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a b s t r a c t 

Recent advances have verified ground-truth communities perceive several characteristics. That is, commu- 

nities are overlapped and densely connected. Not only that, the organization of communities, in a general 

sense, is hierarchical. To capture all of these characteristics, we propose a framework based on link em- 

bedding method. Firstly, we define close-knit link groups which preserve the hierarchical structures and 

carefully transform the problem of mining close-knit link groups as mining cosine patterns which can 

be implemented efficiently. Secondly, we construct the weighted line hypergraph and embed each link 

into a low dimension vector. Finally, we simply employ K -means algorithm to obtain the link communi- 

ties. Overlapping structures are naturally obtained by interpreting the link communities as nodes com- 

munities. Experimental results on three real-world networks demonstrate the proposed approach is able 

to identify much higher-quality overlapping communities in terms of four external measures, compared 

with six classical overlapping community detection methods. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Community structures within complex networks play a vital

role in many areas, ranging from physics [1] and bioinformat-

ics [2] to social sciences [3] and computer sciences [4] . Numerous

methods exist for discovering both crisp and fuzzy (i.e., overlap-

ping) communities. Almost all of these methods are constructed

upon an underlying assumption: nodes in the same community are

connected more densely than those between different communi-

ties [5] . 

In fact, the design of various approaches is driven by imag-

inary features of the community. For instance, one of the most

influential methods, based on the modularity ( Q ) maximization

(e.g., Fast Newman [5] , Louvain [6] ), is driven by the above un-

derlying community assumptions. Furthermore, the Infomap algo-

rithm [7] makes the assumption that nodes in the same commu-

nity are connected by some paths upon which information flows

more quickly and easily. Hence, characterizing distinctive features

of communities within real-world networks largely contributes to

the success of community detection methods. 
∗ Corresponding author. 

E-mail address: lizhe_hbeu@vip.163.com (Z. Li). 
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To be specific, firstly, real-life communities are overlapping ,

ince there could be nodes belong to multiple communities si-

ultaneously. For instance, a person often has connections to a

umber of social groups simultaneously, such as scientific activi-

ies, family, friends, and hobbies. 

Secondly, the true closely-knit community is usually very small,

hough it defies the modularity based optimization and evaluation.

n [8] , the community size is proven to obey the pow-law distri-

ution on six real-world networks, which implies a vast major-

ty of communities are in small-size. For example, approximately

2% communities contain less than 10 users, and 80% communi-

ies contain at most 20 users in the Friendster network. 

Thirdly, the organization of communities is nested and hierar-

hical . Small communities build larger ones which group together

o form much larger ones [9] . Fig. 1 shows an ego-network as well

s its labeled communities extracted from Facebook. The student

arked in red has different circles or communities with respect to

is social relationships. More in detail, that student is in a research

roup while he/she may also share the similar music interest with

thers. Meanwhile, they are also in the same department and thus

orm a bigger community containing those small ones. 

Last but not least, the overlapping nodes between communities

re densely connected in real world networks which is different

rom conventional views. In [8] , authors study 6 large social net-

orks with ground-truth communities and point out that overlaps

https://doi.org/10.1016/j.neucom.2019.07.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.07.003&domain=pdf
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Fig. 1. An ego-network from Facebook with complex community structures. 
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f communities are more densely connected than non-overlapping

arts of communities. Meanwhile, existing methods either identify

hose overlaps as sole communities or merge the overlapping com-

unities into a single one. 

In this situation, it calls for a flexible framework which is able

o identify hierarchical communities at different levels. That is, it

s expected to reveal the smallest but closely-connected communi-

ies; but sometimes the macro-view or medium-view of structures

s also needed to characterize a skeleton structure of the whole

etwork. Meanwhile, at any level, the multiple membership of ev-

ry node should be expressed. 

One of the most popular method to detect overlapping com-

unity is the Clique Percolation Method (CPM) [10] , where the

nion of adjacent k -1 common nodes of k -cliques are defined as

ommunities. Since one node can participate in multiple k -cliques

imultaneously, overlaps arise naturally between these communi-

ies. However, once the k is specified, CPM-like methods can not

apture the multiple hierarchical structures at different levels. An-

ther method is based on links rather than nodes [9] , where links

re partitioned via hierarchical clustering. But this method is also

uilt on the assumption that nodes are more sparsely connected

etween communities than those within communities which con-

radicts with the cases in the highly dense networks [8] . 

