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ABSTRACT

Recent advances have verified ground-truth communities perceive several characteristics. That is, commu-
nities are overlapped and densely connected. Not only that, the organization of communities, in a general
sense, is hierarchical. To capture all of these characteristics, we propose a framework based on link em-
bedding method. Firstly, we define close-knit link groups which preserve the hierarchical structures and
carefully transform the problem of mining close-knit link groups as mining cosine patterns which can
be implemented efficiently. Secondly, we construct the weighted line hypergraph and embed each link
into a low dimension vector. Finally, we simply employ K-means algorithm to obtain the link communi-
ties. Overlapping structures are naturally obtained by interpreting the link communities as nodes com-
munities. Experimental results on three real-world networks demonstrate the proposed approach is able
to identify much higher-quality overlapping communities in terms of four external measures, compared
with six classical overlapping community detection methods.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Community structures within complex networks play a vital
role in many areas, ranging from physics [1] and bioinformat-
ics [2] to social sciences [3] and computer sciences [4]. Numerous
methods exist for discovering both crisp and fuzzy (i.e., overlap-
ping) communities. Almost all of these methods are constructed
upon an underlying assumption: nodes in the same community are
connected more densely than those between different communi-
ties [5].

In fact, the design of various approaches is driven by imag-
inary features of the community. For instance, one of the most
influential methods, based on the modularity (Q) maximization
(e.g., Fast Newman |[5], Louvain [6]), is driven by the above un-
derlying community assumptions. Furthermore, the Infomap algo-
rithm [7] makes the assumption that nodes in the same commu-
nity are connected by some paths upon which information flows
more quickly and easily. Hence, characterizing distinctive features
of communities within real-world networks largely contributes to
the success of community detection methods.
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To be specific, firstly, real-life communities are overlapping,
since there could be nodes belong to multiple communities si-
multaneously. For instance, a person often has connections to a
number of social groups simultaneously, such as scientific activi-
ties, family, friends, and hobbies.

Secondly, the true closely-knit community is usually very small,
though it defies the modularity based optimization and evaluation.
In [8], the community size is proven to obey the pow-law distri-
bution on six real-world networks, which implies a vast major-
ity of communities are in small-size. For example, approximately
62% communities contain less than 10 users, and 80% communi-
ties contain at most 20 users in the Friendster network.

Thirdly, the organization of communities is nested and hierar-
chical. Small communities build larger ones which group together
to form much larger ones [9]. Fig. 1 shows an ego-network as well
as its labeled communities extracted from Facebook. The student
marked in red has different circles or communities with respect to
his social relationships. More in detail, that student is in a research
group while he/she may also share the similar music interest with
others. Meanwhile, they are also in the same department and thus
form a bigger community containing those small ones.

Last but not least, the overlapping nodes between communities
are densely connected in real world networks which is different
from conventional views. In [8], authors study 6 large social net-
works with ground-truth communities and point out that overlaps
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C3: Research Group

C1: Colledge Friends

Fig. 1. An ego-network from Facebook with complex community structures.

of communities are more densely connected than non-overlapping
parts of communities. Meanwhile, existing methods either identify
those overlaps as sole communities or merge the overlapping com-
munities into a single one.

In this situation, it calls for a flexible framework which is able
to identify hierarchical communities at different levels. That is, it
is expected to reveal the smallest but closely-connected communi-
ties; but sometimes the macro-view or medium-view of structures
is also needed to characterize a skeleton structure of the whole
network. Meanwhile, at any level, the multiple membership of ev-
ery node should be expressed.

One of the most popular method to detect overlapping com-
munity is the Clique Percolation Method (CPM) [10], where the
union of adjacent k-1 common nodes of k-cliques are defined as
communities. Since one node can participate in multiple k-cliques
simultaneously, overlaps arise naturally between these communi-
ties. However, once the k is specified, CPM-like methods can not
capture the multiple hierarchical structures at different levels. An-
other method is based on links rather than nodes [9], where links
are partitioned via hierarchical clustering. But this method is also
built on the assumption that nodes are more sparsely connected
between communities than those within communities which con-
tradicts with the cases in the highly dense networks [8].

