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The discovery of Markov blankets (MB) for feature selection has attracted much attention in recent
years since the MB of the class attribute is the optimal feature subset for feature selection. However,
almost all existing MB discovery algorithms focus on either improving computational efficiency
or boosting learning accuracy, instead of both. In this paper, we propose a novel MB discovery
algorithm for balancing efficiency and accuracy, called BAMB (BAlanced Markov Blanket discovery).
To achieve this goal, given a class attribute of interest, BAMB finds candidate PC (parents and
children) and spouses and removes false positives from the candidate MB set in one go. Specifically,
once a feature is successfully added to the current PC set, BAMB finds the spouses with regard to
this feature, then uses the updated PC and the spouse set to remove false positives from the current
MB set. This makes the PC and spouses of the target as small as possible, and thus to achieve
a trade-off between computational efficiency and learning accuracy. In the experiments, we first
compare BAMB with 8 state-of-the-art MB discovery algorithms on 7 benchmark Bayesian networks,
then we use 10 real-world datasets and compare BAMB with 12 feature selection algorithms,
including 8 state-of-the-art MB discovery algorithms and 4 other well-established feature selection
methods. On prediction accuracy, BAMB outperforms 12 feature selection algorithms compared.
On computational efficiency, BAMB is close to the IAMB algorithm while is much faster than the
remaining seven MB discovery algorithms.
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Fig. 1. The Markov blanket (in blue) of the node “Cancer” comprises “Exposure to Toxins” and
“Smoking” (parents), “Serum Calcium” and “Lung Tumor” (children), and “ Diet” (spouse)

ACM Reference Format:
Zhaolong Ling, Kui Yu, Hao Wang, Lin Liu, Wei Ding, and Xindong Wu. 2019. BAMB: A Balanced
Markov Blanket Discovery Approach to Feature Selection. ACM Trans. Intell. Syst. Technol. 1, 1,
Article 1 (January 2019), 25 pages. https://doi.org/10.1145/3335676

1 INTRODUCTION

Feature selection is commonly used to identify a subset of relevant features (aka variables
or attributes) from a large number of features for building better prediction models [5, 6,
28, 31, 32]. For example, in bioinformatics, feature (gene) selection can identify a small
number of informative genes for predicting diseases. In the era of big data, feature selection
is more critical than ever, since high-dimensional data has become ubiquitous in various
applications. For instance, in cancer genomics, a gene expression dataset may easily have
more than 10,000 features.

In recent years, discovering Markov blanket (MB) for feature selection has attracted much
attention [30]. Given a target attribute of interest, the MB of the target consists of the
target’s parents, children, and spouses (other parents of the children of the target) [18], as
illustrated in Fig. 1 [29]. The MB of a target is a minimal set of features that renders all
other features conditionally independent of the target [18]. Therefore, theoretically, the MB
of the class attribute is an optimal set for feature selection [1].

Koller and Sahami [15] were the first to introduce the concept of MB to the field of feature
selection. Based on their pioneer work, many MB discovery methods have been proposed,
which can be divided into two categories: constraint-based and score-based methods.

Constraint-based methods use conditional independence tests for MB discovery. The
representative algorithms include GS (Grow-Shrink) [16], IAMB (Iterative Associative
MB), MMMB (Max-Min MB) [25], HITON-MB (HITON-MB) [2], PCMB (Parent-Children
MB) [20], IPCMB (Iterative Parent-Child based search of MB) [11], and STMB (Simultaneous
Markov Blanket) [12]. However, although GS, IAMB, and STMB are more efficient than
the others, the number of samples required by them grows exponentially with the size
of the MB of the target, since they use the entire set of features selected currently as
the conditioning set in conditional independence tests. Therefore, when the sample size
of a dataset is not big enough, these algorithms cannot find the MB accurately. MMMB,
HITON-MB, PCMB, and IPCMB mitigate the problem of the large sample requirement
by performing an exhaustive subset search within the features selected currently, but the
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search is computationally expensive or even prohibitive when the size of the set of currently
selected features becomes large.
Score-based algorithms employ Bayesian score functions to learn MBs, mainly including

SLL (Score-based Local Learning) [17] and S2TMB (Score-based Simultaneous MB) [13].
However, SLL and S2TMB can be computationally expensive, because at each iteration they
need to learn a Bayesian network structure involving all features selected currently, which is
time consuming or infeasible when the Bayesian network is large.
In this paper, we aim to achieve both efficient and accurate MB discovery. The main

contributions of the paper are summarized as follows.

(1) We propose a new constraint-based MB discovery algorithm, called BAMB (BAlanced
Markov Blanket discovery). BAMB finds candidate PC (parents and children) and
spouses and removes false positives from the candidate set in one go. In this way, the
current PC and spouse set is kept to be as small as possible for the trade-off between
computational efficiency and learning accuracy.

(2) We have conducted comprehensive experiments using seven benchmark Bayesian
networks and ten real-world datasets, and have compared BAMB with twelve existing
methods, including eight state-of-the-art MB discovery algorithms and four other
well-established feature selection methods, to validate the efficiency and accuracy of
the proposed BAMB.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3
introduces the BAMB algorithm. Section 4 presents and discusses the experimental results,
and Section 5 concludes the paper.

2 RELATED WORK

Constraint-based MB discovery algorithms find MB using conditional independence tests.
The first theoretically sound MB discovery algorithm, the GS (Grow-Shrink) algorithm [16]
was proposed by Margaritis and Thrun. GS contains two sequential (and separated) phases,
for growing and shrinking the candidate MB set respectively. In the growing phase, if a
feature is dependent on the given target conditioning on the features selected currently,
GS adds the feature to the candidate MB set, and the growing phase completes when
all features are checked. In the shrinking phase, GS removes all false positives from the
candidate MB set by testing the conditional independence between a candidate and the
target, conditioning on all other features in the candidate set. The Incremental Association
MB (IAMB) algorithm [26] is a modified version of GS. However, unlike GS, IAMB adds
the feature having the highest association with the target into the candidate MB set at each
iteration, thus achieves better discovery accuracy. Over the years, many variants of IAMB
have been proposed, such as inter-IAMB, IAMBnPC, inter-IAMBnPC, and Fast-IAMB [29].
However, GS, IAMB, and IAMB’s variants use the set of all currently selected features as
the conditioning set, so the required number of data instances is exponential to the size
of the MB to achieve reliable results. Moreover, they are not able to distinguish PC from
spouses in a discovered MB.
To reduce the number of data samples required, Min-Max MB (MMMB) [25] applies a

divide-and-conquer approach that breaks the problem of identifying MB into two subproblems,
identifying PC and identifying spouses, and performs a subset search within the features
currently selected for discovering the PC set of the target. HITON-MB [2] is a modified
version of MMMB. It tries to remove false positives from the PC set as early as possible by
interleaving the shrinking phase and the growing phase. Although MMMB and HITON-MB
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proved to be theoretically unsound under the faithfulness assumption [20], they provide a
novel way for accurate MB discovery. Compared to MMMB and HITON-MB, two divide-
and-conquer MB discovery approaches, the Parents and Children based MB algorithm
(PCMB) [20] and Iterative Parent-Child based search of MB (IPCMB) algorithm [11], are
proved to be correct under the faithfulness assumption.

The algorithms which employ the divide-and-conquer strategy have greatly improved the
accuracy of MB discovery, especially with small-sized datasets. However, for spouse discovery,
they need to apply the symmetry constraints to find spouses from the PC of each feature in
the PC set of the target feature. To reduce the computational complexity, Gao and Ji [12]
proposed the Simultaneous MB (STMB) algorithm. STMB also adopts the same strategy
for PC discovery as IPCMB does. But for finding spouses, STMB avoids the expensive step
of the symmetry checking by discovering spouses from all features excluding the current PC
set. However, STMB employs the same strategy used by IAMB to remove false positives,
which makes STMB inaccurate on small-sized datasets.

In addition to the constraint-based MB discovery algorithms, score-based algorithms
discover MBs using score-based Bayesian network structure learning methods. The rep-
resentative algorithms are the score-based local learning (SLL) [17] and the score-based
simultaneous MB (S2TMB) [13] algorithms. Based on the score metrics for Bayesian network
structure learning, SLL finds the PC set of a given target first, then discovers spouses of the
target. However, SLL also uses computationally expensive symmetry constraints checking
to ensure the correctness of the approach. S2TMB removes the symmetry constraints from
both the PC and spouse search steps, and thus achieves better efficiency than SLL. However,
SLL and S2TMB need to learn a Bayesian network structure involving all features currently
selected at each iteration, which is time consuming or infeasible when the Bayesian networks
are large.
In summary, the existing MB discovery methods focus on improving either accuracy or

efficiency. In this paper, we propose BAMB, a new algorithm for MB discovery, to achieve a
trade-off between computational efficiency and learning accuracy.

Table 1. Summary of Notation

Symbol Meaning

U a feature set
𝐺 a directed acyclic graph over U
𝑃 a joint probability distribution over U
𝑋,𝑌 a feature
𝑥, 𝑦 a discrete value that a feature may take
𝑇 a given target feature in U
Z,S a conditioning set within U
𝑋⊥⊥ 𝑌 |Z 𝑋 is conditionally independent of 𝑌 given Z
𝑋 ⊥̸⊥ 𝑌 |Z 𝑋 is conditionally dependent on 𝑌 given Z
U ∖ {𝑋} all features in U excluding 𝑋
MB𝑇 Markov blanket of 𝑇
PC𝑇 parents and children of 𝑇
CPC𝑇 a candidate set of PC𝑇

SP𝑇 spouses of 𝑇
SP𝑇 {𝑋} a subset of spouses of 𝑇 with regard to 𝑇 ’s child 𝑋
CSP𝑇 {𝑋} a candidate set of SP𝑇 {𝑋}
Tmp a temporary set
Sep𝑇 {𝑋} a set that 𝑑-separates 𝑋 from 𝑇
𝑑𝑒𝑝(.) a measure of the strength of the dependence
|.| the size of a set
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3 NOTATIONS AND DEFINITIONS

Table 1 provides a summary of the notation used in this paper. In the following, we will
introduce the key concepts, including Bayesian network, Markov blanket, and the relevant
definitions and theorems.

