð Þ

2

2
.
p

� �
yiAt−xiBtk k2−p2

þ λ
Xd

i¼1

bi tþ1ð Þ
�� ��2−p

2
−λ

Xd

i¼1

bi tþ1ð Þ
�� ��2−p

2

þ λ
Xd

i¼1

bi tþ1ð Þ
�� ��2 2−pð Þ

2

2
.
p

� �
bit

�� ��2−p
2

≤
Xn

i¼1

yiAt−xiBt
�� ��2−p

2
−
Xn

i¼1

yiAt−xiBt
�� ��2−p

2

þ
Xn

i¼1

yiAt−xiBtk k2 2−pð Þ
2

2
.
p

� �
yiAt−xiBtk k2−p2

þ λ
Xd

i¼1

bit
�� ��2−p

2
−λ

Xd

i¼1

bit
�� ��2−p

2
þ λ

Xd

i¼1

bit
�� ��2 2−pð Þ

2

2
.
p

� �
bit

�� ��2−p
2

⇒
Xn

i¼1

yiA tþ1ð Þ−xiB tþ1ð Þ
�� ��2−p

2
þ λ

Xd

i¼1

bi tþ1ð Þ
�� ��2−p

2

−
Xn

i¼1

yiA tþ1ð Þ−xiB tþ1ð Þ
�� ��2−p

2
−
Xn

i¼1

yiA tþ1ð Þ−xiB tþ1ð Þ
�� ��2 2−pð Þ

2

2
.
p

� �
yiAt−xiBtk k2−p2

0
@

1
A

−λ
Xd

i¼1

bi tþ1ð Þ
�� ��2−p

2
−
Xd

i¼1

bi tþ1ð Þ
�� ��2 2−pð Þ

2

2
.
p

� �
bit

�� ��2−p
2

0
@

1
A ≤

Xn

i¼1

yiAt−xiBt
�� ��2−p

2
þ λ

Xd

i¼1

bit
�� ��2−p

2

−
Xn

i¼1

yiAt−xiBt
�� ��2−p

2
−
Xn

i¼1

yiAt−xiBtk k2 2−pð Þ
2

2
.
p

� �
yiAt−xiBtk k2−p2

0
@

1
A

−λ
Xd

i¼1

bit
�� ��2−p

2
−
Xd

i¼1

bit
�� ��2 2−pð Þ

2

2
.
p

� �
bit

�� ��2−p
2

0
@

1
A

It had been showed in [7] that for any nonzero vectors have

X
i

bi tþ1ð Þ
�� ��2−p

2
−
X

i

bi tþ1ð Þ
�� ��2 2−pð Þ

2

2
.
p

� �
bi tþ1ð Þ

�� ��2−p
2

≤
X

i

bit
�� ��2−p

2
−
X

i

bit
�� ��2 2−pð Þ

2

2
.
p

� �
bit

�� ��2−p
2

Xn

i¼1

yiA tþ1ð Þ−xiB tþ1ð Þ
�� ��2−p

2
−
Xn

i¼1

yiA tþ1ð Þ−xiB tþ1ð Þ
�� ��2 2−pð Þ

2

2
.
p

� �
yiAt−xiBtk k2−p2

≤
Xn

i¼1

yiAt−xiBt
�� ��2−p

2

−
Xn

i¼1

yiAt−xiBtk k2 2−pð Þ
2

2
.
p

� �
yiAt−xiBtk k2−p2
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And it can be easily known that
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2
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Xd
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bit
�� ��2−p

2

Thus, it can be demonstrated that the value of objective function (8) decreases in each
iteration. At the meantime, Eq. (8) is a convex function, which indicates [33] that it will
converge to the global optimum solution of the Eq. (8).

4 Experimental results

In this section, we will compare the performance of our proposed LFR method with the state-
of-the-art methods on multi-output datasets in terms of aCC and aRMSE. We firstly introduce
the benchmark datasets used in experiments. And then, we summarize the comparing algo-
rithms and the experimental setting. Finally, we analyze the results and obtain a conclusion.

4.1 Dataset descriptions

We summarize the general information of datasets used in our experiments in Table 1.

EDM [17]: dataset for the Electrical Discharge Machining aims to predict two target
variables using 16 input variables representing mean values and deviations of the
observed quantities of the considered machining parameters.
ATP1d and ATP7d [24]: datasets of Airline Ticket Prices, the input variables include
details about the flights and the 6 target variables are the minimum prices observed over
the next 7 days for 6 flight preferences.
OES97 and OES10 [24]: gathered from the annual Occupation Employment Survey
compiled by the US Bureau of Labor Statistics for the years 1997 (OES97) and 2010
(OES10). The input variables are a randomly sequenced subset of employment types, and

Table 1 The general information of experiment datasets, where n, d, and c denote the number of samples,
features and outputs, respectively

Dataset Samples (n) Features (d) Outputs (c)

EDM 154 16 2

ATP1d 337 411 6

ATP7d 296 411 6

SF1 323 10 3

SF2 1066 10 3

WQ 1060 16 14

OES97 334 263 16

OES10 403 298 16

SCM1D 1658 280 16

SCM20D 1503 61 16
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16 targets are randomly selected from the entire set of categories above the 50 %
threshold.
SF1 and SF2 [3]: datasets for predicting three potential types of Solar Flare from the ten
feature variables describing active regions on the sun.
WQ [10]: provided by the Hydrometeorological Institute of Slovenia for inferring
chemical from biological parameters of river water quality. It includes the measured
values of 16 different chemical parameters and 14 bioindicator taxa.
SCM1D and SCM20D [23]: contain 16 regression targets, each target corresponding to
the next day mean price (SCM1D) or mean price for 20-days in the future (SCM20D) for
each product in the simulation.

