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A huge amount of texts available on the World Wide Web presents an unprecedented opportunity for in-
formation extraction (IE). One important assumption in IE is that frequent extractions are more likely to be
correct. Sparse IE is hence a challenging task because no matter how big a corpus is, there are extractions
supported by only a small amount of evidence in the corpus. However, there is limited research on sparse IE,
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plicit semantic approach for assessing sparse IE.1 We first use a large semantic network consisting of millions
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1 INTRODUCTION

The explosive growth and popularity of the World Wide Web has resulted in a huge amount of texts
on the Internet, which presents an unprecedented opportunity for information extraction (IE). IE
is at the core of many emerging applications, such as entity search, text mining, and risk analysis
using financial reports. In these applications, we can divide the outcome of IE into two categories
according to the frequency: heads and tails. The heads are those that occur very frequently in
the corpus. For instance, we can extract the fact that google is a company from numerous distinct
sentences. It is built on the assumption that the higher the frequency, the more likely it is correct.
Nevertheless, there are results that occur very infrequently, for instance, suppose from a corpus,
we extract a statement that says Rhodesia2 is a country, and its occurrences in the corpus are few
and far between. In Table 1, we show some frequent and rare candidate countries extracted from a
Web corpus using Hearst patterns (Hearst 1992). It turns out that all frequent entities are correct,
while the majority of infrequent ones are incorrect. The mistakes come from either the extraction
algorithm, or erroneous sentences in the corpus.

As we know, the distribution of words and phrases in a corpus of natural language utterances
follows the Zipf’s law3 which states that the frequency of any word or phrase is inversely propor-
tional to its rank in the frequency table, namely the long tail challenge (Wu et al. 2008). Therefore,
it is a significant and challenging issue in IE to verify the correctness of an extraction in the long
tail, also known as sparse extraction. This is because their occurrences in a particular syntactic pat-
tern we use for extraction are very small. Thus, without a good mechanism to identify extractions
correctly, sparse IE will suffer from either low precision or low recall.

1.1 State-of-the-art Approaches

Existing efforts in IE or sparse extraction can be divided into the following four classes.
Heuristic-based approaches such as Zhu et al. (2009), Zhang et al. (2015), and Amal et al. (2017),

begin with a set of seed entities4 given a relation or some prior label distributional knowledge, and
they iteratively recognize extraction patterns for the relation. Nevertheless, erroneous entities will
be produced due to doubtful extraction patterns caused by random extraction errors during the
iteration. Redundancy-based approaches, such as Etzioni et al. (2005) and Downeya et al. (2010),
require extractions to appear frequently with a limited set of patterns. However, these approaches
assume that extractions drawn more frequently from distinct sentences in a corpus are more likely
to be correct, and they are hence ineffective at assessing the correctness of sparse extractions
because the extraction frequency follows a Zipf distribution. Knowledge-based approaches in-
cluding (Schmitz et al. 2012) and Lin et al. (2016) identify IE in terms of external resources, such
as Wikipedia,5 WordNet (Ritter et al. 2009), and Freebase.6 Thus, the coverage of class space in
knowledge databases will limit the scalability of the aforementioned approaches.

In addition, context-based model building approaches use an important hypothesis known as
the distributional hypothesis (Harris 1985), which says that different entities of the same semantic
relation tend to appear in similar textual contexts. For example, we may not find many occurrences
of Rhodesia in the Hearst pattern “countries such as Rhodesia.” But if Rhodesia appears in a similar
context where terms such as India, USA, and Germany occur, then we will be more certain about

2Rhodesia was an unrecognized state located in southern Africa that existed between 1965 and 1979 following its Unilateral
Declaration of Independence from the United Kingdom on 11 November 1965.
3http://en.wikipedia.org/wiki/Zipf_law.
4Seed entities indicate some popular ones belonging to a given class or a given relation.
5Wikipedia Database: https://en.wikipedia.org/wiki/Wikipedia:Database_download.
6Freebase Data Dumps: https://developers.google.com/freebase/data.
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Table 1. Frequent and Infrequent Candidate

Entities of Country

Frequent entities Rare entities
India Northern
China Sabah
Germany Yap
Australia Parts of Sudan
Japan Wealthy
France Western Romania
Canada American artists
USA South Korea, Japan
Brazil New Sjaelland
Italy Rhodesia

the claim that Rhodesia is a country according to the distributional hypothesis. This hypothesis is
beneficial to assess sparse extractions, but the challenge lies in modeling contexts and measuring
the semantic similarity of two sets of contexts.

In a naïve approach, a bag-of-words can be used to represent a context. This bag-of-words ap-
proach can easily be extended by using bigrams, trigrams, and the like, instead of unigram words,
but this method is not semantic for context modeling and has a lower accuracy. Thus, more ad-
vanced approaches have been proposed, such as the REALM system (Ahuja and Downey 2010;
Downey et al. 2007) based on a Hidden Markov Model (HMM) (Baum and Petrie 1966), an unsuper-
vised learning algorithm called GloVe (Pennington et al. 2014) based on word–word co-occurrence
using the tool of word2vec (Mikolov et al. 2013), and a deep learning approach for extracting man-
ufacturing relationships (Leng and Jiang 2016). Nevertheless, aforementioned approaches present
the following disadvantages. First, most approaches such as REALM and GloVe represent the fea-
ture space of texts using the distribution of a set of hidden states or a set of words instead of
entities, which may lead to a worse performance in the assessment of sparse extractions. This is
because each entity in the text can be an arbitrary multi-word expression instead of just a single
word. For example, contexts for entities such as “new,” “new york,” and “new york times” are very
different. Second, it is time-consuming to train the context-based models such as the HMM model
and the deep learning model. For example, the time required to learn the parameters of a kth order
HMM is proportional to the size of the corpus multiplying the (k + 1)th power of the hidden state
count, while the time complexity of the deep learning used in GloVe is proportional to the square
of the vector dimension of the corpus.

1.2 Problem Statement and Our Contributions

We first give the background of the problem. We want to create large, open domain knowledge-
bases, or taxonomies, whose scale or coverage is especially important to the applications built on
top of them. Because manually constructed taxonomies cannot reach sufficient scale and coverage,
most of recent works (Hoffart et al. 2011; Ponzetto and Strube 2007; Wu et al. 2012) use data-driven
approaches to automatically acquire taxonomies from large corpus such as the World Wide Web.
Let us consider the open source Probase7 (Wu et al. 2012) as an example. It contains millions of
entities and classes, and the backbone of the taxonomy is the isA relationship. Besides isA relation-
ship, there are many other relationships such as headquartered-in and is-CEO-of. Since the data

7http://research.microsoft.com/en-us/projects/probase/release.aspx.
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and the relationships in the taxonomy are acquired from a huge Web corpus through syntactic-
based IE, naturally there are many errors. Hence, data cleaning, especially on the isA relationships
is extremely important for using the taxonomy.

In this article, our goal is to tackle the following two problems. The first problem is how to verify
the correctness of hundred of millions of instances of isA relationships. That is, given a candidate
pair 〈c, e〉, where c is a class and e is a candidate entity of the class, we want to evaluate how likely
e is an entity of class c . The second one is how to verify the correctness of binary relationships,
that is, given a candidate pair 〈e1, e2〉, and a known relationship R between classes c1 and c2, we
want to evaluate whether relationship R exists between e1 and e2. We now analyze the challenges
in the tasks. The first challenge is the scale. For example, Probase contains 2.7 million categories
and 5.5 million entities. It is impossible to learn a generative model (such as the HMM model) using
contexts of all entities, because it is very time-consuming. The second challenge lies in improving
the effectiveness of the verifier. As we mentioned, the feature representation based on contexts of
words is very different from that based on contexts of entities. Meanwhile, neither a bag-of-words
nor a set of hidden states can provide good semantics to understand the relationship between a
candidate pair.

Motivated by this, we introduce a semantic, efficient, and effective approach for sparse extrac-
tion assessment in this article. And, our contributions are as follows.

First, we introduce a semantic approach to solve the aforementioned two problems. More pre-
cisely, we come up with a semantic representation of the contexts. This approach is natural because
we are dealing with a large semantic network, which provides semantic information in various as-
pects. Using these information, we are able to introduce semantic features to describe a context,
which leads to a lightweight and effective solution to context learning.

Second, we scan billions of Web documents using MapReduce8 to capture the contexts of mil-
lions of entities and pairs of entities in Probase, and then compare the similarity between their
contexts and the contexts of seeds.9 We further use the similarity evaluated by our three semantic
context-based approaches to represent the feature space given a pair, and then we train a clas-
sifier on a small number of labeled data varying with different base classifiers to select the best
one for predicting sparse extractions. Extensive studies show that our approach can achieve better
performance than state-of-the-art approaches in sparse extraction assessment.

1.3 Article Organization

The rest of the article is organized below. Section 2 introduces the related work in the assessment
of IEs. Section 3 describes several syntactic and semantic approaches for context representation.
Section 4 discusses how we acquire open domain knowledge and perform the conceptualization.
Section 5 summarizes our approach. Section 6 presents experimental results. We give the conclu-
sions in Section 7.

2 RELATED WORK

In this section, we give a brief introduction to some related work in the assessment of IEs. Re-
searchers mainly make efforts from the following four dimensions to assess the quality of IE.

Context-based model building approach. In terms of the distributional hypothesis, this kind of
approaches builds models using various contexts such as lexical and syntactic contexts, or seman-
tic contexts to assess sparse extractions. Main works are summarized below. Zhou et al. proposed
a tree kernel-based method (Zhou et al. 2010) with rich syntactic and semantic information for

8https://en.wikipedia.org/wiki/MapReduce.
9Seeds indicate some popular entities belonging to a given concept or a given relation.
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the extraction of semantic relations between named entities. Yates et al. designed the TextRunner
(Yates et al. 2007) system using the raw number of facts for Open IE (Etzioni et al. 2011). Dalvi pro-
posed an open-domain IE method (Dalvi et al. 2012) for extracting class-entity pairs using Hearst
patterns from HTML tables. Downey et al. proposed a language modeling-based method called
REALM (Ahuja and Downey 2010; Downey et al. 2007) for assessing sparse extractions. It utilizes
all sentences crawled from Web pages as the context to build HMM models and n-gram-based lan-
guage models. Corro and Gemulla proposed a novel, clause-based approach called ClausIE (Corro
and Gemulla 2013) to open IE, which extracts relations and their arguments from a natural lan-
guage text based on dependency parsing and a small set of domain-independent lexica. Pennington
et al. proposed a feature representation approach (Pennington et al. 2014) based on the word–word
co-occurrence statistics and the word2vec tool. Oramas et al. used syntactic rules based on part of
speech tags to extract entities and relations from unstructured music text sources as a knowledge
graph (Oramas et al. 2015). Leng and Jiang proposed a deep learning approach (Leng and Jiang
2016) based on a stacked denoising auto-encoder on sentence-level features to extract manufac-
turing relationships underlying the text-based context. Existing cleaning operations are defined
in an algorithmic way, and hence it is not clear how to extend the built-in operations without
requiring low-level coding of internal or external functions. Fagin et al. proposed a rule-based ap-
proach (Fagin et al. 2016) to IE, which embarks on the establishment of a framework for declarative
cleaning of inconsistencies in IE through principles of database theory. Cesare et al. presented a
machine learning filter (Cesare et al. 2016) to enhance the precision of relation extractors while
minimizing the impact on recall. It aims at filtering relation extractors’ output using a binary clas-
sifier based on a wide array of features including syntactic, lexical and statistical features. Ghali
and Qadi proposed a context-aware query expansion approach (Ghali and Qadi 2017) using lan-
guage models and latent semantic analyses. Okamoto et al. applied a machine learning-based IE
approach (Okamoto et al. 2017) to grasp the patent claim structure. It uses Markov logic network-
based inference and distant supervision-based labeling to extract relations from patent texts.

In general, the above approaches using semantic contexts in the modeling outperform those
using lexical and syntactic contexts in the tackling of sparse extractions. However, the feature
space of texts in many approaches is represented using the distribution of a set of hidden states or
a set of words instead of entities. Thus, it probably leads to a worse performance in the assessment
of sparse extractions (See analyses in the fourth paragraph of Section 1.1 and in the last paragraph
of Section 6.3). This is because each entity in the text can be an arbitrary multi-word expression
instead of just a single word. Meanwhile, it is time-consuming for most of machine learning-based
methods that require labeled data and model learning.