Definition 1 (Conditional Independence). Two variables 𝑋 and 𝑌 are conditionally inde-
pendent given Z, iff 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦|Z = 𝑧) = 𝑃 (𝑋 = 𝑥|Z = 𝑧)𝑃 (𝑌 = 𝑦|Z = 𝑧).
Definition 2 (Bayesian Network) [18]. Let 𝑃 be a discrete joint probability distribution

of a set of random nodes (features) U via a directed acyclic graph 𝐺. We call the triplet
< U, 𝐺, 𝑃 > a Bayesian network if < U, 𝐺, 𝑃 > satisfies the Markov Condition: every node
in U is conditionally independent of its non-descendant nodes given its parents.
Definition 3 (Faithfulness) [23]. A Bayesian network is presented by a directed acyclic

graph 𝐺 and a joint probability distribution 𝑃 over a feature set U. 𝐺 and 𝑃 are faithful to
each other iff all and only the conditional independencies between features in 𝐺 are captured
by 𝑃 .

Definition 4 (V-Structure) [18]. The triplet of nodes 𝑋, 𝑌 , and 𝑍 form a V-structure with
𝑍 being the collider if node 𝑍 has two incoming edges from 𝑋 and 𝑌 , respectively, but 𝑋
and 𝑌 are non-adjacent, forming 𝑋 → 𝑍 ← 𝑌 .
Definition 5 (D-Separation) [18]. A path 𝑝 between 𝑋 and 𝑌 given Z ⊆ U ∖ {𝑋 ∪ 𝑌 } is

open, iff (1) every collider on 𝑝 is in Z or has a descendant in Z, and (2) no other non-collider
nodes on 𝑝 are in Z. Otherwise, the path 𝑝 is blocked. Two nodes 𝑋 and 𝑌 are 𝑑-separated
given Z, iff every path from 𝑋 to 𝑌 is blocked by Z.

Definition 6 (Markov Blanket) [18]. In a faithful Bayesian network, the MB𝑇 is the set of
parents, children, and spouses (parents of children) of node 𝑇 . The MB𝑇 of any node 𝑇 is
unique.
Theorem 1 [19, 23] Under the faithfulness assumption, in a Bayesian network, 1) a pair

of nodes 𝑋 ∈ U and 𝑌 ∈ U are adjacent, iff 𝑋 ⊥̸⊥ 𝑌 |Z, ∀Z ⊆ U∖ {𝑋,𝑌 }; and 2) a triplet
of nodes 𝑋, 𝑌 , and 𝑍 form a V-structure: 𝑋 → 𝑍 ← 𝑌 , iff 𝑋⊥⊥ 𝑌 |S and 𝑋 ⊥̸⊥ 𝑌 |{S ∪ 𝑍},
∃S ⊆ U∖{𝑋,𝑌, 𝑍}.

Theorem 2 [18] Given the Markov blanket of a target feature 𝑇 , denoted as MB𝑇 , all other
features are conditionally independent of 𝑇 , that is, 𝑇 ⊥⊥ 𝑋|MB𝑇 , for ∀𝑋 ∈ U∖{𝑇 ∪MB𝑇 }.

4 THE PROPOSED BAMB ALGORITHM

In this section, we present the proposed BAMB algorithm. The main idea of the BAMB
algorithm is shown in Fig. 2. Assuming the set, Tmp includes all features in U excluding
𝑇 initially, in Fig. 2, in the beginning, BAMB firstly selects a feature 𝐴 in Tmp with the
highest association with 𝑇 by conditioning on an empty set, and at the same time removes
𝐴 from Tmp. Then if there exists a subset of CPC𝑇 such that 𝐴 and 𝑇 are independent
conditioning on this subset, BAMB directly considers the next feature in Tmp. Otherwise,
BAMB adds 𝐴 to CPC𝑇 (the candidate set of PC of 𝑇 ). Due to the 𝐴’s inclusion, it
immediately triggers BAMB to remove false positives in CPC𝑇 ∖ {𝐴}. After the removal
step, BAMB discovers the candidate spouses of 𝑇 with regard to 𝐴, called CSP𝑇 {𝐴},
from the set U ∖ {CPC𝑇 ∪ {𝑇}}. Finally, BAMB uses the union of CSP𝑇 and CPC𝑇

currently selected to update CSP𝑇 {𝐴} and CPC𝑇 , respectively. After all the above steps
are completed, BAMB considers the next feature in Tmp. BAMB is terminated until the
set Tmp is empty.

As described in Algorithm 1, the BAMB algorithm includes 3 steps. Step 1 (lines 5 to 23)
gets a candidate set of PC and a candidate set of spouses. Step 2 (lines 24 to 34) removes
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Fig. 2. The flow chart of BAMB

false positives from the candidate set of spouses, and Step 3 (lines 35 to 49) removes false
positives from the candidate set of PC.
The rest of Section 4 is organized as follows. Section 4.1 presents a detailed description

of BAMB. Section 4.2 gives a tracing example of BAMB. Sections 4.3 and 4.4 analyze the
correctness and computational complexity of BAMB, respectively.

4.1 Algorithm Description

By the idea of BAMB shown in Fig. 2, Algorithm 1 gives the implementation detail of
BAMB. In Algorithm 1, BAMB firstly calculates the association of each feature in U∖{𝑇}
with 𝑇 given empty set and stores the separating set for the feature when it is independent
of 𝑇 . Then BAMB repeats Steps 1 to 3 (lines 4-50) as follows until Tmp is empty.

Step 1: Find the candidate set of PC and the candidate set of spouses of 𝑇 . BAMB firstly
selects from Tmp the feature, denoted as 𝐴 with the highest association with 𝑇 , and removes
𝐴 from Tmp. If ∃Z ⊆ CPC𝑇 such that 𝐴 and 𝑇 are independent conditioning on Z, BAMB
directly considers the next feature in Tmp and does not implement the remaining steps
(lines 9-49). Otherwise, BAMB adds 𝐴 to CPC𝑇 . And since the new feature 𝐴 is successfully
added to CPC𝑇 , BAMB is triggered to check each feature in CPC𝑇 ∖ {𝐴} for removing
false positives to keep the size of CPC𝑇 as small as possible during the search procedure.
In addition, in this step, BAMB removes the features independent of 𝑇 from CPC𝑇 ∖ {𝐴}
only conditioning on the subsets, including the newly added feature 𝐴 to make the search
process efficient.

Meanwhile, once the new feature 𝐴 is added to CPC𝑇 , BAMB finds the candidate set of
spouses of 𝑇 with regard to 𝐴 (lines 18-23). Instead of finding the spouses of 𝑇 with regard to
𝐴 from the parents and children of 𝐴, BAMB discovers the spouses of 𝑇 in U∖{𝑇}∖CPC𝑇 .
By Theorem 1, if a feature 𝐶 in U∖{𝑇}∖CPC𝑇 is dependent on 𝑇 conditioning on the

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2019.



BAMB: A Balanced Markov Blanket Discovery Approach to Feature Selection 1:7

ALGORITHM 1: The BAMB Algorithm

Input: D : dataset; T : target.

Output: [PC𝑇 , SP𝑇 ]: Markov blanket of T.
1. CPC𝑇 ← ∅;
2. Tmp← U∖ {𝑇};
3. Sep𝑇 {𝑋} ← ∅ for each 𝑋 ∈ U∖ {𝑇} and 𝑇 ⊥⊥ 𝑋|∅ ;
4. repeat

/*Step 1: Find the candidate set of PC and candidate set of spouses*/

5. 𝐴← 𝑎𝑟𝑔𝑚𝑎𝑥𝑋∈Tmp𝑑𝑒𝑝(𝑇,𝑋|∅);
6. Tmp← Tmp∖ {𝐴};
7. if 𝑇 ⊥⊥ 𝐴|Z for some Z ⊆ CPC𝑇 then

8. Sep𝑇 {𝐴} ← Z;
9. else

10. CPC𝑇 ← CPC𝑇 ∪ {𝐴};
11. for each 𝐵 ∈ CPC𝑇 and 𝐵 ̸= 𝐴do

12. if 𝑇 ⊥⊥ 𝐵|Z for some Z ⊆ CPC𝑇 ∖{𝐵} then
13. CPC𝑇 ← CPC𝑇 ∖ {𝐵};
14. CSP𝑇 {𝐵} ← ∅;
15. Sep𝑇 {𝐵} ← Z;

16. end if
17. end for

18. CSP𝑇 {𝐴} ← ∅;
19. for each 𝐶 in {U∖ {𝑇} ∖CPC𝑇 }
20. if 𝑇 ⊥̸⊥ 𝐶|Sep𝑇 {𝐶} ∪ {𝐴} then

21. CSP𝑇 {𝐴} ← CSP𝑇 {𝐴} ∪ {𝐶};
22. end if
23. end for

/*Step 2: Remove false positives from the candidate set of spouses*/
24. SP𝑇 {𝐴} ← ∅;
25. repeat

26. 𝐸 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑋∈CSP𝑇 {𝐴}𝑑𝑒𝑝(𝑇,𝑋|Sep𝑇 {𝑋} ∪ {𝐴});
27. CSP𝑇 {𝐴} ← CSP𝑇 {𝐴} ∖ {𝐸};
28. SP𝑇 {𝐴} ← SP𝑇 {𝐴} ∪ {𝐸};
29. for each 𝑋 ∈ SP𝑇 {𝐴} do
30. if 𝑇⊥⊥𝑋|Z ∪𝐴 for some Z ⊆ CPC𝑇 ∪ SP𝑇 {𝐴}∖{𝑋} then
31. SP𝑇 {𝐴} ← SP𝑇 {𝐴} ∖ {𝑋};
32. end if
33. end for

34. until CSP𝑇 {𝐴} is empty
/*Step 3: Remove false positives from the candidate set of PC*/

35. PC𝑇 ← ∅;
36. repeat
37. 𝐹 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑋∈CPC𝑇

𝑑𝑒𝑝(𝑇,𝑋|∅);
38. CPC𝑇 ← CPC𝑇 ∖ {𝐹};
39. PC𝑇 ← PC𝑇 ∪ {𝐹};
40. for each 𝑋 ∈ PC𝑇 do
41. if 𝑇⊥⊥𝑋|Z ∪𝑌 ∈Z SP𝑇 {𝑌 } for some Z⊆PC𝑇 ∖ {𝑋} then
42. PC𝑇 ← PC𝑇 ∖ {𝑋};
43. SP𝑇 {𝑋} ← ∅;
44. end if
45. end for
46. until CPC𝑇 is empty

47. CSP𝑇 {𝐴} ← SP𝑇 {𝐴}
48. CPC𝑇 ← PC𝑇

49. end if

50. until Tmp is empty
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union of the separating set of 𝐶 and 𝐴, 𝐶 is considered as a spouse of 𝑇 and is added to
CSP𝑇 {𝐴} (the candidate set of the spouse set of 𝑇 with respect to 𝐴).