4.2 Experimental settings

For each dataset, we first randomly split the dataset into 10 parts. Then according to the
standard 10-fold cross validation, we select one part for testing and use the remaining 9
parts for training, repeat the whole process 10 times to avoid the possible bias. The final
results for different methods are reported. For the model selection, we set tuning
parameter λ ∈ {10− 5,⋯, 105}, the rank of coefficient matrix r ∈ {1,⋯, min(d, c)} and
parameter p ∈ {0.1,⋯, 1.9} in the ℓ2,p-norm, and (c, g) ∈ {10− 5,⋯, 105} in the LIBSVM
toolbox by a 5-fold inner cross-validation.

The evaluation of different methods is based on two metrics [4]: aCC (average Correlation
Coefficient) and aRMSE (average Root Mean Square Error). Specially, the aCC can effectively
reflect the correlation between predicted outputs and its corresponding truth outputs, i.e., the
bigger aCC is, the predicted outputs get more closed to its corresponding truth ground outputs,
namely, the prediction can achieve more faithful results. And the aRMSE is often used to
reflect the stability of algorithm, the smaller aRMSE is, the algorithm owns a better stability.
Let yi and ŷi be the truth outputs and the predictive outputs, respectively. �yi And ~yi∼ are the
means of truth outputs and the predictive outputs respectively. The definition of them as follow

aCC ¼ 1

d

Xd

i¼1

X ntest

j¼1
y jð Þ
i −�yi

� �
ŷi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX ntest
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aRMSE ¼ 1

d
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� �2
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vuut

We compare the proposed method with the following representative state-of-the-art
methods:

& SMART [27]: Sparse Multi-tAsk Regression and feature selection model includes both
ℓ2,1-norm and ℓ1-norm regularizers for feature selection, however without imposing a low-
rank constraint on the rank of the coefficient matrix.

& LSG21 [6]: New Graph Structured Sparsity Model has the process of sparse learning
via imposing the ℓ2,1-norm on the coefficient matrix, but does not adopt the low-rank
constraint.
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& CSFS [8]: Convex Semi-supervised multi-label Feature Selection can conduct the feature
selection via the ℓ2,1-norm regularization, but might neglects the low-rank structure of data.

& LRLR [16]: Low-Rank Linear Regression model is the original linear regression modal,
but different from the traditional linear regression, because it makes a low-rank constraint
on the rank of regression coefficient matrix.

& LRRR [5]: Low-Rank Ridge Regression model own the low-rank constraint, and also
impose the ℓ2-norm on the coefficient matrix.

& SLRR [5]: Sparse Low-Rank Regression model not only uses the low-rank constraint to
seek for the low-rank structure in data, but also utilizes the ℓ2,1-norm on the coefficient
matrix for feature selection.

The comparing methods above discussion can be parted into three groups. First, the
algorithms only have the process of sparse learning without the low-rank constraint, i.e.,
SMART, LSG21 and CSFS algorithm. Second, the algorithms only have a low-rank regression
but without sparse learning, i.e., LRLR algorithm. Finally, the algorithms own both the low-
rank constraint and sparse learning, i.e., LRRR and SLRR algorithm, the difference of them is
the regularizer on the coefficient matrix.

4.3 Regression results

We summarize the performances of the comparing methods on Tables 2 and 3. From the
Table 2, we can know that the proposed LFR method outperformed all the comparing methods
in terms of the aCC. For example, the proposed LFR method increased on average by 1.435 %,
compared to the LRLR algorithm which owns the low-rank constraint on the rank of
coefficient matrix but did not had the process of feature selection, and increased on average
by 1.608 %, 1.230 % compared to the LRRR algorithm and SLRR algorithm respectively,
which not only own the low-rank constraint for seeking the correlation among multiple
outputs, but also respectively utilized the F-norm and ℓ2,1-norm to penalize the coefficient
matrix for feature selection, and increased on average by 1.550, 1.456 and 1.439 % compared
to the SMART algorithm, CSFS algorithm and LSG21 algorithm respectively, which could
conduct feature selection but without the process of low-rank constraint on the coefficient

Table 2 The aCC results of all algorithms experimented on the multi-output datasets

