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As an e-commerce feature, the personalized recommendation is invariably highly-valued by both consumers
and merchants. The e-tourism has become one of the hottest industries with the adoption of recommendation
systems. Several lines of evidence have confirmed the travel-product recommendation is quite different from
traditional recommendations. Travel products are usually browsed and purchased relatively infrequently
compared with other traditional products (e.g., books, food, etc.), which gives rise to the extreme sparsity
of travel data. Meanwhile, the choice of a suitable travel product is affected by an army of factors such
as departure, destination, financial and time budget. To address these challenging problems, in this paper,
we propose a Probabilistic Matrix Factorization with Multi-Auxiliary Information (PMF-MAI) model in the
context of the travel-product recommendation. In particular, PMF-MAI is able to fuse the probabilistic matrix
factorization on the user-item interaction matrix with the linear regression on a suite of features constructed
by the multiple auxiliary information. In order to fit for the sparse data, PMF-MAI is built by a whole-data
based learning approach which utilizes unobserved data to increase the coupling between probabilistic matrix
factorization and linear regression. Extensive experiments are conducted on a real-world dataset provided by
a large tourism e-commerce company. PMF-MAI shows an overwhelming superiority over all competitive
baselines on the recommendation performance. Also, the importance of features is examined to reveal the
crucial auxiliary information having a great impact on the adoption of travel products.
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1 INTRODUCTION
The tourism industry has experienced steady growth almost every year worldwide. Sensing these
huge business opportunities, more and more online travel agencies (OTA) keep popping up all across
the world, e.g., TripAdvisor, Expedia, Trip.com, Tuniu, etc. These online travel agencies are able to
provide services including transportation ticketing, packaged tours, accommodation reservation,
corporate travel management, which are usually packaged as various travel products [30]. In this
context, the usage of online information has become a major trend among travelers [21], along
with online reservations for travel products becoming an important application. The iResearch
data∗ shows that the online travel booking rate has now reached over 40% with an OTA market
growing to $7.69 billion in China. In response, many OTA platforms have adopted recommender
systems as a marketing communication tool so as to facilitate travelers learning and purchasing
their products [17]. Both OTA platforms and travelers benefit from such recommender systems.
Prospective travelers can quickly locate the travel products satisfying their personalized require-
ments. Recommender systems also help OTA improve services, attract and retain customers, and
eventually increase conversions from browsers to buyers.

In the literature, plenty of studies on tourism-oriented recommendation have been devoted
to identify points of interest (POI) by regarding user’s attributes and construct the personalized
itinerary for recommendation [15, 19, 25], through mining various types of data, e.g., GPS tra-
jectories [47], check-in records [46], travelogues [18], geo-tagged photos [25], and so on. Most
of the research has considered “Where, When, Who" issues to model user mobility. In fact, this
domain closely relates to the fields of location-based social network services and urban comput-
ing [52]. Nevertheless, our study is highly-related to another research stream of literature which
explores the intelligent recommendation for travel products (sometimes termed as travel pack-
ages) [9, 30, 31, 41, 53]. These studies have repeatedly verified that the recommendation of travel
products is remarkably different from that of traditional items, e.g., movies, books, or groceries.
Specifically, the user-item interaction matrix in the context of tourism is extremely sparse, since the
relatively expensive travel-products lead to infrequent browsing and purchasing. This implies that
the tourism recommendation needs to exploit other rich information for enhancing its performance.
Furthermore, compared with the recommendation of traditional items, the recommendation of
travel products is greatly affected by contextual factors such as the departure city, the landscapes
of destination, travel seasons, financial and time budget, etc.

The auxiliary information used in recommender systems generally involves user-specific features,
item-specific features and global features [1, 2, 33, 35, 44, 49]. User/item-specific features provide
additional description of users or items, e.g., item information, user demographics. The global
features are also known as dyadic features which denote a similarity degree between a user and
a product [49]. To work around the conundrum of travel-product recommendation, studies have
attempted to incorporate partial auxiliary information to alleviate the data sparseness problem
and thus to improve the recommendation accuracy. For example, Liu et al. introduced a tourist-
area-season topic model to integrate the descriptive text of travel products with the collaborative
filtering model [30, 31]. Ge et al. [9] developed the cost-aware latent factor model to take both
financial and time costs into account. He et al. [11] extended the topic model to incorporate the
social influence besides the descriptive text of travel products. Liu et al. [28] proposed a multiple
factors model for estimating passengers’ future air travel pattern. The auxiliary information used

∗http://www.iresearchchina.com/
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Travel Recommendation via Fusing Multi-Auxiliary Information into Matrix Factorization 1:3

in these studies are almost item-specific features. However, the global features act a fat part in
the tourism-oriented recommendation, because many features make sense when they link up
users with products. For instance, the city that a consumer lives in has little effect on modeling
preferences, but it becomes meaningful when it relates to the departure city of a travel product.
Hence, the pressing concern for travel product recommendation is the ability for fusing all-round
knowledge. That is, the recommendation model should not be restricted to some specific type
of auxiliary information, whereas it calls for a flexible and universal framework that is able to
effectively incorporate all kinds of auxiliary information that is available from data.

In this paper, we propose a Probabilistic Matrix Factorization with Multi-Auxiliary Information
(PMF-MAI) model for the travel-product recommendation. PMF-MAI is capable of fusing multiple
auxiliary information into matrix factorization and utilizing the plenty of unobserved value to
improve the recommendation accuracy. This paper makes three key contributions to the literature
of recommender systems as well as travel recommendations:

(1) PMF-MAI is able to jointly model the multiple auxiliary information affecting the adoption of
travel products and user-product interaction matrix explicitly expressing users’ preferences.
Although PMF-MAI is used for travel product recommendation throughout this paper, the
model itself is truly universal to other recommendation or prediction problems fed with
both interaction matrix and auxiliary information.

(2) PMF-MAI adopts a whole-data based learning framework working on both observed and
unobserved samples. By sufficiently exploiting the unobserved data, PMF-MAI is conducive
to alleviate the sparsity of user-product interaction data.

(3) PMF-MAI is evaluated on a real-life dataset obtained from a large tourism e-commerce
company in China. A set of dyadic features are constructed in the context of e-tourism.
Experimental results not only demonstrate that PMF-MAI outperforms several competitive
baselines for the travel product recommendation, but also validate the effectiveness of the
proposed dyadic features.

Organization: The remainder of this paper is organized as follows. In Section 2, we summarize
the related work in detail. In Section 3, we begin by describing the problem that we study in this
article, and then present our proposed recommendation framework PMF-MAI. Section 4 introduces
the real-life dataset and the construction of features by using the multi-auxiliary information. We
exhibit the experimental results in Section 5 and finally conclude this paper in Section 6.

2 RELATEDWORK
In this section, we survey the relevant literature in two streams of research: tourism-oriented
recommendations, and matrix factorization (MF) based recommendation methods.

2.1 Tourism-Oriented Recommendations
Here, we discuss two substreams related to the study of tourism-oriented recommendations. The
first one relates to predicting next location (i.e., POI) by regarding interest preferences, and further to
generating itinerary as a sequence of locations under trip constraints (e.g., time limits, start and end
points). Since a sequence of POI visits is naturally interpreted as a session [36], the session-based
recommendation methods are adopted for predicting the next POI [7, 48]. These methods learn
user transactional behavioral patterns (e.g., sequential patterns) and the user preference shift from
one transaction to another for recommendations. In addition to the user-location data, plenty of
contextual information has been exploited to improve the recommendation accuracy. Cheng et al. [3]
proposed a Gaussian mixture model for taking social influence and geographical information into
consideration. Similarly, Liu et al. [27] modeled the geographical influences and some other factors

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2019.
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by a general geographical probabilistic factor model. On the other hand, tour recommendation
and itinerary planning depend on the combination of various factors such as POI popularity and
category, trip constraints, and interest preferences, which are usually approached as an optimization
problem [19, 25, 26, 46]. For instance, the variants of traveling salesman and orienteering problem
are two widely-used optimization models in the field of tour recommendations.