However, as shown in Fig. 3, false positives such as 𝑋 and 𝑌 may be added to CSP𝑇 {𝐴}
and CPC𝑇 , respectively. Thus after Step 1, BAMB immediately implements Steps 2 and 3
to remove these false positives from CPC𝑇 and CSP𝑇 {𝐴}, respectively. This strategy not
only removes false positives but also keeps the size of CPC𝑇 and CSP𝑇 {𝐴} as small as
possible during the search procedure, and thus improving the efficiency and accuracy.

Step 2: Remove false spouses from CSP𝑇 {𝐴}. In this step, BAMB removes false spouses
from the CSP𝑇 {𝐴} using CPC𝑇 currently selected. At the beginning of Step 2, SP𝑇 {𝐴}
is empty, BAMB selects a feature with the highest association with 𝐴 in CSP𝑇 {𝐴} and
adds it to SP𝑇 {𝐴} (Line 28). Meanwhile, the feature is removed from CSP𝑇 {𝐴}. Since
the spouses in CSP𝑇 {𝐴} are the parents of 𝐴, Line 28 adds the most likely spouses in
CSP𝑇 {𝐴} to SP𝑇 {𝐴} for removing false spouses as soon as possible. Then, for each feature
𝑋 in SP𝑇 {𝐴}, if there exists a subset of the union {SP𝑇 {𝐴} ∖ {𝑋} ∪CPC𝑇 } such that 𝑋
is independent of 𝑇 , 𝑋 is removed from SP𝑇 {𝐴}. The process is repeated until CSP𝑇 {𝐴}
is empty.
Step 3: Remove false positives from the candidate set of PC of 𝑇 . Instead of directly

removing false positives from CPC𝑇 , BAMB uses the same strategy as in Step 2. BAMB
assumes that the set PC𝑇 is empty initially, and adds the feature with the highest association
with 𝑇 in CPC𝑇 to PC𝑇 at each iteration. Then, for each feature 𝑋 in PC𝑇 , if there exists
a subset of the union {CPC𝑇 ∪CSP𝑇 } such that 𝑋 and 𝑇 are independent conditioning on
this subset, BAMB removes 𝑋 from PC𝑇 . Meanwhile, BAMB sets SP𝑇 {𝑋} (the spouses
of 𝑇 with regard to 𝑋) empty (Line 43). Step 3 is repeated until CPC𝑇 is empty.

In addition, at Step 2, even if 𝐴 has no spouses, step 3 will still be executed. For example,
as shown in Fig. 3, assuming that currently CPC𝑇 = {𝑀,𝑋}, SP𝑇 {𝑀} = {𝑁}, and
SP𝑇 {𝑋} = ∅. Then 𝑃 is added to CPC𝑇 at Step 1, although SP𝑇 {𝑃} is empty. At Step
3, due to the inclusion of 𝑃 , BAMB can use the conditioning set {𝑀,𝑁,𝑃} to remove the
non-child descendant of 𝑇 from CPC𝑇 .

Fig. 3. An example of BAMB’s execution process.

4.2 Tracing BAMB

In this section, we use the example in Fig. 3. to trace the execution of BAMB. In the
following, 𝑇 is the target feature and MB𝑇 = {𝑀,𝑁,𝑃}.
(1) Step 1: Referring to the simple network, i.e., the first network in Fig. 3, since 𝑌 ⊥⊥ 𝑇 |∅

and 𝑁 ⊥⊥ 𝑇 |∅, nodes 𝑌 and 𝑁 are not added to CPC𝑇 . Notice that, the true PC

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2019.



BAMB: A Balanced Markov Blanket Discovery Approach to Feature Selection 1:9

set, PC𝑇 = {𝑀,𝑃}, 𝑋 /∈ PC𝑇 , but no subsets within PC𝑇 make 𝑋 conditionally
independent of 𝑇 : 𝑋 ⊥̸⊥ 𝑇 |∅, 𝑋 ⊥̸⊥ 𝑇 |𝑀 , 𝑋 ⊥̸⊥ 𝑇 |𝑃 , and 𝑋 ⊥̸⊥ 𝑇 |{𝑀 ∪ 𝑃}. In addition,
since 𝑁 ⊥̸⊥ 𝑇 |𝑀 , node 𝑁 is added to CSP𝑇 {𝑀}. Notice that, the true spouse set,
SP𝑇 {𝑀} = {𝑁}, 𝑌 /∈ SP𝑇 {𝑀}, and 𝑌 is added to CSP𝑇 {𝑀} due to 𝑌 ⊥̸⊥ 𝑇 |𝑀 .
Thus, as shown in Fig. 3 (a), after Step 1, there are some non-child descendants
remaining in the candidate set of PC of 𝑇 : CPC𝑇 = {𝑀,𝑋,𝑃}, and some spouses’
parents remaining in the candidate set of spouses of 𝑇 : CSP𝑇 {𝑀} = {𝑁,𝑌 }, and we
need Step 2 and Step 3 to remove these false positives.

(2) Step 2: As shown in Fig. 3 (b), for some Z ⊆ CPC𝑇 ∪SP𝑇 {𝑀}∖{𝑌 }, the conditioning
set {Z ∪𝑀} makes node 𝑌 conditionally independent of 𝑇 : 𝑌 ⊥⊥ 𝑇 |{𝑀 ∪𝑁}, thus 𝑌
is removed from SP𝑇 {𝑀}, and BAMB only includes the true spouses of 𝑇 after Step
2.

(3) Step 3: As shown in Fig. 3 (c), for some Z⊆PC𝑇 ∖ {𝑋}, the conditioning set {Z ∪𝑌 ∈Z

SP𝑇 {𝑌 }} can form the MB of 𝑇 , and make node 𝑋 conditionally independent of 𝑇 :
𝑋⊥⊥ 𝑇 |{𝑀 ∪𝑁 ∪ 𝑃}, thus 𝑋 is removed from CPC𝑇 , and BAMB finds all and only
the MB of 𝑇 after step 3.

4.3 Correctness of BAMB

Theorem 3 (Correctness of BAMB) Under the faithfulness assumption, BAMB outputs all
and only the MB of the given target attribute.

Proof: 1) Step 1 finds all the true positive MB nodes. According to Theorem 1, BAMB
adds the features which are conditionally dependent 𝑇 into the candidate set of PC of 𝑇
and removes features which are conditionally independent of 𝑇 from the candidate set of PC
of 𝑇 . Since the true PC of 𝑇 is dependent on 𝑇 given any subsets in U, the candidate set of
PC of 𝑇 contains all true PC of 𝑇 . Meanwhile, BAMB finds spouses of 𝑇 at the same time:
if feature 𝐵 is a collider that forms the V-structure: 𝐶 → 𝐵 ← 𝑇 , feature 𝐶 is considered as
a candidate spouse of 𝑇 via 𝐵 by Theorem 1. Due to exhaustive search, BAMB will not
miss any spouse of 𝑇 in the set of all features excluding the found PC set of 𝑇 . Accordingly,
the candidate set of PC of 𝑇 contains all true PC of 𝑇 and the candidate set of spouses of
𝑇 contains all true spouses of 𝑇 .

2) Step 2 and Step 3 only remove false positive MB nodes. After Step 1, the candidate PC
set and spouses set found by BAMB have included all true PC and spouses of 𝑇 . However,
as shown in Fig. 3 (a), although the path of 𝑋 −𝑀 − 𝑇 is blocked by node 𝑀 , node 𝑋 also
has another path 𝑋 −𝑁 −𝑀 − 𝑇 to reach 𝑇 . Moreover, since BAMB finds spouses from
non-PC set, node 𝑌 could also form the V-structure 𝑌 →𝑀 ← 𝑇 . Therefore, there are two
types of false positives existing in the candidate sets: 1) non-child descendants of 𝑇 in the
candidate PC set of 𝑇 ; and 2) parents of spouses of 𝑇 in the candidate spouse set of 𝑇 .