Heuristic-based approach. This kind of approaches usually requires a set of seed entities or some
prior label distributional knowledge to identify IEs. Some representative works are as follows.
Feldman and Rosenfeld designed a Web relation extraction system called URES (Feldman and
Rosenfeld 2006). It learns powerful extraction patterns from unlabeled texts, using short descrip-
tions of the target relations and their attributes. Zhu et al. developed a bootstrapping system called
statistical Snowball (StatSnowball) (Zhu et al. 2009) based on the Snowball system (Agichtein and
Gravano 2000). Zhang et al. proposed a graph-based framework (Zhang et al. 2015) to simulta-
neously learn the types of both entities and auxiliary signals. Alkan and Karagoz presented a
new approach (Alkan and Karagoz 2016) based on a user-defined scoring mechanism so as to ex-
tract patterns from Web log data. Amal et al. described a Graph-Based Entity Profiling system
called GBEP (Amal et al. 2017), which extracts information about persons of interest from the Web
to construct a joint social graph, and uses it to obtain initial positive results for recommending
related conference participants to each other. Ratner designed a new system for quickly creat-
ing, managing, and modeling training sets called Snorkel (Ratner et al. 2017). It enables users to
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generate large volumes of training data by writing labeling functions, which are simple functions
that express heuristics and other weak supervision strategies. Hanafi et al. presented a system that
learns IE rules from a small set of user examples using Visual Annotation Query Language, called
SEER (Hanafi et al. 2017). It is a less time-consuming alternative to the aforementioned machine
learning methods, because these machine learning methods require large labeled datasets or rule-
based approaches that are labor-intensive. Gong et al. proposed to learn multimodal rules (Gong
et al. 2017) to improve the reliability of syntactic rules for text IE. The proposed system takes
unannotated raw Web pages and a handful of seed instances as inputs, then automatically extracts
information in a self-supervised manner, minimizing the human intervention. Reinanda et al. pro-
posed a document filtering method (Reinanda et al. 2016) for long-tail entities. It is built on the hy-
pothesis that there is a rich set of intrinsic features, based on aspects, relations, and the timeliness
of the facts or events mentioned in the documents. Kejriwal and Szekely proposed a lightweight,
feature-agnostic IE paradigm (Kejriwal and Szekely 2017) specifically designed for illicit domains.
The proposed approach uses raw, unlabeled text from an initial corpus, and a few seed annotations
per domain-specific attribute, to learn robust IE models for unobserved pages and websites.

However, all aforementioned approaches require previously preparing a set of seed entities
given a relation or some prior label distributional knowledge, and require iterative operations
to identify extraction patterns for the relation. Thus, it probably leads to erroneous entities due to
dubious extraction patterns brought by random extraction errors in the iteration.

Redundancy-based approach. This kind of approaches uses a small set of patterns to find the
redundant extractions. For instances, to improve the KNOWITALL’s recall and extraction rate
without sacrificing precision, Etzioni et al. presented a refined KNOWITALL system (Etzioni et al.
2005) based on the pointwise mutual information (Church and Hanks 1990). Downey et al. intro-
duced a combinatorial “balls-andurns” model called URNS (Downeya et al. 2010). It computes the
impact of sample size, redundancy, and corroboration from multiple distinct extraction rules on the
probability that an extraction is correct. Gulhane et al. exploited content redundancy on the Web
to extract structured data from template-based websites, and developed an efficient Apriori-style
algorithm (Gulhane et al. 2010) to systematically enumerate attribute position configurations with
sufficient matching values across pages. Unlike the heuristic-based approaches, these redundancy-
based approaches utilize lexical and syntactic contexts or the distribution of the target and error
sets to build models, but they are not good at assessing which extraction is more likely to be correct
for sparse extractions.

Knowledge-based approach. This kind of approaches is built on some external resources to assess
IEs. We can divide it into the following three categories according to the used knowledge bases.
First, several representative works based on Wikipedia/Freebase knowledge bases are below.
Gabrilovich and Markovitch proposed the explicit semantic analysis (ESA) approach (Gabrilovich
and Markovitch 2009) using Wikipedia-based classes, for fine-grained semantic interpretation of
unrestricted natural language texts. Wu and Weld proposed a Wikipedia-based open IE system
called WOE (Wu and Weld 2010). Lee et al. developed a framework (Lee et al. 2011) that relies on
the interconnections of the data in the taxonomies as well as in external data sources for entity
resolution. Hoffart et al. developed a novel notion of semantic relatedness between two entities
represented as sets of weighted keyphrases, called the Keyphrase Overlap RElatedness measure
(KORE) (Hoffart et al. 2012). It focuses on disambiguating names in a Web or text document
by jointly mapping all names onto semantically related entities registered in a knowledge base.
To extract useful information from Wikipedia, Radhakrishnan and Varma proposed a method
(Radhakrishnan and Varma 2013) using semantic features derived from Wikipedia categories.
Meijer et al. presented a semantic approach (Meijer et al. 2014) based on Freebase for the automatic
building of a domain taxonomy from text corpora. To tackle the issue of linkless knowledge base
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in named entity disambiguation, Li et al. proposed a generative model (Li et al. 2016) to leverage
useful disambiguation evidence scattered across the reference knowledge base such as Wikipedia.
Yan and Jin presented a new text mining approach (Yan and Jin 2017) incorporating Wikipedia
to the search scenario of detecting potential semantic relationships between topics. Lin et al.
proposed a new knowledge graph model called KR-EAR (Lin et al. 2016) with entities, attributes,
and relations using the Freebase knowledge base.

Second, representative works based on domain-knowledge are as follows. Sendi and Omri pro-
posed a new approximate model (Sendi and Omri 2015) based on possibilistic networks, statistical
computing and semantic proximity for extracting biomedical concepts using the MeSH (Medi-
cal Subject Headings) thesaurus.10 To extract chemical-disease relations from PubMed11 abstracts,
Alam et al. proposed a general-purpose approach (Alam et al. 2016) based on machine learning
techniques integrated with a limited number of domain-specific knowledge resources. Lima et al.
presented OntoILPER (Lima et al. 2017) a system for extracting entity and relation instances from
unstructured texts using ontology and inductive logic programming.

Third, representative works based on knowledge bases and Web data are as follows. Kondreddi
et al. presented a novel system architecture, called Higgins (Kondreddi et al. 2014) to integrate
an IE engine and a human computing engine using the resources like WordNet, ConceptNet, and
Web data. Mausam et al. designed a novel Open IE extractor using bootstrapped dependency paths
(called OLLIE) (Schmitz et al. 2012) based on Wikipedia and Web data. Taneva and Weikum pro-
posed an approach (Taneva and Weikum 2013) that automatically extracts key contents from the
Web for given input entities. It generates salient contents given an entity using minimal assump-
tions about the underlying sources. Jin et al. built a web-scale entity linking system (Jin et al.
2014) for tail entities on the Web. This system uses a posterior probability pursuit to exploit the
sparse nature of entity linking, and uses the phrase unigram language model to effectively cap-
ture high-order dependencies among words. Gashteovski et al. proposed an Open IE called MinIE
(Gashteovski et al. 2017). It follows OLLIE, but adds semantic annotations that make the extraction
itself more compact and useful.

Most of aforementioned approaches are built on the semantic information in knowledge
databases, such as Freebase and Wikipedia, but they still have a limited scale and coverage in
terms of class space. Unlike the aforementioned approaches, our approach uses semantic context
for assessing sparse extractions, and it is lightweight and supports Web scale data. To improve
the accuracy, we aggregate three different semantic contexts to increase the data redundancy, and
select an optimal classification model for assessing sparse extractions. All semantic contexts are
extracted from the Web by specified patterns and preprocessed with the help of an open data source
Probase. Authors in Wu et al. (2012) addressed that the scale of Probase is one order of magnitude
larger than the previously known large corpus. Thus, our approach is more effective and efficient
in assessing sparse extractions compared to the aforementioned knowledge-based approaches.

3 CONTEXT REPRESENTATION

In this section, we present several approaches for context representation, and we show that se-
mantic approaches are superior in performance.

3.1 Modeling Contexts

The core tasks of the two problems, we are addressing in this article, are context representation
and context comparison. Considering the first task, that is, given a pair 〈c, e〉, it aims to find T (e ),

10https://www.nlm.nih.gov/mesh/.
11https://www.ncbi.nlm.nih.gov/pubmed.
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the context of e , and then compare it against the context of the seed entities of c to verify whether
e is an entity of class c . This can be formulated as follows:

f (e, c ) = sim(T (s0),T (e )), (1)

s .t ., s0 = arдmaxs ∈Sc
sim(T (s ),T (e )), where Sc denotes seed entities of c , namely popular entities

of c , and sim(·) is a similarity function. Clearly, the definition of sim(·) also relies on the repre-
sentation of the context. We consider e as an entity of c if the value of f (e, c ) is beyond a certain
threshold.

For the second task, that is, given a pair 〈e1, e2〉 and a known relationship R, it aims to ver-
ify whether 〈e1, e2〉 satisfies the relationship, the challenge is similar. Assume we know the rela-
tionship R is between classes c1 and c2. We do the following. First, we use Equation (1) to check
whether e1 and e2 are entities of classes c1 and c2, respectively. If so, then, for any pair 〈e1, e2〉, we
find T ′(e1, e2), the context of e1 and e2 occurring together. Finally, we use Equation (2) to verify
whether e1 and e2 satisfy R (SR denotes the set of seed pairs of relationship R).

f ′(e1, e2,R) = sim(T ′(sx , sy ),T ′(e1, e2)), (2)

s .t ., < sx , sy >= arдmax〈s1,s2〉∈SR
sim(T ′(s1, s2),T ′(e1, e2)).

It is clear that our primary task is to define T (e ) and T ′(e1, e2) in Equations (1) and (2). For a
given sentence s , let us define we

s to be the text in a fixed-size window centered at e in sentence s ,
and we1,e2

s to be the text in a fixed-size window centered at the middle of e1 and e2 in sentence s .
Note that we exclude e from we

s and e1, e2 from we1,e2
s . Then, for a corpus that contains sentences

s1, . . . , sn , we can define context T (e ) and T ′(e1, e2) as

T (e ) = ContextExtract(we
s1
, . . . ,we

sn
) (3)

T ′(e1, e2) = ContextExtract(we1,e2
s1
, . . . ,we1,e2

sn
), (4)

where ContextExtract is a function that extracts context from text strings. Thus, we have unified
the two problems into a single task, which is to define ContextExtract. In the following, we
discuss several approaches for defining ContextExtract.

3.2 Syntactic Contexts

There are many different ways to use syntactic features to represent a context. In this subsection,
we introduce bag-of-words and bag-of-neighboring-bigrams as two baseline methods for context
representation.

Bag-of-words context. Given an entity e or a pair of entities 〈e1, e2〉, sentences containing e or e1

and e2 are first collected, and words either from a fixed-sized window centered at the entities or
from the entire sentences are obtained. And, then a vector {(ti ,wt

i )} is derived, where ti indicates
a word and wt

i indicates its importance in terms of the tf-idf score, which is computed by the
word statistics given the corpus. In the same way, context vectors for seeds and pairs of seeds
are obtained, that is, we select top-k entities of the given class as the seeds according to their
frequencies. For example, frequent entities in Table 1 are good seeds for class country. Finally, the
cosine function is used to compare their similarity.

Bag-of-neighboring-bigrams context. Instead of using single words, we use bigrams that are im-
mediate neighbors of e , e1, or e2. For example, suppose e occurs in the context of “located in e” or
“Republic of e ,” we collect bigrams “located in” and “Republic of” as context for e . Alternatively, we
can also use trigrams instead of bigrams. The context is represented as a vector {(pi ,w

p
i )}, where

pi is a bigram pattern and w
p
i is its weight. We do this for seeds and pairs of seeds as well, and we

use the cosine function to compare the similarity of two vectorized concepts.
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Table 2. Top 10 Classes of Rhodesia and India

Class of Rhodesia Weight Class of India weight
British colony 0.102 Country 0.121

Country 0.085 Democracy 0.016
Great country 0.030 Place 0.015

Beautiful country 0.021 Signatory 0.014
Place 0.021 Land 0.014

Landlocked country 0.021 Market 0.0131
Colony 0.017 Nation 0.013
Nation 0.017 Big country 0.012
Threat 0.017 Large country 0.011

African country 0.013 Developing country 0.011

3.3 Semantic Contexts

Syntactic contexts are easy to obtain, but they are unstructured, and they are often noisy and
confusing. Context model building-based approaches use a more structured representation of the
context, but it is costly to obtain. In this article, we introduce a lightweight semantic representation
for contexts.

isA-based context representation. Consider the example of Rhodesia. If we can get the classes
Rhodesia belongs to, it is easy to judge whether Rhodesia is a country by comparing the class
contexts of Rhodesia and the seeds in country. Table 2 shows the top 10 classes India and Rhodesia
belong to respectively. We can see that the two lists have certain similarity. In other words, our isA-
based context representation relies on the isA data, which is derived mostly from Hearst patterns.
We will describe the resource of isA data later.