To address these limitations, we propose an embedding method

ased on links, which can preserve the hierarchical structures at

ifferent levels, and construct a weighted hypergraph using these

tructures. After that, we can get a low dimensional representation

sing the spectral clustering method. Consequently, a highly dense

nd overlapping communities can be obtained by simply running

 -means algorithm on them only once. The hierarchical structures

re constructed by cosine patterns which will be explained in de-

ails below. Experiments on real networks with “ground truth com-

unities” information validate the proposed method. 

. Related work 

In the literature, algorithms for overlapping community de-

ection can be roughly classified into five categories [11] , i.e.,

lique percolation methods(CPM), local expansion methods, fuzzy

etection methods, agent based methods and line graph and link

artitioning methods. The clique percolation method is based

n the k -clique which is fully connected subgraph of k nodes.

he communities identified by CPM are the union of k -cliques
hich share k − 1 common nodes. Since nodes can participate in

ultiple k -cliques, the overlaps between communities naturally

ccur. However, CPM can not capture the underlying structure

n the circumstance that the network is highly connected [12] .

he methods based on local expansion try to maximize the fit

unction by expanding a defined seed. Similar to CPM, Greedy

lique Expansion method (GCE) [13] chooses the clique as seed.

s for fuzzy detection methods, nodes are represented as soft

embership vectors by various network embedding methods, e.g.,

pectral clustering methods and model based methods [14,15] ,

hich can detect highly overlapping communities. Most agent

ased methods rely on the label propagation algorithms in which

odes are grouped together by the propagation of the same prop-

rty [16,17] . In order to get overlaps, multiple labels are assigned

o nodes. The line graph and link partitioning methods are the

ost relevant to our methods. Two strategies can be applied to

his type of methods, i.e. bottom-up strategy and top-down strat-

gy. For bottom-up strategy, link communities can be obtained via

ierarchical clustering based on link similarities. In [18] , authors

easure the similarity between links using Jaccard index and build

 link dendrogram which then can be partitioned by the maximum

artition density. Meanwhile, by transforming the node graph into

ine graph, existing node partitioning algorithms can be applied

o find crisp link communities so as to find overlapping nodes

ommunities [19,20] . This line of methods employ the top-down

trategy. Since there could be much more links after transforming

he node graph into line graph, authors in [21] reduce the number

f links through random sampling and then map the link into a

-dimensional space using geometric embedding method. Lastly,

BSCAN is used for clustering. However, these methods can not

apture either hierarchical structures or highly dense overlapping

tructures in real world networks. While our proposed method can

reserve the hierarchical structures due to the link representation

f the network and detect highly overlapping communities using

he embedding methods borrowed from fuzzy detection methods. 

. Framework overview 

In this section, we start with an analysis of the fundamental

echniques for link community detection, and then describe the

entral idea of our approach as well as the overview of our de-

ection framework. 



48 H. Tao, Z. Li and Z. Wu et al. / Neurocomputing 367 (2019) 46–54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

b

4

 

s  

t

c  

w  

s  

w

c  

 

l  

p  

e  

p  

i  

n  

I  

l  

t  

w  

i  

s  

c  

i  

s  

f

D  

w  

m  

F

 

s  

t

4

 

u  

d  

w  

d  

w  

t  

b  

v  

p  

l  

i  

t

P  

t

P

 

0

 

n  
3.1. Motivations 

Recently, link communities are deemed to be more intuitive

than node communities on revealing structures of the real-world

network, due to the fact that each link usually has a unique po-

sition whereas the node naturally occupies multiple positions ow-

ing to its links [18] . Thus, the overlapping community detection

problem could be treated as a natural byproduct of link communi-

ties, [22] just by transforming the crisp link communities to fuzzy

node communities. Most of the existing methods for detecting link

communities are based on the so-called link clustering [18–24] . The

pioneering work [18] used a Jaccard-type similarity score for a pair

of links to generate the hierarchical link clustering and split clus-

ters according to the newly-proposed measure partition density.

This is a bottom-up strategy by constantly merging the closest pair

of link clusters. However, to compute the similarity matrix of all

link pairs are very expensive, since the number of edges is usually

far more than that of nodes. 