BAMB uses Theorem 2 to remove these false positives. Since some nodes in the candidate
PC set and some nodes in the candidate spouse set together from the MB of 𝑇 , BAMB
directly removes spouses’ parent nodes from the candidate set of the subset of spouses of
𝑇 . And true spouses will not be removed since the conditioning set always contains the
common child of 𝑇 and spouses. Then BAMB only includes the true spouses of 𝑇 after Step
2. The candidate PC set contains all true PC of 𝑇 , so the subset within the candidate set
of PC of 𝑇 and the corresponding subset of spouses of 𝑇 together consists of the MB of 𝑇 ,
then BAMB removes non-child descendant nodes from the candidate set of PC of 𝑇 . And
since the true PC is always dependent on 𝑇 given any subsets in U, only true PC of 𝑇 can
be reserved after Step 3. Hence, BAMB finds all and only the MB of 𝑇 .
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Table 2. Computational complexity of constraint-based MB discovery algorithms

Algorithms Computational Complexity

IAMB O(|U|2)
MMMB O(2|PC||U||PC|)
HITON-MB O(2|PC||U||PC|)
PCMB O(2|PC||U||PC|2)
IPCMB O(2|U||U||PC|)
STMB O(2|U||U|)
BAMB O(2|PC||U|)

4.4 Computational Complexity

The computational complexity of the state-of-the-art constraint-based MB discovery algo-
rithms depends on the number of conditional independence (CI) tests [1]. BAMB (Algorithm
1) firstly sorts the features based on their associations with 𝑇 , then performs an exhaustive
subset search in the currently selected PC set at each iteration. When we find PC at
each iteration, we also remove the false PC at the same time. In theory, this “interleave”
approach will keep only the true PC set in CPC𝑇 , so the computational complexity of
BAMB is proportional to the size of the PC set. Therefore, the computational complexity of
Step 1 of BAMB takes O(|U|2|PC|) CI tests, Step 2 takes O(|SP𝑇 {𝑋}|2(|PC|+|SP𝑇 {𝑋}|))
CI tests, and Step 3 takes O(|PC|2|PC|) CI tests. Overall, BAMB takes O(|U|2|PC| +
|SP𝑇 {𝑋}|2(|PC|+|SP𝑇 {𝑋}|) + |PC|2|PC|) = O(|U|2|PC|) CI tests.
Specifically, the PC discovery of BAMB in Step 1 finds separating set from all subsets

of the PC set at any iteration, and the PC discovery of STMB finds separating set from
all subsets of U at any iteration. Consequently, the computational complexity of Step 1 of
BAMB takes O(|U|2|PC|) CI tests, and STMB for PC discovery takes O(|U|2|U|) CI tests.
In the worst case, when all features are the PC of the target feature, that is, there is no
separating set, the time complexity of PC discovery of BAMB is same with STMB. However,
most of the BNs have a large number of features but a small-sized PC set of each feature,
so that BAMB will perform fewer tests. Thus, BAMB is much faster than STMB in PC
discovery because of |PC| ≪ |U|.

In addition, since symmetry constraint will check for each feature in the PC set uses the
same algorithm as that for finding the PC set, an algorithm enforcing symmetry constraint
check would be |PC| times more costly. Thus, PCMB would cost |PC| times more than
MMMB and HITON-MB, IPCMB would cost |PC| times more than STMB, MMMB, and
HITON-MB would cost |PC| times more than BAMB. Since |PC| is always far less than
|U|, MMMB and HITON-MB are faster than IPCMB, and BAMB is faster than STMB.

We summarize the computational complexity of the state-of-the-art constraint-based MB
discovery algorithms in Table 2. From the table, IAMB is the fastest among all algorithms,
while BAMB is the second-fastest algorithm, closely following to IAMB.

5 EXPERIMENTS

In this section, we firstly evaluate the efficiency and accuracy of BAMB with five sparse
benchmark BN datasets and two local dense benchmark BN datasets, and compare BAMB
with eight existing MB discovery algorithms, including six state-of-the-art constraint-based
MB discovery algorithms, IAMB [26], MMMB [25], HITON-MB [2], PCMB [20], IPCMB [11],
and STMB [12], and two state-of-the-art score-based MB discovery algorithms, SLL [17]
and S2TMB [13].
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Then we compare BAMB with 12 other algorithms on 10 real-world datasets, including
8 MB discovery algorithms, IAMB, MMMB, HITON-MB, PCMB, IPCMB, STMB, SLL,
and S2TMB, and four well-established feature selection algorithms, FCBF [33], mRMR [21],
SPFS-LAR [34], and MRF [8].

The implementation details and parameter settings of all the algorithms are as follows:

(1) IAMB, MMMB, HITON-MB, PCMB, IPCMB, STMB, and BAMB are implemented
in MATLAB, and the conditional independence tests are 𝐺2 tests with the statistical
significance level of 0.01.

(2) SLL and S2TMB are implemented in C++.
(3) FCBF, mRMR, SPFS-LAR, and MRF are implemented in MATLAB and C language.

The information threshold of FCBF is set to 0. As for mRMR, SPFS-LAR, and MRF,
we choose the top 𝑁 features where 𝑁 is the size of the MB obtained by BAMB on
each dataset.

All experiments are conducted on a 2.20 GHz Intel Core i5-5200U with 4GB RAM.

Table 3. Summary of sparse benchmark BNs

Num. Num. Max In/out- Min/Max Domain
Network Vars Edges Degree |PCset| Range

Child 20 25 2/7 1/8 2-6
Insurance 27 52 3/7 1/9 2-5
Alarm 37 46 4/5 1/6 2-4

Insurance10 270 556 5/8 1/11 2-5
Alarm10 370 570 4/7 1/9 2-4

5.1 Sparse Benchmark BN Datasets

We use five sparse benchmark BN datasets with a range of dimensionality in our experiments,
and the five sparse benchmark BN datasets are described in Table 31. For each benchmark
BN network, we use two groups of data, one group including 10 datasets with 1,000 data
instances to represent small-sized datasets samples, and the other group containing 10
datasets with 5,000 data instances to represent large-sized datasets samples. For benchmark
BN networks, the MB of each feature can be read from those networks. Accordingly, in the
experiments, we evaluate the algorithms using the following metrics.

∙ Accuracy. 𝐹1 = 2 * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙). The precision metric
denotes the number of true positives in the output (i.e., the features in the output of
an algorithm belonging to the true MB of a given target in a test DAG) divided by the
number of features in the output of the algorithm, while the recall metric represents
the number of true positives in the output divided by the number of true positives
(the number of the true MB of a given target) in a test DAG. The F1 score is the
harmonic average of the precision and recall, where 𝐹1 = 1 is the best case (perfect
precision and recall) while 𝐹1 = 0 is the worst case.
∙ Efficiency. We measure the efficiency of an algorithm using both the number of CI
tests and runtime.

We report the results of BAMB and its rivals using three small-sized networks, Child [9],
Insurance [4] and Alarm [3]. We run each algorithm to discover the MBs for all features in

1Those datasets are publicly available at ℎ𝑡𝑡𝑝 : //𝑤𝑤𝑤.𝑑𝑠𝑙 −
𝑙𝑎𝑏.𝑜𝑟𝑔/𝑠𝑢𝑝𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑠/𝑚𝑚ℎ𝑐 𝑝𝑎𝑝𝑒𝑟/𝑚𝑚ℎ𝑐 𝑖𝑛𝑑𝑒𝑥.ℎ𝑡𝑚𝑙.
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Table 4. Comparison of BAMB with Constraint-Based MB Methods on sparse benchmark BN Datasets
(size=1,000)

Dataset Algorithm F1 Precision Recall CI tests Time

IAMB 0.82±0.02 0.94±0.03 0.76±0.02 54±1 0.02±0.00
MMMB 0.85±0.02 0.89±0.04 0.86±0.02 823±85 0.20±0.02

HITON-MB 0.87±0.02 0.90±0.03 0.87±0.02 3.0e3±561 0.61±0.10
Child PCMB 0.80±0.02 0.87±0.03 0.79±0.02 4.7e3±749 1.13±0.14

IPCMB 0.83±0.02 0.87±0.03 0.83±0.03 1.2e3±57 0.39±0.02
STMB 0.85±0.05 0.86±0.05 0.87±0.04 221±7 0.07±0.00
BAMB 0.85±0.03 0.84±0.04 0.91±0.01 441±58 0.11±0.02

IAMB 0.66±0.01 0.92±0.03 0.56±0.01 86±2 0.02±0.00
MMMB 0.71±0.02 0.83±0.03 0.66±0.02 511±47 0.18±0.01

HITON-MB 0.70±0.02 0.84±0.04 0.65±0.01 1.2e3±235 0.41±0.07
Insurance PCMB 0.64±0.02 0.82±0.02 0.56±0.02 2.3e3±302 0.82±0.10

IPCMB 0.60±0.03 0.62±0.05 0.65±0.04 2.2e4±3.3e4 5.37±8.15
STMB 0.58±0.03 0.58±0.06 0.66±0.04 1.1e3±1.3e3 0.31±0.32
BAMB 0.69±0.02 0.76±0.04 0.68±0.01 404±51 0.12±0.01

IAMB 0.81±0.01 0.93±0.01 0.76±0.01 120±2 0.04±0.00
MMMB 0.87±0.01 0.91±0.02 0.87±0.01 437±33 0.17±0.01

HITON-MB 0.90±0.01 0.96±0.02 0.87±0.01 1.1e3±109 0.41±0.04
Alarm PCMB 0.81±0.02 0.89±0.02 0.79±0.03 1.8e3±184 0.71±0.06

IPCMB 0.81±0.03 0.82±0.02 0.84±0.04 1.1e3±46 0.42±0.02
STMB 0.72±0.02 0.71±0.02 0.85±0.02 392±12 0.16±0.00
BAMB 0.86±0.01 0.91±0.02 0.86±0.01 280±16 0.11±0.01

IAMB 0.44±0.22 0.75±0.32 0.34±0.21 933±265 1.25±0.36
MMMB 0.53±0.28 0.65±0.30 0.52±0.34 2.1e3±1.2e3 2.76±1.50

HITON-MB 0.55±0.28 0.69±0.30 0.52±0.34 5.3e3±3.7e3 6.19±4.27
Insurance10 PCMB 0.50±0.28 0.65±0.33 0.45±0.31 9.8e3±6.7e3 9.44±6.38

IPCMB 0.41±0.21 0.36±0.17 0.53±0.33 1.6e4±1.0e4 14.41±9.13
STMB 0.27±0.15 0.20±0.11 0.53±0.32 6.4e3±4.6e3 5.47±3.70
BAMB 0.53±0.25 0.60±0.28 0.54±0.32 1.9e3±1.5e3 1.64±1.26

IAMB 0.55±0.23 0.75±0.28 0.51±0.29 1.4e3±351 1.17±0.52
MMMB 0.67±0.26 0.84±0.27 0.63±0.31 1.7e3±688 2.41±1.08