Although a wide array of studies fall within the aforementioned field, our work is highly-related to
the second substream: travel product or package recommendations. Much of the available literature
on this research substream used a dataset provided by an offline travel company, consisting of tens
of thousands of expense records between users and travel packages [8, 9, 11, 30, 31, 41]. Compared
with traditional products, a notable feature of the travel-package recommendation is that the user-
product interaction matrix is overly sparse and there exists amounts of auxiliary information that
is potentially useful to an effective recommendation. Along this line, information about area and
season is extracted from the descriptive text of each travel package, and a hybrid recommendation
method that has the ability to combine many constraints is developed [30, 31]. Likewise, Ge et
al. [8, 9] examined the effect of both financial and time cost on travel product purchases and
presented two kinds of cost-aware recommendation models. He et al. [11] considered the social
influence of co-travelers to enhance the representation of travel interests. Recently, Liu et al. [28]
presented a topic model fusing multiple factors such as gender, age, the customer similarity graph
to predict customer airline travel preferences. However, previous studies on this regard focused
on exploiting some specific type of factor to improve the recommendation quality, little work has
considered designing a systematic and flexible framework to incorporate all-round knowledge for
travel-product recommendations, leaving an open field worthy of research. Furthermore, our work
is one of few studies to investigate the travel-product recommendation problem on the real-life
data sourced from an OTA platform, which is particularly important for practitioners as the OTA
platform has become common among online retailers.

2.2 MF-based Recommendation Methods
Matrix factorization (MF) aims to find two or more matrices such that their product can well
approximate the original data matrix [34], and it has been successfully applied to handle a bank of
recommendation problems. Historically, many researchers have studied how to effectively leverage
auxiliary information (e.g., social relations among users [3, 6, 42] and geographical information [24,
27, 51]) and incorporate them into MF-based recommendation models. From a technical perspective,
two principled methods are noteworthy. The first one is the so-called matrix co-factorization [3, 27,
42, 51] that simultaneously decomposes two or three matrices with the share of the latent factor
matrices. Although this approach is very insightful, the extension to incorporate multiple kinds of
auxiliary information usually represented as multiple matrices is largely neglected. The other one
is the regression-based latent factor model, where multiple auxiliary information can be encoded
as features and fed together with user-item interaction matrix by using the linear or non-linear
regression models [1, 6, 24, 33, 39]. Compared with co-factorization, the regression-based latent
factor method is more reasonable and flexible to fuse multiple auxiliary information. Agarwal and
Chen [1] assumed that the latent factor matrices are generated from the side information via linear
regression and their product should be approximated with the original data matrix. Park et al. [33]
proposed the Bayesian matrix factorization approach to alleviate the overfitting the problem of
the traditional regression-based latent factor models. Chen et al. [2] simultaneously incorporated
features and past user-item interactions through a generalized linear model and developed a
machine learning toolkit for feature-based matrix factorization. However, these above methods
either ignore global features or only regard global features as the bias term. Global features have a
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Travel Recommendation via Fusing Multi-Auxiliary Information into Matrix Factorization 1:5

great influence on the tourism-oriented recommendation, which directly affects users’ preferences
for products. Different from the existing models, we fuse the global features via linear regression
and minimize the deviation between matrix factorization and linear regression. Meanwhile, we
treat the regressions of global features as the calibration of factorization on unobserved values. In
fact, our PMF-MAI model provides a reasonable and effective way to extend the regression-based
MF model to learn on both observed and unobserved data.

Recent research has further improved MF-based recommendation models by focusing on the usage
of the missing data, i.e., unobserved values [4, 13, 24, 43]. For instance, Volkovs et al. [43] presented
the SVD block-factorization approach that enables SVD to handle the missing data. Devooght et
al. [4] offered an interesting approach where the unobserved ratings are modeled as a prior estimate
that is dealt with separately from the observed ratings. They showed that to make MF-based models
learning on unobserved values is very critical to enhance the recommendation performance on the
sparse data. Nevertheless, much of the research up to now regards the unobserved values as the
negative feedback, which is not always consistent with the reality.

Despite previous works have made significant improvements on recommendation performances,
the newly-proposed PMF-MAI model has its distinctive characteristics and advantages. Firstly, PMF-
MAI is a systematic and scalable approach that is capable of fusing multiple sources of auxiliary
information, which is superior to most current models that fail to fully fuse global features. Secondly,
PMF-MAI fully exploits unobserved values as the calibration of probabilistic matrix factorization
with linear regression, which is more suitable for handing highly sparse data.

3 THE PMF-MAI MODEL
In this section, we first outline the travel-product recommendation problem to be studied. Then, we
present the recommendation model named Probabilistic Matrix Factorization with Multi-Auxiliary
Information (PMF-MAI), which provides an integrated framework for fusing the probabilistic
matrix factorization on user-item interaction matrix and the linear regression on a set of features
constructed by multi-auxiliary information.

Throughout the paper, lowercase symbols (such as a, b) denote scalars, bold lowercase symbols
(such as a, b) represent vectors, bold uppercase symbols (such as A, B) denote matrices and
calligraphy symbols (such as A, B) represent tensors. For better illustration, Table 1 lists all
mathematical notations used in this paper.

3.1 Problem Statement
In the literature, the recommendation task is usually specified as: given anN×M matrix X describing
the preferences of N users over M items, we aim to recommend each user with a set of new items
that this user might be interested in but has never been keen on these items before. The matrix X
has various definitions in different scenarios. For example, X can represent the browsing behavior
or consumption behavior on e-commerce sites [22], and can also denote the five-grade ratings in
the classic movie recommendation. The recommendation task is then equivalent to the prediction
for missing values of X, and thus the recommended items are generated by the ranking of predicted
values.

In many real applications, there is multiple auxiliary information producing effects on users’
interests. Taking the application to be addressed throughout this paper as an example: the rec-
ommendation of travel products on an OTA platform. We can collect the frequency that a user
has clicked, i.e., browsed, a web page about one travel product, which is naturally placed into
the matrix X. This matrix only indicates users’ interests against the destinations or landscapes of
different travel products. However, besides the users’ historical interests, multiple other auxiliary
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Table 1. Mathematical Notations

Notation Description
N number of instances, e.g., users, sessions
M number of items, i.e., travel products
K dimension of latent factors
D number of features constructed by auxiliary information
X user-product browse frequency matrix
H (H̄) indicator matrix of observed (unobserved) values in X
U (ui ) user latent factors (for ith user)
V (vj ) product latent factors (for jth product)
Y feature tensor
yi j (yi jd ) (i ,j) fiber of tensor Y (for dth feature)
β (βd ) regression coefficients vector (for dth feature)

information is very important to determine whether a user prefers one travel product. For instance,
most users expect to travel from home, i.e., the starting place should be as near as the user’s city.
Furthermore, most tourists will not frequently browse some travel products of which the financial
costs they are unable to afford. In other words, both time and price of a travel product should be in
line with users’ estimates.

Based on the above analysis, the problem discussed in this paper is how to fuse all-around
auxiliary information for enhancing the prediction of missing values inside the user-item matrix X.
In other words, we target at developing a novel recommendation model that can jointly combine
the interest expressed by X and various auxiliary information affecting the users’ interests. With
notations shown in Table 1, the problem discussed in this article is described as follows:

Definition 3.1 (Problem Statement). Given the partially observed preference matrix H ⊙ X and
the feature tensor Y , we target at estimating the unknown preference of every instance to each
product, such that we can make recommendations to the users.

3.2 Probabilistic Matrix Factorization on User-Item Matrix
Let X = [xi j ]N×M be the matrix representing the interest of every user over all items, U ∈ RK×N

and V ∈ RK×M be two projection matrices on the latent space for users and items respectively, with
column vectors ui and vj representing the K-dimensional user-specific and item-specific latent
vectors. We decompose X as the product of two matrices on the joint latent space with dimension
K ≪ min(N ,M ) by using the probabilistic matrix factorization:

X = U⊤V + E1, (1)
where E1 is an error matrix of which each element is often modeled as a Gaussian observation
noise [37], denoted as N (0,σ 2

X 1). Since the matrix X is usually very sparse, an indicator matrix
H ∈ RN×M is adopted to indicate the observed values, of which each element hi j = 1 indicates
the observed values, otherwise hi j = 0 for unobserved values. We then define the conditional
distribution with respect to all observed values of X as

P (X|U,V,σ 2
X 1) =

N∏
i=1

M∏
j=1

[N (xi j |u⊤i vj ,σ 2
X 1)]

hi j . (2)

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2019.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Travel Recommendation via Fusing Multi-Auxiliary Information into Matrix Factorization 1:7

We also place zero-mean spherical Gaussian priors [37] on user and item latent vectors respec-
tively:

P (U|σ 2
U ) =

N∏
i=1
N (ui |0,σ 2

U I), P (V|σ 2
V ) =

M∏
j=1
N (vj |0,σ 2

V I). (3)

With the Bayesian theorem, we have:

P (U,V|X,σ 2
X 1,σ

2
U ,σ

2
V )∝P (X|U,V,σ

2
X 1)P (U|σ

2
U )P (V|σ

2
V ). (4)

By putting Eqs. (2) and (3) into Eq. (4), we can obtain the log of the posterior distribution over
user and item latent vectors with respect to the prior variance and observation noise variance.

log P (U,V|X,σ 2
X 1,σ

2
U ,σ

2
V ) ∝ −

1
2σ 2

X 1

N∑
i=1

M∑
j=1

hi j (xi j − u⊤i vj )2

−
1

2σ 2
U

N∑
i=1

u⊤i ui −
1

2σ 2
V

M∑
j=1

v⊤j vj . (5)

According to Eq. (5), to compute the maximum a posteriori (MAP) estimation of U and V is
equivalent to minimize the following objective function denoted as J1.

