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Low-rank feature selection for multi-view regression

Rongyao Hu1 ·Debo Cheng1 ·Wei He1 ·Guoqiu Wen1 ·
Yonghua Zhu2 · Jilian Zhang3 ·Shichao Zhang1

Abstract Real life data and information often have different ways to obtain. For example,
in computer vision, we can describe an objective by different types, such as text, video and
picture. And even from variety of angles. These different descriptors of the same object are
usually called multi-view data. In ordinarily, dimensional reduction methods usually include
feature selection and subspace learning, respectively, can have better interpretative capabil-
ity and stabilizing performance, and now are very prevalent method for high-dimensional
data. However, it is usually not considering the relationship among class indicators, so the
performance of regression model is not very ideal. In this paper, we simultaneously con-
sider feature selection, low-rank selection, and subspace learning into a unified framework.
Specifically, under the framework of linear regression model, we first use the low-rank con-
straint to feature selection which considers two aspects of information inherent in data. The
low-rank constraint takes the correlation of response variables into account, then embed an
�2,p-norm regularizer to consider the correlation among variety of class indicators, and fea-
ture vectors and their corresponding response variables. Meanwhile, we take LDA algorithm
which belong to the subspace learning to further adjust relevant feature selection results into
account. Lastly, we conducted experiments on several real multi-views image sets and cor-
responding experimental consequences also validated the furnished method outperformed
all comparison algorithms.
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1 Introduction

In the actual of field, such as pattern recognition and machine learning, it always describe
different kinds of data with high-dimensional data, and homologous treatment process
greatly increases the time complexity and space complexity [3, 34, 37]. Therefore, there
are a number of ways to reduce the dimensions of data, and to find out a smaller and a
more representative subset of features. And generally that is called dimensional reduction,
meanwhile, which has been become an important research field of machine learning. Fur-
thermore, the blessing of dimensional usually indicated that high-dimensional data usually
have a low-dimensional structure. For this reason, a large number of dimensional reduc-
tion methods (including feature selection methods and subspace learning methods) have
produced to search for the low-dimensional structure [15, 33]. Dimensional reduction is
not only reducing the processing time and the storage structure, but also can get a learning
model which has more compact structure and more generalization ability.

As usual, dimensional reduction methods are divided into feature selection methods
[27, 28] and subspace learning methods [20, 23]. Recently, due to varieties and different
methods have been flourished with many types of applications. Therefore, Feature selec-
tion methods have been widely used for reducing the dimensions of different types of
data, and outputting a set of fundamental and representative features matrix [9, 32]. Based
on the availability of class labels, the previous feature selection methods usually have
been categorized into the following types, i.e., supervised feature selection methods [23,
40], semi-supervised feature selection methods[9, 20], and unsupervised feature selection
methods [22, 31]. In spite of these methods directly selecting a subset of features lead to
interpretation, and they can explain the relationship of the corresponding internal data, so
the actual performance of feature selection methods appear unstable. Furthermore, subspace
learning methods [23, 35] have been established to map all of features into a lower dimen-
sional subspace, and removed irrelevant inherent attributes by some algorithm regulations.
In this way, the high-dimensional problem can be solved and achieved stable performance.
For instance, Zhu et al. [35] conducted subspace learning and converted original data into
low-dimensional Hamming subspace, and then considered the correlations between the orig-
inal space and the group effect of the features in training data. It is that the proposed model
can be applied for the fast multimedia search, and also could receive interpretation abil-
ity and more stable performance. In addition, it can further adjust the results of the feature
selection by the subspace learning that in order to consummate the presented new model.

Motivated by the successful application of low-rank for subspace clustering [2, 10, 26]
and aimed to improve the single view model by multi-view method. During this article, we
present a novel method called Sparse Low-Rank Feature Selection (shorted for SLR FS) for
multi-view regression. We simultaneously consider low-rank subspace selection and row-
sparsity based feature selection into a unified framework for feature selection. Specifically,
we use a low-rank constraint to conduct subspace selection by thinking about the correla-
tion variables. Then a feature selection model with a �2,p-norm regularizer is constructed
to consider the correlation between features and their corresponding data samples. Further-
more, a new effective iterative optimization method is proposed to solve the corresponding
objective function. And the novel optimization method enables the proposed method to be
used in the different kinds large-scale data sets.
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This paper get achievements for the following two aspects:

– This work conducts low-rank feature selection [6, 7, 39] for multi-view by considering
two aspects of correlations inherent in data, such as the correlation between response
variables via an �2,p-norm regularizer [36, 41] and the correlation between any pairs of
samples via a low-rank constraint. Their common goals are to identify relevant features
and discard irrelevant features.