HITON-MB 0.70±0.26 0.86±0.27 0.65±0.31 2.5e3±1.6e3 2.61±1.86
Alarm10 PCMB 0.64±0.27 0.85±0.29 0.58±0.31 6.3e3±4.0e3 6.53±4.23

IPCMB 0.61±0.27 0.77±0.29 0.59±0.32 8.6e3±6.1e3 10.49±7.16
STMB 0.39±0.20 0.34±0.23 0.62±0.33 3.0e3±1.8e3 3.55±1.87
BAMB 0.66±0.25 0.78±0.28 0.65±0.32 1.6e3±755 1.64±0.80

IAMB 0.66 0.86 0.59 515 0.50
MMMB 0.73 0.82 0.71 1.1e3 1.14

HITON-MB 0.74 0.85 0.71 2.6e3 2.05
MEAN PCMB 0.68 0.82 0.63 5.0e3 3.73

IPCMB 0.65 0.69 0.69 9.6e3 6.22
STMB 0.56 0.54 0.71 2.2e3 1.91
BAMB 0.72 0.78 0.73 933 0.72
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Fig. 4. Precision-recall of BAMB and Constraint-Based MB Methods on sparse benchmark BN Datasets
(Size=1,000).
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Table 5. Comparison of BAMB with Constraint-Based MB Methods on sparse benchmark BN Datasets
(size=5,000)

Dataset Algorithm F1 Precision Recall CI tests Time

IAMB 0.90±0.02 0.95±0.03 0.88±0.01 63±1 0.06±0.00
MMMB 0.97±0.01 0.96±0.02 0.99±0.01 897±25 0.96±0.03

HITON-MB 0.98±0.02 0.97±0.03 0.99±0.01 2.8e3±112 3.08±0.12
Child PCMB 0.98±0.01 0.98±0.01 0.99±0.01 5.0e3±106 5.49±0.13

IPCMB 0.96±0.02 0.95±0.03 0.99±0.01 1.9e3±155 1.94±0.17
STMB 0.89±0.03 0.84±0.04 0.98±0.02 374±35 0.39±0.04
BAMB 0.95±0.02 0.93±0.02 0.98±0.02 376±11 0.40±0.03

IAMB 0.76±0.01 0.94±0.02 0.67±0.01 104±2 0.13±0.00
MMMB 0.79±0.02 0.88±0.03 0.76±0.02 1.2e3±124 1.63±0.18

HITON-MB 0.78±0.02 0.89±0.03 0.74±0.02 3.2e3±414 4.47±0.62
Insurance PCMB 0.74±0.01 0.86±0.02 0.68±0.02 7.2e3±1.1e3 10.00±1.68

IPCMB 0.66±0.03 0.64±0.03 0.74±0.03 3.5e3±449 4.67±0.61
STMB 0.65±0.02 0.64±0.04 0.77±0.03 703±47 0.96±0.07
BAMB 0.80±0.01 0.89±0.03 0.77±0.02 619±39 0.92±0.06

IAMB 0.90±0.02 0.94±0.02 0.89±0.01 142±2 0.19±0.00
MMMB 0.94±0.02 0.92±0.02 0.97±0.01 604±26 0.83±0.04

HITON-MB 0.96±0.01 0.97±0.02 0.97±0.01 1.5e3±38 2.15±0.06
Alarm PCMB 0.95±0.02 0.95±0.01 0.96±0.02 2.9e3±215 3.97±0.32

IPCMB 0.86±0.02 0.81±0.02 0.97±0.01 1.7e3±54 2.18±0.07
STMB 0.78±0.02 0.73±0.02 0.96±0.01 531±15 0.73±0.03
BAMB 0.94±0.02 0.96±0.03 0.95±0.01 351±11 0.51±0.03

IAMB 0.59±0.19 0.92±0.21 0.47±0.23 1.2e3±367 5.52±2.38
MMMB 0.66±0.23 0.78±0.24 0.62±0.28 3.5e3±1.7e3 19.93±11.03

HITON-MB 0.71±0.24 0.86±0.23 0.64±0.28 1.3e4±8.5e3 85.18±84.62
Insurance10 PCMB 0.58±0.30 0.69±0.33 0.56±0.35 2.1e4±1.3e4 111.70±76.83

IPCMB 0.46±0.24 0.44±0.27 0.59±0.34 2.0e4±1.3e4 115.74±77.76
STMB 0.35±0.18 0.30±0.24 0.56±0.33 5.3e3±6.5e3 38.20±58.83
BAMB 0.70±0.22 0.86±0.23 0.64±0.27 2.7e3±2.3e3 15.20±13.22

IAMB 0.66±0.24 0.80±0.27 0.64±0.30 1.7e3±548 12.56±5.44
MMMB 0.77±0.24 0.90±0.21 0.72±0.30 2.1e3±1.1e3 13.24±7.27

HITON-MB 0.78±0.23 0.92±0.21 0.73±0.29 4.5e3±3.9e3 35.62±41.13
Alarm10 PCMB 0.76±0.23 0.95±0.18 0.68±0.27 8.9e3±6.0e3 59.01±48.08

IPCMB 0.68±0.20 0.72±0.27 0.76±0.28 1.4e4±1.0e4 7.93±74.82
STMB 0.45±0.19 0.40±0.27 0.76±0.28 4.2e3±2.7e3 28.44±20.86
BAMB 0.76±0.24 0.85±0.24 0.74±0.29 1.9e3±1.1e3 12.87±8.81

IAMB 0.76 0.91 0.71 636 3.69
MMMB 0.83 0.89 0.81 1.7e3 7.32

HITON-MB 0.84 0.92 0.81 4.9e3 26.10
MEAN PCMB 0.80 0.89 0.77 9.0e3 38.03

IPCMB 0.72 0.71 0.81 8.3e3 26.49
STMB 0.62 0.58 0.81 2.2e3 13.74
BAMB 0.83 0.90 0.82 1.2e3 5.98
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Fig. 5. Precision-recall of BAMB and Constraint-Based MB Methods on sparse benchmark BN Datasets
(Size=5,000).
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each BN. We also validate our proposed BAMB algorithm using two large-sized networks,
Insurence10 and Alarm10. These two networks were generated by tiling 10 copies of the
Insurance, and Alarm networks, respectively [24]. We randomly select 10% features in each
BN and find their MBs.
For an algorithm, we report average results of F1, precision, recall, number of CI tests,

and runtime over ten datasets. In the following tables, the results are shown in the format
of 𝐴 ± 𝐵, where 𝐴 represents the average F1, precision, recall, number of CI tests, or
runtime, and 𝐵 is the standard deviation. “-” denotes that a method fails to generate any
output with the corresponding dataset after running out of memory, and the best results are
highlighted in bold face. Moreover, we show the precision-recall in Fig. 4 to Fig. 7 to make
our experimental results clearer. The more the point of an algorithm at the upper right, the
better the result.

5.1.1 Comparison of BAMB with Constraint-Based MB Methods on sparse benchmark BN
Datasets. According to Tables 4 and 5, on average, HITON-MB is the most accurate algorithm
and IAMB is the fastest algorithm among all constraint-based algorithms under comparison.
Meanwhile, BAMB illustrates comparable accuracy with HITON-MB in each BN with all
cases, and BAMB is much faster (over 3 times) than HITON-MB on average in terms of the
number of CI tests. Although IAMB is faster than BAMB, it is significantly inferior to BAMB
on the F1 metric (over 6%) on average. Compared with other MB discovery algorithms,
BAMB is more efficient and more accurate than STMB. On average, with small-sized data
samples, BAMB is 36.8%, 64.9%, and 80.7% lower in time than MMMB, HITON-MB, and
PCMB, respectively. And on average with large-sized data samples, BAMB is 18.3%, 77.1%,
and 84.3% lower in time than MMMB, HITON-MB, and PCMB respectively. Specifically,
BAMB is more efficient than MMMB, HITON-MB, and PCMB on each benchmark BN
dataset with both small-sized and large-sized data samples. In addition, BAMB has the
highest average Recall among all constraint-based algorithms under comparison, which
means that BAMB can choose much more true features.
MMMB and HITON-MB have the same computational complexity in theory, as shown

in Table 2. However, in practice, when actually finding PC, MMMB first adds all features
that are dependent of T to the candidate PC set, then removes false positives from the
candidate PC set, whereas after HITON-MB adds a feature dependent of T to the candidate
PC, it immediately starts to remove false positives from the candidate PC set. Although
this strategy does not change the result of the complexity analysis of HITON-MB and it
makes HITON-MB remove false positives as soon as possible to improve accuracy, results in
lower efficiency for HITON-MB in practices for the following reason: When a newly arrived
feature can be removed by a subset of the candidate PC set, HITON-MB still checks each
feature in the candidate PC set whether it is a false parent of child. It is unnecessary due
to conditioned on all subsets of all other variables in the current set (including the newly
arrived feature and all features already in the candidate set). However, for features already
in the candidate set, it is unnecessary to repeat the conditional independence test for any of
them conditioned on any subset of features already in the candidate PC set.