To address these limitations, we propose an embedding method
based on links, which can preserve the hierarchical structures at
different levels, and construct a weighted hypergraph using these
structures. After that, we can get a low dimensional representation
using the spectral clustering method. Consequently, a highly dense
and overlapping communities can be obtained by simply running
K-means algorithm on them only once. The hierarchical structures
are constructed by cosine patterns which will be explained in de-
tails below. Experiments on real networks with “ground truth com-
munities” information validate the proposed method.

2. Related work

In the literature, algorithms for overlapping community de-
tection can be roughly classified into five categories [11], i.e.,
clique percolation methods(CPM), local expansion methods, fuzzy
detection methods, agent based methods and line graph and link
partitioning methods. The clique percolation method is based
on the k-clique which is fully connected subgraph of k nodes.
The communities identified by CPM are the union of k-cliques

which share k —1 common nodes. Since nodes can participate in
multiple k-cliques, the overlaps between communities naturally
occur. However, CPM can not capture the underlying structure
on the circumstance that the network is highly connected [12].
The methods based on local expansion try to maximize the fit
function by expanding a defined seed. Similar to CPM, Greedy
Clique Expansion method (GCE) [13] chooses the clique as seed.
As for fuzzy detection methods, nodes are represented as soft
membership vectors by various network embedding methods, e.g.,
spectral clustering methods and model based methods [14,15],
which can detect highly overlapping communities. Most agent
based methods rely on the label propagation algorithms in which
nodes are grouped together by the propagation of the same prop-
erty [16,17]. In order to get overlaps, multiple labels are assigned
to nodes. The line graph and link partitioning methods are the
most relevant to our methods. Two strategies can be applied to
this type of methods, i.e. bottom-up strategy and top-down strat-
egy. For bottom-up strategy, link communities can be obtained via
hierarchical clustering based on link similarities. In [18], authors
measure the similarity between links using Jaccard index and build
a link dendrogram which then can be partitioned by the maximum
partition density. Meanwhile, by transforming the node graph into
line graph, existing node partitioning algorithms can be applied
to find crisp link communities so as to find overlapping nodes
communities [19,20]. This line of methods employ the top-down
strategy. Since there could be much more links after transforming
the node graph into line graph, authors in [21] reduce the number
of links through random sampling and then map the link into a
2-dimensional space using geometric embedding method. Lastly,
DBSCAN is used for clustering. However, these methods can not
capture either hierarchical structures or highly dense overlapping
structures in real world networks. While our proposed method can
preserve the hierarchical structures due to the link representation
of the network and detect highly overlapping communities using
the embedding methods borrowed from fuzzy detection methods.

3. Framework overview

In this section, we start with an analysis of the fundamental
techniques for link community detection, and then describe the
central idea of our approach as well as the overview of our de-
tection framework.
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3.1. Motivations

Recently, link communities are deemed to be more intuitive
than node communities on revealing structures of the real-world
network, due to the fact that each link usually has a unique po-
sition whereas the node naturally occupies multiple positions ow-
ing to its links [18]. Thus, the overlapping community detection
problem could be treated as a natural byproduct of link communi-
ties, [22] just by transforming the crisp link communities to fuzzy
node communities. Most of the existing methods for detecting link
communities are based on the so-called link clustering [18-24]. The
pioneering work [18] used a Jaccard-type similarity score for a pair
of links to generate the hierarchical link clustering and split clus-
ters according to the newly-proposed measure partition density.
This is a bottom-up strategy by constantly merging the closest pair
of link clusters. However, to compute the similarity matrix of all
link pairs are very expensive, since the number of edges is usually
far more than that of nodes.