To implement our isA-based context representation, we require having the following data:
(i) the seed entities of c for each class c; (ii) the set of classes that any entity e belongs to. For
example, India may belong to classes such as country, developing country, democracy, and the
like. (iii) For any pair of entity e and class c , we know how typical c is as a class for e . For entity,
people may think of Arnold Schwarzenegger as a movie star, a politician, a bodybuilder, a busi-
nessman, or an investor. But the weight (typicality) of Arnold Schwarzenegger being a movie star
is higher than being an investor.

From the above information, the vector for class c is derived below: Ic = 〈wI1 , . . . ,wIkI 〉, where

wIi is defined aswIi =
∑

e ∈Sc
p (ci |e ) (1 ≤ i ≤ kI ), kI indicates the size of top kI classes e belongs

to by the co-occurrences of e and c , Sc indicates the set of seed entities of c , andp (ci |e ) indicates the
typicality score of class ci given entity e , that is, how typical ci is among all the classes e belongs
to. Next, for each extraction 〈c, e〉, the vector Ie = 〈wI

′

1 , . . . ,w
I′
kI
〉 is derived, where wI

′

i = p (ci |e )

(1 ≤ i ≤ kI ). Finally, a similarity function is used to decide how likely e is an entity of c

fisa (c, e ) = sim(Ic ,Ie ). (5)

Attribute-based context representation. We use Rhodesia as an example again. There is no suffi-
cient evidence to support or refute the claim that Rhodesia is a country using the Hearst patterns.
However, when a country is talked by people, no matter big or small, rich or poor, some things
likely will be mentioned, such as capital city, president, congress, currency, whether it is a republic

or a kingdom, and the like. In other words, if the context of Rhodesia is represented by the pres-
ence of such entities, then it will be clear whether Rhodesia appears in contexts where real coun-
tries appear. As a matter of fact, the pattern “Republic of Rhodesia” appears 50 to 100 times more
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Table 3. Top 10 Attributes of Rhodesia and India

Attributes of Rhodesia Weight Attributes of India Weight
Republic 0.102 Government 0.105

New country 0.048 People 0.029
Prime minister 0.041 Reserve bank 0.028
African state 0.038 Constitution 0.026
Government 0.034 Capital 0.015

Star 0.024 President 0.013
People 0.020 Population 0.013

Liberation 0.015 Industrial development 0.013
Capital 0.014 Times 0.012
History 0.013 Republic 0.011

frequently in the Web corpus than the pattern “countries such as Rhodesia.” Thus, our attribute-
based context representation depends on the pattern of “the 〈a〉 of e is” (a indicates an attribute),
which we will describe later.

Assume we are given a set of attributes {a1, . . . ,an } for any class c . For example, capital city,
GDP, population are possible attributes for country. We are also given seed entities of class c . For
example, the seed entities of country could be USA, Japan, Germany, China, and the like. We can
obtain a vector for any class c in the form of Ac = 〈wA

1 , . . . ,w
A
kA
〉, wherewA

i (1 ≤ i ≤ kA) indicates
how frequently seed entities of c in Sc appear together with attribute ai of c in a corpus. It is defined
as wA

i =
∑

e ∈Sc
p (ai |e ), where Sc is the set of seed entities of c , and p (ai |e ) is the typicality score

for e and attribute ai .
To determine whether an entity e is of type c , the syntactic pattern “the 〈a〉 of e is” is used to

obtain each candidate attribute 〈a〉 of e from the Web corpus. In this case, we can get a vector for
e , namely Ae = 〈wA′

1 , . . . ,w
A′

kA
〉, where wA′

i (1 ≤ i ≤ kA) refers to the frequency ai appears in the
pattern with e . Finally, a similarity function is utilized to decide how likely e is an entity of c

fatt (c, e ) = sim(Ac ,Ae ). (6)

Table 3 lists the top 10 attributes of India as well as Rhodesia together with their normalized
frequency. We can see that the two lists have a certain similarity.

Class-based context representation. The aforementioned isA-based and the attribute-based
approaches still heavily rely on specific syntactic patterns, that is, the isA-based approach relies
on the isA data, which is derived mostly from the Hearst patterns, while the attribute-based
approach relies on the pattern of “the 〈a〉 of e is.” The two approaches may bring in more evidence,
but when we rely on fixed syntactic patterns, we limit ourselves to a much smaller corpus. This
limits the amount of evidence we can find, especially when the extraction is about rare entities.
In addition, such syntactic patterns may be appropriate for checking the type of a single entity
(e.g., Rhodesia), but may not be appropriate if we want to decide whether a relationship exists
between two arbitrary entities.

In our approach, instead of relying on fixed syntactic patterns, we map an arbitrary piece of text
to a point in a semantic space, and then measure the distance in the semantic space between the
point and points that correspond to the seed entities or seed pairs of entities. We call the technique
conceptualization (Kim et al. 2013; Song et al. 2011), which simulates the process of human beings
understanding things. Intuitively, given entities such as China and India, we “conceptualize” them
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Table 4. Top 10 Conceptualized Classes

ID Conceptualized class Weight
1 Historical event 0.012
2 Country 0.011
3 Conflict 0.011
4 Partition maintenance operation 0.008
5 Liberal Jewish movement 0.008
6 Social structure 0.006
7 Security 0.006
8 Communist country 0.004
9 Merging market 0.004
10 Developing country 0.004

into a set of classes with the class of country ranked the highest; when given China, India, Russia,
we “conceptualize” them into classes with emerging markets or BRIC12 ranked the highest.

This enables us to process arbitrary piece of texts instead of texts that match fixed syntactic
patterns. For example, consider the following sentence that contains the entity Rhodesia:

[1] He opposed the government’s moves to restrict immigration, join the common market and
reform the trade unions, was against the vietnam war and Rhodesia’s unilateral declaration
of independence, and denounced the soviet suppression of “socialism with a human face” in
czechoslovakia in 1968.

It is necessary to mention that the above sentence is selected from the given Web data by
whether containing keywords “Rhodesia” and each seed entity of country such as “rhodesia india,”
or containing “rhodesia” and each seed attribute13 of country, such as “rhodesia government” and
“rhodesia federal republic.” This text filtering aims to reduce the impact from texts with irrelevant
classes. According to the above selected sentence, we underline the entities that can be found in
Probase in the sentence. It is clear that the sentence does not match any of the syntactic patterns
that are used to identify a country. Table 4 shows top 10 classes conceptualized on the sentence
mentioned above (more details of conceptualization are given in Section 4.2). From this table, we
can see that the country class is correctly conceptualized. This is because many entities in sen-
tences are very relevant to the class of country. For example, Czechoslovakia, Vietnam, and Soviet
are countries; government, common market, reform, socialism, trade unions are “properties” of
countries, and the like. In the meanwhile, the other conceptualized classes also make sense, such
as historical event, conflict, and security.

Formally, for an arbitrary piece of text, we conceptualize it to a set of conceptualized classes
denoted as {cci }kC

i=1. To decide if an entity, say Rhodesia, is an entity of a class, say country, we
perform conceptualization twice. First, we find the seed entities of the class, and collect the textual
context of the seed entities in the Web corpus, and then we conceptualize the context to Cc ,
denoted as Cc = 〈wC

1 , . . . ,w
C
kC
〉, where wC

i is the weight of the conceptualized class cci given the
textual context of seed entities. Second, we find the textual context of the given entity denoted

12BRIC is a grouping acronym that refers to the countries of Brazil, Russia, India and China. https://en.wikipedia.org/wiki/
BRIC.
13Seed attributes indicate top 10 attributes of a given class, which are selected from top 100 attributes of each seed entity
of the given class according to the frequencies.
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as e , and conceptualize it to Ce , denoted as Ce = 〈wC ′
1 , . . . ,w

C ′

kC
〉, where wC ′

i is the weight of the
conceptualized class cci given the textual context of e . Finally, we use a similarity function to
decide whether the relationship holds

fcon (c, e ) = sim(Cc ,Ce ). (7)

3.4 Analysis

Before we describe how to enable the three semantic approaches we introduced above, we first
get a feeling of how effective they are compared with the syntactic approach. We use the task of
deciding whether an entity is a country as a test. The input is a set of 415 entities, 189 of which are
of the type country. For each entity, each method gives a score in the range of [0,1], with score 1
meaning the entity is definitely a country, and score 0 meaning definitely not a country. We then
group the entities by their ground truth, and sort the entities in each group by their scores. Figure 1
shows the result of four approaches mentioned above: bag-of-words (BM for short), attribute-based
(AM for short), isA-based (IM for short), and class-based (CM for short).

Clearly, if the two curves are very close, then it means the method has little power in separat-
ing positive cases from negative ones. We define the дain of a method as the difference between
the average scores given the positive and negative cases (denoted as P and N with |P | and |N |
pairs, respectively), namely Gain =

∑
ei ∈P score (ei )/|P | −∑ei ∈N score (ei )/|N |. Clearly, the larger

the gain, the more powerful the algorithm in separating the two cases. It is clear from Figure 1 that
the bag-of-words approach is not effective. On the other hand, other approaches show big gaps
between the positive curve and the negative curve.

4 KNOWLEDGE ACQUISITION AND CONCEPTUALIZATION

Three semantic context approaches have been described in the previous section, namely, attribute-
based, isA-based, and class-based context representation. In order to support these approaches, it
obviously requires the following two prerequisites, including common knowledge and the ability
of conceptualization (Kim et al. 2013; Song et al. 2011). We hence focus on these two tasks in this
section.

4.1 Knowledge Acquisition

The semantic approaches described in the previous section require the following open domain
knowledge: (1) a large class space (including countries, pharmaceutical companies, etc.); (2) entities
of each class (eg., China isA country); (3) attributes of each class (eg., population of country);
(4) weights (typicality scores, e.g., P (e |c )).

Our approach is started with an open data source Probase,14 which provides probabilistic isA
knowledge for 2.7 million classes. The class space is big enough to cover almost every aspect
of worldly facts. The isA relationships in Probase are harvested from 1.68 billion Web pages
and 2 years’ worth of Microsoft Bing’s search log using syntactic patterns (e.g., the Hearst
patterns (Hearst 1992)). For example, “. . . Asian countries such as China,. . . ” serves as an evi-
dence that China is of type Asian country. In this case, “China” is an entity (namely hyponym)
while “Asian country” is a concept (namely hypernym). Furthermore, the isA knowledge in
Probase comes with the weights that are needed in our work. For a class/entity pair 〈c, e〉, it pro-
vides two typicality scores: P (e |c ) and P (c |e ). The scores are known as typicality because, for

14This isA data is available at https://concept.research.microsoft.com/Home/Download. This data now contains up to
5,376,526 unique concepts, 12,501,527 unique instances, and 85,101,174 isA relations. In this article, we use a small ver-
sion of Probase mentioned in Wu et al. (2012).
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Fig. 1. Comparing four approaches in classifying entities as country or not country. (a) Bag-of-words-based

context representation. (b) Attribute-based context representation. (c) isA-based context representation.

(d) Class-based context representation.

example, P (polarbear |mammal ) > P (whale |mammal ) because polarbear is more typical than
whale as a mammal . Typicality score is derived as P (e |c ) = N(c, e )/N(c ), where N(·) indicates the
occurrences of the given entities or entity pairs in Hearst extraction. In our approach, we also
need to know the “seed” entities of each class. These are just entities of high typicality scores,
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that is, entity e with P (e |c ) larger than a threshold. According to the open source Probase, we can
easily get “a large concept space, seed instances of each class and seed instances of each entity”
mentioned above.