5.1.2 Comparison of BAMB with Score-Based MB Methods on sparse benchmark BNs. We
also validate our proposed algorithm by comparing BAMB with score-based algorithms,
and Tables 6 and 7 summarize the results. Score-based algorithms do not use conditional
independence tests, so we do not report the comparison of BAMB with score-based MB
algorithms on CI tests. On small-size networks, score-based algorithms achieve better accuracy
than BAMB, but BAMB is much faster than them. However, on large-sized networks, since
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Table 6. Comparison of BAMB with Score-Based MB Methods on sparse benchmark BNs Datasets
(size=1,000)

Dataset Algorithm F1 Precision Recall Time

SLL 0.88±0.04 0.97±0.04 0.83±0.04 1.22±0.96
Child S2TMB 0.87±0.04 0.96±0.04 0.82±0.05 0.21±0.79

BAMB 0.85±0.03 0.84±0.04 0.91±0.01 0.11±0.02

SLL 0.68±0.03 0.88±0.03 0.58±0.03 0.64±0.28
Insurance S2TMB 0.69±0.02 0.90±0.03 0.60±0.02 0.26±0.45

BAMB 0.69±0.02 0.76±0.04 0.68±0.01 0.12±0.01

SLL 0.92±0.02 0.94±0.03 0.93±0.01 1.12±0.77
Alarm S2TMB 0.90±0.03 0.94±0.03 0.90±0.02 0.44±0.93

BAMB 0.86±0.01 0.91±0.02 0.86±0.01 0.11±0.01

SLL - - - -
Insurance10 S2TMB - - - -

BAMB 0.53±0.25 0.60±0.28 0.54±0.32 1.64±1.26

SLL - - - -
Alarm10 S2TMB - - - -

BAMB 0.66±0.25 0.78±0.28 0.65±0.32 1.64±0.80
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Fig. 6. Precision-recall of BAMB and Score-based MB Methods on sparse benchmark BNs Datasets
(size=1,000).
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Table 7. Comparison of BAMB with Score-Based MB Methods on sparse benchmark BNs Datasets
(size=5,000)

Dataset Algorithm F1 Precision Recall Time

SLL 0.98±0.00 1.00±0.00 0.96±0.01 5.50±3.13
Child S2TMB 0.98±0.01 1.00±0.00 0.96±0.01 0.81±2.58

BAMB 0.95±0.02 0.93±0.02 0.98±0.02 0.40±0.03

SLL 0.79±0.02 0.98±0.02 0.69±0.03 3.39±1.48
Insurance S2TMB 0.79±0.01 0.99±0.02 0.70±0.02 1.31±2.53

BAMB 0.80±0.01 0.89±0.03 0.77±0.02 0.92±0.06

SLL 0.97±0.01 0.97±0.02 0.98±0.00 4.11±2.57
Alarm S2TMB 0.95±0.01 0.98±0.02 0.95±0.01 1.31±1.82

BAMB 0.94±0.02 0.96±0.03 0.95±0.01 0.51±0.03

SLL - - - -
Insurance10 S2TMB - - - -

BAMB 0.70±0.22 0.86±0.23 0.64±0.27 15.20±13.22

SLL - - - -
Alarm10 S2TMB - - - -

BAMB 0.76±0.24 0.85±0.24 0.74±0.29 12.87±8.81

score-based algorithms use the dynamic programming algorithm [22], they can fail to finish
the MB discovery due to memory limitation. Specifically, BAMB is the most accurate
algorithm on the 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 network in all cases.

Table 8. Summary of local dense benchmark BNs

Num. Num. Max In/out- Min/Max Domain
Network Vars Edges Degree |PCset| Range

Hailfinder 56 66 4/16 1/17 2-11
Munin 189 282 3/15 1/15 1-21

5.2 Local Dense Benchmark BN Datasets

We also validate the efficiency and accuracy of our algorithm on local dense networks, because
these networks have the nodes with large size of PC, such as the 3rd node of 𝐻𝑎𝑖𝑙𝑓𝑖𝑛𝑑𝑒𝑟,
including 17 PC nodes, and the 95th node of 𝑀𝑢𝑛𝑖𝑛, including 15 PC nodes. 𝐻𝑎𝑖𝑙𝑓𝑖𝑛𝑑𝑒𝑟
and 𝑀𝑢𝑛𝑖𝑛 are described in Table 8. The experimental datasets are also publicly available
from [27], and we use the first dataset in 10 datasets with data samples size of 1000. We select
the 3rd node of 𝐻𝑎𝑖𝑙𝑓𝑖𝑛𝑑𝑒𝑟 and the 95th node of 𝑀𝑢𝑛𝑖𝑛, and find their MBs respectively.
In the experiments, we use the same evaluation metrics as in Section 5.1. And we also show
the precision-recall in Fig. 8.
From the results in Table 9, in efficiency, BAMB is slower than IAMB but much faster

than other constraint-based MB discovery algorithms. And MMMB, HITON-MB, PCMB,
and IPCMB fails to generate any output with 𝑀𝑢𝑛𝑖𝑛 since the running time exceeds more
than one day. In accuracy, BAMB is the most accurate algorithm among all algorithms on
each dataset. The dense network means that the size of the PC of each node will be larger
than the sparse network. Since BAMB does not need to find PC of each feature in the PC
set of the target for identifying spouses, accordingly, given a dense network, BAMB will
be more efficient than the divide-and-conquer MB discovery algorithms which need to find
PC of each feature in the PC set of the target. In addition, compared with score-based MB
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Fig. 8. Precision-recall of BAMB and other MB Methods on local dense benchmark BNs Datasets.

Table 9. Comparison of BAMB with MB Methods on local dense benchmark BN Datasets

Dataset Algorithm F1 Precision Recall CI tests Time

IAMB 0.11 1.00 0.06 110 0.03
MMMB 0.18 0.40 0.12 1,326 0.32

HITON-MB 0.18 0.40 0.12 810 0.20
PCMB 0.18 0.40 0.12 10,027 2.17

Hailfinder IPCMB 0.18 0.40 0.12 1,295 0.41
STMB 0.11 0.50 0.06 324 0.10
SLL 0 0 0 / 0.06

S2TMB 0 0 0 / 0.05
BAMB 0.19 0.50 0.12 185 0.08

IAMB 0 0 0 339 0.08
MMMB - - - - -

HITON-MB - - - - -
PCMB - - - - -

Munin IPCMB - - - - -
STMB 0.13 0.09 0.24 17,988 4.07
SLL 0 0 0 / 27.41

S2TMB 0 0 0 / 0.14
BAMB 0.26 0.23 0.29 14,498 2.21

discovery algorithms, BAMB is slower than SLL and S2TMB, but both SLL and S2TMB do
not learn any results on each dataset. In summary, BAMB and the existing MB algorithms
have low accuracy on these nodes in a BN with large size of PC.

5.3 Real-world Datasets

We use ten real-world datasets with various dimensionalities in our experiments. A summary
of the datasets is shown in Table 10. The first six datasets are from the UCI machine learning
repository [10], the ovarian-cancer is sourced from [14], the madelon, arcene, and dexter
datasets are from the NIPS 2003 feature selection challenge. In the experiments, we apply
10-fold cross-validation for all datasets and use the following evaluation metrics:

∙ Accuracy. We report both the number of selected features and the prediction accuracy
of KNN classifier and SVM classifier [7] for BAMB and all the algorithms compared.
Prediction accuracy is the percentage of the correctly classified test instances in all
test instances.
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∙ Efficiency. We also report running time (in seconds) as the efficiency measure of
different algorithms.

Table 10. Summary of real-world datasets

Dataset Number of features Number of instances

congress 16 435
wdbc 30 569
unblanced 32 856
sepctf 44 267
sonar 60 208
bankruptcy 147 7,063
ovarian-cancer 2,190 216
madelon 500 2,000
arcene 10,000 100
dexter 20,000 300

In the following tables, we also report the mean result and summarize the win/tie/lose
counts of BAMB against other methods in the last rows of each table. “-” denotes that a
method fails to generate any output with the corresponding dataset after running more than
three days or no features selected, and the best results are highlighted in bold face.

Table 11. Prediction accuracy of BAMB and other constraint-based algorithms using KNN

Dataset IAMB MMMB HITON-MB PCMB IPCMB STMB BAMB

congress 0.95±0.03 0.95±0.03 0.94±0.03 0.94±0.03 0.95±0.03 0.96±0.03 0.96±0.03
wdbc 0.77±0.05 0.77±0.05 0.77±0.05 0.77±0.05 0.79±0.05 0.78±0.04 0.79±0.05
unblanced 0.81±0.07 0.81±0.07 0.81±0.07 - - 0.57±0.40 0.81±0.07
spectf 0.50±0.00 0.70±0.20 0.70±0.20 0.70±0.20 0.70±0.20 0.70±0.20 0.70±0.20
sonar 0.49±0.06 0.83±0.11 0.83±0.11 0.83±0.11 0.83±0.11 0.83±0.07 0.84±0.06
bankruptcy 0.88±0.02 0.88±0.01 0.88±0.01 - - 0.88±0.01 0.89±0.01
ovarian-cancer 0.82±0.08 0.86±0.08 0.88±0.04 - - 0.79±0.11 0.90±0.06
madelon 0.58±0.04 0.56±0.04 0.58±0.03 0.50±0.04 0.55±0.02 0.55±0.03 0.62±0.04
arcene 0.66±0.17 0.67±0.08 0.68±0.20 0.62±0.16 - - 0.72±0.12
dexter 0.73±0.09 0.81±0.09 0.82±0.09 - - - 0.88±0.07

mean 0.72 0.78 0.79 - - - 0.81

win/tie/loss 9/1/0 8/2/0 8/2/0 9/1/0 8/2/0 8/2/0 /

Table 12. Prediction accuracy of BAMB and other constraint-based algorithms using SVM

Dataset IAMB MMMB HITON-MB PCMB IPCMB STMB BAMB

congress 0.96±0.02 0.96±0.02 0.96±0.02 0.96±0.02 0.96±0.02 0.96±0.04 0.96±0.03
wdbc 0.77±0.05 0.77±0.05 0.77±0.05 0.77±0.05 0.79±0.05 0.78±0.04 0.79±0.05
unblanced 0.99±0.00 0.99±0.00 0.99±0.00 - - 0.69±0.48 0.99±0.00
spectf 0.74±0.16 0.74±0.15 0.74±0.15 0.74±0.15 0.74±0.15 0.81±0.14 0.81±0.14
sonar 0.72±0.08 0.86±0.07 0.86±0.07 0.86±0.07 0.86±0.07 0.82±0.07 0.83±0.06
bankryptcy 0.90±0.01 0.90±0.00 0.90±0.00 - - 0.89±0.00 0.90±0.01
ovarian-cancer 0.88±0.06 0.91±0.04 0.91±0.05 - - 0.81±0.09 0.94±0.03
madelon 0.63±0.03 0.60±0.02 0.61±0.03 0.56±0.04 0.61±0.03 0.61±0.04 0.63±0.04
arcene 0.68±0.16 0.68±0.16 0.70±0.17 0.62±0.16 - - 0.72±0.13
dexter 0.81±0.07 0.85±0.09 0.85±0.07 - - - 0.91±0.07

mean 0.81 0.83 0.83 - - - 0.85

win/tie/loss 6/4/0 6/3/1 6/3/1 8/1/1 7/2/1 8/2/0 /
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Table 13. Number of selected features of BAMB and other constraint-based algorithms