By contrast, another research stream performs link clustering
by exploiting the top-down strategy. They transform the network
into the corresponding line graph and then detect link commu-
nities by various algorithms for node partitioning on this gener-
ated line graph, such as modularity optimization [19,20], matrix
factorization [22], local density optimization [23] and geometric
embedding [21]. These top-down methods have reduced computa-
tional cost remarkably, but encountering another problem: the line
graph is very noisy, i.e., containing excessive weak-ties. In fact, Lim
et al. [21,24] have noticed this problem and proposed the naive link
sampling strategy to alleviate it.

3.2. Central idea

The heart of our framework is to combine the strengths of both
bottom-up and top-down strategies. First of all, we extend the sim-
ilarity of a pair of links, proposed by Ahn et al. [18], to that of a
group of links. We prove that if suitable thresholds are set, sev-
eral types of weak-ties can be excluded from link groups. Also, by
virtue of our previous work on cosine pattern mining [25,26], we
can utilize an efficient algorithm for mining link groups satisfying
the threshold constraints. Secondly, we model the groups of links
as a hypergraph for the reason that each group usually contains
more than two links. Compared with the traditional line graph
used in [19-22,24], our hypergraph model can significantly reduce
the number of nodes in the line-space, since links with high sim-
ilarity have been placed in a group and connected by hyperedge.
Meanwhile, a host of weak-ties have been filtered, which makes
the hypergraph contain less noise. Finally, hypergraph embedding
technique is employed to partition the link groups into a number
of link communities.

At the end of this subsection, we give the notations that will
be used hereafter. Assume the original undirected unweighted net-
work is G(V,E) with n nodes and m edges. Moreover, v;( 1 <i<n)
and e; are introduced to represent the ith vertex as well as the
edge connecting v; and v; respectively. The link community to be
detected in this paper is formally defined in Definition 1.

Definition 1. Given the network G(V,E), the collection of link
communities is £ = {Ly, Ly, ..., Ly}, where L, cE,1<k<K. The el-
ements of £ is pairwise disjoint: L, N L, = @, Yk # k. The union of
the elements of £ is the subset of E: Ly U--- UL, CE.

4. Link community: definition and properties

In this section, we define the link community that is derived
by extending the similarity of a pair of links, proposed by Ahn
et al. [18], to that of a group of links. Then, we discuss some

important properties especially about some type of weak-ties can
be excluded from the proposed link community.

4.1. The definition

Given a pair of links, e.g., ;- and e;. incident on a node r, the
similarity can be computed via cosine instead of Jaccard index in
the [18] defined as

IN; N N;|
|N; U Nj|

where N; is the neighborhood of node i. The reason we choose co-
sine as our similarity measure will be explained later. Moreover,
we can easily extend the link pairs into link groups as follows.

N1 N - NNl
N7 U---UNg|

The cosine similarity lies between 0 and 1. 1 is for the equiva-
lent structure which is rare and hard to find. Whereas in this pa-
per, we aim to find structures(link groups) which are looser than
equivalent structures by setting a threshold for cosine similarity ap-
propriately. Meanwhile, it can be observed that the cosine similar-
ity of link groups is derived from node r’s neighbors, i.e., impost
nodes, which is irrelevant to the node r, i.e., keystone in the Eq. (2).
If we represent the network as the transaction mode, where each
line corresponds to a node(keystone) and items(impost nodes) in
this line are its neighbors. To find these link groups in social net-
work is equivalent to mine items associated with the transaction
in the realm of frequent pattern mining. Moreover, due to the co-
sine measure holds Ordered Anti-Monotone Property (OAMP), we
can use an efficient algorithm proposed for mining cosine patterns
in our previous work [25,26] to find link groups. So from the per-
spective of pattern mining, we define the close-knit link groups as
follows.

cos(ej, ejr) =

(1)

cos(eir, exr, ..., eqr) = (2)

Definition 2. (Close-knit Link Groups) Given an unweighted net-
work G(V,E), t; for the minimum support threshold and t} for the
minimum cosine threshold, close-knit link groups are defined by
F(G,tx, t¥) = {X C subset (E)|supp(X) > t5, cos(X) > t}}.