J1 =
1

σ 2
X 1
| |H ⊙ (X − U⊤V) | |2F +

1
σ 2
U
| |U| |2F +

1
σ 2
V
| |V| |2F , (6)

where | | · | |2F denotes the Frobenius norm and ⊙ is the Hardamard product.
Remark: The SVD-based models are the most widely used in recommender systems [20, 32].

They minimize the Frobenius norm between the preference matrix and the SVD approximation.
Whereas PMF only optimizes the reconstruction error, which makes it far more flexible. For this
reason, we select PMF as the basis model which is easily extended to incorporate multi-auxiliary
information and to support whole-data based learning on unobserved values.

3.3 Linear Regression for Multi-Auxiliary Information
The auxiliary information that affects the recommendation is data-specific. Nevertheless, we propose
to model this auxiliary information as a set of pre-defined features associated with each element
xi j ∈ X to be predicted. For instance, features constructed by auxiliary information associated a
pair of user and travel-product, i.e., xi j , may contain the distance between user’s departure city and
landscapes included in this product and the price utility of the user with respect to this product. The
feature construction in the case of travel products recommendation will be introduced in Section 4.2.
Without loss of generality, for any xi j ∈ X, we assume it is associated with a (D − 1)-dimensional
feature vector yi j = [yi jd ](D−1)×1. Then, if we regard xi j as the response and yi j as the control
variables, the regression function is

xi j = β⊤yi j + βD , (7)

where β = [βd ](D−1)×1 denotes the regression coefficients corresponding to every feature. For
simplicity, if we set yi jD = 1, Eq. (7) can be written as xi j = β⊤yi j =

∑D
d=1 βdyi jd .

We regard yi j as the (i, j ) fiber of tensor Y , then the Eq. (7) can be further rewritten as:

X = Y×dβ + E2,

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2019.
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where ×d is the d-mode product between tensor Y and vector β . Again we adopt a Gaussian
observation noise with variance σ 2

X 2 to model the error matrix E2. Similar to Eq. (2), the conditional
distribution over observed values in X is

P (X|β ,σ 2
X 2) =

N∏
i=1

M∏
j=1

[N (xi j |β
⊤yi j ,σ 2

X 2)]
hi j . (8)

Likewise, we exploit zero-mean spherical Gaussian prior on the regression weight vector:

P (β |σ 2
B1) =

D∏
d=1
N (βd |0,σ 2

B1I).

According to the Bayesian theorem, we have

P (β |X,σ 2
X 2,σ

2
B1) ∝ P (X|β ,σ 2

X 2)P (β |σ
2
B1). (9)

The log of the posterior distribution in Eq. (9) is given by

log P (β |X,σ 2
X 2,σ

2
B1) ∝ −

1
2σ 2

X 2

N∑
i=1

M∑
j=1

hi j (xi j − β⊤yi j )2 −
1

2σ 2
B1

D∑
d=1

β2
d . (10)

Therefore, the MAP estimation of β is equivalent to minimize the objective function J2 as
follows.

J2 =
1

σ 2
X 2
| |H ⊙ (X − Y×dβ ) | |2F +

1
σ 2
B1
| |β | |2F . (11)

Remark: Much of prior work [9, 24] only considered one type of feature constructed by auxiliary
information that was usually represented as a matrix. Thus, the matrix factorization approach
can be directly utilized to obtain the user/item latent vector on the feature matrix. In this paper,
we scale the feature matrices to a tensor for incorporating richer auxiliary information. Hence,
we adopt the regression model to handle such a complex case, because the matrix factorization
is ineffective to multi-dimensional features. If only one feature is considered, i.e., D − 1 = 1, our
model is approximately reduced to many of models in previous studies [9, 24], except that the
linear regression instead of matrix factorization is utilized in our model.

3.4 Modeling Unobserved Values
Up to now, we have considered the observed value in X, constrained by the indicator variable
Hi j , in both probabilistic matrix factorization model and linear regression model. However, lack
of consideration for unobserved data is likely to increase the bias of the maximum likelihood
inference [4]. Therefore, we propose to use the auxiliary information to calibrate the PMF model
on unobserved values. To be specific, we attempt to minimize the bias between the PMF model and
the linear regression on tensor of features constructed by auxiliary information:

U⊤V = Y×dβ + E3.

Along this line, the conditional distribution to indicate the Gaussian noise over unobserved
values is

P (U,V|β ,σ 2
B2) =

N∏
i=1

M∏
j=1

[N (u⊤i vj |β⊤yi j ,σ 2
B2)]

h̄i j . (12)
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Fig. 1. Graphical representation of the PMF-MAI model. Figure (a) shows the basic version of PMF-MAI;
Figure (b) shows the variant of PMF-MAI incorporating user/item-specific features.

where h̄i j is the negation of hi, j , i.e., h̄i j = 1 − hi j . The log of the posterior probability can be
computed as follows:

log P (U,V|β ,σ 2
B2) ∝ −

1
2σ 2

B2

N∑
i=1

M∑
j=1

h̄i j (u⊤i vj − β⊤yi j )2. (13)

Thus, the MAP estimation is to minimize objective function J3 as:

J3 =
1
σ 2
B2
| |H̄ ⊙ (Y×dβ − U⊤V) | |2F . (14)

Remark: Since the user-item interaction matrices would be very sparse in practice, the matrix
factorization must be performed despite missing data (i.e., unobserved values), a problem which has
seen significant research attention. Most existing techniques [4, 13, 24] treated unobserved values
as negative examples and utilized the unknown rating, which was usually set as the worst rating
(e.g., 0), to guide the matrix factorization on missing data. However, we argue that the unobserved
values are not always appearing in products that users dislike. That is why we propose to optimize
the error between the output of PMF, i.e., U⊤V, and the linear regression on features, i.e., Y×dβ .

3.5 Integrated Model: PMF-MAI
In order to provide more accurate and efficient model, we integrate the above-mentioned three
objective functions, i.e., J1, J2 and J3, to get the joint model PMF-MAI. Specifically, we utilize
the linear weighting method to convert the problem of multi-objective optimization into a mono-
objective one. To better understand PMF-MAI, we display the graphical representation of PMF-MAI
in Fig. 1(a). In the graphical representation, white and gray circles represent hidden and seen circles,
respectively. The directed edges between variables indicate dependencies between the variables.
Each plate represents a group of variables. In our model, the top plate, middle plate and bottom
plate represent all the variables related to a specific product, user and feature. And we repeat the
generation process by M , N and D times, respectively. As we can see, based on whether the data is
observed or not, xi j is divided into two categories. The unobserved xi j is used as the calibration of
regression model with matrix factorization. The objective function of PMF-MAI is defined as

J = α1J1 + α2J2 + α3J3,

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2019.
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Algorithm 1 PMF-MAI: the Unified Procedure
Require: Matrices X, H; Tensor Y ; Dimension of latent factors K ; Hyperparameters λX 1, λU , λV ,

λB2, λX 2, λB1;
Ensure: Predicted matrix X̂;

1: procedure PMF-MAI(X,H,Y,K )
2: Initialize U, V and β with random numbers within the range (0, 1);
3: Perform random sampling on unobserved values of X; ▷ optional step
4: while not converged do
5: Update U← U − ξ ∂J

∂U with Eq. (16);
6: Update V← V − ξ ∂J

∂V with Eq. (17);
7: Update βd ← βd − ξ

∂J
∂βd

with Eq. (18);
8: end while
9: return X̂ = U⊤V;

10: end procedure

where α1, α2 and α3 are weights for balancing three objective functions, and α1 + α2 + α3 = 1. By
putting Eqs. (6), (11) and (14) together, we have:

J =
λX 1

2 | |H ⊙ (X − U⊤V) | |2F +
λX 2

2 | |H ⊙ (X − Y×dβ ) | |2F

+
λB2
2 | |H̄ ⊙ (Y×dβ − U⊤V) | |2F +

λU
2 | |U| |

2
F

+
λV
2 | |V| |

2
F +

λ2
B1
2 | |β | |

2
F , (15)

where λX 1 =
2α1

σ 2
X 1
, λX 2 =

2α2

σ 2
X 2
, λB2 =

2α3

σ 2
B2
, λU =

2α1

σ 2
U
, λV =

2α1

σ 2
V
, λB1 =

2α2

σ 2
B1
.