Dataset IAMB MMMB HITON-MB PCMB IPCMB STMB BAMB

congress 3±0 3±1 3±1 3±1 3±1 5±1 4±1
wdbc 3±0 5±1 5±1 4±1 6±1 5±1 6±1
unblanced 2±0 2±0 2±0 - - 1±1 2±0
spectf 1±0 29±3 29±3 29±3 29±3 9±2 9±2
sonar 1±0 59±1 59±1 59±1 59±1 20±1 20±2
bankruptcy 9±0 62±3 58±2 - - 80±4 52±3
ovarian-cancer 3±0 10±2 7±1 - - 377±103 29±4
madelon 6±0 6±1 6±1 2±1 7±2 26±6 9±1
arcene 3±0 7±4 4±1 2±0 - - 15±4
dexter 4±0 11±4 12±1 - - - 39±3

mean 4 19 19 - - - 19

win/tie/loss 0/1/9 3/1/6 3/1/6 6/0/4 7/1/2 6/2/2 /

Table 14. Number of CI tests of BAMB and other constraint-based algorithms

Dataset IAMB MMMB HITON-MB PCMB IPCMB STMB BAMB

congress 58±6 1.6e3±1.9e4 930±256 2.3e4±1.3e4 2.5e3±491 211±112 167±41
wdbc 117±0 760±110 1.9e3±428 3.2e3±536 1.7e3±170 555±57 444±146
unblanced 92±10 4.9e4±7.0e3 1.7e5±3.0e4 - - 69±4 72±22
spectf 88±0 8.2e3±3.7e3 1.1e4±5.5e3 1.1e5±5.6e4 5.1e6±8.3e5 5.8e5±45 1.5e3±851
sonar 120±0 2.9e6±5.1e5 6.7e6±1.3e6 2.0e9±4.0e7 4.2e7±2.6e6 1.9e6±6.5e5 2.7e5±7.6e3
bankruptcy 1.4e3±0 1.1e6±2.6e5 1.3e7±3.3e6 - - 1.4e6±1.6e5 9.7e5±2.0e5
ovarian-cancer 9.0e3±669 4.8e4±6.3e3 5.2e5±2.9e5 - - 9.4e5±3.8e5 5.7e4±1.3e4
madelon 3.0e3±0 3.7e3±581 6.2e3±2.9e3 9.1e3±4.6e3 2.8e4±5.4e3 8.1e3±838 5.3e3±1.2e3
arcene 4.0e4±44 1.6e5±8.2e4 1.7e7±2.7e7 3.2e5±1.4e5 - - 6.7e4±2.0e4
dexter 4.7e4±171 7.9e5±8.4e5 3.6e5±7.0e4 - - - 2.8e5±2.5e4

mean 1.0e4 5.1e5 1.6e6 - - - 1.4e5

win/tie/loss 1/0/9 8/0/2 10/0/0 10/0/0 10/0/0 9/0/1 /

Table 15. Running time (in seconds) of BAMB and other constraint-based algorithms

Dataset IAMB MMMB HITON-MB PCMB IPCMB STMB BAMB

congress 0.11 2.15 2.36 21.42 3.44 0.59 0.51
wdbc 0.54 3.57 8.87 17.46 8.01 1.43 1.22
unblanced 0.36 87.94 269.39 - - 0.27 0.28
spectf 0.29 8.65 9.85 74.38 2,039.16 308.19 7.37
sonar 0.17 1,345.32 4,385.57 92,628.46 22,371.28 1,189.69 215.89
bankruptcy 65.43 43,358.15 173,522.83 - - 80,087.51 30,150.02
ovarian-cancer 229.64 1,081.96 13,331.72 - - 29,424.55 1,269.48
madelon 109.88 157.81 289.84 388.79 1,227.08 348.42 184.14
arcene 1,636.45 4,752.38 130,688.32 14,187.03 - - 2,042.33
dexter 16,755.21 168,136.09 76,008.21 - - - 49,850.37

mean 1,879.81 21,893.40 39,851.70 - - - 8,391.16

win/tie/loss 1/0/9 8/0/2 10/0/0 10/0/0 10/0/0 9/1/0 /

5.3.1 Comparison of BAMB with Constraint-Based MB Methods on Real-world Datasets. In
this section, we present the results obtained by BAMB in comparison with the state-of-the-art
constraint-based MB discovery algorithms, IAMB, MMMB, HITON-MB, PCMB, IPCMB,
and STMB.
1) Prediction accuracy: Tables 11 and 12 summarize the prediction accuracy of BAMB

against IAMB, MMMB, HITON-MB, PCMB, IPCMB, and STMB using KNN and SVM,
respectively. With the counts of win/tie/lose, we can see that BAMB is superior to other
algorithms on most datasets using SVM. Furthermore, using KNN, BAMB is never worse
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than other algorithms in prediction accuracy. Since there are no overlapping PC sets during
the symmetry check, PCMB and IPCMB fail on the 𝑢𝑛𝑏𝑙𝑎𝑛𝑐𝑒𝑑 dataset. On average, IAMB
is worse than the other algorithms in prediction accuracy. In particular, on the 𝑠𝑝𝑒𝑐𝑡𝑓 , 𝑠𝑜𝑛𝑎𝑟,
𝑎𝑟𝑐𝑒𝑛𝑒, and 𝑑𝑒𝑥𝑡𝑒𝑟 datasets, IAMB is 6% less accurate than BAMB using KNN. In theory,
since both BAMB and this type of algorithms performing exhaustive subset search within
the features selected currently, BAMB has comparable accuracy with them. According to
the experimental results on the benchmark BN datasets, BAMB is also comparable with
this type of algorithm in accuracy. However, the experimental results on real-world datasets
show that BAMB is more accurate (recall value) than this type of algorithms. This means
that BAMB can find more true positives (i.e., features within true MBs) than the other
algorithms according to the experiments on the benchmark BN datasets. Because MMMB,
HITON-MB, PCMB, and IPCMB find spouses from the PC set of each feature in the found
PC set of the target, if they mistakenly lose some nodes during the actual calculation of PC
discovery, then it will lead to the loss of some true spouses of the target. The strategy of
BAMB of finding spouses from non-PC set can avoid losing the candidate of spouses of the
target, which improve the prediction accuracy. Meanwhile, BAMB also gets much more false
positives in its output, then BAMB has lower accuracy (precision value) on BNs.

2) Number of selected features: Table 13 shows the numbers of selected features by BAMB,
IAMB, MMMB, HITON-MB, PCMB, IPCMB, and STMB. According to the counts of
win/tie/lose, BAMB is also very competitive with its rivals. This means that BAMB selects
a few features. STMB selects more features in 𝑜𝑣𝑎𝑟𝑖𝑎𝑛-𝑐𝑎𝑛𝑐𝑒𝑟 and 𝑚𝑎𝑑𝑒𝑙𝑜𝑛 and achieves
lower accuracy than the other methods.

3) Efficiency: The number of CI tests is corresponding to runtime, and the experimental
results in Table 14 and 15 are consistent with the discussion of the computational complexity
in Section 4.4. Due to the high computational costs, PCMB, IPCMB, and STMB fail on
the 𝑏𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑦, 𝑜𝑣𝑎𝑟𝑖𝑎𝑛-𝑐𝑎𝑛𝑐𝑒𝑟, 𝑎𝑟𝑐𝑒𝑛𝑒 and 𝑑𝑒𝑥𝑡𝑒𝑟 datasets (the running time exceeding
three days). Although IAMB is the fastest algorithm under comparison, IAMB almost gets
the worst prediction accuracy. BAMB shows a comparable efficiency with IAMB and much
faster than the remaining algorithms on most datasets. Especially on 𝑢𝑛𝑏𝑙𝑎𝑛𝑐𝑒𝑑, BAMB is
faster than IAMB. On average in terms of the number of CI tests, BAMB is 3.6 times faster
than MMMB, and 11.2 times faster than HITON-MB. On average, BAMB is 2.6 times faster
than MMMB and 4.8 times faster than HITON-MB. Especially with the high-dimensional
datasets 𝑎𝑟𝑐𝑒𝑛𝑒 and 𝑑𝑒𝑥𝑡𝑒𝑟 with more than 10,000 features, BAMB is at least 2 times faster
than MMMB and HITON-MB.