Note that the close-knit link groups are hierarchical since sub-
set of cosine patterns could also be included within a threshold for
ty and tf.

4.2. The properties

In [27], Mark Granovetter presents that the set of nodes made
up of weakly connected nodes(weak tie nodes) comprises a low-
density network whereas the set consisting of the same nodes but
with nodes which are strong connected(strong tie nodes) will be
densely knit, i.e., close-knit groups. Notice that our method can
well handle the weak-ties by using the threshold ¢}, especially for
two special types of weak ties, i.e., bridge containing only one path
between two endpoints and local bridge attaching two endpoints
vq and v, which have no friends in common, that is, the length of
path connecting v and v, will be more than two if deleting the
local bridge. Given a link, e.g., e;, node i and j could be (I) both
impost nodes or (II) one of them is the keystone. Then, we have
the following properties:

Property 1. The bridges are excluded in close knit link groups with
tf >2/n.

Proof. Assume e; is the bridge.

For (I), according to the definition of bridge, we have |[N; UN;| =
0 and thus e;; can not be in cosine patterns.

For (II), let node i be the keystone in the cosine pattern P and
node j and node p are impost nodes. Since t} > 2/n, there should
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be at least another keystone for cosine pattern P, e.g. node q.
So, we have two paths between node i and node j, i.e., i—j and
i— p— q—j which contradicts with the definition of bridge. O

Property 2. The local bridges with span more than 3 are excluded in
close knit link groups with tf > 2/n.

Proof. Assume e; is the local bridge.

For (1), this property is also true since |N; UN;| = 0.

For (II), we can also get two paths between node i and node
j, ie, i—j and i—p— q—j, and the length of path will be 3 if
excluding the imediate path, i.e., i — j, which contradicts with the
definition of local bridge. O

5. Line hypergraph embedding method

This section discusses the embedding method on line hyper-
graph to discover link communities of the original network. Recall
that a set of close-knit link groups have been mined, denoted as
‘H in Section 4.1. Hence, we introduce the representation of H as a
hypergraph at first.

5.1. Hypergraph transformation

A hypergraph is a graph in which an edge can connect more
than two vertices [28], and it is widely used for representing a set
of complex relational objects in many real-world problems. Here,
we employ the weighted hypergraph to represent the close-knit re-
lations among multiple edges.

Definition 3. Given the original network G(V,E) and the H set
of close-knit link groups, the weighted hypergraph is denoted as
'(V*,E*, w) which satisfies the following conditions.

« A node Ve, € V* corresponds to the link e; between v; and v;
ing, and V* = {ueij|EIhz €M, ejeh} CE.

» A hyperedge e, ¢ E* corresponds to the link group h; € #, and
it connects the node ve; if e; € ;. Thus, |ET| = |H]|.

» The weight w(e;) = cos(h;), i.e., the cosine similarity of the
corresponding link group.

The traditional line graph proposed in [19,20] (or so-called link-
space graph in [21,24]) simply treats every link as the node of line
graph and adds an edge of line graph if two links of original graph
have a common node. Compared with this model, our hypergraph
has far less edges, since (i) a hyperedge is able to connect multiple
nodes, and (ii) only links of original graph with strong similarity
are connected by a hyperedge. In essence, this concise hypergraph
model, which transforms the original network into the link space,
benefits from the definition of the local close-knit link group, that
is, the bottom-up handling strategy.

5.2. The embedding method

Similar to the approach often used in the literature
(e.g., [21,22]), to find link communities and thereby overlap-
ping communities of nodes on the original graph G can be
achieved by using a crisp clustering algorithm on the hyper-
graph I'. So, our focus here is on the hypergraph clustering. As
shown by Yan et al. [29], the graph embedding paradigm is able
to represent vertices of a graph in a low-dimensional vector
space while preserving the structure of the original graph. With
proper graph embedding, we can process graph data more flexibly
and efficiently, by using various classic vector-based clustering
algorithms.