– This paper integrates supervised feature selection with subspace learning into a frame-
work. With the goal of outputting a stable feature selection and interpreter ability. It
has always been a challenge to embed the two different conceptual topics (i.e., fea-
ture selection and subspace learning) in a uniform framework for data mining [29,
30, 38]. Consequently, this article embeds a low-rank subspace learning into a novel
devised feature selection model, where the row-sparsity structure ensures the multi-
view data matrix to remove the irrelevant and noisy data. This naturally leads to the
two conceptual topic interact with each other and ends up with a better feature selection
results.

The remainder parts of this article are revealed such as: Section 2 introduces related work
with remarkable framework for feature selection and Section 3 shows specific details of
our proposed model and proposes an effective and reasonable optimization by an iteration
algorithm, in order to ensure the global convergence. Then in Section 4 and Section 5,
respectively, reasonable and effective experimental results are showed and detailed analysis,
and concluded on the whole article.

2 Related work

Over the past decade, plenty of feature selection methods already are presented to overcome
and address high-dimensional issue. Feature selection methods select a subset of features
in accordance with some criteria, such as distinguishing features with good characteristics
and correlating to the predefined goal. In this way, some methods roughly categorized into
the following types, such as filter methods [19], wrapper methods [12, 21] and embedded
[17, 25] methods.

Filter methods rank feature in accordance with the intrinsic property of data without any
learning algorithms. Then to choose features with high scores for the remaining selection
tasks. Therefore, the specific selection process of filter method that is distinguished from
the other models process. Such as, Tabakhi et al. [19] presented to select the representative
feature subset with a learned iterative algorithm. And the obtained new unsupervised feature
selection algorithm is optimized by ant colony. Cao et al. [4] utilized the value of false
discovery rates method to further decrease the influence of redundant genes. Meanwhile, it
also could obtain the statistical significant.

Wrapper methods found out a learning algorithm to gain the accuracy of feature sub-
sets to the predicting the target, and usually have better performance than filter methods.
For example, Cathy et al. [12] proposed to consider feature selection between the cluster-
ing variables and irrelevant variables, and used the Gaussian mixture models to enhance
the clustering effect. Unler et al. [21] presented to combine the filter model and the parti-
cle swarm optimization based wrapper model to feature subset selection that extended the
filter-wrapper algorithm. Chyzhyk et al. [5] mixed an extreme learning algorithm and a
genetic algorithm to explore the feature combination space for an optimal subset of features.
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However, the wrapper method is more expensive of computation complexity than filter
method.

Embedded methods usually make feature selection as part of the operation in the learn-
ing model, and utilize the objective function and other operations to get optimal feature
subset. For instance, You et al. [25] proposed a novel embedded feature selection method
which used the multi-label instead of the single label. In this way, it added a prediction risk
criterion to evaluation of features for search of feature subset. Shi et al. [17] integrated the
embedded learning with sparse regression into a unified framework to conduct an effectively
sparse regression model.

3 Method

Here, we put this section divide into three subsections. We first introduce some notations
used for this article and describe the proposed SLR FS method in detail, in Section 3.1 and
Section 3.2, respectively. Moreover, the optimization method to the objection function is
given in Section 3.3.

3.1 Notations

Throughout this article, we use boldface uppercase letters to denote matrices, and utilize
boldface lowercase letters to indicate vectors. Let X = [

xv
1 , ..., xv

i , ..., xv
n

] ∈ R
Cv×n be

the data matrix of view v, and Y = [y1, ..., yk] ∈ R
n×k denote the normalized class indi-

cator matrix. Also we show the Frobenius norm, �2,p-norm of a matrix X respectively as

||X||F =
√∑

i ||xi ||22 =
√∑

j ||xj ||22 and ||X||2,p =
(∑

i

√∑
j x2

ij

) 1
p . We further denote

the inverse operator and the transpose of a matrix X as X−1 and XT , respectively.