A local minimum of the objective function given by Eq. (15) can be obtained by performing
gradient descent in U, V and βd , respectively.

∂J

∂U
= λX 1[V(H⊤ ⊙ (V⊤U − X⊤))] + λB2[V(H̄⊤ ⊙ ((Y×dβ )

⊤ − V⊤U))] + λU U, (16)

∂J

∂V
= λX 1[U(H ⊙ (U⊤V − X))] + λB2[U(H̄ ⊙ (Y×dβ − U⊤V))] + λV V, (17)

∂J

∂βd
= λX 2

N∑
i=1

M∑
j=1

[hi j (y⊤i jβ − xi j )yi jd ] + λB2

N∑
i=1

M∑
j=1

[H̄i j (u⊤i vj − y⊤i jβ )yi jd ] + λB1βd . (18)

With Eqs (16), (17) and (18), we can employ the gradient descent method to solve our PMF-MAI
model. For each iteration, we update U = U−ξ ∂J

∂U , V = V−ξ ∂J
∂V and βd = βd−ξ

∂J
∂βd

, where the step
size ξ is set to 0.01 in our experiments. Finally, we obtain the predicted values by X̂ = U⊤V. To better
understand PMF-MAI, we summarize the computational procedure of PMF-MAI in Algorithm 1.

Complexity: Since our PMF-MAI has taken all unobserved values into account, the cost of
updating U and V by Eqs. (16) and (17) is O ((K + D)NM ), and the cost of updating β by Eq. (18)
is O (KDNM ). Hence, the total computational complexity of PMF-MAI is O (KDNM ) for each
iteration. Intuitively, the number of observed values |X| is very small in comparison to the number
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Travel Recommendation via Fusing Multi-Auxiliary Information into Matrix Factorization 1:11

of unobserved values (NM − |X|). To reduce the computational cost of PMF-MAI, we can perform
the random sampling, a commonly-used technique in handling missing data [4, 43], on unobserved
before training gradient against variables (see line 3 of Algorithm 1). As a result, if we denote γ ∈
[0, 1] as the sampling ratio, the total cost of PMF-MAI can be reduced toO (KD ( |X|+γ (NM − |X|))).
We will show the effect of γ in the experimental section and demonstrate when γ = 0.3 PMF-MAI
can achieve the satisfactory performance.

3.6 Connections to Existing Models
Here, we show the connections between PMF-MAI and previous models taking user/item-specific
features into account, and the distinctions between PMF-MAI and previous models taking global
features into account. When given auxiliary information in the form of feature vectors related with
user and item, there exist a number of matrix factorization models making user of user/item feature
vectors to derive latent vectors. Mathematically, let F = [f1, · · · , fN ] and G = [д1, · · · ,дM ] denote
feature matrices, where fi and дj are feature vector related with user i and item j respectively. The
first class of methods is to use the matrix co-factorization to compute the latent vectors [40]:

F = A⊤U + EF ,X = U⊤V + EX ,G = B⊤V + EG , (19)
where EF , EX , EG are the Gaussian noise. The second class is the regression-based latent factor
model (RLFM) [1]

U = A⊤F + EU ,V = B⊤G + EV ,X = U⊤V. (20)
Many studies have adopted other generative models as the alternative of the linear regression used

by RLFM such as Bayesian matrix factorization with side information (BMFSI) [35] and hierarchical
BMFSI [33]. Thus far, PMF-MAI does not consider user/item-specific features and its basic version
employs the probabilistic matrix factorization to obtain user/item latent vectors as shown in Eq. (1).
Nevertheless, our PMF-MAI can readily be extended to incorporate user/item-specific features by
replacing the basic probabilistic matrix factorization with aforementioned latent factor models. This
upgrade is unlikely to alter the way that we handle global features. Fig. 1(b) shows the graphical
representation of the extended PMF-MAI model incorporating user/item-specific features.

Several studies [1, 2] have considered a fraction of global features such as day-of-week about
rating time, last purchase frequency associated with user and product, etc. Since bits of global
features are unlikely to have a great impact to predicted values, existing methods such as RLFM [1]
and SVDFeature [2] have modeled the global features as the bias term of the score function. In
contrast to these methods, our PMF-MAI approach minimizes the loss between latent factor model
and linear regression of global features over both observed and unobserved values and it in fact
amplifies the effect of global features. This treatment is potentially effective to cope with the
challenging problem raised from the tourism domain: the user-product preference matrix is very
sparse and the contextual information is extremely vital to the preference modeling.

4 DATA AND FEATURES
In this section, we first introduce a real-life dataset provided by an e-travel company in China and
then describe several features constructed by auxiliary information. The set of features is used to
constitute the feature vector yi j as introduced in Section 3.3.

4.1 Data Description
Our dataset is provided by Tuniu∗, a large tourism e-commerce company in China. This dataset is
mainly made up of web server logs for recording a series of page views of users, where only pages

∗http://www.tuniu.com/
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Fig. 2. Characteristics of Tuniu data. Figures (a) and (b) show the comparison of data sparseness among three
real-world datasets. Figure (c) shows the distribution of financial costs of products with the same time span.

associated with travel products are maintained. Each page contains the following auxiliary informa-
tion: Page_ID, Departure, Destination, Price, Time_Span, where Departure (Destination) represents
the starting (destination) city of a travel product and Price (Time_Span) denotes the financial cost
(time cost) of this travel product.

A sequence of successive records of a user is divided into a number of sessions of which each
includes the sequential web pages clicked by a user during a certain period. To enrich the auxiliary
information of every session, we collect sessions that arrive the website through advertising
campaigns, internal search and external search engines. For these sessions, we can obtain a Keyword
attribute that usually contains the intended destination, which will facilitate the construction of
several features. In addition, the IP address of each session is also analyzed to get the location of
this session denoted as IP_City.

We finally extracted 2,033 sessions over 15,491 pages from the logs from July to August, 2013.
Then, a 2,033×15,491 matrix X is constructed, where each element xi j denotes the count of ith
session has visited jth page. The click count xi j is in the range [1, 26] with the average value
1.25. Moreover, the matrix X has only 50,533 non-zero elements, with a very low density 0.128%,
which is much lower than those of traditional datasets used in recommendation. Figures 2(a)
and (b) compare the data sparseness between Tuniu dataset and two typical datasets used in the
recommendation area. One is the standard MovieLens-10K, and the other one is Tmall [54]. The
cumulative distribution function (CDF) is the probability that takes a value less or equal to the
corresponding x-value. We can see from Figure 2(a) that over 90% users in Tuniu data has clicked
less than 50 items, whereas roughly 40% users of both MovieLens and Tmall have clicked and
rated less than 50 items. A similar observation can be seen from Figure 2(b): the number of users
that clicked each item is much more scarce in the Tuniu dataset. In addition, Figure 2(c) shows
the boxplots of a group of travel products with the same time span but different financial cost.
As can be seen, the product with longer time span tends to be sold in higher price, but the price
fluctuation of products with the same time span is remarkably wild. This implies that both time
cost and financial cost should be considered simultaneously for the user preferences modeling.

4.2 Feature Construction
Here, we delineate the construction of features as a part of the input for our PMF-MAI model. As
described above, xi j represents the relationship between a session and a page. So each feature yi jd
associated with xi j should also be constructed between the session and the page. In what follows,
we will construct two classes of features, including six features in total.
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Fig. 3. A part of hierarchical structure for place names extracted from UNG.

The first class of intuitive features attempts to characterize the distance of departure city and
destination city. Specifically, the locations of each session indicated by IP_City and the Departure
attribute of each page are used for computing the distance of departure cities. Meanwhile, the
intended destination of each session extracted from Keyword and the Destination attribute of each
page are responsible for computing the distance of destination cities. We employ two kinds of
methods to measure the distance between two place names: Geographical Similarity and Semantic
Similarity as follows:

(1) Geographical Similarity. Given a pair of place names, we use Google Maps API∗ to compute
the distance on the earth surface, denoted asDist (pi ,pj ) wherepi andpj are two place names.
Then, we utilize the Min-Max normalization to transform the distance to a geographical
similarity:

S1 (pi ,pj ) = 1 −
Dist (pi ,pj ) −min

max−min , (21)

where S1 (pi ,pj ) represents the geographical similarity and max (min) is the maximum
(minimum) value of Dist (pi ,pj ).