By contrast, another research stream performs link clustering

by exploiting the top-down strategy. They transform the network

into the corresponding line graph and then detect link commu-

nities by various algorithms for node partitioning on this gener-

ated line graph, such as modularity optimization [19,20] , matrix

factorization [22] , local density optimization [23] and geometric

embedding [21] . These top-down methods have reduced computa-

tional cost remarkably, but encountering another problem: the line

graph is very noisy, i.e., containing excessive weak-ties. In fact, Lim

et al. [21,24] have noticed this problem and proposed the naive link

sampling strategy to alleviate it. 

3.2. Central idea 

The heart of our framework is to combine the strengths of both

bottom-up and top-down strategies. First of all, we extend the sim-

ilarity of a pair of links, proposed by Ahn et al. [18] , to that of a

group of links. We prove that if suitable thresholds are set, sev-

eral types of weak-ties can be excluded from link groups. Also, by

virtue of our previous work on cosine pattern mining [25,26] , we

can utilize an efficient algorithm for mining link groups satisfying

the threshold constraints. Secondly, we model the groups of links

as a hypergraph for the reason that each group usually contains

more than two links. Compared with the traditional line graph

used in [19–22,24] , our hypergraph model can significantly reduce

the number of nodes in the line-space, since links with high sim-

ilarity have been placed in a group and connected by hyperedge.

Meanwhile, a host of weak-ties have been filtered, which makes

the hypergraph contain less noise. Finally, hypergraph embedding

technique is employed to partition the link groups into a number

of link communities. 

At the end of this subsection, we give the notations that will

be used hereafter. Assume the original undirected unweighted net-

work is G(V, E) with n nodes and m edges. Moreover, v i ( 1 ≤ i ≤ n )

and e ij are introduced to represent the i th vertex as well as the

edge connecting v i and v j respectively. The link community to be

detected in this paper is formally defined in Definition 1 . 

Definition 1. Given the network G(V, E) , the collection of link

communities is L = { L 1 , L 2 , . . . , L K } , where L k ⊂ E , 1 ≤ k ≤ K . The el-

ements of L is pairwise disjoint: L k ∩ L k ′ = ∅ , ∀ k 	 = k ′ . The union of

the elements of L is the subset of E: L 1 ∪ ��� ∪ L k ⊆E . 

4. Link community: definition and properties 

In this section, we define the link community that is derived

by extending the similarity of a pair of links, proposed by Ahn

et al. [18] , to that of a group of links. Then, we discuss some
mportant properties especially about some type of weak-ties can

e excluded from the proposed link community. 

.1. The definition 

Given a pair of links, e.g., e ir and e jr incident on a node r , the

imilarity can be computed via cosine instead of Jaccard index in

he [18] defined as 

os (e ir , e jr ) = 

| N i ∩ N j | 
| N i ∪ N j | (1)

here N i is the neighborhood of node i . The reason we choose co-

ine as our similarity measure will be explained later. Moreover,

e can easily extend the link pairs into link groups as follows. 

os ( e 1 r , e 2 r , . . . , e qr ) = 

| N 1 ∩ · · · ∩ N q | 
| N 1 ∪ · · · ∪ N q | (2)

The cosine similarity lies between 0 and 1. 1 is for the equiva-

ent structure which is rare and hard to find. Whereas in this pa-

er, we aim to find structures(link groups) which are looser than

quivalent structures by setting a threshold for cosine similarity ap-

ropriately. Meanwhile, it can be observed that the cosine similar-

ty of link groups is derived from node r ’s neighbors, i.e., impost

odes, which is irrelevant to the node r , i.e., keystone in the Eq. (2) .

f we represent the network as the transaction mode, where each

ine corresponds to a node(keystone) and items(impost nodes) in

his line are its neighbors. To find these link groups in social net-

ork is equivalent to mine items associated with the transaction

n the realm of frequent pattern mining. Moreover, due to the co-

ine measure holds Ordered Anti-Monotone Property (OAMP), we

an use an efficient algorithm proposed for mining cosine patterns

n our previous work [25,26] to find link groups. So from the per-

pective of pattern mining, we define the close-knit link groups as

ollows. 

efinition 2. (Close-knit Link Groups) Given an unweighted net-

ork G(V, E) , t ∗s for the minimum support threshold and t ∗c for the

inimum cosine threshold, close-knit link groups are defined by

(G, t ∗s , t ∗c ) = { X ⊆ subset(E) | supp(X ) ≥ t ∗s , cos (X ) ≥ t ∗c } . 
Note that the close-knit link groups are hierarchical since sub-

et of cosine patterns could also be included within a threshold for

 

∗
s and t ∗c . 

