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a b s t r a c t 

Online streaming feature selection which deals with streaming features in an online manner plays a crit- 

ical role in big data problems. Many approaches have been proposed to handle this problem. However, 

most existing methods need domain information before learning and specify some parameters in ad- 

vance. In real-world applications, we cannot always require the domain information and it is a big chal- 

lenge to specify uniform parameters for all different types of data sets. Motivated by this, we propose a 

new online streaming feature selection method based on adaptive density neighborhood relation, named 

OFS-Density. More specifically, with the neighborhood rough set theory, OFS-Density does not require the 

domain information before learning. Meanwhile, we propose a new adaptive neighborhood relation using 

the density information of the surrounding instances, which does not need to specify any parameters in 

advance. By the fuzzy equal constraint, OFS-Density can select features with a low redundancy. Finally, 

experimental studies on fourteen datasets show that OFS-Density is superior to traditional feature selec- 

tion methods with the same numbers of features and state-of-the-art online streaming feature selection 

algorithms in an online manner. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Feature selection aims to select a subset of feature space from

the original data set which is “as good as possible”. It plays an im-

portant role in machine learning and pattern recognition [1] . The

main task of feature selection is to remove irrelevant and redun-

dant features from the feature space. There are many benefits from

feature selection, such as reducing storage requirements and train-

ing time, facilitating data visualization and improving predictive

accuracy [2] . 

With the increase of the data volume and dimensionality, tra-

ditional feature selection methods cannot fit the demand in ef-

ficiency any more [3] . Online streaming feature selection which

deals with streaming features has attracted much attention in re-

cent years [3–11] . Streaming features are defined as features that

flow in one by one over time whereas the number of training ex-

amples is fixed [6] . As the features flow in one by one over time,

we must decide whether to keep or discard the new arriving fea-

ture at each time stamp and we do not know the information of

whole feature space before learning. There are two major reasons

for online streaming feature selection: 1) The feature space is un-
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nown or even infinite and 2) the feature space is known but fea-

ure streaming offers many advantages [9] . However, most of ex-

sting online streaming feature selection methods need domain in-

ormation before learning and need specifying some parameters in

dvance. For instance, Grafting [4] needs to specify the parameter

before learning and a proper value of λ is important to the final

redictive accuracy. However, in real-world applications, we can

ot require the domain information before learning. Meanwhile, it

s a challenge to specify uniform parameters for all types of data

ets and it is infeasible to specify different parameters for differ-

nt data sets. Motivated by this, we design a new online streaming

eature selection method which need not any domain information

nd does not need to specify any parameters before learning. 

Rough set theory [12] , as an effective tool for feature selection,

ule extraction, and knowledge discovery can provide an important

dvantage, that is, rough set-based data mining does not require

ny domain knowledge other than the given dataset. For example,

S-NRRSARA-SA [9] is a classical rough set based online streaming

eature selection method which need not specify any parameters

n advance. However, OS-NRRSARA-SA cannot deal with numeri-

al data directly, because the classical Rough Set theory is origi-

ally proposed to deal with categorical data. In real-world appli-

ations, there are many numerical features in the data sets. Thus,

uzzy rough set [13–18] and neighborhood rough set [19–21] which

upports both continuous and discrete data was proposed to deal

ith this challenge. OFS-A3M [10] based on neighborhood rough
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et theory is a new method for online streaming feature selec-

ion. With a new GAP neighborhood relation, OFS-A3M does not

equire domain information before learning and need not specify

ny parameters in advance. Nevertheless, OFS-A3M uses exact de-

endency equal constraint for feature redundancy analysis, which

s too strict for real data sets and leads to some redundant features

n the selected feature subset. 

Therefore, in this paper, we propose a new online streaming

eature selection method, named OFS-Density. Our contributions

re as follows: 

• Based on neighborhood rough set, OFS-Density does not require

domain information before learning. As we know that, rough

set-based data mining does not require any domain knowledge.
• We propose a new neighborhood relation which using the den-

sity information of the surrounding instances. With this new

density neighborhood relation, OFS-Density can automatically

select a proper number of neighbors during online feature se-

lection. Therefore, OFS-Density need not specify any parameters

in advance. 
• OFS-Density uses a fuzzy equal constraint for redundant anal-

ysis to make the selected feature subset with low redundancy.

Rough set based feature selection methods always use the con-

dition of feature significance equal to zero for feature redun-

dant analysis. However, in real data sets, the exactly equal con-

straint is too strict. With fuzzy equal constraint, OFS-Density

can consider more candidate features for feature redundancy

analysis which makes the final selected feature subset small

and discriminative. The parameter λ used for fuzzy equal con-

straint makes OFS-Density can consider more features for re-

dundant analysis. Meanwhile, in Section 5.2 , we conclude that

the λ value is not the bigger the better and it is set to λ = 0 . 05

for OFS-Density. 
• Extensive experimental studies of eight traditional feature se-

lection methods and seven online streaming feature selec-

tion approaches show that our proposed algorithm can get

better performance than traditional feature selection methods

with the same number of features and state-of-the-art online

streaming feature selection approaches in an online manner. 