Dataset LRLR LRRR SLRR SMART CSFS LSG21 LFR

EDM 0.8097 0.8051 0.8051 0.8105 0.8002 0.8048 0.8183

ATP1d 0.9220 0.9229 0.9233 0.9201 0.9299 0.9233 0.9442

ATP7d 0.8893 0.8899 0.8902 0.8871 0.8786 0.8907 0.9417

SF1 0.5395 0.5294 0.5521 0.5506 0.5381 0.5458 0.5657

SF2 0.5430 0.5457 0.5461 0.5453 0.5472 0.5428 0.5520

WQ 0.3806 0.3778 0.3796 0.3613 0.3818 0.3664 0.3863

OES97 0.9018 0.9020 0.9021 0.9014 0.9023 0.9028 0.9042

OES10 0.9412 0.9389 0.9499 0.9407 0.9473 0.9503 0.9567

SCM1D 0.9579 0.9572 0.9574 0.9574 0.9571 0.9575 0.9582

SCM20D 0.9389 0.9377 0.9386 0.9380 0.9393 0.9391 0.9401
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matrix. This validated that the proposed method can lead to the best faithful results over all the
comparison methods for the tasks of multi-output regression.

Note that the LRLR method obtained a little smaller aCC result than all other comparing
methods on the experimental datasets, which may attribute to the LRLR method can take
advantage of the low-rank constraint on the rank of coefficient matrix to find the inherent low-
rank structure in data, but without making the coefficient matrix sparsity. This implied that the
method could use the relationship of output-output but could not conduct feature selection.
Therefore, this may be the reason of resulting in it hard to make multiple-output regression for
high-dimensional data.

The LRRR method and SLRR method could obtain better aCC results than the other
comparing methods. Both of these two methods have the low-rank constraint and the
process of feature selection via leveraging different regularization on the coefficient
matrix, i.e., the LRRR uses the ℓ2-norm on the coefficient matrix, but the SLRR imposes
the ℓ2,1-norm on the coefficient matrix to lead the matrix row-sparse. However the
proposed LFR method outperform these two methods, may attributes to the fact that
LFR method owns the explicitly selection of the parameter p on the ℓ2,p-norm and
conduct the sample selection of removing the useless samples for learning the model.

From Table 2, we can also know SMART method, CSFS method and LSG21 method
always obtained the better aCC results than the LRLR method, but sometimes got little smaller
aCC results than the LRRR method and the SLRR method, the reason for which may because
these three methods all had the process of feature selection, however without low-rank
constraint to take advantage of the correlation among multiple outputs for improving the
regression model.

Moreover, to reflect the stability of algorithms, we summarize the aRMSE results of all the
comparing methods in Table 3.

From Table 3, we can easily know that the proposed LFR method achieved the
minimum aRMSE results compared to all the comparison methods. For example, the
proposed LFR method reduced the aRMSE values on average by 0.049, 0.076, 0.068,
0.037, 0.076 and 0.037 %, respectively compared to LRLR method, LRRR method,
SLRR method, SMART method, CSFS method and LSG21 method in terms of aRMSE.
This demonstrates that the proposed LFR method has the best stability compared to over
all the comparing methods.

Table 3 The aRMSE results of all algorithms experimented on the multi-output datasets

Dataset LRLR LRRR SLRR SMART CSFS LSG21 LFR

EDM 0.0453 0.0474 0.0474 0.0475 0.0478 0.0474 0.0450

ATP1d 0.0070 0.0070 0.0069 0.0071 0.0068 0.0069 0.0068

ATP7d 0.0067 0.0067 0.0066 0.0067 0.0070 0.0067 0.0065

SF1 0.0203 0.0205 0.0202 0.0200 0.0203 0.0202 0.0199

SF2 0.0108 0.0107 0.0107 0.0108 0.0107 0.0108 0.0107

WQ 0.0245 0.0245 0.0245 0.0246 0.0245 0.0247 0.0245

OES97 0.0163 0.0163 0.0162 0.0129 0.0162 0.0128 0.0128

OES10 0.0125 0.0130 0.0127 0.0126 0.0127 0.0126 0.0124

SCM1D 0.0011 0.0012 0.0012 0.0012 0.0012 0.0012 0.0011

SCM20D 0.0014 0.0013 0.0014 0.0013 0.0014 0.0014 0.0013
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The reason for our LFR method outperforms all comparing methods may be that, the
proposed method fully considered the three kinds of inhered relational structure information in
data, i.e., the relationship of output-output, feature-output, and sample-sample, by simulta-
neously leveraging the process of low-rank constraint on the coefficient matrix, feature
selection, and sample selection for improving the multi-output regression.

5 Conclusion

In order to perform the multi-output regression task for large amount of high-dimensional data,
this paper has proposed a new method, i.e., Leverage Triple Relational Structures via Low-
rank Feature Reduction for Multi-output Regression, by simultaneously utilizing low-rank
constraint to obtain the correlation among outputs, imposing ℓ2,p-norm regularizer to find the
correlation between features-outputs, and combining ℓ2,p-norm on the loss function to search
the correlation among samples. Moreover, an orthogonal subspace constraint has been
exploited to ensure the multi-output variables share the same low-rank structure of data by
rotating the results of feature selection. Consequence, the method’s effectiveness was demon-
strated theoretically. Finally, sets of results experimented on datasets showed that the proposed
LFR method is effective to deal with the multi-output regression for large number of high-
dimensional data.
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