.2. The properties 

In [27] , Mark Granovetter presents that the set of nodes made

p of weakly connected nodes(weak tie nodes) comprises a low-

ensity network whereas the set consisting of the same nodes but

ith nodes which are strong connected(strong tie nodes) will be

ensely knit, i.e., close-knit groups. Notice that our method can

ell handle the weak-ties by using the threshold t ∗s , especially for

wo special types of weak ties, i.e., bridge containing only one path

etween two endpoints and local bridge attaching two endpoints

 a and v b which have no friends in common, that is, the length of

ath connecting v a and v b will be more than two if deleting the

ocal bridge. Given a link, e.g., e ij , node i and j could be ( I ) both

mpost nodes or ( II ) one of them is the keystone. Then, we have

he following properties: 

roperty 1. The bridges are excluded in close knit link groups with

 

∗
s ≥ 2 /n . 

roof. Assume e ij is the bridge. 

For ( I ), according to the definition of bridge, we have | N i ∪ N j | =
 and thus e ij can not be in cosine patterns. 

For ( II ), let node i be the keystone in the cosine pattern P and

ode j and node p are impost nodes. Since t ∗s ≥ 2 /n, there should
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m  

a

e at least another keystone for cosine pattern P , e.g. node q .

o, we have two paths between node i and node j , i.e., i → j and

 → p → q → j which contradicts with the definition of bridge. �

roperty 2. The local bridges with span more than 3 are excluded in

lose knit link groups with t ∗s ≥ 2 /n . 

roof. Assume e ij is the local bridge. 

For ( I ), this property is also true since | N i ∪ N j | = 0 . 

For ( II ), we can also get two paths between node i and node

 , i.e., i → j and i → p → q → j , and the length of path will be 3 if

xcluding the imediate path, i.e., i → j , which contradicts with the

efinition of local bridge. �

. Line hypergraph embedding method 

This section discusses the embedding method on line hyper-

raph to discover link communities of the original network. Recall

hat a set of close-knit link groups have been mined, denoted as

in Section 4.1 . Hence, we introduce the representation of H as a

ypergraph at first. 

.1. Hypergraph transformation 

A hypergraph is a graph in which an edge can connect more

han two vertices [28] , and it is widely used for representing a set

f complex relational objects in many real-world problems. Here,

e employ the weighted hypergraph to represent the close-knit re-

ations among multiple edges. 

efinition 3. Given the original network G(V, E) and the H set

f close-knit link groups, the weighted hypergraph is denoted as

(V + , E + , w ) which satisfies the following conditions. 

• A node v e i j 
∈ V + corresponds to the link e ij between v i and v j 

in G, and V + = { v e i j 
|∃ h z ∈ H, e i j ∈ h z } ⊆ E. 

• A hyperedge e z ∈ E + corresponds to the link group h z ∈ H, and

it connects the node v e i j 
if e ij ∈ h z . Thus, | E + | = |H| . 

• The weight w (e z ) = cos (h z ) , i.e., the cosine similarity of the

corresponding link group. 

The traditional line graph proposed in [19,20] (or so-called link-

pace graph in [21,24] ) simply treats every link as the node of line

raph and adds an edge of line graph if two links of original graph

ave a common node. Compared with this model, our hypergraph

as far less edges, since (i) a hyperedge is able to connect multiple

odes, and (ii) only links of original graph with strong similarity

re connected by a hyperedge. In essence, this concise hypergraph

odel, which transforms the original network into the link space,

enefits from the definition of the local close-knit link group, that

s, the bottom-up handling strategy. 