In terms of the attribute extraction approach mentioned in Lee et al. (2013), we can obtain knowl-
edge about attributes using Probase and the Web corpus. More specifically, for a given class c in
Probase, and the seed entities e1, . . . , ek of c , we use the following syntactic pattern to derive at-
tributes of c:

the 〈a〉 o f (the/a/an) 〈e i〉 is, (8)

where a is an attribute and ei is a seed entity of c . After obtaining all candidate attributes {a}, we
cluster and weight the attributes. This is necessary because an attribute may have many surface
forms, for example, “date of birth,” “birthdate,” “birth date” and so on to represent the attribute
“birthday.” To do the clustering, we need positive evidence that indicates two surface forms are ac-
tually the same, and negative evidence that indicates two surface forms are definitely not the same.
Regarding the positive evidence, we get it from sources such as Wikipedia Redirects and Wikipedia
Internal Links. This is because accesses to Wikipedia URLs are redirected to other articles describ-
ing the same subject, and links to internal pages are expressed in shorthand by [Title|Surface
Name] in Wikipedia, where Surface Name is the anchor text, and the page it links to is titled Title.
Regarding the negative evidence, we get it from lists or tables. This is because two surface forms
appear in the same list or as two columns in a table, and usually they do not mean the same thing.
After collecting these evidence pairs, each connected component is taken as a synonymous at-
tribute cluster. The most frequent attribute in each cluster is selected as a representative attribute
of the synonymous attributes.

In addition, we evaluate the weights of attributes below. There are two important scores, includ-
ing P (a |e ), the typicality of attribute a of entity e , and P (e |a), the typicality of entity e for attribute
a. The score is approximated by frequencies, namely P (a |e ) = N(e,a)/N(e ), where N(·) refers to
the occurrences of given entities or entity pairs in pattern Equation (8).

4.2 Conceptualization

Conceptualization aims to derive classes hidden in the text. For example, from “India, China,” we
may derive the class of country, and from “India, Russia, China,” the class of emerging market.
In this article, we implement the conceptualization (Kim et al. 2013; Song et al. 2011) using the
following three steps. First, given a piece of text (textual context of a single entity or a pair of
entities), the knowledgebase is used as a dictionary to identify entities and concepts hidden in
the text. Second, the most probably classes from the entities and attributes are derived instead
of using the entites/attributes as a bag of words. That is, we find the distribution of classes C
given entities/attributes t1, . . . , tk , namely P (C |t1, . . . , tk ). Third, a similarity function is adopted
to compute the similarity between clusters of classes.

We know a single term ti can be both an attribute and an entity. For instance, population is an
attribute of the country class, but it can also be an entity of the geographical data class. In this case,
an auxiliary variable zi is used as an indicator for term ti . More precisely, zi = 1 if ti is an entity, and
zi = 0 if ti is an attribute. Meanwhile, a noisy-or model is used to infer the probability P (ck |ti ) =
1 − (1 − P (ck |ti , zi = 1)) (1 − P (ck |ti , zi = 0)), that is, term ti invokes class ck if it is an entity of ck or
it is an attribute of ck . Here, we can get P (ck |ti , zi = 1) = P (ck |ei ) = P (ck , ei )/P (ei ), where term ti
is regarded as an entity ei , and P (ck |ti , zi = 0) = P (ck |ai ) =

∑
l :el ∈E P (ck |el ) · P (el |ai ), where term

ti is regarded as an attribute ai , and E is the set of entities that are related to attribute ai and class
ck , and L indicates the size of E. Then, using the Naïve Bayes rule, we derive the class posterior
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Table 5. Clusters of Top 10 Representative Classes

ID Class of Rhodesia ID Class of India

1 Country 1 Developed country

1 Nation 1 Nation

1 Small country 1 Country

1 Society 1 Western nation
1 Developed country 1 Advanced country
1 Neighboring country 1 Overseas market
1 Market 1 Market

1 Muslim country 1 Society

2 Post-conflict country 1 State
2 War-torn country 1 English speaking country

given a set of terms denoted as T by Equation (9).

P (ck |T ) ∝ P (ck )
L∏

i

P (ti |ck ) ∝
∏

i P (ck |ti )

P (ck )L−1
. (9)

Furthermore, Equation (7) is implemented to compare two sets of contexts after deriving the
class distribution mentioned above, where context indicates a context in question and a typical
context, and it is often derived from seed entities or seed entity pairs. Nevertheless, Probase has
2.7 million classes, in which many classes are correlated, e.g., “software company” and “IT com-
pany.” Ignoring this correlation impairs the quality of the similarity function. We cluster the classes
before comparing two class-based contexts. We use the refined k-Medoids clustering algorithm (Li
et al. 2015) for this purpose. In sum, we use the above “content overlap” as the similarity function
for clustering, that is, two classes are considered more similar if they have more identical entities.

One concept cluster can represent a sense or a general topic, recognized with its center concept.
For example, for the cluster centered around company, most of its members are highly related to
company, such as software company and technology company. Thus, “music star” and “pop star”
will be highly similar, but “music star” and “railway worker” have smaller similarity. Each of the
resulting cluster represents sort of a sense, and we apply Equation (7) over the senses, instead
of the original classes. Table 5 lists the top 10 classes of Rhodesia and India, and their clustering
results. The similarity of the two increased by 8% compared to the similarity evaluated on all
conceptualized classes directly.

5 OUR APPROACH

In this section, we summarize our approach for the two tasks mentioned above, namely (i) the type
checking: given a pair 〈c, e〉, evaluate how likely e is an entity of class c; and (ii) the relationship
judgement: given a pair 〈e1, e2〉, and a known relationship R between classes c1 and c2, evaluate
whether relationship R exists between e1 and e2.

Considering the type checking as shown in Algorithm 1, given a pair 〈c, e〉, we first use three
semantic approaches of context representation, including attribute-based (Steps 1–5), isA-based
(Steps 6–9), and Class-based (Steps 10–16) approaches to rank this extraction. Finally, we use the
aforementioned attribute-based, isA-based, and Class-based scores to represent the feature space
given the pair 〈c, e〉, and then we use Equation (10) to predict whether the given pair 〈c, e〉 is an isA
relation as shown in Steps 17–19, called the AIC approach, where λ indicates the base classifier. If
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ALGORITHM 1: Semantic Context-Based Type Checking

Input: D = {〈c, e〉}: sparse information extractions;
ΓisA: knowledgebase of isA relationships;
Γsent : the corpus of sentences;
Γattr : the attribute database;
Output: Similarity scores;

1 for each sparse extraction 〈c, e〉 ∈ D do

2 Select the seeds of the class c by the probabilistic score in ΓisA as the seed set Se ;
3 Create the attribute vectors of c and e from Γattr ;
4 fatt (c, e ) ← Get the similarity score using Equation (6);
5 end

6 for each sparse extraction 〈c, e〉 ∈ D do

7 Create isA pattern vectors of c and e selectively from ΓisA;
8 fisa (c, e ) ← Get the similarity score using Equation (5);
9 end

10 for each sparse extraction 〈c, e〉 ∈ D do

11 Collect the sentences containing the seed entity of c and the given entity e from Γsent respectively,
denoted as STc and STe ;

12 Identify all entities from STc and STe using ΓisA and Γattr ;
13 Conceptualize all items for each sentence in STc and STe using Equation (9);
14 Create the class vectors of c and e denoted as Cc and Ce respectively;
15 fcon (c, e ) ← Get the similarity score using Equation (7);
16 end

17 for each sparse extraction 〈c, e〉 ∈ D do

18 y∗〈c, e〉 ← Get the classification result using Equation (10);

19 end

y∗〈c, e〉 = 1 indicates the given pair 〈c, e〉 is a good pair, otherwise, it is a bad pair.

y∗〈c, e〉 = argmaxy∈{0,1}P (y |〈c, e〉, λ). (10)

Considering the relationship validation as shown in Algorithm 2, it is based on the type checking
in Algorithm 1. More specifically, given an entity–entity pair 〈ei , ej 〉 and a known relationship R
between classes ci and c j , we first repeat Algorithm 1 to check whether ei and ej are entities of
classes ci and c j , respectively, in Step 2. If no, we can judge the given pair does not follow the R
relationship. Otherwise, we collect the contexts containing the given pair 〈ei , ej 〉 and each seed
pair 〈si , sj 〉, respectively, and then we evaluate the probabilistic score that the pair 〈ei , ej 〉 satisfies
the known R relationship in Steps 3–11, where si and sj is a seed in Sci

and Sc j
, respectively. If the

similarity is larger than the threshold α (eg. α = 0.3), we consider the given relationship is true.
Otherwise, it is false.

6 EXPERIMENTS

In this section, we first outline the experimental setup and then give the parameter analysis for
several important parameters involved in our approach. Finally, we evaluate and analyze the se-
mantic approaches of context representation as well as their effectiveness in the assessment of
sparse extractions.
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ALGORITHM 2: Relationship Validation

Input: D = {〈ei , ej 〉}: sparse information extractions;
R: the relationship between classes ci and c j ;
Output: the similarity score of 〈ei , ej 〉 satisfying R;

1 for each sparse extraction 〈ei , ej 〉 ∈ D do

2 Classify pairs 〈ci , ei 〉 and 〈c j , ej 〉 using Algorithm 1;
3 if y∗〈ci , ei 〉 == 1 and y∗〈c j , ej 〉 == 1 then

4 Collect the contexts of ei and ej occurring together as T ′(ei , ej );
5 Collect the seed sets of ci and c j as Sci = {si } and Sc j = {sj } respectively;

6 for each seed pair 〈si , sj 〉 (si ∈ Sci , sj ∈ Sc j ) do

7 Collect the contexts of si and sj occurring together as T ′(si , sj );
8 Get the cosine score by comparing two vectorized contexts of T ′(ei , ej ) and T ′(si , sj );
9 end

10 ΦR ← Get the similarity score satisfying the R relationship using Equation (2);
11 end

12 end

6.1 Experiment Setting

The Web corpus we use contains 1.68 billion Web pages. Probase, which contains 2.7 million classes
and 45 million pairs of relationships, is itself harvested from the corpus. We aim to clean Probase,
that is, to identify false entities in a class and false pairs in a relationship. Given the scale of the
problem, we perform data cleaning jobs on a map-reduce system with 10 machines. The cleaning
process takes fewer than 10 hours.

Considering the experimental datasets, we randomly selected about 1,802 entities that have no
more than 10 occurrences and belong to 12 single-word-based classes (such as country) in Probase
as shown in Tables 6 and 8, and selected 2,277 entities that have no more than 5 occurrences
and belong to 12 multi-word-based classes (such as middle east country) as shown in Tables 7
and 8. Each entity has no more than 10 occurrences in Hearst patterns and we call them sparse
extractions. This is because more than 90% entities of the above 12 concepts have no more than 10
occurrences in Probase, namely lying in the long tail of the entity distribution curves. For example,
Figure 2 shows the frequency distribution varying the number of entities in country. We can clearly
see the long tail phenomenon under the dotted line with no more than 10 occurrences. We asked
human judges to evaluate their correctness. We also looked into three binary relations: isCapitalOf,
isCurrencyOf, and headquarteredIn. We randomly picked 315 sparse extractions between single-
word-based classes (such as headquarteredIn(company, city) that have no more than 10 occurrences
and 861 sparse extractions between multi-word-based classes (such as headquarteredIn(* company,
* city)) that have no more than 5 occurrences, and we also picked the 10 most frequent extractions
for each relation that serve as seeds. Details of all test relationships are shown in Tables 6 and 7.
Meanwhile, we also give some examples of isA relationships and binary relationships as shown in
Table 8.