3.2 Multi-view low-rank feature selection

Let X ∈ R
m×n denotes the signal view of training samples, where m and n, respective,

denote the dimensionality of features and the number of samples. And given a class indicator
matrix Y ∈ R

n×k , where k denote the number of class labels. In general, we construct a
linear relationship with the following formulation:

min
Z

g(Z) = f (Z) + λφ(Z) (1)

where Z ∈ R
m×k denotes the reconstruction coefficient matrix, f (Z) denotes the loss term

imposed on Z, and φ(Z) denotes the regularization term and λ denotes a positive constant.
However, in the literature [17], f (Z) is defined as f (Y − XT Z) which aim at obtaining
the minimum regression error between corresponding class indicator matrix Y and their
prediction XT Z. In this way, we defined the least loss function between feature matrix and
class indicator matrix is formulated as:

min
Z

f (Y − XT Z) + λφ(Z) (2)

Obviously, (2) considers the sample similarity among samples to conduct regression
model on the whole method.
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Therefore, to discuss separately, due to the multi-view linear regression and we can get
a specific loss function, such as:

min
Zv

||Y − XT
v Zv||2F (3)

where ||.||F denotes the Frobenius matrix norm. Obviously, the optimization function in
(3) is convex and smooth, so the optimal coefficient matrix Zv is obtained as Zv =
(XvXT

v )−1XvY. However,XvY is not always invertible in practical applications. Meanwhile
the matrix of Zv does not make use of the fact that multiple responses are likely correlated.
To do this, one way of taking advantages of possible correlation between response variables
may impose a constraint on the rank of Zv , such as:

rank(Zv) = r ≤ min(m, k) (4)

A directly intuition on (4) is that there is a number of linear constraints on regression coef-
ficient Zv , and hence the estimation efficiency is improved and the number of effective
number of parameters is reduced.

In real applications, there is an underlying connection between different kinds of things.
In particular, this relationship may become more obvious in the multi-view problem. To find
out these hidden internal structure information and utilize such corresponding structures
to make the learning model better, the low-rank constraint on (4) is reasonable for find-
ing the low-dimensional structure in high-dimensional data. Moreover, due to the literature
[1] which points out that, when we conduct linear regression model in the projected LDA
space which is called for low-rank linear regression. And consequently, in order to further
adjusts the result of the features and finally forms a low-rank linear regression model with
discriminant characteristics. In this way, a low-rank constrain structure is introduced on Zv

can naturally be expressed as a product of two r-rank matrices as follows:

Zv = AvBv (5)

where Av ∈ R
Cv×r and Bv ∈ R

r×k . Then, for the fixed r, we can conduct a low-rank
multi-view regression model as follows:

min
Av,Bv

||Y − XT
v AvBv||2F (6)

where the matrix Av and Bv have the low-rank constraint simultaneously. Thereinto, Av

denotes the one view of the multi-view structure to the original matrix Xv , and Bv denotes
the one view of the multi-view structure to the matrix of Yv . But here all Yv are exactly
the same so that we take Y instead of Yv . Then the reduced XT

v Av ∈ R
n×r , which is then

multiplied by Bv to represent the feature matrix Xv .
Inspired by the above mentions, due to the regularization term based on sparsity as

we know that it has been widely utilized to exploit the correlation information of struc-
tures among different kinds of features. This inspired us that it can effectively discovery
the correlated weight of coefficient matrix by sparse coding technology. Specifically,
when embedding the sparsity-based term into the model, it will make the corresponding
coefficient matrix (or called the weight matrix) shrink to zeros. Hence, we can select rep-
resentative subset of original feature matrix, which are corresponding to those features
with non-zero coefficients. In this way, we can remove those noisy and redundant features.
Actually, there already are several of methods have been proposed based on sparsity regular-
ization method and applied for all kinds of fields. Inspired by the novel idea, in this paper a
novel sparsity model is conducted to address related problems. So a new �2,p-norm method
is presented to minimize. It is need to note that, the parameter of p can control the degree
of features with correlated structures. Meanwhile, when p is lower, and different kinds of
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features will shared more structures. So we, during this article, embed the �2,p-norm reg-
ularization term into our model, then we re-write the (6) with a matrix representation as
follows:

min
Av,Bv

||Y − XT
v AvBv||2F + λv||AvBv||2,p (7)

where Xv ∈ R
Cv×n denotes the multi-view data matrix, and Y ∈ R

n×k denotes the normal-
ized class indicator matrix. Through the parameter λv control the penalty residual value of
view v. And the �2,p-norm regularizer ||AvBv||2,p can be utilized to penalize all of coef-
ficients in the same row of AvBv , and take them for selection get together. Our proposed
method combines feature selection with subspace learning together for a joint framework.
The furnished method is through combined low-rank linear regression and sparse regulariza-
tion for better select representative subset among features. Then embedding LDA subspace
learning algorithm to further adjust the final results of feature selection.