(2) Semantic Similarity. In fact, the place names can be organized as a hierarchical structure,
i.e., a tree. For instance, one possible path of such tree is: “China→East China→Jiangsu
Province→Nanjing". Thus, we use the structural similarity upon the tree to define the
semantic relationship between two place names. In detail, we utilize the hierarchical
structure from United Nations Geoscheme (UNG)†. Fig. 3 shows an illustrative example of
this hierarchical structure. Then, we define the semantic similarity S2 (pi ,pj ) as:

S2 (pi ,pj ) =
2Depth(pi ∩ pj )

Depth(pi ) + Depth(pj )
, (22)

wherepi∩pj denotes the last common ancestor ofpi andpj , andDepth(·) gives the depth of a
node in the tree, i.e., the number of nodes from the root to this node. For example, if a tourist’s
intension destination is Thailand, according to Fig. 3, S2 (Thailand, Phuket ) = 0.889 and
S2 (Thailand, Jeju) = 0.444. This means this tourist has a higher preference in destination
Phuket than Jeju.

By using the above two similarity measures, we can construct four features to indicate the
distance of both departure and destination cities.

∗https://developers.google.com/maps/
†https://en.wikipedia.org/wiki/United_Nations_geoscheme
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The price and time of different travel products vary wildly. For example, travel products in our
dataset are sold for dozens of dollars to thousands of dollars, and take one day to more than ten
days. Hence, another class of features is designed for characterizing the preference on the financial
and time cost of tourists. We adopt the method proposed by [9] to model the users’ preference to
financial and time cost as the Gaussian prior. Specifically, we first utilize the Min-Max method to
normalize the prices of all products, i.e., the Price attribute, and compute the average value and the
standard deviation of all pages contained in a session. Then, we can obtain the probability function
on price for every session by assuming the price follows 1-dimension Gaussian distribution. For
each xi j , the utility on price is easily given by the probability function with the price of jth page.
The same process is taken on the time cost by using the Time_Span of every page. As a result, we
construct two features to indicate both price and time preference.

5 EXPERIMENTAL RESULTS
In the following, we present our experimental setup and results. Specifically, we demonstrate: 1) the
performance comparisons between PMF-MAI and other benchmark methods; 2) the understanding
of features in the context of e-tourism; and 3) an analysis of parameters inside our PMF-MAI model.

5.1 Experimental Setup
All experiments were conducted on the real-world dataset as described in Section 4.1. For the
2,033×15,491 sparse matrix X, we divided each row into a training set and a test set, by randomly
extracting a certain percentage of the elements to be part of the training set and the remaining
ones to be part of the test set.

5.1.1 PerformanceMetrics. Let x̂i j and xi j denote an estimated value and a true value respectively
for a test instance. Two commonly used metrics indicating the estimated error are Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE). Here, we define the average MAE and RMSE as

MAE =
∑

i, j
���xi j − x̂i j

���
nt

, RMSE =

√∑
i, j (xi j − x̂i j )

2

nt
, (23)

where nt is the number of test instances. Obviously, the small value of MAE (RMSE) indicates the
better performance.

Besides metrics for estimated errors, we further employ Recall, F-measure and Normalized
Discounted Cumulative Gain (NDCG) to characterize the ranking accuracy of recommendation
results. Since these measures have been widely used in the literature of recommender systems [9,
30, 38, 46], we provide a very brief introduction of their calculations. In detail, the travel products
in the test data are regarded as the truly relevant items, denoted asTi for ith session (i.e., the ith row
of X). Then, the recommendation list generated by various recommendation methods is denoted as
Ri . Recall measures the ratio of the number of hits to the size of each session’s test data:

Recall = 1
N

∑
i

|Ti ∩ Ri |

|Ti |
. (24)

F-measure, an overall accuracy metric, is defined by the harmonic mean of precision.

F-measure = 2 · Recall · Precision
Recall + Precision

, where Precision = 1
N

∑
i

|Ti ∩ Ri |

|Ri |
. (25)
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NDCG [38] is the normalized position-discounted precision score:

NDCG = 1
N

∑
i

|Ri |∑
j=1

2I (Ri j ∈Ti ) − 1
log1+j

2
, (26)

where the indicator function I (·) = 1 if Ri j ∈ Ti , otherwise for 0. We further adopt a diversity metric

Coverage =
|
⋃N

i=1 Ri |

M
, (27)

and a higher coverage value indicates that the recommendation method can encompass a wider
range of interests. In total, six evaluation measures are used thereafter.

5.1.2 Algorithms Compared. We consider neighborhood-based approaches (UCF and ICF), matrix
factorization methods without side information (PMF and SVD), a matrix factorization method using
unobserved value (eALS), a sequential pattern-based recommendation method (MCA) and matrix
factorization methods with side information (RLFM, SVDFeature and BMFSI), The comparison
methods are given below:

• UCF [16]. The standard User-based Collaborative Filtering (UCF) using Pearson correlation
coefficient (PCC) as the similarity measure is used here. The number of nearest neighbors
is set to 50.

• ICF [12]. Similar to UCF, the Item-based Collaborative Filtering (ICF) also utilizes PCC as
the similarity measure, while the number of nearest neighbors is set to 200 because the
number of product pages is far larger than that of sessions.

• PMF [29, 37, 45]. It is a standard latent factor model that is widely used in recommender
systems. This can be regarded as the basic version of our PMF-MAI that does not fuse any
features, that is, the estimation is performed purely based on the user-item matrix.

• SVD [50]. The Singular Value Decomposition (SVD) method is another famous recom-
mendation model using the matrix factorization technique. PMF model is proposed by
introducing Gaussian noise to observed value while SVD finds the matrix R̂ = U

∑
VT of

the given rank which minimizes the sum-squared distance to the target matrix R.
• eALS [14]. eALS is a matrix factorization method that weights unobserved data based on

the popularity of products. This method does not require any auxiliary information.
• MCA [36]. MCA is a sequential pattern-based recommendation approach. It first mines

a collection of sequential patterns and then recommends the remaining items after the
occurrence of the prior items.

For methods with side information, we shall extract user/item-specific features and global features
from Tuniu dataset. In particular, the features constructed in Section. 4.2 are taken as global features.
We further add the membership of customers as one user-specific feature, and price, time costs as
well as travel product types as three item-specific features.

• RLFM [1]. RLFM is a regression-based latent factor model for gaussian response. Here
we fusing user-specific features, item-specific features and global features into the matrix
factorization.

• SVDFeature [2]. SVDFeature is a model for feature-based collaborative filtering. Similar to
RLFM, we use the same user-specific features, item-specific features and global features as
model inputs.

• BMFSI [35]. BMFSI is a Bayesian matrix factorization method that utilizes auxiliary infor-
mation. However, this model excludes global features. So we only use user-specific features
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Table 2. Performance Comparisons (MAE and RMSE)

Method 50% 40% 30% 20% 10%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PMF-MAI 0.389 0.738 0.407 0.747 0.412 0.753 0.418 0.754 0.473 0.765
UCF 0.509 0.828 0.538 0.866 0.595 0.883 0.684 0.992 0.785 1.110
ICF 0.684 1.097 0.733 1.144 0.795 1.181 0.876 1.233 0.994 1.298
PMF 0.453 0.788 0.468 0.795 0.479 0.801 0.508 0.810 0.548 0.847
SVD 0.496 0.817 0.519 0.857 0.545 0.859 0.606 0.901 0.722 0.910
eALS 0.432 0.765 0.446 0.769 0.459 0.782 0.467 0.789 0.512 0.816
RLFM 0.422 0.750 0.433 0.753 0.449 0.770 0.457 0.776 0.509 0.806

SVDFeature 0.428 0.762 0.437 0.768 0.458 0.779 0.463 0.786 0.517 0.812
BMFSI 0.451 0.771 0.459 0.774 0.461 0.789 0.482 0.793 0.531 0.821

and item-specific features as raw features to feed into BMFSI. For fair comparison, we fur-
ther decompose global features into user (product) attributes to complement user-specific
(item-specific) features, e.g., user geolocation, user intended destination, departure and
destination of travel product.