Considering the competing approaches, we abbreviate all approaches involved in this article be-
low, namely Bag-of-words-based (BM), Bag-of-Neighbouring-bigrams based (PM), Attribute-based
(AM), Class-based (CM), isA-based (IM), and our final approach (called AIC). In addition, the other
competing approaches contain the context-based model building approach called HMM-based
(Ahuja and Downey 2010; Downey et al. 2007), and several knowledge-based approaches, including
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Table 6. Datasets of isA and Binary Relationships with Only

Single-Word-Based Classes Used in Experiments

Total pairs Pairs with #Labeled #bad #good
Concepts in Probase freq. < 10 pairs ones ones

isA relationships with single-word-based classes
Country 5,534 92.81% 415 226 189
Sport 2,866 92.18% 335 67 268
City 8,815 90.05% 231 33 198
Animal 5,562 92.38% 186 37 149
Seasoning 531 92.47% 169 41 128
Company 59,734 96.84% 82 9 73
Painter 1,097 98.09% 81 5 76
Currency 330 91.82% 78 8 70
Disease 8,280 92.60% 69 9 60
Film 10,859 96.62% 65 25 40
Language 2,703 93.53% 51 6 45
River 1,924 97.77% 40 2 38
Total 10,8235 95.25% 1,802 468 1,334

Binary relationships with single-word-based classes
isCapitalOf 〈country, city〉 160 39 121

isCurrencyOf 〈country, currency〉 80 19 61
headquarteredIn〈company, city〉 75 22 53

Total 315 80 235

the well-known IE system called OLLIE (Schmitz et al. 2012),15 a new global log-bilinear regression
model for word representation called GloVe (Pennington et al. 2014)16 and the Knowledge-Graph-
based models for representation learning called KR-EAR (Lin et al. 2016).17 In approaches of GloVe
and KR-EAR, a similarity score given a pair is obtained from the word vectors by first normalizing
each feature across the vocabulary and then calculating the cosine similarity. We select the best
performance of the GloVe approach using three corpora (with 6/42/840 billion tokens, respectively)
obtained from Wikipedia dump and Web data, and the best performance of the KR-EAR (TransE)
and KR-EAR (TransR) approaches as competing ones, called GloVe-best and KR-EAR-best, respec-
tively.

For performance evaluation, we use the precision, recall and F-score on bad pairs and good ones
as the evaluation measures, denoted as BP , BR, BF1, GP , GR, and GF1, respectively. For simplicity,
the parameters of top kI classes, top kA attributes and top kC conceptualized classes used in the
semantic context representation are set to kI = kA = kC = 200, respectively. Experiments are
performed on an Intel Core 2 Duo CPU, 2.66-GHz PC with 4G main memory, running Windows 7
Enterprise. All experimental results reported in this section are averaged over five runs.

6.2 Parameter Estimation

In this subsection, we aim to select the optimum values of all important parameters involved in
our approach, including the base classifier λ, the number of seeds |Sc |, and the similarity function

15http://openie.cs.washington.edu.
16http://nlp.stanford.edu/projects/glove/.
17https://github.com/thunlp/KR-EAR.
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Table 7. Datasets of isA and Binary Relationships with Multi-Word-Based Classes Used in Experiments

Total pairs Pairs with Concepts of #Labeled #bad #good
Concepts in Probase freq. < 10 labeled pairs pairs ones ones

Asian country 74 38 36
* country 28,434 96.36% European country 90 44 46

Middle east country 24 7 17

* sport 12,971 96.75%
Sea sport 26 5 21

Winter sport 112 21 91
Action film 68 9 59

* city 21,063 98.16% American city 71 21 50
Border city 51 15 36

Aquatic animal 109 11 98
* animal 17,980 97.43% Arctic animal 21 6 15

Wild animal 434 41 393
Italian seasoning 9 2 8

Japanese seasoning 6 0 6
* seasoning 553 100% Liquid seasoning 10 1 9

Meat seasoning 4 1 3
Mexican seasoning 6 0 6

* company 76,617 99.12% Technical company 485 106 379
Abstract painter 75 42 33

American painter 41 3 38
* painter 1,728 99.77% Australian painter 5 0 5

Dutch painter 20 3 17
German painter 9 3 6
Asian currency 30 1 29

* currency 958 98.75% European currency 21 2 19
World currency 12 1 11

* disease 30,961 97.15%
Acute disease 96 21 75

Bacterial disease 107 4 103
Action film 68 8 60

American film 56 6 50
* film 11,956 99.69% Bollywood film 43 39 4

Crime film 8 3 5
Body language 38 1 37

Computer language 53 3 50
* language 9,927 97.71% Database language 6 1 5

Development language 12 2 10
Freshwater river 9 0 9

* river 1,810 99.83% Perennial river 28 5 23
Whitewater river 8 0 9

Total 214,958 98.07% – 2,277 435 1,842
Binary relationships with multi-word-based classes

isCapitalOf 〈∗country, ∗city〉 188 100 88
isCurrencyOf 〈∗country, ∗currency〉 188 100 88
headquarteredIn〈∗company, ∗city〉 485 180 305

Total 861 380 481
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Table 8. Examples of isA Relationships and Binary Relationships

#bad pair #good pair
On isA relationships with single-word-based classes

<country, democratic people> <country, g77>
<city, santa martha> <city, amadora>
<sport, trafalgar park> <sport, girls golf>
<animal, cauquenes> <animal, moon snail>
<seasoning, bacon bit> <seasoning, five spice>
<company, institute> <company, hasbro>
<painter, robert young> <painter, childe hassam>
<currency, australian> <currency, american dollar>
<disease, addisons disease> <disease,cystoid macular edema>
<film, forest gump> <film, breach>
<language, francophone> <language, micmac>
<river, manda> <river, missouri river>

On isA relationships with multi-word-based classes
<asian country,chinese taipei> <asian country, islamic republic of

pakistan>
<border city, man areas in florida> <border city, san diego near california>
<winter sport, international federation
of ice hockey>

<winter sport, dog sledding during the
cold season>

<aquatic animal, seals being viewed
from the shoreline>

<aquatic animal, insect larva>

<liquid seasoning, vanilla> <liquid seasoning, gravy browning>
<technical company, seattle orthopedic
in poulsbo>

<technical company, integrated data
communications on bainbridge island>

<abstract painter, jan van eyck> <abstract painter, abstract expressionist
jackson pollock>

<european currency, swiess franc> <european currency, dutch guilder>
<bacterial disease, chalcis obscurata> <bacterial disease, pneumococcal disease

from outbreak>
<action film, frame-by-frame drama> <action film, showdown in little tokyo>
<body language, use of formal> <body language, unusual tones of voice>
<perennial river, kwando-linyanti-chobe
system>

<perennial river, ganges in india>

On binary relationships between single-word-based classes
<dili, east timor> <andorra, andorra la Vella>
<baht, thailand> <colombia, colombian peso>
<espoo, general electric> <michelin, clermont-ferrand>

On binary relationships between multi-word-based classes
<data center operator, kenosha> <sierra wireless, richmond>
<european country, ottawa> <islamic republic of pakistan, islamabad>
<papua new guinia, papua new guinean
kina>

<neighbor sweden, swedish krona>
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Fig. 2. Frequency distribution of entities in the class of country.

sim(·). All experiments are conducted in the cases varying with values of the specified parameter
while keeping others unchanged. Details of parameter settings are as follows.

To conduct the performance analysis among all comparing base classifiers including J48, Ran-
domForest, SMo based on PolyKennel and based on RBFKennel, Naïve Bayes, and Perceptron18

systematically, we employ Friedman test (Demšar 2006) widely-accepted as the favorable statisti-
cal test for comparisons of multiple algorithms over a number of datasets (Zhang and Wu 2015).
That is, given K comparing algorithms and N datasets, let R j =

1
N

∑N
i=1 r

j
i denote the average rank

for the jth algorithm, where r j
i indicates the rank of the jth algorithm on the ith dataset. Un-

der the null hypothesis, the Friedman statistic Fr is defined as Fr = (N − 1)χ 2
F /(N (K − 1) − χ 2

F ),
s .t ., χ 2

F = 12N /(K (K + 1))[
∑K

j=1 R
2
j − K (K + 1)2/4]. We can get the value of Fr in the evaluation

metric ofWF1
19 using different base classifiers, namely, Fr = −5.315 on 12 isA relationships with

single-word-based classes, and Fr = −6.743 on 12 isA relationships with multi-word-based classes.
At significance level α = 0.05, the null hypothesis of “equal” performance among all base classi-
fiers cannot be rejected because the value of Fr is lower than the corresponding critical value
F α

2
(K − 1,(K − 1)(N − 1))=2.63 (K = 7, N = 12). Therefore, we get the conclusion that there is no

significant difference among performances using different base classifiers. In this case, we select
the logistic regression classifier with the best performance onWF1 in Table 9 as the final classifica-
tion model λ. Because from experimental results using 10 cross-validation on 12 isA relationships,
we can see that logistic regression classifier can beat other competing classifiers on five isA rela-
tionships, and the average ranking is the first.

Regarding the number of seeds |Sc |, it is relevant to all syntactic and semantic approaches for
context representation in this article. We take the prediction accuracy of our three semantic ap-
proaches (AM, CM, and IM) varying with values of |Sc | from 1 to 50 for an example to show the
selection on the optimal value of |Sc |. In the observation of experimental results as shown in Figure
3, we can see that as the values of |Sc | increase, the prediction accuracy of theses three approaches
is first increasing and then maintaining stably. In the meanwhile, we can get a high prediction
accuracy if specifying |Sc | ≥ 10. Therefore, in the following experiments, we select |Sc | = 10 as a
candidate optimal value for all syntactic and semantic approaches for context representation.

Regarding the similarity function sim(·), we take the performance of AM varying with five
similarity functions for an example to select the optimal function. All similarity functions in-
clude cosine,20 Jaccard,21 JaccardExt, JSsim , and KLsim , where JaccardExt indicates the Tanimoto

18These six base classifiers are from the open data mining software called Weka. http://www.cs.waikato.ac.nz/ml/weka/.
19In this article, W F1 indicates the weighted average value of BF1 and GF1, that is, W F1 = BF1 · R (bad pair s ) +GF1 ·
R (дood pair s ), where R (bad pair s ) and R (дood pair s ) indicates the ratio of bad pairs and good pairs in given dataset.
The larger the value of W F1, the better the performance of the base classifier.
20https://en.wikipedia.org/wiki/Trigonometric_functions#cosine.
21https://en.wikipedia.org/wiki/Jaccard_index.
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Table 9. Performance Comparison Using Different Base Classifiers

Logistic SMO
J48 RandomForest regression PolyKennel RBFKennel Naive-Bayes Perceptron

On 12 isA relationships with single-word-based classes
animal 0.781(2) 0.719(4) 0.789(1) 0.614(6) 0.614(6) 0.743(3) 0.642(5)

city 0.872(4) 0.895(2) 0.898(1) 0.808(6) 0.808(6) 0.875(3) 0.832(5)
company 0.882(7) 0.94(1) 0.89(3) 0.89(3) 0.89(3) 0.933(2) 0.89(3)
country 0.778(6) 0.74(7) 0.796(1) 0.785(4) 0.784(5) 0.788(3) 0.794(2)
currency 0.829(2) 0.82(6) 0.868(1) 0.822(3) 0.822(3) 0.793(7) 0.822(3)

film 0.914(1) 0.774(5) 0.817(4) 0.821(3) 0.516(7) 0.84(2) 0.691(6)
disease 0.914(2) 0.901(4) 0.914(2) 0.841(5) 0.841(5) 0.923(1) 0.841(5)

language 0.763(7) 0.814(2) 0.846(1) 0.776(3) 0.776(3) 0.774(6) 0.776(3)
river 0.94(1) 0.877(7) 0.899(6) 0.94(1) 0.94(1) 0.94(1) 0.94(1)

seasoning 0.851(1) 0.832(2) 0.783(3) 0.649(5) 0.649(5) 0.783(3) 0.649(5)
sport 0.863(1) 0.806(2) 0.804(3) 0.767(5) 0.767(5) 0.797(4) 0.767(6)

painter 0.968(2) 0.968(2) 0.957(7) 0.968(2) 0.968(2) 1(1) 0.968(2)
On 12 isA relationships with multi-word-based classes

* animal 0.861(3) 0.872(1) 0.844(5) 0.844(5) 0.844(5) 0.866(2) 0.852(4)
* city 0.891(1) 0.763(2) 0.731(3) 0.622(6) 0.622(6) 0.698(4) 0.668(5)

* company 0.820(4) 0.834(1) 0.829(3) 0.760(6) 0.760(6) 0.834(1) 0.787(5)
* country 0.761(1) 0.600(6) 0.730(2) 0.720(3) 0.354(7) 0.714(4) 0.712(5)
* currency 0.816(1) 0.816(1) 0.816(1) 0.816(1) 0.816(1) 0.816(1) 0.816(1)

* film 0.883(1) 0.866(7) 0.883(1) 0.883(1) 0.883(1) 0.873(6) 0.883(1)
* disease 0.900(3) 0.902(2) 0.893(4) 0.833(6) 0.833(6) 0.908(1) 0.870(5)

* language 0.870(1) 0.853(7) 0.861(6) 0.870(1) 0.870(1) 0.870(1) 0.870(1)
* river 1.000(1) 1.000(1) 1.000(1) 1.000(1) 1.000(1) 1.000(1) 1.000(1)

* seasoning 0.756(4) 0.756(4) 0.756(4) 0.776(1) 0.776(1) 0.645(7) 0.776(1)
* sport 0.602(3) 0.457(6) 0.624(1) 0.612(2) 0.256(7) 0.602(3) 0.529(5)

* painter 0.502(7) 0.589(2) 0.608(1) 0.556(3) 0.556(3) 0.552(5) 0.543(6)
Average ranking 2.750 3.500 2.708 3.792 4.000 3.000 3.542

Bold values indicate the best experimental results on each evaluation measure.