Intuitively, the incidence matrix of the hypergraph I" is a |[V*| x
|[E*| matrix denoted as C, where each element c(v,e) =1 if vee

and 0 otherwise. Let d(v) = Y ..+ w(e)c(v, e) denote degree of ev-
ery node, and D, be a |V*| x |V*| diagonal matrix containing the
vertex degree. Then, the adjacency matrix [28] of the hypergraph I
is

Ar = CWC™ - D,, (3)

where W is the |[E*| x |E*| diagonal matrix containing the weights
of hyperedges. Once the adjacency matrix of hypergraph is avail-
able, the graph embedding is generally viewed as the factorization
on a proximity matrix among nodes [29-31]. Formally, let S de-
note a |[V*| x |[V*| proximity matrix, and Z denote a |V*| x Z em-
bedding matrix, where Z is the embedding dimensions (i.e., the di-
mension of latent space). Then, we adopt the L2-norm below as
the loss function which need to be minimized:

min||S—Z-Z"||2. (4)

The objective of Eq. (4) is to find an optimal rank-Z approxima-
tion of the proximity matrix S. The solution is equivalent to per-
form the Singular Value Decomposition (SVD) on S, and select the
largest Z singular value with corresponding singular vectors to con-
struct the optimal embedding vectors.

As noted already, the graph embedding is technically feasible,
if the proximity matrix S is determined on the hypergraph. In the
literature of complex network analysis [32], a vast number of prox-
imity measures between nodes have been presented. Here, we in-
troduce two feasible choices for defining S: one for low-order prox-
imity and the other for high-order proximity.

1. Low-order proximity matrix. The Laplacian eigenmaps [33] is a
classic low-order proximity. According to [28], the Laplacian
matrix of the hypergraph is defined as

1 - -
Si=5(-D,*ArD; "), (5)

where I is an identity matrix.

2. High-order proximity matrix. There are many high-order proxim-
ity measures in graph [32], such as Katz index and adamic-adar,
etc. Here, we choose the rooted pagerank value as the mea-
sure, which is indeed the probability that a random walk from
a node and will locate another node in the steady state. Let P
denote the probability transition matrix. Then the high-order
proximity matrix is

Si=(1-0a)-I-—aP)!, (6)

where « €[0, 1) is the probability to randomly walk to a neigh-
bor. According to [28], the transition probability matrix of the
hypergraph is

P=D,'cWD;!C",

where D, is a diagonal matrix containing hyperedge degrees,
where the degree of an hyperedge is §(e) = > ,.y+ c(v, e).

After embedding the link groups into low dimension vectors,
we run K-means on them and then we get link communities. The
memberships of each node can be interpreted as the communi-
ties of links which connect to that node. In [21], authors point
out that the membership can not be correctly assigned for highly-
mixed community structures. To deal with this, we count the frac-
tion of each node’s incident edges that belong to communities as
their belonging coefficient. Finally, the node is assigned to the com-
munities whose belonging coefficient is larger than its average be-
longing coefficient.

6. Experimental validation
In this section, we present the comparison results of our

method with six representative overlapping community detection
algorithms. The algorithms to be compared are listed below.
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Fig. 2. Performance results on the word association network.

CFinder (F): the famous Clique Percolation Method [10], where
the size of k-cliques is set to 4.

Link (L): the link clustering method [18].

MOSES (M): the stochastic block model based local optimiza-
tion scheme [15].

GCE (G): the local greedy optimization strategy using k-cliques
as seed [13], where the size of k-cliques is also set to 4.

SVI (S): the mean-field variational inference model based on
link sampling [34].

BigClam (B): the cluster affiliation model by using the nonneg-
ative matrix factorization [35].

Ours (0): the proposed method where 7 =2, tf =0.5 and 5
for embedding dimensions for fast computation.

In the experiments, we used the software package with its de-
fault settings provided by the authors for every compared algo-
rithm. We implemented our method in Python.