The dimension of latent factors, i.e., K , is set to 10 by default for PMF, SVD, eALS, RLFM,
SVDFeature and BMFSI and the proposed PMF-MAI. For our PMF-MAI, the sampling ratio γ is set
to 0.3 and the weights in Eq. (15) are set equally by default, i.e., λX 1 = λX 2 = λB1 = λU = λV =
λB2 = 0.05. The impact of γ and other six weights will be discussed in Section 5.4. All experiments
were done on the server with one quad-core E5-2650v2 processors and 128GB of main memory.
PMF-MAI, PMF and MCA were implemented in Python by ourselves. We used the Mahout Java
machine learning framework∗ to implement SVD, UCF, and ICF. For eALS, RLFM, SVDFeature and
BMFSI, the source codes were available from Github.

5.2 The Overall Comparison
First of all, we present a performance comparison between PMF-MAI and baseline methods. To this
end, we randomly split the elements in matrix X into training data and test data, and decrease train-
ing set ratio gradually from 50% to 10%. For each ratio of training data, we repeat the experiments
for 10 times on different random splits and then report the average values of two performance
metrics. The comparison results in terms of MAE and RMSE are shown in Table 2, where MCA
is not reported since it directly generates recommender items. In Table 2, the best results are set
to be bold. According to the results, there are several observations. First, our PMF-MAI method
consistently gives rise to the lowest estimated errors in all splits, followed in decreasing order
by RLFM, SVDFeature, eALS, BMFSI, PMF, SVD, UCF, and ICF. As the decrease in the number of
training instances, PMF-MAI exhibits more superior performance. For example, PMF-MAI improves
1.6% on RMSE over RLFM with 50% training data, but it achieves 5.1% improvement on RMSE
over RLFM with 10% training data. This clearly shows that PMF-MAI can better alleviate the data
sparsity problem compared with other methods. Second, PMF-MAI, RLFM, SVDFeature and BMFSI
perform better than PMF and SVD, demonstrating the effectiveness of incorporating auxiliary
information. Furthermore, PMF-MAI, RLFM and SVDFeature beat BMFSI, the major difference
among these methods is that BMFSI considers more user/item features, while other methods utilize

∗https://mahout.apache.org/
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Fig. 4. The overall comparison results with the latent dimension K .

three kinds of features include global features, suggesting the benefit of jointing global features.
Third, eALS achieves better performance than PMF and SVD because the use of the unobserved
values. Unobserved values largely alleviate the data sparsity in the matrix factorization model and
make the prediction more accurate. Last but not least, both UCF and ICF perform much worse than
the models based on matrix factorization, which indicates that the neighborhood methods cannot
work effectively on the extremely sparse user-product interaction matrix.

Fig. 4 shows the experimental results of various models with the varying parameter of the
latent dimension size K . First of all, we can observe that PMF-MAI works well among these
baselines in all cases. An intuitive explanation is that PMF-MAI leverages both auxiliary information
and unobserved values to alleviate the data sparsity problem which implies the excellence of
utilizing auxiliary information and unobserved values in learning latent factor of spare user-
product interaction matrix for each user and item. Second, as the increase of K , PMF-MAI, RLFM,
SVDFeature and BMFSI perform much more stable than PMF and SVD. This is largely owes to
the auxiliary information integrated by these methods. Third, the performance improvement for
all latent-based models is from K=5 to 10, and the prediction accuracy increases slowly and even
decreases when the latent dimension further increases. This implies that the default setting K = 10
is fair to our method as well as its competitors and is reasonable for datasets with the varying ratio
of the training set.

Fig. 5 shows the comparison results among ten methods in terms of Recall, F-measure, NDCG,
and Coverage, respectively. We set the training set size as 50% and repeat the experiments 10
times on random splits. Then, the average values of each evaluation measure are adopted as the
final results. We can observe several patterns from the results. First and foremost, our PMF-MAI
significantly outperforms benchmark approaches indicated by all of the evaluation measures. The
improvements of PMF-MAI achieved, on average, 13.8%, 13.1%, 2.7%, and 11.8% compared with
the second-best performer RLFM in Recall, F-measure, NDCG, and Coverage, respectively. Second,
PMF-MAI, RLFM, SVDFeature and BMFSI outperform PMF and SVD in terms of Recall, F-measure,
NDCG and Coverage, again verifying the superiority of the frameworks for jointing auxiliary
information and matrix factorization. Third, we observe that, by fusing only user-specific and item-
specific features, BMFSI can only gain marginal improvements in terms of top-N recommendation
performances. Compared with PMF without auxiliary information, BMFSI can only gain around
1.2%, 4.8%, and 0.2% improvement in terms of top-20 Recall, F-measure and NDCG respectively. We

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2019.
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Fig. 5. Performance comparisons in terms of Recall, F-measure, NDCG, and Coverage. The training set size is
set to 50%.

argue that user and product attributes are not fine-grained enough to discriminate user preferences.
Quite differently, PMF-MAI, RLFM and SVDFeature leverage the constructed global features to
better profile user interest preferences. Fourth, eALS is better than PMF and SVD. This is mainly
because eALS imposes an item popularity-aware weighting strategy on unobserved values while
PMF and SVD simply assign zeros to all missing values. Fifth, MCA dose not perform as well
as PMF, especially in terms Coverage. Because MCA is frequency-based only, it is easy to filter
out infrequent but significant items or patterns. That is, the sequential pattern-based approach
is suitable for the relation discovery between frequent items in simple datasets. However, it may
easily fail to model complex dependency in complex datasets for session-based recommendation.
Sixth, UCF performs worser than MF-based methods on MAE and RMSE, but UCF obtains better
overall accuracy than PMF and SVD as shown by Fig. 5(b). Closer inspection of Fig. 5(d) shows
that the diversity of products within UCF’s recommendation list is quite low. This observation
suggests UCF tends to recommend popular products. Our PMF-MAI inherits the advantage of
MF-based approaches that are able to recommend products having high diversity and yet improves
the recommendation accuracy. Finally, both UCF and ICF appeared to be unaffected by the length
of recommendation list, because every nearest neighbor has browsed few travel-products (i.e., the
data is extremely sparse) and thus the recommended products are limited.

5.3 Evaluation of Features Constructed by Auxiliary Information
The most striking characteristic of PMF-MAI is its ability of fusing a set of features and the matrix
factorization. Six features in the case of e-travel scenario have been defined and used by PMF-
MAI. We focus on evaluating these features, that is, to understand which features are more or
less important to the prediction performance. We design two strategies for the evaluation. First,
the standardized coefficients of the regression model can be used for evaluating the importance
of every feature. Second, we shall fall back on some impurity measure commonly used in the
classification model [5, 23] to evaluate the discriminative power of every feature. To this end, all of
elements xi j ∈ X are regarded as samples, and the integer value of xi j is treated as the class label.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Travel Recommendation via Fusing Multi-Auxiliary Information into Matrix Factorization 1:19

Table 3. Effect of implicit features on prediction accuracy

Type Departure Destination Cost
Feature Geo. Sim. Sem. Sim. Geo. Sim. Sem. Sim. Price Time

Fisher Score 0.0015 0.0008 0.0057 0.0020 0.0077 0.0054
Ranking 5 6 2 4 1 3

Std. Coefficients 0.020∗∗ 0.008 0.029∗∗∗ 0.011∗ 0.047∗∗∗ 0.039∗∗∗
Ranking 5 6 3 4 1 2

Note: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

As mentioned in Section 4.1, xi j ∈ [1, 26] and thus 26 classes are generated over all samples. Then,
we select Fisher score [5] as the impurity measure for the evaluation of features. For each feature,
the Fisher score is defined as

Fr =

∑26
c=1 nc (µi − µ )2∑26

c=1 ncσ
2
c
, (28)

where nc is the number of data samples in class c , µi is the average feature value in class c , σc is
the standard deviation of the feature value in class c , and µ is the average feature value of all data
samples. A higher Fisher score value indicates the feature has strong discriminative power.

Table 3 shows evaluation results of six features by using Fisher score and standardized coefficients.
We can observe that the orders of features w.r.t. both metrics are almost consistent, except the
order between the geographical similarity of destination and the time cost. However, the values
of both metrics of the time cost correspond closely to those of the geographical similarity of
destination. The top three features are price, geographical similarity of destination and time, where
the p-value < 0.001 of their standardized coefficients indicates a very high significance level.
Furthermore, Table 3 conveys the interesting information that tourists are more concerned with
cost and destination but relatively care less about departure, when they are choosing travel products.
As life quality rise, people increasingly prefer traveling individually and even by self-driving, rather
than the traditional package tour. So, tourists are more inclined to purchase travel products on the
destination, such as tickets, hotels, etc. Nevertheless, both financial and time costs are still the most
important factors that tourists care about.

5.4 Effects of Parameters inside PMF-MAI
Here, we demonstrate the effects of parameters inside PMF-MAI, including the dimension of latent
vector K , the usage of random sampling on unobserved data, and six weights of loss terms and
regularization terms in Eq. (15).