Fig. 3. Parameter setting on the value of |Sc |.

similarity,22 JSsim indicates the Jensen−Shannon divergence23 based similarity, and KLsim indi-
cates the smoothed Kullback−Leibler divergence24 based similarity. Figure 4 reports the experi-
mental results of AM varying with the above five similarity functions. To simplify the compari-

22https://en.wikipedia.org/wiki/Jaccard_index#Tanimoto_coefficient.
23https://en.wikipedia.org/wiki/Jensen-Shannon_divergence.
24https://en.wikipedia.org/wiki/Kullback-Leibler_divergence.
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Fig. 4. Performance of attribute-based method varying with five similarity functions.

son, we also use the overall evaluation measureWF1 here, that is, the larger the value ofWF1, the
better the performance of the similarity function. From the experimental results, we can see that
AM with the cosine similarity function beats all others, because the value of WF1 is the high-
est. This conclusion is the same as that in the approaches of BM, PM, IM, and CM. Thus, in the
following experiments, we select the cosine similarity function as sim(·) used in our methods.

6.3 Type Checking

We compare the performance of our AIC approach and eight competing ones in type checking,
namely checking whether an entity is a true entity of a class. According to Friedman test mentioned
above, we can get the values of Fr using our AIC approach and several competing approaches as
shown in Table 10. And, we can see that at significance level α = 0.05, the null hypothesis of
“equal” performance among the comparing algorithms is clearly rejected in terms of each evalua-
tion metric. Consequently, we employ the Bonf erroni–Dunn test (Demšar 1961) to further analyze
the relative performance among comparing approaches. We treat our AIC approach as the domi-
nating approach, the difference between the average ranks of AIC and one comparing approach is
compared with the following critical difference (CD): CD = qa

√
K (K + 1)/(6N ). For Bonferroni–

Dunn test, we have CD =3.046 (K = 9, N = 12) on isA relationships and CD =5.38 (K = 8, N = 3)
on binary relationships at significance level α =0.05. Accordingly, the performance between our
approach and one comparing approach is deemed to be significantly different if their average ranks
over all datasets differ by at least one CD. Figure 5 shows our AIC approach against all compet-
ing approaches with the Bonferroni–Dunn test. In this figure, we use the following method to get
the ranking of each approach. For example, if our AIC approach performs best compared to other
baseline ones on isA relationship of country regarding the evaluation measureGF1, it is ranked in
1. Correspondingly, we can get all rankings of AIC on 12 isA relationships regarding the evaluation
measure GF1. Finally, we averaged these 12 rankings for our AIC approach as the final ranking.
In a similar way, we can get the ranking of each approach, respectively, according to the experi-
mental results on each evaluation measure. Thus, each approach has a ranking value from 1 (top
1) to 9 (top 9). At the meanwhile, we use a line to connect the approach without any significant
difference according to the value of critical difference (CD). For example, in Figure 5(a), our AIC
approach has the average ranking value of 2.3, while our AM approach has the average ranking
value of 3.8 regarding the evaluation measure of GF1. We compare the CD value with the differ-
ence between rankings of AM and AIC, and we find that it is lower than the value of CD (namely
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Fig. 5. Our AIC approach against all competing approaches with the Bonferroni–Dunn test. Approaches not

connected with our AIC approach in the CD diagram are considered to have significantly different perfor-

mance from the dominating approach (significant levelα = 0.05). (a) On 12 isA relationships with single-word-

based classes. (b) On three binary relationships with single-word-based classes. (c) On 12 isA relationships

with multi-word based classes. (d) On three binary relationships with multi-word-based classes.

Table 10. Friedman Statistics Fr and the Critical Value

Performance of our approach and competing algorithms
On isA relationships with single-word based classes (Fr (left))
and with multi-word-based classes (Fr (right)), K = 9,N = 12

Evaluation measure Fr (left) Fr (right) Critical value (α = 0.05)
BF1 5.656 148.46
GF1 7.592 119.73 3.046

On three binary relationships with single-word based classes (Fr (left))
and with multi-word-based classes (Fr (right)), K = 8,N = 3

Evaluation measure Fr (left) Fr (right) Critical value (α = 0.05)
BF1 29.500 5.554
GF1 20.235 10.194 5.380

3.8−2.4= 1.4 <3.046). In this case, we consider these two approaches have no significant difference,
therefore, we use a line to connect.

Figure 5(a) and (c) illustrates the CD diagrams on isA relationships regarding the evaluation
measures of BF1 and GF1, where the average rank of each competing approach is marked among
the axis, namely lower ranks to the right. In each subfigure, any competing approach whose
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average rank is within one CD to that of the best approach is interconnected with a thick line.
From these figures, we can see that on isA relationships, our AIC approach is the dominating
approach or competitive to the dominating approach regarding only BF1 orGF1. However, consid-
ering both evaluation measures of BF1 and GF1, our approaches of AIC and IM are comparable to
each other, which significantly perform better than other six competing approaches. More details
of experimental results are as follows.

Tables 11–14 show the prediction results on isA relationships (with single-word based and multi-
word-based classes) between our AIC approach and five baseline ones. We can see the following
from tables. First, as compared to the syntactic methods BM and PM, semantic methods win in
10 classes and lose in only 2 classes (company and river) considering the evaluation measures of
BF1 and GF1. This is because the semantic information is conducive to improve the prediction
performance compared to the syntactic information. Second, our AIC approach can correctly label
more good pairs while labeling fewer bad pairs correctly than other three semantic methods. This is
because our AIC approach is aggregated from the other three semantic context-based approaches.

Tables 15 and 16 report the performance of our AIC approach compared to other three competing
approaches of HMM-based, Glove-best, and KR-EAR-best on isA relationships. We can observe the
following. First, on all evaluation measures, our approach can beat HMM-based method in almost
all 12 classes. This is because HMM-based method represents the feature space of texts using the
distribution of a set of words and a set of hidden status, respectively. However, in most cases, each
entity in the text can be an arbitrary multi-word expression instead of just a single word. Thus,
a hidden status induced from the words can lead to a worse performance in the assessment of
sparse extractions due to the missing semantic information. Second, our approach is superior or
comparable to KR-EAR-best and Glove-best approaches regarding both evaluation measures of
BF1 and GF1. The reason is analyzed below. Our approach and these two competing approaches
are built on the knowledge bases of Probase and Freebase, respectively. It is beneficial to improve
the performance in the assessment of sparse IE due to the introduction of semantic information.
However, the difference lies in that Probase is more scalable and has a large coverage in terms of
class space compared to Freebase. Thus, our approach is more competitive.

6.4 Relationship Validation

We now compare the effectiveness of semantic and syntactic approaches in the handling of sparse
extractions with binary relationships. First, according to the CD diagrams in Figure 5(b) and (d), we
can see that regarding the binary relationships, our AIC approach is also the dominating approach
on both evaluation measures or is comparable to the dominating approach.

Furthermore, Figures 6 and 7 and Table 17 report the prediction performance of our AIC ap-
proach in Algorithm 2 compared to the competing approaches on three binary relationships be-
tween single-word based classes and between multi-word based classes. On one hand, according
to ROC curves 25 from Figure 6 and experimental results on evaluation measures of BF1 and GF1

in Table 17, we observe that our approach can achieve better performance compared to the syn-
tactic context-based approaches on three binary relationships no matter with single-word based
classes or with multi-word based classes. These observations reveal that our approach is more ef-
fective by introducing the semantic context extracted from the Probase knowledge base. On the
other hand, experimental results from Figure 7 and Table 17 show that our approach outperforms
competing knowledge-based approaches regarding both evaluation measures of BF1 andGF1. This
is because the Glove-best approach uses the word–word co-occurrence statistics to represent the

25We know that “the larger the area under the ROC curve, the better the performance for an algorithm” (Swets 1996).
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Table 11. Comparison Between Our Approach and Five Baselines on 12 isA Relationships

with Single-Word-Based Classes: Part1

isA Method BM PM CM AM IM AIC
BR 11.0 34.6 7.1 39.0 67.1 57.0
BP 71.4 68.2 78.9 78.1 84.5 84.8

GR 94.5 80.9 97.8 86.8 85.2 88.9
country GP 46.0 50.8 47.2 54.1 68.2 65.5

BF1 19.0(5) 47.0(4) 13.1(6) 52.0(3) 74.8(1) 68.2(2)
GF1 61.9(6) 62.4(5) 87.3(1) 66.7(4) 75.8(2) 75.4(3)
BR 19.4 20.0 7.4 73.1 80.6 62.8
BP 41.9 26.5 19.0 49.0 44.3 42.9
GR 93.3 84.8 93.5 81.0 74.6 84.4

sport GP 82.2 79.4 83.0 92.3 93.9 92.4
BF1 26.5(4) 22.8(5) 10.7(6) 58.7(1) 57.1(2) 50.9(3)
GF1 87.4(2) 82.0(5) 31.6(6) 86.3(3) 83.2(4) 88.2(1)
BR 30.3 25.8 23.3 33.3 60.6 52.4
BP 27.0 16.7 36.8 73.3 44.4 64.7
GR 85.9 78.7 93.4 98.0 87.4 96.2

city GP 87.8 86.6 88.1 89.8 93.0 93.9

BF1 28.6(4) 20.3(6) 28.6(4) 45.8(3) 51.3(2) 57.9(1)
GF1 86.8(4) 82.5(5) 52.8(6) 93.7(2) 90.1(3) 95.0(1)
BR 7.9 20.0 13.9 39.5 7.9 31.8
BP 8.6 41.2 11.1 28.8 37.5 70.0

GR 78.2 92.8 69.2 75.2 96.6 94.9
animal GP 76.7 82.1 74.4 83.0 80.4 78.9

BF1 8.2(6) 26.9(3) 13.9(4) 33.3(2) 13.0(5) 43.8(1)
GF1 77.4(5) 87.1(2) 11.1(6) 78.9(4) 87.8(1) 86.2(3)
BR 2.4 2.6 0.0 22.0 92.7 65.4
BP 25.0 7.7 0.0 50.0 31.4 53.1

seasoning GR 97.6 90.6 98.4 93.0 35.2 81.3
GP 75.2 75.2 75.9 78.8 93.8 87.8
BF1 4.4(4) 3.8(5) 0.0(6) 30.5(3) 46.9(2) 58.6(1)
GF1 84.9(3) 82.1(5) 85.7(1) 85.3(2) 51.1(6) 84.4(4)
BR 53.9 18.2 0.0 20.0 20.0 20.0
BP 25.9 20.0 0.0 16.7 25.0 50.0

GR 76.5 90.0 95.2 86.3 91.8 98.4

company GP 91.6 88.9 92.3 88.7 89.3 93.8

BF1 35.0(1) 21.0(4) 0.0(6) 18.2(5) 22.2(3) 28.6(2)
GF1 83.3(6) 89.4(4) 93.8(2) 87.5(5) 90.5(3) 96.1(1)

Bold values indicate the best experimental results on each evaluation measure.