3.3 Optimization

After introduced the details of proposed method, then we present a novel solution method
to solve the objective function of (7). While the �2,p-norm generally is utilized to find out
the information of sparse structures, and it leads to the objective function usually unable to
be solved with a appropriate closed form. Furthermore, the objective function also unable to
make two variables convergence simultaneously, i.e., Av and Bv . Hence, we can solve this
problem such as:

First of all, We have definition on the diagonal matrix Dv , and in this matrix that each of
element can be defined as:

dii = 1

(2/p)(||zi
v||2)2−p

s.t. i = 1, 2, ..., m , 0 < p < 2 (8)

where zi
v denotes the i-th of the Zv = AvBv matrix. The parameter p usually control the

degree of features with correlated structures.
Therefore, the objective formulation in (7) which is equivalent to:

min
Av,Bv

||Y − XT
v AvBv||2F + λvT r

(
BT

v A
T
v DvAvBv

)
(9)

Then let the (9) equal to J (Av,Bv) and calculate the partial derivative of the matrix Bv .
Meanwhile, let the result equation to zero.

∂J (Av,Bv)

∂Bv

= −2AT
v XvYv + 2AT

v XvXT
v AvBv + 2λAT

v DvAvBv = 0 (10)

From the above equation that we can obtain the following equation.

Bv =
(
AT

v (XvXT
v + λvDv)Av

)−1
AT

v XvY (11)

Then we bring the matrix Bv expression into the (9) that can be obtained.

max
Av

T r

((
AT

v

(
XvXT

v + λvDv

)
Av

)−1
AT

v XvYvYT
v X

T
v Av

)
(12)

Here we need to pay attention to that.

St = XvXT
v , Sb = XvYvYT

v X
T
v (13)



Multimed Tools Appl (2017) 76:17479–17495 17485

where the between-class and total-scatter matrices of data in the LDA are denoted with Sb

and St , respectively. Hence, the ultimately solution of (9) that can be re-written as:

Av = argmax
Av

{
T r

((
AT

v (St + λvDv)Av

)−1
AT

v SbAv

)}
(14)

The above mentioned is called the problem of LDA, and in order to achieve global opti-
mization solution to (14) is that, through the top r eigenvectors of S−1

t Sb with respect to the
nonzero eigenvalues.

From Algorithm 1, we can get the necessity optimal solution Av , and then to solve (7) by
the equation of (9), which denotes the classical regression problem. Furthermore, since the
objective formulation in (7) is nontrivial, and there are still two variables Av and Bv need
to optimize. By this way, it is difficult to solve the problem that the regularization term is
non-smooth. For this reason, we will prove the proposed algorithm is convergent as follows.

Proposition 1 Equation (7) will lead to convergent when Algorithm 1 monotonically
decreases which corresponding to objective function.

Proof It is assuming that, in the step of (t+1)-th iteration, and we get

< Av(t +1),Bv(t +1) >= argmin
Av,Bv

||Yv −XT
v AvBv||2F +λvT r

(
BT

v A
T
v Dv(t)AvBv

)
(15)

In other words, in the step of (t+1)-th iteration, we can obtain the following inequality:

||Y − XT
v Av(t + 1)Bv(t + 1)||2F

+λvT r(Bv(t + 1)T Av(t + 1)T Dv(t)Av(t + 1)Bv(t + 1))

≤ ||Y − XvAv(t)Bv(t)||2F + λv T r(Bv(t)
T Av(t)

T Dv(t)Av(t)Bv(t)) (16)
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Note that Zv(t) = Av(t)Bv(t) and Zv(t + 1) = Av(t + 1)Bv(t + 1). Then we take the
matrix Dv which definition in (8) into the inequality.

||Y − XT
v Zv(t + 1)||2F + λv

m∑

i=1

(||zi
v(t + 1)||2)2(2−p)

(2/p)(||zi
v(t)||2)2−p

≤ ||Y − XT
v Zv(t)||2F + λv

m∑

i=1

(||zi
v(t)||2)2(2−p)

(2/p)(||zi
v(t)||2)2−p

(17)

where zi
v(t) and z

i
v(t+1) denote the i-th row of the matrix Zv(t) and Zv(t+1), respectively.