.2. The embedding method 

Similar to the approach often used in the literature

e.g., [21,22] ), to find link communities and thereby overlap-

ing communities of nodes on the original graph G can be

chieved by using a crisp clustering algorithm on the hyper-

raph �. So, our focus here is on the hypergraph clustering. As

hown by Yan et al. [29] , the graph embedding paradigm is able

o represent vertices of a graph in a low-dimensional vector

pace while preserving the structure of the original graph. With

roper graph embedding, we can process graph data more flexibly

nd efficiently, by using various classic vector-based clustering

lgorithms. 

Intuitively, the incidence matrix of the hypergraph � is a | V + | ×
 E + | matrix denoted as C , where each element c(v , e ) = 1 if v ∈ e
nd 0 otherwise. Let d(v ) = 

∑ 

e ∈ E + w (e ) c(v , e ) denote degree of ev-

ry node, and D v be a | V + | × | V + | diagonal matrix containing the

ertex degree. Then, the adjacency matrix [28] of the hypergraph �

s 

 � = CWC 

� − D v , (3) 

here W is the | E + | × | E + | diagonal matrix containing the weights

f hyperedges. Once the adjacency matrix of hypergraph is avail-

ble, the graph embedding is generally viewed as the factorization

n a proximity matrix among nodes [29–31] . Formally, let S de-

ote a | V + | × | V + | proximity matrix, and Z denote a | V + | × Z em-

edding matrix, where Z is the embedding dimensions (i.e., the di-

ension of latent space). Then, we adopt the L2-norm below as

he loss function which need to be minimized: 

in || S − Z · Z 

� || 2 F . (4)

The objective of Eq. (4) is to find an optimal rank- Z approxima-

ion of the proximity matrix S . The solution is equivalent to per-

orm the Singular Value Decomposition (SVD) on S , and select the

argest Z singular value with corresponding singular vectors to con-

truct the optimal embedding vectors. 

As noted already, the graph embedding is technically feasible,

f the proximity matrix S is determined on the hypergraph. In the

iterature of complex network analysis [32] , a vast number of prox-

mity measures between nodes have been presented. Here, we in-

roduce two feasible choices for defining S : one for low-order prox-

mity and the other for high-order proximity. 

1. Low-order proximity matrix. The Laplacian eigenmaps [33] is a

classic low-order proximity. According to [28] , the Laplacian

matrix of the hypergraph is defined as 

S l = 

1 

2 

(I − D 

−1 / 2 
v A �D 

−1 / 2 
v ) , (5)

where I is an identity matrix. 

2. High-order proximity matrix. There are many high-order proxim-

ity measures in graph [32] , such as Katz index and adamic-adar,

etc. Here, we choose the rooted pagerank value as the mea-

sure, which is indeed the probability that a random walk from

a node and will locate another node in the steady state. Let P

denote the probability transition matrix. Then the high-order

proximity matrix is 

S h = (1 − α) · (I − αP ) −1 , (6)

where α ∈ [0, 1) is the probability to randomly walk to a neigh-

bor. According to [28] , the transition probability matrix of the

hypergraph is 

P = D 

−1 
v CWD 

−1 
e C 

� , 

where D e is a diagonal matrix containing hyperedge degrees,

where the degree of an hyperedge is δ(e ) = 

∑ 

v ∈ V + c(v , e ) . 

After embedding the link groups into low dimension vectors,

e run K -means on them and then we get link communities. The

emberships of each node can be interpreted as the communi-

ies of links which connect to that node. In [21] , authors point

ut that the membership can not be correctly assigned for highly-

ixed community structures. To deal with this, we count the frac-

ion of each node’s incident edges that belong to communities as

heir belonging coefficient . Finally, the node is assigned to the com-

unities whose belonging coefficient is larger than its average be-

onging coefficient . 

. Experimental validation 

In this section, we present the comparison results of our

ethod with six representative overlapping community detection

lgorithms. The algorithms to be compared are listed below. 
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Fig. 2. Performance results on the word association network. 
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• CFinder (F): the famous Clique Percolation Method [10] , where

the size of k -cliques is set to 4. 

• Link (L): the link clustering method [18] . 

• MOSES (M): the stochastic block model based local optimiza-

tion scheme [15] . 

• GCE (G): the local greedy optimization strategy using k -cliques

as seed [13] , where the size of k -cliques is also set to 4. 

• SVI (S): the mean-field variational inference model based on

link sampling [34] . 

• BigClam (B): the cluster affiliation model by using the nonneg-

ative matrix factorization [35] . 