Table 16. Prediction accuracy of score-based MB discovery algorithms and BAMB using KNN

Dataset SLL S2TMB BAMB

congress 0.95±0.04 0.94±0.04 0.96±0.03
wdbc 0.77±0.05 0.78±0.05 0.79±0.05
unblanced 0.24±0.32 0.24±0.32 0.81±0.07
spectf 0.61±0.09 0.61±0.09 0.70±0.20
sonar 0.53±0.08 0.54±0.09 0.84±0.06
bankruptcy - 0.83±0.03 0.89±0.01
ovarian-cancer - 0.86±0.07 0.90±0.06
madelon 0.52±0.04 0.52±0.04 0.62±0.04
arcene - 0.69±0.15 0.72±0.12
dexter - - 0.88±0.07

win/tie/loss 10/0/0 10/0/0 /
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Table 17. Prediction accuracy of score-based MB discovery algorithms and BAMB using SVM

Dataset SLL S2TMB BAMB

congress 0.95±0.03 0.95±0.03 0.96±0.03
wdbc 0.77±0.05 0.78±0.05 0.79±0.05
unblanced 0.40±0.51 0.40±0.51 0.99±0.00
spectf 0.72±0.15 0.72±0.15 0.81±0.14
sonar 0.69±0.09 0.70±0.07 0.83±0.06
bankruptcy - 0.89±0.00 0.90±0.01
ovarian-cancer - 0.89±0.06 0.94±0.03
madelon 0.57±0.03 0.57±0.03 0.63±0.04
arcene - 0.73±0.20 0.72±0.13
dexter - - 0.91±0.07

win/tie/loss 10/0/0 9/0/1 /

Table 18. Number of selected features of score-based MB discovery algorithms and BAMB

Dataset SLL S2TMB BAMB

congress 4±1 4±1 4±1
wdbc 5±1 7±1 6±1
unblanced 0±1 0±1 2±0
spectf 3±1 3±1 9±2
sonar 2±1 2±1 20±2
bankruptcy - 9±1 52±3
ovarian-cancer - 7±2 29±4
madelon 6±1 5±1 9±1
arcene - 6±1 15±4
dexter - - 39±3

win/tie/loss 4/1/5 2/1/7 /

Table 19. Running time (in seconds) of score-based MB discovery algorithms and BAMB

Dataset SLL S2TMB BAMB

congress 6.71 1.03 0.51
wdbc 42.75 74.01 1.22
unblanced 2.73 0.13 0.24
spectf 0.21 0.95 7.37
sonar 4.37 0.92 215.89
bankruptcy - 10,232.59 30,150.02
ovarian-cancer - 41,695.87 1,269.48
madelon 412.51 570.34 184.14
arcene - 26,337.03 2,042.33
dexter - - 49,850.37

win/tie/loss 8/0/2 6/0/4 /

5.3.2 Comparison of BAMB with Score-Based MB Methods on Real-world Datasets. In this
section, we compare the BAMB algorithm with the state-of-the-art score-based methods,
SLL and S2TMB, and the results are discussed as follows.
1) Prediction accuracy: From Tables 16 and 17, we see that using either KNN or SVM,

BAMB is more accurate than SLL and S2TMB. Even SLL and S2TMB fail on high-
dimensional datasets due to memory limitation. Especially on the four datasets 𝑢𝑛𝑏𝑙𝑎𝑛𝑐𝑒𝑑,
𝑠𝑝𝑒𝑐𝑡𝑓 , 𝑠𝑜𝑛𝑎𝑟, and 𝑚𝑎𝑑𝑒𝑙𝑜𝑛, BAMB is 9% more accurate than SLL and S2TMB using KNN.

2) Number of selected features: Table 18 reports the numbers of selected features of BAMB,
SLL, and S2TMB. From the result, BAMB is very competitive with SLL and S2TMB.
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3) Running time: SLL and S2TMB are implemented in C++, while BAMB is implemented
in MATLAB. In general, programs written in C++ may be more efficient than the one
written by MATLAB. However, from Table 19, we can see that BAMB is much faster than
SLL and S2TMB on the high-dimensional datasets. Especially, BAMB is 32.8 times faster
than S2TMB on 𝑜𝑣𝑎𝑟𝑖𝑎𝑛-𝑐𝑎𝑛𝑐𝑒𝑟, and 20.7 times faster than S2TMB on 𝑎𝑟𝑐𝑒𝑛𝑒.

Table 20. Prediction accuracy of the well-established feature selection methods and BAMB using KNN

Dataset FCBF mRMR SPFS-LAR MRF BAMB

congress 0.96±0.03 0.96±0.03 0.96±0.02 0.95±0.03 0.96±0.03
wdbc 0.78±0.05 0.80±0.04 0.49±0.05 0.75±0.05 0.79±0.05
unblanced 0.68±0.06 0.72±0.06 0.70±0.09 0.03±0.02 0.81±0.07
spectf 0.64±0.22 0.71±0.18 0.60±0.16 0.74±0.16 0.70±0.20
sonar 0.60±0.09 0.82±0.09 0.84±0.06 0.77±0.07 0.84±0.06
bankruptcy 0.85±0.02 0.87±0.01 0.88±0.01 0.87±0.01 0.89±0.01
ovarian-cancer 0.88±0.08 0.92±0.05 0.78±0.11 0.51±0.10 0.90±0.06
madelon 0.51±0.05 0.54±0.03 0.49±0.04 0.51±0.03 0.62±0.04
arcene 0.65±0.07 0.71±0.12 0.63±0.10 0.65±0.15 0.72±0.12
dexter 0.85±0.08 0.87±0.07 0.76±0.06 0.77±0.07 0.88±0.07

mean 0.74 0.79 0.71 0.65 0.81

win/tie/loss 9/1/0 6/1/3 8/2/0 9/0/1 /

Table 21. Prediction accuracy of the well-established feature selection methods and BAMB using SVM

Dataset FCBF mRMR SPFS-LAR MRF BAMB

congress 0.96±0.03 0.95±0.03 0.94±0.03 0.94±0.04 0.96±0.03
wdbc 0.78±0.04 0.80±0.05 0.63±0.00 0.75±0.06 0.79±0.05
unblanced 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00
spectf 0.74±0.16 0.80±0.15 0.63±0.10 0.81±0.14 0.81±0.14
sonar 0.73±0.07 0.79±0.08 0.82±0.08 0.78±0.11 0.83±0.06
bankruptcy 0.89±0.00 0.89±0.00 0.90±0.00 0.89±0.00 0.90±0.01
ovarian-cancer 0.94±0.05 0.93±0.02 0.85±0.09 0.55±0.08 0.94±0.04
madelon 0.58±0.03 0.58±0.04 0.50±0.03 0.51±0.02 0.63±0.04
arcene 0.62±0.14 0.72±0.08 0.63±0.12 0.67±0.11 0.72±0.13
dexter 0.86±0.07 0.90±0.07 0.87±0.06 0.83±0.06 0.91±0.07

mean 0.81 0.83 0.78 0.77 0.85

win/tie/loss 7/3/0 7/2/1 8/2/0 8/2/0 /

Table 22. Number of Selected Features of FCBF and BAMB

Dataset FCBF BAMB

congress 3±1 4±1
wdbc 5±0 6±1
unblanced 1±0 2±0
spectf 7±1 9±2
sonar 2±0 20±2
bankruptcy 10±1 52±3
ovarian-cancer 13±1 29±4
madelon 20±1 9±1
arcene 33±2 15±4
dexter 49±2 39±3

mean 14 19

win/tie/loss 3/0/7 /
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5.3.3 Comparison of BAMB with Other Feature Selection Methods on Real-world Datasets. In
this section, we compare the BAMB algorithm with two well-established feature selection
methods, FCBF and mRMR, and two state-of-the-art feature selection algorithms, SPFS-
LAR and MRF. The experimental results are discussed as follows.

1) Prediction accuracy: In Tables 20 and 21, with the counts of win/tie/lose and average
results, BAMB is much more accurate than other methods using both KNN and SVM.
Specifically, BAMB is never worse than FCBF and SPFS-LAR in prediction accuracy using
both KNN and SVM on each dataset. And on the datasets with a large number of features:
𝑚𝑎𝑑𝑒𝑙𝑜𝑛, 𝑎𝑟𝑐𝑒𝑛𝑒, and 𝑑𝑒𝑥𝑡𝑒𝑟, BAMB’s advantage in prediction accuracy is more obvious.
2) Number of selected features: Since mRMR, SPFS-LAR, and MRF choose the same

number of selected features with BAMB in each dataset, we only give the numbers of selected
features of BAMB and FCBF in Table 22. However, in any case, the prediction accuracy
of BAMB is better than mRMR, SPFS-LAR, and MRF. This means that BAMB chooses
more correct MB features. With the counts of win/tie/lose, BAMB is also very competitive
with FCBF, especially on the datasets with a large number of features: 𝑚𝑎𝑑𝑒𝑙𝑜𝑛, 𝑎𝑟𝑐𝑒𝑛𝑒,
and 𝑑𝑒𝑥𝑡𝑒𝑟.
3) Running time: FCBF, mRMR, SPFS-LAR, and MRF are implemented in MATLAB

and C language, but the core code of FCBF, mRMR, SPFS-LAR, and MRF are written in
C language, so we do not give their running time here.

6 CONCLUSIONS

We have presented BAMB, a novel constraint-based MB discovery algorithm for balancing
the efficiency and accuracy of MB discovery for feature selection, by finding candidate PC
and spouses and removing false positives from the candidate set in one go. The experimental
results have shown that the BAMB algorithm outperforms the state-of-the-art constraint-
based and score-based Markov blanket feature selection methods and other well-established
feature selection methods. Future research could focus on how to efficiently and accurately
find MB on nodes in a BN with large size of PC, because the existing MB discovery algorithms
are not suitable for these nodes according to our experimental results in Section 5.2.

ACKNOWLEDGMENTS

This work is partly supported by the National Key Research and Development Program of
China (under grant 2016YFB1000901), the National Science Foundation of China (under
grants 61876206, 91746209, and 61673152), and the Anhui Province Key Research and
Development Plan (No. 201904a05020073).

REFERENCES

[1] Constantin F Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani, and Xenofon D

Koutsoukos. 2010. Local causal and markov blanket induction for causal discovery and feature selection
for classification part i: Algorithms and empirical evaluation. Journal of Machine Learning Research

11, Jan (2010), 171–234.
[2] Constantin F Aliferis, Ioannis Tsamardinos, and Alexander Statnikov. 2003. HITON: a novel Markov

Blanket algorithm for optimal variable selection. In AMIA Annual Symposium Proceedings, Vol. 2003.
American Medical Informatics Association, 21.

[3] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. 1989. The
ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks.

In AIME 89. Springer, 247–256.
[4] John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. 1997. Adaptive probabilistic networks

with hidden variables. Machine Learning 29, 2-3 (1997), 213–244.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:24 Z. Ling et al.

[5] Verónica Bolón-Canedo, D Rego-Fernández, Diego Peteiro-Barral, Amparo Alonso-Betanzos, Bertha
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