feature space; however, there are also some co-occurrences for bad pairs in the given corpus. Thus,
it is insensitive to the bad sparse extractions, which causes a worse performance in the assessment
of bad sparse extractions. Considering the other two competing approaches, OLLIE uses the infor-
mation of Web data containing more noise, while KR-EAR-best uses the Freebase knowledge base,
whose coverage is lower than ours. Meanwhile, our approach aggregates three semantic contexts
using an optimal classification model, and it considers more evidence to assess sparse extractions.
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Table 12. Comparison Between Our Approach and Five Baselines on 12 isA Relationships

with Single-Word-Based Classes: Part 2

isA Method BM PM CM AM IM AIC
BR 20.0 60.0 25.0 0.0 100.0 0.0
BP 9.1 15.0 7.7 0.0 15.6 0.0
GR 86.8 77.6 83.8 93.3 64.5 91.3

painter GP 94.3 96.7 95.4 94.6 100.0 100.0

BF1 12.5(3) 24.0(2) 11.8(4) 0.0(5) 27.0(1) 0.0(5)
GF1 90.4(3) 86.1(5) 89.2(4) 94.0(2) 78.4(6) 95.5(1)
BR 12.5 12.5 14.3 62.5 100.0 83.3
BP 25.0 5.3 50.0 31.3 21.1 26.3
GR 95.5 73.5 98.4 84.3 57.1 77.4

currency GP 90.0 87.7 91.3 95.2 100.0 98.0
BF1 16.7(5) 7.4(6) 22.2(4) 41.7(1) 34.8(3) 40.0(2)
GF1 92.7(2) 80.0(5) 94.7(1) 89.4(3) 72.7(6) 86.5(4)
BR 37.5 12.5 16.7 55.6 44.4 50.0
BP 21.4 16.7 12.5 62.5 28.6 66.7

GR 80.0 91.4 86.3 95.0 83.3 97.0

disease GP 89.8 88.3 89.8 93.4 90.9 94.1

BF1 27.3(4) 14.3(5) 14.3(5) 58.8(1) 34.8(3) 57.1(2)
GF1 84.6(6) 89.8(3) 88.0(4) 94.2(2) 87.0(5) 95.5(1)
BR 46.7 96.6 0.0 32.0 56.0 75.0
BP 51.9 38.9 0.0 66.7 77.8 75.0
GR 72.3 4.4 100.0 90.0 90.0 87.5

film GP 68.0 66.7 68.0 67.9 76.6 87.5

BF1 49.1(3) 22.3(5) 0.0(6) 43.2(4) 65.1(2) 75.0(1)
GF1 70.1(5) 8.2(6) 81.0(3) 77.4(4) 82.8(2) 87.5(1)
BR 39.0 50.0 0.0 50.0 66.7 66.7

BP 78.1 42.9 0.0 16.7 28.6 57.1

GR 86.8 90.2 92.7 66.7 77.8 90.6
language GP 54.1 92.5 86.4 90.9 94.6 93.5

BF1 52.0(2) 46.2(3) 0.0(6) 25.0(5) 40.0(4) 61.5(1)
GF1 66.7(6) 91.4(2) 89.4(3) 76.9(5) 85.4(4) 92.1(1)
BR 0.0 50.0 0.0 48.3 48.6 0.0
BP 0.0 25.0 0.0 10.1 22.1 0.0
GR 83.3 92.1 82.4 67.5 72.1 70.8

river GP 85.4 97.2 93.3 80.6 81.2 94.4
BF1 0.0(4) 33.3(1) 0.0(4) 16.8(3) 30.4(2) 0.0(4)
GF1 84.3(3) 94.6(1) 87.5(2) 73.5(6) 76.4(5) 81.0(4)

RankinдonBF1 3.75 4.08 5.08 3.00 2.50 2.08

RankinдonGF1 4.25 4.00 3.25 3.50 3.92 2.08

Bold values indicate the best experimental results on each evaluation measure.

6.5 Time Consumption

Figure 8 reports the time consumption of training and testing in our AIC approach compared
to three competing approaches HMM-based, Glove-best, and KR-EAR-best on two kinds of
datasets of isA relationships and binary relationships (with single-word-based classes and with
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Table 13. Comparison Between Our Approach and Five Baselines on 12 isA Relationships

with Multi-Word-Based Classes: Part1

isA Method BM PM CM AM IM AIC
BR 79.6 27.4 46.0 20.3 29.7 57.9
BP 30.8 13.0 25.1 29.0 44.4 86.8

GR 24.0 54.2 65.7 85.1 89.4 90.6

* country GP 82.4 74.8 83.0 78.1 81.7 66.7
BF1 44.4(2) 17.7(6) 32.5(4) 23.9(5) 35.6(3) 69.5(1)

GF1 37.1(6) 62.8(5) 73.4(4) 81.4(2) 85.4(1) 76.8(3)
BR 78.7 32.7 45.6 21.7 27.9 47.1
BP 19.7 13.0 23.2 29.1 42.6 61.5

GR 31.5 53.3 68.2 86.7 91.5 86.5
* sport GP 87.4 78.8 85.6 81.5 84.8 78.0

BF1 31.5(3) 18.6(6) 30.8(4) 24.8(5) 33.7(2) 53.3(1)

GF1 46.3(6) 63.6(5) 75.9(4) 84.0(2) 88.0(1) 82.1(3)
BR 84.5 31.0 41.7 10.0 15.2 28.0
BP 14.2 9.3 16.6 11.1 40.0 63.6

GR 19.4 52.2 67.3 85.6 96.3 94.2
* city GP 88.8 82.7 88.1 84.0 87.7 78.3

BF1 24.4(2) 14.3(5) 23.7(3) 10.5(6) 22.0(4) 38.9(1)

GF1 31.8(6) 64.0(5) 76.3(4) 84.8(3) 91.8(1) 85.5(2)
BR 81.3 37.5 61.8 11.1 17.2 18.5
BP 10.1 7.0 17.2 7.0 33.3 20.5
GR 20.5 45.5 67.4 81.0 95.9 1.0

* animal GP 90.9 86.9 94.1 87.6 90.8 89.4
BF1 17.9(4) 11.8(5) 26.9(1) 8.6(6) 22.7(2) 19.4(3)
GF1 33.5(6) 59.8(5) 78.6(4) 84.2(3) 93.3(2) 94.4(1)

BR 78.1 28.1 44.9 20.2 28.4 29.5
BP 18.8 11.2 22.3 26.3 41.8 31.2
GR 30.7 54.2 68.1 86.3 91.0 96.8

* seasoning GP 87.3 78.6 85.8 81.7 84.8 82.7
BF1 30.3(2) 16.0(6) 29.8(4) 22.9(5) 33.8(1) 30.3(2)
GF1 45.5(6) 64.2(5) 75.9(4) 83.9(3) 87.8(2) 89.2(1)

BR 83.5 35.1 46.5 17.9 31.6 34.2
BP 15.9 11.5 18.0 17.9 37.9 54.2

GR 23.1 53.1 63.9 84.0 88.9 94.3

* company GP 89.0 82.5 87.5 84.0 85.9 87.9
BF1 26.6(3) 17.3(6) 26.0(4) 17.9(5) 34.5(2) 41.9(1)

GF1 36.6(6) 64.6(5) 73.9(4) 84.0(3) 87.4(2) 91.0(1)

Bold values indicate the best experimental results on each evaluation measure.

multi-word-based classes) as shown in Table 6. We do not give the time consumptions in several
syntactic context-based approaches (such as BM and PM) and the knowledge-based approach
OLLIE here. This is because approaches of BM and PM perform worse in the assessment of sparse
extraction. In the other hand, we use the online open system OLLIE as a competing approach,
the time consumption is much heavier due to the remote connection to the knowledge base. It
is unfair to compare each other. From Figure 8, we can see the following. First, all approaches are
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Table 14. Comparison Between Our Approach and Five Baselines on 12 isA Relationships

with Multi-Word-Based Classes: Part 2

isA Method BM PM CM AM IM AIC
BR 76.2 37.0 44.3 21.0 29.9 27.8
BP 20.2 14.7 24.1 29.4 46.6 40.0
GR 33.1 52.5 68.9 86.8 91.6 88.5

* painter GP 86.3 79.0 84.7 80.7 84.2 69.7
BF1 31.9(3) 21.1(6) 31.3(4) 24.5(5) 36.4(1) 32.8(2)
GF1 47.9(6) 63.1(5) 76.0(4) 83.6(2) 87.8(1) 78.0(3)
BR 79.2 27.0 46.0 20.0 29.3 25.6
BP 20.6 12.4 24.9 28.4 44.4 46.9

GR 26.6 53.9 66.8 85.1 90.0 98.3

* currency GP 84.2 75.4 83.8 78.2 82.3 80.4
BF1 32.7(3) 17.0(6) 32.3(4) 23.5(5) 35.3(1) 33.2(2)
GF1 40.5(6) 62.8(5) 74.3(4) 81.5(3) 86.0(2) 88.5(1)

BR 79.9 28.3 45.8 21.1 29.6 38.5
BP 19.2 11.1 22.9 27.3 43.0 62.5

GR 27.0 50.8 66.7 85.5 90.5 97.0

* disease GP 86.1 76.5 85.1 80.7 84.1 92.5

BF1 31.0(3) 15.9(6) 30.5(4) 23.8(5) 35.1(2) 47.6(1)

GF1 41.2(6) 61.0(5) 74.8(4) 83.1(3) 87.1(2) 94.7(1)

BR 79.2 28.0 45.4 20.9 27.8 35.4
BP 19.5 11.8 22.8 26.2 43.0 30.5
GR 25.6 52.2 64.9 83.5 90.5 100.0

* film GP 84.4 76.1 83.9 79.1 83.0 92.1

BF1 31.3(3) 16.5(6) 30.3(4) 23.3(5) 33.8(1) 32.7(2)
GF1 39.3(6) 62.0(5) 73.2(4) 81.2(3) 86.6(2) 95.9(1)

BR 79.3 28.2 45.4 20.6 29.1 30.9
BP 18.7 11.0 22.2 26.3 41.8 32.5
GR 27.8 52.3 66.8 85.7 90.6 98.1

* language GP 86.5 77.7 85.5 81.3 84.6 91.1

BF1 30.2(2) 15.8(6) 29.8(4) 23.1(5) 34.3(1) 31.6(3)
GF1 42.1(6) 62.5(5) 75.0(4) 83.4(3) 87.5(2) 94.4(1)

BR 79.4 28.6 45.6 20.6 28.7 35.2
BP 18.8 11.2 22.4 26.3 41.8 31.5
GR 29.2 53.2 67.5 85.9 90.8 100.0

* river GP 87.3 78.3 85.8 81.6 84.7 100.0

BF1 30.4(3) 16.1(6) 30.0(4) 23.1(5) 34.0(1) 33.2(2)
GF1 43.8(6) 63.4(5) 75.5(4) 83.7(3) 87.7(2) 100.0(1)

RankinдonBF1 2.75 5.83 3.67 5.17 1.75 1.75

RankinдonGF1 6.00 5.00 4.00 2.75 1.67 1.58

Bold values indicate the best experimental results on each evaluation measure.

comparable to each other in the testing. This is because the testing time consumption in approaches
of AIC, Glove-best, and KR-EAR-best mainly depends on the similarity computation. Only in
the HMM-based approach, it requires to predict the test pairs using the HMM and relational
n-gram-based models. The time overhead is a light heavier than the former three approaches.
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Table 15. Comparison Between Our Approach and Three Baselines on 12 isA Relationships

with Single-Word-Based Classes

Data Method BR BP GR GP BF1 GF1
HMM-based 1.0 100.0 100.0 46.6 2.0(4) 63.6(2)

country AIC 57.0 84.8 88.9 65.5 68.2(1) 75.4(1)
Glove-best 49.1 62.7 65.1 51.7 55.1(3) 57.6(3)

KR-EAR-best 64.2 60.7 50.3 54.0 62.4(2) 52.1(4)
HMM-based 18.9 25.0 81.1 75.0 21.5(4) 77.9(2)

sport AIC 62.8 42.9 84.4 92.4 50.9(2) 88.2(1)
Glove-best 42.8 48.8 71.3 66.1 45.6(3) 68.6(4)

KR-EAR-best 58.2 52.6 66.5 71.4 55.3(1) 68.9(3)
HMM-based 14.3 18.2 92.9 90.7 16.0(4) 91.8(2)

city AIC 52.4 64.7 96.2 93.9 57.9(2) 95.0(1)
Glove-best 45.1 36.0 60.3 68.9 40.1(3) 64.3(4)

KR-EAR-best 81.8 49.7 59.0 86.7 61.8(1) 70.2(3)
HMM-based 20.8 50.0 89.4 68.9 29.4(3) 77.8(2)

animal AIC 31.8 70.0 94.9 78.9 43.8(2) 86.2(1)
Glove-best 26.0 33.0 76.2 69.6 29.1(4) 72.7(3)

KR-EAR-best 75.9 47.0 61.5 85.0 58.1(1) 71.3(4)
HMM-based 16.7 35.7 80.9 60.3 22.7(4) 69.1(3)

seasoning AIC 65.4 53.1 81.3 87.8 58.6(1) 84.4(1)
Glove-best 44.0 32.7 60.8 71.5 37.5(3) 65.7(4)