• Ours (O): the proposed method where τ ∗
s = 2 , τ ∗

s = 0 . 5 and 5

for embedding dimensions for fast computation. 

In the experiments, we used the software package with its de-

fault settings provided by the authors for every compared algo-

rithm. We implemented our method in Python. 

6.1. Evaluation measures 

When the ground-truth communities are unknown, modularity

is the most widely used internal measure for evaluating both crisp

and overlapping communities in the literature [36] . However, the

performance evaluation based on modularity is likely to be mis-

leading, because (i) communities with high modularity are usu-

ally obtained by merging small communities, that is, communities
ith small scales are often covered up, i.e., the resolution limit of

odularity [37] ; and (ii) communities with high modularity usu-

lly contain nodes that are connected more densely than those be-

ween different communities, which is not true in networks with

ervasive and dense overlaps [8,18] . Hence, the modularity is not

uitable for evaluating the results on highly dense overlapping and

ierarchical networks that this paper works on. 

Alternatively, we attempt to use the external measures for

valuations. We select three networks including some descriptive

etadata associated with every node, and extract the implicit

ground-truth communities” information from the descriptive

etadata. For example, an author in the scientific collaboration

etwork is usually associated with several keywords such as

ocial network analysis, data mining, information fusion, and so

n. Intuitively, similarity between keywords of authors indicates

hether they have common interest or not. So it is expected that

uthors with high similarity are in the same community. Note that

his evaluation strategy is first used in [18] and subsequently used

n [35] . In general, we construct four evaluation measures [18] ,

f which the computational details will be introduced along with

ifferent datasets. 

• Community Quality: It measures the similarity of nodes in pairs

within each community compared to a null model. The sim-

ilarity between nodes is carefully defined by the metadata of
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Fig. 3. Performance results on the scientific collaboration network. 
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Fig. 4. Correlations between Topics. 
different networks. The general form of the community quality

is 

Comm _ Quality = 

∑ 

v i , v j within same comm . μi j 
∑ 

v i , v j μi j 

, (7) 

where μij is the similarity between node v i and v j based on the

metadata of the network. 

• Overlap Quality: To measure the quality of overlapping nodes,

we extract the true overlap for each node from metadata which

corresponds to its real number of communities. Then, the Mu-

tual Information which measures the information that two vari-

ables share is employed to relate true overlaps and the detected

overlaps. Given the detected overlaps by a particular method,

this measure indicates how much information about the true

overlaps are gained. 

• Community Coverage: It measures the fraction of nodes that be-

long to at least two communities. 

• Overlap Coverage: This measure counts the average member-

ships of nodes. 

Except the community coverage, the range of other three mea-

ures does not always lie in 0 and 1. Then for convenient of com-

arison, we normalize these measures into [0,1] by using the min-

ax normalization schema. 
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Fig. 5. Performance results on the user check-in network. 
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6.2. Word association network 

Word Association network [38] is collected by participants who

write down the word that first comes to their mind when pre-

sented a word. This network contains 7,094 nodes (words) and

31,771 edges (associations). As a lexical database for English, word-

net 1 is used as the metadata source for this network. We com-

pute the similarity of words in pairs based on the shortest path

that connects the senses in the is-a(hypernym/hypnoym) taxon-

omy. Then the community quality can be computed using Eq. (7) .

Since one word usually has multiple meanings, we use mutual in-

formation between the number of meanings for each word and its

number of memberships detected by particular methods to quan-

tify the overlap quality. 

For this network, we set 100 for the size of communities. The

results in Fig. 2 show that our method performs best on three

measure, i.e., community quality, overlap quality and community

coverage. In terms of overlap coverage, the BigClam algorithm is

superior than other methods since the number of identified com-

munities is very small in the word association network. In detail,

BigClam only identifies 24 communities, which leads to a large

number of overlapping nodes. 
1 https://wordnet.princeton.edu/ . 

m  
.3. Scientific collaboration network 

This network is extracted from ArnetMiner 2 , where a node rep-

esents an author and an edge between authors indicates they

ublish at least one common paper. This co-author network con-

ists of 4270 nodes and 15,055 edges from seven relevant re-

earch topics in computer science. In order to get more informa-

ion for authors, we associated this network with a knowledge

raph dataset, where top 10 0,0 0 0 frequent tags are extracted from

he publications in ArnetMiner [39] . Tags such as feature extrac-

ion, data mining and support vector machine etc. are assigned to

cholars, research organizations and publication venues according

o their publications. To measure the community quality, the Jac-

ard similarity between the sets of tags of authors is used. Mean-

hile, authors who publish papers in different topics will more

asily participate in multiple collaborations. Hence, we use mutual

nformation between the number of topics each author works in

nd its number of memberships to quantify the overlap quality. 