Due to every of i, we get

(||zi
v(t + 1)||2)2−p− (||zi

v(t + 1)||2)2(2−p)

(2/p)(||zi
v(t)||2)2−p

≤ (||zi
v(t)||2)2−p− (||zi

v(t)||2)2(2−p)

(2/p)(||zi
v(t)||2)2−p

(18)

Thus, summarizing the above m inequalities and multiplying the summation with respect to
the regularization parameter λ, we get:

λ

m∑

i=1

(||zi
v(t + 1)||2)2−p − (||zi

v(t + 1)||2)2(2−p)

(2/p)(||zi
v(t)||2)2−p

≤ λ

m∑

i=1

(||zi
v(t)||2)2−p − (||zi

v(t)||2)2(2−p)

(2/p)(||zi
v(t)||2)2−p

(19)

After combining (17) with (19) together, so we have as follows:

||Y − XT
v Zv(t + 1)||2F + λ||Zv(t + 1)||2,p ≤ ||Y − XT

v Zv(t)||2F + λ||Zv(t)||2,p (20)

SinceAv andBv are updated according to the gradient, it demonstrates the presented method
will monotonically decrease the corresponding objective function during every iteration.
Moreover, our proposed method also will avoid to local convergence by rapid, and it will
take converge incline to the global optimal solution.

4 Experiments

We compare our method with one baseline method and six approaches over four multi-
view data sets. Specifically, we first utilize each dimensionality reduction method to project
original high-dimensional data into the lower dimensional subspace for each view, and to
integrate each view into the Xv matrix to carry out the sparse learning and then to conduct
regression with Support Vector Machine (SVM) via the LIBSVM toolbox.1

4.1 Experimental Setup

We have verification of the proposed SLR FS method on four publicly available multi-view
data sets. Specifically as follows:

– Tem-Dino [18]: It contains 675 images of 2 objects, one object has 312 images and the
other has 363 images. Each model is executed more that 30 times by 2 models and is

1http://www.csie.ntu.edu.tw/cjlin/libsvm/.

http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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recorded with 2 cameras to observe with different angles. And each image displayed in
grayscale and deal with the same size of 640 × 480 pixels.

– tripod [13]: This dataset collects 2299 images for 20 sequences of cars. Each car is pho-
tographed more that 20 times and is recorded with 2 cameras to observe with different
angles. All images are reshaped into 250 × 376 pixels in grayscale.

– rand wiki [16]: This dataset includes 10 semantic of classes (e.g., Biology, History,
Media and Music). Then a random split was used to produce 2149 documents with a
training set, and 717 documents belong to a test set.

– imaxs [24]: This video dataset involves 12 different action classes (e.g., check watch,
scratch head and cross arms). Thereinto, every action is complied 3 times with 12 actors
and is observed the subjects by 5 cameras to record with different kinds of perspectives.

We also give more details of all data sets in Table 1.
We have compared our method with the following representative feature selection

methods:

– NFS: Non Feature Selection(NFS) uses original variable to conduct classification by
the SVM classifier directly. Here we use NFS to indicate if dimensionality reduction
methods make sense in real applications.

– LDA: Linear Discriminant Analysis (LDA) [11], as one of subspace learning methods,
preserves the neighborhood relation of each class sample to conduct subspace learning.
Hence, LDA is a global subspace learning method.

– LR: Linear Regression (LR) [8] is a regression method which utilizes minimum square
function to model analysis between one or more independent variables and dependent
variables.

– LGR: Logistic Regression (LGR) [1] is an biased estimator regression for linear data
analysis. Its character is able to give up the unbiased of the least square method.

– MI: The method of Mutual Information (MI) [14] takes the logarithmic compression
and selects a mapping function to map processing for the original data. Finally, the
important features were selected according to their scores.

– SD: This method of Statistical Dependency (SD) [14] selects a mapping function to
process the original data. The resulting scores correspond to the level of important of
the strength features. Then feature selection for the top-ranking scores.