6.1. Evaluation measures

When the ground-truth communities are unknown, modularity
is the most widely used internal measure for evaluating both crisp
and overlapping communities in the literature [36]. However, the
performance evaluation based on modularity is likely to be mis-
leading, because (i) communities with high modularity are usu-
ally obtained by merging small communities, that is, communities

with small scales are often covered up, i.e., the resolution limit of
modularity [37]; and (ii) communities with high modularity usu-
ally contain nodes that are connected more densely than those be-
tween different communities, which is not true in networks with
pervasive and dense overlaps [8,18]. Hence, the modularity is not
suitable for evaluating the results on highly dense overlapping and
hierarchical networks that this paper works on.

Alternatively, we attempt to use the external measures for
evaluations. We select three networks including some descriptive
metadata associated with every node, and extract the implicit
“ground-truth communities” information from the descriptive
metadata. For example, an author in the scientific collaboration
network is usually associated with several keywords such as
social network analysis, data mining, information fusion, and so
on. Intuitively, similarity between keywords of authors indicates
whether they have common interest or not. So it is expected that
authors with high similarity are in the same community. Note that
this evaluation strategy is first used in [18] and subsequently used
in [35]. In general, we construct four evaluation measures [18],
of which the computational details will be introduced along with
different datasets.

« Community Quality: It measures the similarity of nodes in pairs
within each community compared to a null model. The sim-
ilarity between nodes is carefully defined by the metadata of
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Fig. 3. Performance results on the scientific collaboration network.

different networks. The general form of the community quality
is

Zv,-,vjwithin same comm. Mij

Zvi,vj Mij 7 )

Comm_Quality =

where p;; is the similarity between node v; and v; based on the
metadata of the network.

Overlap Quality: To measure the quality of overlapping nodes,
we extract the true overlap for each node from metadata which
corresponds to its real number of communities. Then, the Mu-
tual Information which measures the information that two vari-
ables share is employed to relate true overlaps and the detected
overlaps. Given the detected overlaps by a particular method,
this measure indicates how much information about the true
overlaps are gained.

Community Coverage: It measures the fraction of nodes that be-
long to at least two communities.

Overlap Coverage: This measure counts the average member-
ships of nodes.

Except the community coverage, the range of other three mea-

sures does not always lie in 0 and 1. Then for convenient of com-
parison, we normalize these measures into [0,1] by using the min-
max normalization schema.

DM

DB

IR WS BN IF

Fig. 4. Correlations between Topics.

SW
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Fig. 5. Performance results on the user check-in network.

6.2. Word association network

Word Association network [38] is collected by participants who
write down the word that first comes to their mind when pre-
sented a word. This network contains 7,094 nodes (words) and
31,771 edges (associations). As a lexical database for English, word-
net! is used as the metadata source for this network. We com-
pute the similarity of words in pairs based on the shortest path
that connects the senses in the is-a(hypernym/hypnoym) taxon-
omy. Then the community quality can be computed using Eq. (7).
Since one word usually has multiple meanings, we use mutual in-
formation between the number of meanings for each word and its
number of memberships detected by particular methods to quan-
tify the overlap quality.

For this network, we set 100 for the size of communities. The
results in Fig. 2 show that our method performs best on three
measure, i.e.,, community quality, overlap quality and community
coverage. In terms of overlap coverage, the BigClam algorithm is
superior than other methods since the number of identified com-
munities is very small in the word association network. In detail,
BigClam only identifies 24 communities, which leads to a large
number of overlapping nodes.

1 https://wordnet.princeton.edu/.