We obtain 50 communities using our method in this network.

ig. 3 shows the comparison results of six methods in terms of

our measures. As can be seen, communities detected by using

ur method are more meaningful (see Fig. 3 (a)). Meanwhile, our

ethod is also the winner on other three evaluation measures.
2 http://resource.aminer.org/lab-datasets/soinf/ . 

https://wordnet.princeton.edu/
http://resource.aminer.org/lab-datasets/soinf/
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his indicates our method is able to discover more overlapping

odes that correspond to authors who have truly participated in

ultiple research fields. 

Furthermore, we dive into the link communities detected by

ur method. In this network, label information about seven topics

re given for each link, i.e., Data Mining (DM), Database Systems

DB), Information Retrieval (IR), Web Services (WS), Bayesian Net-

orks (BN), Information Fusion (IF) and Semantic Web (SW). Then,

e count the fraction of links belonging to the same topic for each

ommunity. And we define the consistency between a pair of top-

cs in terms of the similarity for their fractions. The similarity is

easured by the Pearson correlation. Fig. 4 shows the correlation

etween topics. The correlation between Semantic Web and Infor-

ation Fusion is much stronger than other pairs of topics which

s consistent with the truth that Semantic Web and Information Fu-

ion are definitely closely related topics in computer science. This

lso validates that our method can detect meaningful communi-

ies. However, we can see that correlations between Database Sys-

ems and other topics, especially Information Retrieval , are all weak

ince the majority of links (about 44%) are related with Database

ystems . 

.4. User check-in network 

This network is collected from a popular location-based social

etwork, i.e., Gowalla, in which users can check in and share their

ocations. We extract one month data and the network is con-

isted of 2704 nodes and 17,796 edges. We define the home lo-

ation of each user as the average positions of his/her check-ins,

.e., the average coordinates of check-in latitudes and longitudes.

anual inspection has shown that this inference of the home lo-

ation could achieve 85% accuracy [40] . To compute the similar-

ty between users, we use the euclidean distance between their

ome locations based on the assumption that the social relation-

hip is closer for users who are geographically closer. Given that

ore places the user visits, more likely he/she will join in differ-

nt social communities. We use mutual information between the

umber of locations each user checked in and its number of mem-

erships to quantify the overlap quality. 

The size of communities is set 30 for this network. Compar-

ng with the six baselines, our method achieves the best results

n community quality, overlap quality and overlap coverage in

ig. 5 . However, the Link method performs best on community

overage. For the communities detected by Link method, we find

hat the average size of communities is only about 6.4 (23.1 for

ur method) and the number of communities is 89 (30 for our

ethod). In generally, the larger the number of communities is,

he higher possibility of nodes can participate in multiple commu-

ities. And due to the far less nodes in each community for Link

ethod, the node distribution will be sparser. In consequence, we

an see that the Link method gets the largest community cover-

ge (see Fig. 5 (c)) but the coverage for overlaps is relatively small

see Fig. 5 (d)). 

Above all, the proposed method is robust since it shows the

est performance on at least three measures for all datasets while

he six baselines do not. 

. Conclusion 

This paper proposes a novel method for detecting communities

hat preserves the overlapping and yet hierarchical structures in

eal life networks. The method consists in finding the close knit

ink groups which shows the hierarchical structures at different

evels by mining the cosine patterns. Then, we represent the link

roups as line hypergraph and embed them into a low dimension
pace based on the spectral method. Finally, we can get link com-

unities by simply running K -means on link groups. Thus, overlap-

ing communities can be naturally obtained by transforming the

inks into nodes. With “ground-truth communities” information on

hree real life networks, our experiments on four external measures

ndicate that our method holds great promise for highly dense and

ierarchical networks. 
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