KR-EAR-best 72.1 45.5 62.7 83.9 55.8(2) 71.8(2)
HMM-based 14.3 15.4 87.1 86.1 15.9(4) 86.6(2)

company AIC 20.0 50.0 98.4 93.8 28.6(2) 96.1(1)
Glove-best 23.6 32.7 80.0 71.9 27.4(3) 75.7(3)

KR-EAR-best 70.6 44.8 64.4 84.2 54.8(1) 73.0(4)
HMM-based 50.0 11.1 63.6 93.3 18.2(3) 75.7(3)

painter AIC 0.0 0.0 91.3 100.0 0.0(4) 95.5(1)
Glove-best 24.3 32.0 80.0 73.2 27.6(2) 76.5(2)

KR-EAR-best 70.2 44.0 65.5 85.1 54.1(1) 74.0(4)
HMM-based 12.5 100.0 100.0 85.1 22.2(4) 92.0(1)

currency AIC 83.3 26.3 77.4 98.0 40.0(2) 86.5(2)
Glove-best 24.2 31.7 81.0 74.5 27.4(3) 77.6(3)

KR-EAR-best 69.9 42.9 66.2 85.8 53.2(1) 74.7(4)
HMM-based 25.0 33.3 80.0 72.7 28.6(3) 76.2(3)

disease AIC 50.0 66.7 97.0 94.1 57.1(1) 95.5(1)
Glove-best 24.1 31.7 81.6 75.2 27.4(4) 78.2(2)

KR-EAR-best 69.6 40.2 63.5 85.5 51.0(2) 72.8(4)
HMM-based 51.6 53.3 69.6 68.1 54.2(2) 68.8(4)

film AIC 75.0 75.0 87.5 87.5 75.0(1) 87.5(1)
Glove-best 23.5 31.4 81.4 74.6 26.9(4) 77.8(2)

KR-EAR-best 67.6 39.9 63.2 84.4 50.2(3) 72.3(3)
HMM-based 50.0 20.0 57.1 84.2 28.6(3) 68.1(4)

language AIC 66.7 57.1 90.6 93.5 61.5(1) 92.1(1)
Glove-best 23.2 30.6 81.4 74.9 26.4(4) 78.0(2)

KR-EAR-best 67.2 39.5 63.6 84.6 49.8(2) 72.6(3)
HMM-based 100.0 11.8 34.8 100.0 21.0(3) 51.6(4)

river AIC 0.0 0.0 70.8 94.4 0.0(4) 81.0(1)
Glove-best 23.3 30.3 81.4 75.4 26.4(2) 78.3(2)

KR-EAR-best 66.9 39.1 64.0 84.8 49.4(1) 73.0(3)

Bold values indicate the best experimental results on each evaluation measure.
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Table 16. Comparison Between Our Approach and Three Baselines on 12 isA Relationships

with Multi-Word-Based Classes

Data Method BR BP GR GP BF1 GF1
HMM-based 25.0 28.2 52.3 84.1 26.5(2) 64.5(4)

* country AIC 57.9 86.8 90.6 66.7 69.5(1) 76.8(3)
Glove-best 5.5 50.0 98.5 79.7 9.9(3) 88.1(1)

KR-EAR-best 1.8 41.7 99.3 78.2 3.4(4) 87.5(2)
HMM-based 26.3 21.9 47.1 85.7 23.9(2) 60.8(4)

* sport AIC 47.1 61.5 86.5 78.0 53.3(1) 82.1(3)
Glove-best 5.7 29.2 97.0 82.7 9.5(3) 89.3(1)

KR-EAR-best 3.2 28.6 98.2 81.9 5.8(4) 89.3(2)
HMM-based 39.5 15.2 49.7 87.7 22.0(2) 63.4(4)

* city AIC 28.0 63.6 94.2 78.3 38.9(1) 85.5(3)
Glove-best 5.0 50.0 99.3 88.0 9.1(3) 93.3(1)

KR-EAR-best 0.0 0.0 100.0 86.2 0.0(4) 92.6(2)
HMM-based 35.9 12.6 44.9 92.1 18.7(2) 60.4(4)

* animal AIC 18.5 20.5 1.0 89.4 19.4(1) 94.4(2)
Glove-best 2.1 33.3 99.6 91.0 3.9(3) 95.1(1)

KR-EAR-best 0.0 0.0 100.0 89.4 0.0(4) 94.4(2)
HMM-based 23.5 21.3 47.7 86.1 20.3(2) 61.4(4)

* seasoning AIC 29.5 31.2 96.8 82.7 30.3(1) 89.2(2)
Glove-best 4.5 30.6 95.5 84.0 7.9(3) 89.4(1)

KR-EAR-best 3.5 28.6 98.0 81.9 6.2(4) 89.2(3)
HMM-based 38.7 23.5 51.4 88.4 29.2(2) 65.0(4)

* company AIC 34.2 54.2 94.3 87.9 41.9(1) 91.0(2)
Glove-best 7.1 52.2 98.7 84.5 12.4(3) 91.1(1)

KR-EAR-best 0.0 0.0 100.0 82.4 0.0(4) 90.3(3)
HMM-based 36.7 23.6 47.0 85.2 28.7(2) 60.6(4)

* painter AIC 27.8 40.0 88.5 69.7 32.8(1) 78.0(3)
Glove-best 8.3 33.7 96.2 81.9 13.4(3) 88.5(2)

KR-EAR-best 4.6 35.2 97.9 80.9 8.2(4) 88.6(1)
HMM-based 36.3 26.7 50.7 84.2 22.6(2) 63.3(4)

* currency AIC 25.6 46.9 98.3 80.4 33.2(1) 88.5(2)
Glove-best 1.6 38.7 100.0 80.5 3.1(4) 89.2(1)

KR-EAR-best 1.8 38.5 99.2 78.8 3.4(3) 87.9(3)
HMM-based 35.9 23.9 49.0 85.5 28.7(2) 62.3(4)

* disease AIC 38.5 62.5 97.0 92.5 47.6(1) 94.7(1)
Glove-best 6.4 30.6 96.7 81.8 10.5(3) 88.6(3)

KR-EAR-best 3.0 29.4 98.3 80.8 5.5(4) 88.7(2)
HMM-based 30.0 24.7 48.2 84.6 27.1(2) 61.4(4)

* film AIC 35.4 30.5 100.0 92.1 32.7(1) 95.9(1)
Glove-best 6.5 29.5 96.3 81.0 10.6(3) 88.0(3)

KR-EAR-best 1.6 29.4 99.0 79.8 3.1(4) 88.4(2)
HMM-based 29.2 22.9 48.2 86.0 25.7(2) 61.8(4)

* language AIC 30.9 32.5 98.1 91.1 31.6(1) 94.4(1)
Glove-best 6.3 30.2 96.8 82.5 10.4(3) 89.1(2)

KR-EAR-best 3.0 29.4 98.4 81.5 5.4(4) 89.1(2)
HMM-based 32.7 22.6 47.5 86.1 26.7(2) 61.2(4)

* river AIC 35.2 31.5 100.0 100.0 33.2(1) 100.0(1)
Glove-best 6.1 29.2 96.8 82.6 10.2(3) 89.1(2)

KR-EAR-best 3.5 28.6 98.0 81.7 6.3(4) 89.1(2)

Bold values indicate the best experimental results on each evaluation measure.
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Fig. 6. ROC curves of different approaches on three binary relationships.

Fig. 7. Prediction results of our approach compared to approaches of OLLIE, Glove-best, and KR-EAR-best.

Fig. 8. Time overhead of our approach vs. baseline approaches.

Second, our AIC approach is much faster than all competing approaches in the training. The
reasons are analyzed below. In our approach, the training time overhead is mainly spent on se-
mantic context learning from the Probase semantic network in approaches of AM, IM and CM,
and the generation of the classification model. Those semantic context-based approaches are faster
due to the good indexing of databases in Probase, and the generation of the classification model
also consumes lightly because it learns from a small set of labeled data. However, considering the
HMM-based approach, the training time overhead is spent on learning the HMM and relational n-
gram-based models. The time required to learn the parameters of a kth order HMM is proportional
to O(N ·T k+1), where N is the size of the corpus andT is the count of hidden states. This is infeasi-
ble for a large corpus. Considering the Glove-best approach, the time consumption is composed of
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Table 17. Comparison Between Our Approach and Baselines on Three Binary

Relationships with Multi-Word-Based Classes

Method BR BP GR GP BF1 GF1
On isCapitalOf(* country, * city)

BM 94.7 32.1 2.6 50.0 48.0(1) 4.9(8)
PM 26.3 31.3 71.8 66.7 28.6(2) 69.1(5)
CM 26.3 20.8 51.3 58.8 23.3(3) 54.8(7)

HMM_base 17.4 19.0 61.4 58.7 18.2(5) 60.0(6)
AIC 21.6 20.5 78.5 67.8 21.0 (4) 72.8(3)

Glove-best 4.3 16.7 89.1 65.1 6.9(8) 75.2(1)

KR-EAR-best 13.0 25.0 80.9 65.5 17.1(6) 72.4(4)
OLLIE 8.7 22.2 84.4 64.4 12.5(7) 73.1(2)

On isCurrencyOf(* country, * currency)
BM 15.4 25.0 45.5 31.3 19.0(6) 37.0(7)
PM 38.5 55.6 63.6 46.7 45.5(1) 53.8(4)
CM 7.7 14.3 50.0 33.3 10.0(7) 40.0(6)

HMM_base 72.7 31.4 7.9 33.3 43.8(2) 12.8(8)
AIC 24.5 23.6 86.4 66.8 24.1(5) 75.3(2)

Glove-best 4.8 33.3 93.8 60.0 8.3(8) 73.2(3)
KR-EAR-best 17.4 66.7 94.9 66.1 27.6(3) 77.9(1)

OLLIE 30.4 21.9 35.9 46.7 25.5(4) 40.6(5)
On headquarteredIn(* company, * city)

BM 92.2 45.2 10.4 62.5 60.7(1) 17.9(8)
PM 23.4 40.9 72.9 54.3 29.8(4) 62.2(4)
CM 37.2 39.2 53.6 51.5 38.2(2) 52.5(6)

HMM_base 30.3 29.0 43.1 44.6 29.7(5) 43.9(7)
AIC 34.5 37.2 85.3 61.3 35.8(3) 71.4(1)

Glove-best 6.8 35.3 90.5 56.1 11.4(8) 69.3(2)
KR-EAR-best 17.8 40.0 80.0 56.5 24.6(6) 66.2(3)

OLLIE 20.2 28.6 62.2 51.0 23.7(7) 56.1(5)

Bold values indicate the best experimental results on each evaluation measure.

constructing unigram counts, word–word co-occurrence statistics from a corpus, and training the
GloVe model. Considering the KR-EAR-best approach, it is built on the supervised learning based
on the knowledge graph of Freebase. The time complexities of both approaches are in direct pro-
portion to the size of the corpus. To get the higher coverage, the selected corpus is large enough,
which indicates the time consumption is costly.

7 CONCLUSIONS

We presented a lightweight, semantic context-based assessment approach for spare IEs. Our ap-
proach is build on three different semantic contexts, such as the isA-based context, attribute-based
context, and class-based context. Extensive studies demonstrated that our approach outperforms
several well-known approaches in the handling of IE on F-score. Meanwhile, it can be applied into
the large scale datasets of sparse extractions due to lower time overhead. In fact, our approach can
be applied in any knowledge base, if it previously provides semantic contexts mentioned in our
approach. In sum, this article aims to clean the sparse extractions from Probase. We explored three
semantic methods including an attribute-based method, an isA-based method, and a class-based
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method. For simplicity, we aggregated these three approaches by a classical classifier logistical
regression, which performs the best among seven classical classification models according to the
experimental results. In our future work, we plan to explore semi-supervised classification to eval-
uate sparse extractions. This is because most of the sparse extractions in Probase are unlabeled and
human-labeling all these pairs is very time-consuming. It is hence necessary to take advantage of
unlabeled data in the classification. In this case, we will study more experiments on relationship
validation using more datasets of isA relationships and binary relationships. In addition, we will try
to do some exhaustive experiments by randomly select tail seeds or designing a heuristic method
to perform selection for better seeds.
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