– RSR: This unsupervised approach [31] chooses a representative response matrix
through the self-representation method. Then embedded into the sparse learning model
for feature selection. At the same time, the size of the coefficient matrix means that the
importance of the strength of the corresponding features.

NFS does not conduct dimensionality reduction and can be regarded as the baseline
of all dimensionality reduction methods, such as LDA, LR, LGR, MI, SD, RSR and our

Table 1 The details of data sets

Data sets Instances Targets View Types

Tem-Dino 675 2 2 Image, Model

tripod 2299 20 20 Image, Car

rand wiki 128 2149 10 Text, Image

imaxs 180 2500 12 Human action
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Table 2 The average correlation coefficient (aCC ± STD) for all of multi-view data sets. The best
performance are emphasized by boldface in each column

tripod Tem-Dino rand wiki imaxs

NFS 0.6249 ± 0.1631 0.7527 ± 0.0514 0.2741 ± 0.0245 0.7102 ± 0.0352

LDA 0.6302 ± 0.1420 0.7662 ± 0.0480 0.2402 ± 0.0267 0.6620 ± 0.0316

LR 0.6918 ± 0.1821 0.8010 ± 0.0468 0.2731 ± 0.0200 0.7272 ± 0.0353

LGR 0.7082 ± 0.1051 0.8462 ± 0.0422 0.2502 ± 0.0258 0.7195 ± 0.0353

MI 0.6526 ± 0.1240 0.8180 ± 0.0482 0.2960 ± 0.0313 0.7325 ± 0.0327

SD 0.6659 ± 0.1445 0.8162 ± 0.0469 0.2842 ± 0.0258 0.7401 ± 0.0271

RSR 0.6784 ± 0.1045 0.8023 ± 0.0429 0.2774 ± 0.0474 0.7455 ± 0.0298

SLR FS 0.7526 ± 0.0745 0.8962 ± 0.0379 0.2964 ± 0.0290 0.7469 ± 0.0327

SLR FS. In dimensionality reduction methods, LDA belong belong to subspace learning,
while feature selection methods include LR, LGR and RSR. Meanwhile, both MI and SD
belong to feature projection method. Our proposed method includes subspace learning, thus
LDA can be regarded as the other baseline method. RSR does not consider subspace learning
in the unsupervised feature selection and RSR method denoted the supervised general have
better result than unsupervised method. In contrast, our method embedded a regularization
term in the feature selection model and utilized the subspace learning method to adjust the
finally selection results.

In the following experimental setting in [38] that we compared all methods with a 10-
fold cross-validation. Specifically, we first partitioned the entire of original data set into 10
subsets by random. Then we used, at here, nine subsets for training and selected the remain-
ing one subset for testing. Meanwhile, we have a repeat the entire of process with 10 times,
in order to avoid the possible bias during original dataset partitioning for cross-validation.
Lastly, the ultimate results were computed by averaging results for all experiments.

Due to all experiments, we will tune the parameters λ among the values λ ∈ {100, ...105}
to select the best parameters automatically, and we set [c, g] ∈ {2−5, ...25} in the SVM by
a 5-fold inner cross-validation to distinguish different types of samples. Moreover, to select
the best performance of a group and to return its coefficient as the coefficient final result
with the 10-fold cross-validation of the model.

Table 3 The average root mean squared error (aRMSE ± STD) for all of multi-view data sets. The best
performance are emphasized by boldface in each column

tripod Tem-Dino rand wiki imaxs

NFS 3.3100 ± 0.6704 5.8552 ± 1.0935 0.1285 ± 0.0189 0.0427 ± 0.0511

LDA 3.4020 ± 0.6821 5.6820 ± 1.2001 0.1302 ± 0.0194 0.0762 ± 0.0440

LR 3.1500 ± 0.7028 5.8240 ± 1.2830 0.0685 ± 0.0216 0.0477 ± 0.0522

LGR 3.2502 ± 0.7639 4.8895 ± 1.0351 0.0802 ± 0.0231 0.0437 ± 0.0320

MI 3.0602 ± 0.6810 5.1125 ± 1.4802 0.0522 ± 0.0216 0.0580 ± 0.0410

SD 2.9422 ± 0.6620 5.3751 ± 1.3481 0.0629 ± 0.0264 0.0762 ± 0.0402

RSR 2.8540 ± 0.5216 5.1330 ± 1.1250 0.0290 ± 0.0088 0.0424 ± 0.0429

SLR FS 2.3093 ± 0.3761 4.6865 ± 1.0151 0.0191 ± 0.0096 0.0415 ± 0.0379
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In the section, we used average Correlation Coefficient (aCC) and average Root Mean
Squared Error (aRMSE) as corresponding evaluation metric, and to evaluate the regression
performance of all multi-view data sets and comparison methods.