6.3. Scientific collaboration network

This network is extracted from ArnetMiner?, where a node rep-
resents an author and an edge between authors indicates they
publish at least one common paper. This co-author network con-
sists of 4270 nodes and 15,055 edges from seven relevant re-
search topics in computer science. In order to get more informa-
tion for authors, we associated this network with a knowledge
graph dataset, where top 100,000 frequent tags are extracted from
the publications in ArnetMiner [39]. Tags such as feature extrac-
tion, data mining and support vector machine etc. are assigned to
scholars, research organizations and publication venues according
to their publications. To measure the community quality, the Jac-
card similarity between the sets of tags of authors is used. Mean-
while, authors who publish papers in different topics will more
easily participate in multiple collaborations. Hence, we use mutual
information between the number of topics each author works in
and its number of memberships to quantify the overlap quality.

We obtain 50 communities using our method in this network.
Fig. 3 shows the comparison results of six methods in terms of
four measures. As can be seen, communities detected by using
our method are more meaningful (see Fig. 3(a)). Meanwhile, our
method is also the winner on other three evaluation measures.

2 http://resource.aminer.org/lab-datasets/soinf].
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This indicates our method is able to discover more overlapping
nodes that correspond to authors who have truly participated in
multiple research fields.

Furthermore, we dive into the link communities detected by
our method. In this network, label information about seven topics
are given for each link, i.e., Data Mining (DM), Database Systems
(DB), Information Retrieval (IR), Web Services (WS), Bayesian Net-
works (BN), Information Fusion (IF) and Semantic Web (SW). Then,
we count the fraction of links belonging to the same topic for each
community. And we define the consistency between a pair of top-
ics in terms of the similarity for their fractions. The similarity is
measured by the Pearson correlation. Fig. 4 shows the correlation
between topics. The correlation between Semantic Web and Infor-
mation Fusion is much stronger than other pairs of topics which
is consistent with the truth that Semantic Web and Information Fu-
sion are definitely closely related topics in computer science. This
also validates that our method can detect meaningful communi-
ties. However, we can see that correlations between Database Sys-
tems and other topics, especially Information Retrieval, are all weak
since the majority of links (about 44%) are related with Database
Systems.

6.4. User check-in network

This network is collected from a popular location-based social
network, i.e., Gowalla, in which users can check in and share their
locations. We extract one month data and the network is con-
sisted of 2704 nodes and 17,796 edges. We define the home lo-
cation of each user as the average positions of his/her check-ins,
i.e., the average coordinates of check-in latitudes and longitudes.
Manual inspection has shown that this inference of the home lo-
cation could achieve 85% accuracy [40]. To compute the similar-
ity between users, we use the euclidean distance between their
home locations based on the assumption that the social relation-
ship is closer for users who are geographically closer. Given that
more places the user visits, more likely he/she will join in differ-
ent social communities. We use mutual information between the
number of locations each user checked in and its number of mem-
berships to quantify the overlap quality.

The size of communities is set 30 for this network. Compar-
ing with the six baselines, our method achieves the best results
on community quality, overlap quality and overlap coverage in
Fig. 5. However, the Link method performs best on community
coverage. For the communities detected by Link method, we find
that the average size of communities is only about 6.4 (23.1 for
our method) and the number of communities is 89 (30 for our
method). In generally, the larger the number of communities is,
the higher possibility of nodes can participate in multiple commu-
nities. And due to the far less nodes in each community for Link
method, the node distribution will be sparser. In consequence, we
can see that the Link method gets the largest community cover-
age (see Fig. 5(c)) but the coverage for overlaps is relatively small
(see Fig. 5(d)).

Above all, the proposed method is robust since it shows the
best performance on at least three measures for all datasets while
the six baselines do not.

7. Conclusion

This paper proposes a novel method for detecting communities
that preserves the overlapping and yet hierarchical structures in
real life networks. The method consists in finding the close knit
link groups which shows the hierarchical structures at different
levels by mining the cosine patterns. Then, we represent the link
groups as line hypergraph and embed them into a low dimension

space based on the spectral method. Finally, we can get link com-
munities by simply running K-means on link groups. Thus, overlap-
ping communities can be naturally obtained by transforming the
links into nodes. With “ground-truth communities” information on
three real life networks, our experiments on four external measures
indicate that our method holds great promise for highly dense and
hierarchical networks.
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