5.4.1 Sampling Ratio. After utilizing random sampling technique, the computational complexity
can be reduced to O (KD ( |X| +γ (NM − |X|))), where γ ∈ [0, 1] is the sampling ratio. It is a tradeoff
between the performance and the runtime to select the appropriate γ . The runtime per iteration is
displayed in Fig. 6(a). Here, we use the same 10-dimensional latent features and the 50% training set
ratio. It can be seen that the runtime is linearly increasing as the sampling ratio increases from 0 to
1 with 0.1 as the interval. On the other hand, Fig. 6(b)-6(f) depict the recommendation performances.
We observe that the results of RMSE, Precision, Recall, NDCG and Coverage exhibit similar patterns.
As sampling rate γ increases, the recommendation performances increase quickly at first. But when
γ increases further, the recommendation performances increase slowly and even decreases. This
phenomenon indicates that very high sampling rate cannot help to improve the recommendation

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2019.
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Fig. 6. Effect of sampling ratio on PMF-MAI performance.

performances. Consider the runtime and recommendation performances together, the appropriate
γ is within [0.3,0.4]. This shows the default setting γ = 0.3, highlighted by a gray dash line in each
figure, is reasonable. Compared with results learned on all unobserved data (i.e., γ = 1), the runtime
of each iteration is greatly reduces by 60% at the cost of increasing RMSE by 0.3%. Furthermore, it
is noteworthy that the values at which the index curves intersect the y-axis represent the results of
PMF-MAI without fusing unobserved values, i.e., γ = 0. We can observe that Recall, F-measure,
NDCG and Coverage of PMF-MAI without fusing unobserved values, on average, decrease by 20.8%,
20.7%, 6.6% and 47.7%. The major reason lies in extreme sparsity of user-product interaction matrix.
Unlike other methods that assign zeros or weights to all unobserved values, PMF-MAI provides a
new guide for incorporating unobserved values into matrix factorization model. The experimental
results demonstrate the effectiveness of the way to incorporate unobserved values.

Remark: Our PMF-MAI directly employs the batch gradient descent as the optimization algo-
rithm that calculates the error over all of samples. A limitation of this approach is that when the
input matrix X grows larger, it requires the entire data in memory and the iterative optimization
may become slower. Fortunately, there exist a number of variants of the gradient descent algo-
rithm [10] such as the Stochastic Gradient Descent (SGD), the mini-batch gradient descent, and the
Alternating Least Square (ALS) techniques, which are developed for accelerating the optimization
on big data.
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Fig. 7. Impact of six weights of loss terms and regularization terms.

5.4.2 Weights of Loss Terms and Regularization Terms. When introducing the PMF-MAI model
above, we set the parameters λX 1, λU , λV , λB2, λX 2, λB1 to be equal, i.e., λX 1=λU =λV =λB2=λX 2=λB1=0.05.
We here verify its effectiveness by using the so-called traversal method. In this method, we alter-
nately traverse the value of each parameter while keeping other parameters fixed. Fig. 7 exhibits
the effects of six weights on the dataset of which the training set ratio is set to 50%. As can be
seen, the default settings for six weights marked by the gray dash lines have achieved pretty good
performance. As indicated by Figs 7(a), (c) and (e), λX 1 = λV = λX 2 = 0.05 is the best choice. In
Figs 7(b) and (d), when setting λU and λB2 to be default value, the performance is just slightly worse
than the optimal performance. As shown in Fig 7(f), PMF-MAI has its best results for λB1 = 0.01,
which has a little difference from the default setting.

6 CONCLUSION
To tackle the travel-product recommendation problem, we presented a novel framework called
PMF-MAI in this paper. Different from existing methods, PMF-MAI was generated by jointly
considering user-item interaction matrix and multi-auxiliary information. Meanwhile, PMF-MAI
could be viewed as a whole-data based learning framework that utilized unobserved click volumes
as the calibration of probabilistic matrix factorization with linear regression. Experiments on a
real-world online travel dataset have demonstrated PMF-MAI outperforms competitive baselines
in terms of six evaluation measures, which is mainly attributed to fusing features constructed by
auxiliary information. Up to now, the simple random sampling technique is employed by PMF-MAI
to speed up its update on the large unobserved data. It will be important that future research
integrates the learning of ranked unobserved values as a part of optimization objective in order to
identify relevant unobserved instances for improving the performance. We also plan to seek more
complex factorization models that can potentially lead to better latent representations.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2019.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:22 Lei Chen, Zhiang Wu, Jie Cao, Guixiang Zhu, and Yong Ge

REFERENCES
[1] Deepak Agarwal and Bee-Chung Chen. 2009. Regression-based latent factor models. In Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 19–28.
[2] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu. 2012. SVDFeature: A toolkit for

feature-based collaborative filtering. Journal of Machine Learning Research 13, Dec (2012), 3619–3622.
[3] Chen Cheng, Haiqin Yang, Irwin King, and Michael R Lyu. 2012. Fused matrix factorization with geographical and

social influence in location-based social networks. In Proceedings of the 26th AAAI Conference on Artificial Intelligence.
AAAI Press, 17–23.

[4] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. 2015. Dynamic matrix factorization with priors on unknown
values. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 189–198.

[5] Richard O Duda, Peter E Hart, and David G Stork. 2012. Pattern classification. John Wiley and Sons.
[6] Asmaa Elbadrawy and George Karypis. 2015. User-specific feature-based similarity models for top-n recommendation

of new items. ACM Transactions on Intelligent Systems and Technology 6, 3 (2015), 33.
[7] Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan Yuan. 2015. Personalized ranking

metric embedding for next new POI recommendation. In Proceedings of the 24th International Joint Conference on
Artificial Intelligence.

[8] Yong Ge, Qi Liu, Hui Xiong, Alexander Tuzhilin, and Jian Chen. 2011. Cost-aware travel tour recommendation. In
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 983–991.

[9] Yong Ge, Hui Xiong, Alexander Tuzhilin, and Qi Liu. 2014. Cost-aware collaborative filtering for travel tour recom-
mendations. ACM Transactions on Information Systems 32, 1 (2014), 4.

[10] Rainer Gemulla, Erik Nijkamp, Peter J Haas, and Yannis Sismanis. 2011. Large-scale matrix factorization with distributed
stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 69–77.

[11] Jiangning He, Hongyan Liu, and Hui Xiong. 2016. SocoTraveler: Travel-package recommendations leveraging social
influence of different relationship types. Information and Management 53, 8 (2016), 934–950.

[12] Xiangnan He, Zhenkui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and Tat-Seng Chua. 2018. NAIS: Neural
Attentive Item Similarity Model for Recommendation. IEEE Transactions on Knowledge and Data Engineering (2018).

[13] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast matrix factorization for online recom-
mendation with implicit feedback. In Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 549–558.

[14] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast matrix factorization for online recom-
mendation with implicit feedback. In Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 549–558.

[15] Huiqi Hu, Yudian Zheng, Zhifeng Bao, Guoliang Li, Jianhua Feng, and Reynold Cheng. 2016. Crowdsourced POI la-
belling: Location-aware result inference and task assignment. In 32nd IEEE International Conference on Data Engineering,
ICDE 2016, Helsinki, Finland, May 16-20, 2016. 61–72.

[16] Jinlong Hu, Junjie Liang, Yuezhen Kuang, and Vasant Honavar. 2018. A user similarity-based top-n recommendation
approach for mobile in-application advertising. Expert Systems with Applications (2018).

[17] C. Derrick Huang, Jahyun Goo, Kichan Nam, and Chul Woo Yoo. 2017. Smart tourism technologies in travel planning:
The role of exploration and exploitation. Information and Management 54, 6 (2017).

[18] Shuhui Jiang, Xueming Qian, Tao Mei, and Yun Fu. 2016. Personalized travel sequence recommendation on multi-source
big social media. IEEE Transactions on Big Data 2, 1 (2016), 43–56.

[19] Muhammad Usman Shahid Khan, Osman Khalid, Ying Huang, Rajiv Ranjan, Fan Zhang, Junwei Cao, Bharadwaj
Veeravalli, Samee U Khan, Keqin Li, and Albert Y Zomaya. 2017. MacroServ: A route recommendation service for
large-scale evacuations. IEEE Transactions on Services Computing 10, 4 (2017), 589–602.

[20] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems.
Computer 42, 8 (2009), 30–37.

[21] Rob Law, Shanshan Qi, and Dimitrios Buhalis. 2010. Progress in tourism management: A review of website evaluation
in tourism research. Tourism Management 31, 3 (2010), 297–313.