We defined average Correlation Coefficient (aCC) as follows:
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Then, we defined average Root Mean Squared Error (aRMSE) as follows:

aRMSE = 1
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where Ntest means the size of test data set, then ŷ(l) and y(l) be the vectors of the predicted
and actual targets for x(l), respectively. Besides, ¯̂y and ȳ be the vectors of averages of the
predicted and actual targets, respectively. A larger aCC shows better correlation coefficient
results, while a smaller aRMSE means better robust.
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Fig. 1 The average correlation coefficient (aCC) of all methods for multi-view regression tasks
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4.2 Regression experiment results

At here, we reported the result of average correlation coefficient (aCC) in Table 2 and
average root mean squared error (aRMSE) in Table 3 for all multi-view data sets. We also
indicated the results of correlation coefficient and root mean squared error of each fold in
10-fold cross-validation for all data sets in Figs. 1 and 2, respectively.

Due to Table 2, it demonstrates that the SLR FS method has the best correlation coeffi-
cient. All methods get the lower result than other data sets since the rand wiki data set has
the variety of different forms aim to the same object. And it easier leads to describe the
structure of same object has dissimilar data. However, it also denotes the proposed method
combined low-rank constraint with sparsity learning, which could better remove the noisy
and outlier data and select the more significant features. For instance, in the tripod data set,
our method increased on 12.77 %, compared with the NFS which is used as the benchmark
method, and increased on 4.44 %, compared with the LGR which got the second best per-
formance among all methods. Then our method increased on 12.24 % and 10.00 %, 8.67 %,
respectively, comparison with the subspace learning method and feature projection methods.
Similarly, in the Tem-Dino data set, our method increased on 14.35 %, 13.00 %, 9.52 %,

1 2 3 4 5 6 7 8 9 10
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

 cross−validation times 

aR
M

SE

NFS
LDA
LR
LGR
MI
SD
RSR
SLR−FS

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11

12
12.5

 cross−validation times 

aR
M

SE

NFS
LDA
LR
LGR
MI
SD
RSR
SLR−FS

2 4 6 8 100

0.1

0.2

0.3

0.4

 cross−validation times 

 a
R

M
SE

 

NFS
LDA
LR
LGR
MI
SD
RSR
SLR−FS

1 2 3 4 5 6 7 8 9 100

0.05

0.1

0.15

0.2

0.25

0.3

 cross−validation times 

 a
R

M
SE

 

NFS
LDA
LR
LGR
MI
SD
RSR
SLR−FS

Fig. 2 The average root mean squared error (aRMSE) of of all methods for multi-view regression tasks
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5.00 %, 7.82 %, 8.00 % and 9.39 %, respectively, compared with NFS, LDA, LR, LGR, MI,
SD and RSR, in terms of average correlation coefficient.

Then analysis of Table 3, it shows that the SLR FS method also has the minimum root
mean squared error comparison with all comparison methods for multi-view regression
tasks. With the same effect, our method has the minimum root mean squared error among
comparison methods. For example, due to the least aRMSE results in the rand wiki data that
the proposed only get 1.91 %. Then directed to the imaxs data set, our method decreased
on 0.12 %, 3.47 %, 0.62 %, 0.22 %, 1.65 %, 3.47 %, 0.09 %, respectively, compared with
NFS, LDA, LR, LGR, MI, SD and RSR, in terms of average root mean squared error.

5 Conclusion

In this paper, we proposed a effective sparse low-rank method with feature selection to
multi-view data sets. Specifically, the proposed method used a loss function based on linear
model plus an �2,p-norm sparse term to construct feature selection for achieving interpre-
tation ability, and then employed LDA to conduct subspace learning for adjust the feature
selection results. Experimental results on four multi-view data sets showed that the SLR-FS
method outperformed the comparison method with two kinds of evaluation metric for the
multi-view regression tasks.

In the future task, we will improve our model and apply for semi-supervised and
unsupervised feature selection.
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