[22] Huayu Li, Richang Hong, Defu Lian, Zhiang Wu, Meng Wang, and Yong Ge. 2016. A relaxed ranking-based factor
model for recommender system from implicit feedback. In Proceedings of the 25th International Joint Conference on
Artificial Intelligence. AAAI Press, 1683–1689.

[23] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan Liu. 2017. Feature
selection: A data perspective. ACM Computing Surveys (CSUR) 50, 6 (2017), 94.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2019.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Travel Recommendation via Fusing Multi-Auxiliary Information into Matrix Factorization 1:23

[24] Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, and Yong Rui. 2014. GeoMF: Joint geographical
modeling and matrix factorization for point-of-interest recommendation. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 831–840.

[25] Kwan Hui Lim, Jeffrey Chan, Shanika Karunasekera, and Christopher Leckie. 2017. Personalized itinerary recommen-
dation with queuing time awareness. In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 325–334.

[26] Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and Shanika Karunasekera. 2015. Personalized tour recommendation
based on user interests and points of interest visit durations. In Proceedings of the 24th International Joint Conference
on Artificial Intelligence, Vol. 15. 1778–1784.

[27] Bin Liu, Hui Xiong, Spiros Papadimitriou, Yanjie Fu, and Zijun Yao. 2015. A general geographical probabilistic factor
model for point of interest recommendation. IEEE Transactions on Knowledge and Data Engineering 27, 5 (2015),
1167–1179.

[28] Jie Liu, Bin Liu, Yanchi Liu, Huipeng Chen, Lina Feng, Hui Xiong, and Yalou Huang. 2018. Personalized air travel
prediction: A multi-factor perspective. ACM Transactions on Intelligent Systems and Technology 9, 3 (2018), 30.

[29] Juntao Liu, Caihua Wu, Yi Xiong, and Wenyu Liu. 2014. List-wise probabilistic matrix factorization for recommendation.
Information Sciences 278 (2014), 434–447.

[30] Qi Liu, Enhong Chen, Hui Xiong, Yong Ge, Zhongmou Li, and Xiang Wu. 2014. A cocktail approach for travel package
recommendation. IEEE Transactions on Knowledge and Data Engineering 26, 2 (2014), 278–293.

[31] Qi Liu, Yong Ge, Zhongmou Li, Enhong Chen, and Hui Xiong. 2011. Personalized travel package recommendation. In
Proceedings of the 2011 IEEE 11th International Conference on Data Mining. IEEE Computer Society, 407–416.

[32] Pawel Matuszyk, João Vinagre, Myra Spiliopoulou, Alípio Mário Jorge, and João Gama. 2018. Forgetting techniques for
stream-based matrix factorization in recommender systems. Knowledge and Information Systems 55, 2 (2018), 275–304.

[33] Sunho Park, Yong Deok Kim, and Seungjin Choi. 2013. Hierarchical bayesian matrix factorization with side information.
In Proceedings of the 23rd International Joint Conference on Artificial Intelligence. 1593–1599.

[34] Chong Peng, Zhao Kang, Yunhong Hu, Jie Cheng, and Qiang Cheng. 2017. Nonnegative matrix factorization with
integrated graph and feature learning. ACM Transactions on Intelligent Systems and Technology 8, 3 (2017), 42.

[35] Ian Porteous, Arthur U Asuncion, and Max Welling. 2010. Bayesian matrix factorization with side information and
dirichlet process mixtures. In Proceedings of the 24th AAAI Conference on Artificial Intelligence.

[36] Cynthia Rudin, Benjamin Letham, Ansaf Salleb-Aouissi, Eugene Kogan, and David Madigan. 2011. Sequential event
prediction with association rules. In Proceedings of the 24th Annual Conference on Learning Theory. 615–634.

[37] Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic matrix factorization. In Proceedings of the 20th International
Conference on Neural Information Processing Systems. Curran Associates Inc., 1257–1264.

[38] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2004. Collaborative filtering recommender systems.
ACM Transactions on Information Systems 22, 1 (2004), 291–324.

[39] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, Lexing Xie, and Darius Braziunas. 2017. Low-rank linear
cold-start recommendation from social data. In Proceedings of the 31st AAAI Conference on Artificial Intelligence.
1502–1508.

[40] Ajit P Singh and Geoffrey J Gordon. 2008. Relational learning via collective matrix factorization. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge Discovery and Data Mining. ACM, 650–658.

[41] Chang Tan, Qi Liu, Enhong Chen, Hui Xiong, and Xiang Wu. 2014. Object-oriented travel package recommendation.
ACM Transactions on Intelligent Systems and Technology 5, 3 (2014), 43.

[42] Jiliang Tang, Xia Hu, Huiji Gao, and Huan Liu. 2013. Exploiting local and global social context for recommendation.
In IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9,
2013. 2712–2718.

[43] Maksims Volkovs and Guang Wei Yu. 2015. Effective latent models for binary feedback in recommender systems.
In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM, 313–322.

[44] Mengting Wan, Di Wang, Matt Goldman, Matt Taddy, Justin Rao, Jie Liu, Dimitrios Lymberopoulos, and Julian McAuley.
2017. Modeling consumer preferences and price sensitivities from large-scale grocery shopping transaction logs.
In Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 1103–1112.

[45] Yisen Wang, Fangbing Liu, Shu-Tao Xia, and Jia Wu. 2017. Link sign prediction by variational bayesian probabilistic
matrix factorization with student-t prior. Information Sciences 405 (2017), 175–189.

[46] Yu Ting Wen, Jinyoung Yeo, Wen Chih Peng, and Seung won Hwang. 2017. Efficient keyword-aware representative
travel route recommendation. IEEE Transactions on Knowledge and Data Engineering 29, 8 (2017), 1639–1652.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2019.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:24 Lei Chen, Zhiang Wu, Jie Cao, Guixiang Zhu, and Yong Ge

[47] Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu. 2015. Modeling user activity preference by leveraging
user spatial temporal characteristics in LBSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 1
(2015), 129–142.

[48] Haochao Ying, Fuzhen Zhuang, Fuzheng Zhang, Yanchi Liu, Guandong Xu, Xing Xie, Hui Xiong, and Jian Wu. 2018.
Sequential recommender system based on hierarchical attention networks. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence.

[49] Wayne Xin Zhao, Sui Li, Yulan He, Edward Y Chang, Ji-Rong Wen, and Xiaoming Li. 2015. Connecting social media to
e-commerce: Cold-start product recommendation using microblogging information. IEEE Transactions on Knowledge
and Data Engineering 28, 5 (2015), 1147–1159.

[50] Zhou Zhao, Hanqing Lu, Deng Cai, Xiaofei He, and Yueting Zhuang. 2016. User preference learning for online social
recommendation. IEEE Transactions on Knowledge and Data Engineering 28, 9 (2016), 2522–2534.

[51] Vincent Wenchen Zheng, Yu Zheng, Xing Xie, and Qiang Yang. 2010. Collaborative location and activity recommen-
dations with GPS history data. In Proceedings of the 19th International Conference on World Wide Web, WWW 2010,
Raleigh, North Carolina, USA, April 26-30, 2010. 1029–1038.

[52] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing: Concepts, methodologies, and applications.
ACM Transactions on Intelligent Systems and Technology 5, 3 (2014), 38.

[53] Guixiang Zhu, Jie Cao, Changsheng Li, and Zhiang Wu. 2017. A recommendation engine for travel products based on
topic sequential patterns. Multimedia Tools and Applications 76, 16 (2017), 17595–17612.

[54] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai. 2018. Learning tree-based deep model
for recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2018, London, UK, August 19-23, 2018. 1079–1088.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: October 2019.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Tourism-Oriented Recommendations
	2.2 MF-based Recommendation Methods

	3 The PMF-MAI Model
	3.1 Problem Statement
	3.2 Probabilistic Matrix Factorization on User-Item Matrix
	3.3 Linear Regression for Multi-Auxiliary Information
	3.4 Modeling Unobserved Values
	3.5 Integrated Model: PMF-MAI
	3.6 Connections to Existing Models

	4 Data and Features
	4.1 Data Description
	4.2 Feature Construction

	5 Experimental Results
	5.1 Experimental Setup
	5.1.1 Performance Metrics
	5.1.2 Algorithms Compared

	5.2 The Overall Comparison
	5.3 Evaluation of Features Constructed by Auxiliary Information
	5.4 Effects of Parameters inside PMF-MAI
	5.4.1 Sampling Ratio
	5.4.2 Weights of Loss Terms and Regularization Terms


	6 Conclusion
	References