The remainder of the paper is organized as follows.

ection 2 discusses related work. Section 3 gives a brief introduc-

ion to neighborhood rough set theory. Section 4 presents our new

roposed method for streaming feature selection. Section 5 reports

xperimental results and Section 6 concludes the paper. 

. Related work 

In this section, we give an introduction to some representative

raditional feature selection methods and the state-of-the-art on-

ine streaming feature selection algorithms. 

Feature selection can have numerous benefits such as faster

odel training, reduced susceptibility to overfitting, offsetting the

ernicious effects of the curse of dimensionality, and reducing stor-

ge, memory, and processing requirements during data analysis [1] .

ccording to how the label information is used, feature selection

lgorithms can be divided into supervised [22–24] , unsupervised

25] and semi-supervised [26] ones. More specifically, Fisher Score

27] computes a score for each feature as the ratio of inter-class

eparation and intra-class variance. ReliefF [28] estimates the qual-

ty of the features according to how well their values differenti-

te data samples that are near to each other. MI [29] considers

he mutual information between the distribution of the values of a

iven feature and the membership to a particular class. FSV [30] is

 wrapper method, where the feature selection process is injected

nto the training of an SVM by a linear programming technique.
aplacian Score [31] does not use the class information of each in-

tance, and the importance of a feature is evaluated by its power

f locality preserving. In order to model the local geometric struc-

ure, this method constructs a nearest neighbor graph. Laplacian

core algorithm seeks those features that respect this graph struc-

ure. INF [32] is an unsupervised graph-based filter method. In the

NF formulation, each feature is a node in the graph, a path is a

election of features. The higher the centrality score, the more im-

ortant (or more different) the feature. It assigns a score of impor-

ance to each feature by taking into account all possible feature

ubsets as paths on a graph. LLC-FS [33] associates a weight to

ach feature or kernel and incorporates it into the built-in regular-

zation of the LLC [34] algorithm to take into account the relevance

f each feature or kernel for the clustering. Correspondingly, the

eights are estimated iteratively in the clustering process. Then,

he weights of those irrelevant features or kernels can be shrunk

o zero. 

Traditional feature selection methods assume that all features

n the feature space are available before learning. However, in

ome real-world applications such as [35,36] , features may exist in

 streaming format. Online streaming feature selection which deals

ith feature streams in an online manner, has attracted much at-

ention in recent years and played a critical role in dealing with

igh-dimensional problems [3–7,9] . 

More specifically, Perkins and Theiler [4] proposed the Graft-

ng algorithm based on a stagewise gradient descent approach

or online feature selection. Grafting treats feature selection as an

ntegral part of learning a predictor within a regularized frame-

ork. If the improvement of adding a new arriving feature in the

odel is greater than a predefined threshold λ, this new arriv-

ng feature will be selected. Grafting needs the information of the

lobal feature space to choose a good value for the important reg-

larization parameter λ in advance. Zhou et al. [5] proposed the

lpha-investing algorithm based on streamwise regression for on-

ine streaming feature selection. Alpha-investing does not need a

lobal model and it is one of the penalized likelihood ratio meth-

ds. Nevertheless, Alpha-investing requires prior knowledge of the

tructure of the feature space to heuristically control the choice

f candidate feature selection. Wu et al. [6] presented an online

treaming feature selection framework with two algorithms called

SFS (Online Streaming Feature Selection) and fast-OSFS. There

re two major steps in OSFS, including online relevance analy-

is (discards irrelevant features) and online redundancy analysis

eliminates redundant features). OSFS uses the conditional inde-

endence test for feature selection which needs a large number

f training instances. Thus, on the datasets with high dimension-

lity and small samples, this may lead to information missing. Yu

t al. [3] proposed a Scalable and Accurate Online feature selection

pproach (SAOLA) for extremely high dimensional datasets. SAOLA

mploys novel online pairwise comparison techniques and main-

ains a parsimonious model over time in an online manner. SAOLA

eeds to specify a relevance threshold α in advance to determine

hether two features are relevant, although the relevance thresh-

lds do not have a significant impact on the algorithm. 

In addition, rough set theory, proposed by Pawlak [12] , is an

ffective tool for feature selection, rule extraction, and knowledge

iscovery. Rough set based data mining does not require any do-

ain knowledge before learning. There are some research works

f online streaming feature selection by using Rough set theory.

ore specifically, Eskandari et al. [9] proposed a classical Rough

et based method (OS-NRRSARA-SA) for online streaming feature

election. OS-NRRSARA-SA uses classical significance analysis con-

epts in Rough Set theory to control an unknown feature space

n online streaming feature selection problems. OS-NRRSARA-SA 

eed not specify any parameters before learning. However, OS-

RRSARA-SA is a classical Rough Set based method which can-
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Fig. 1. Classical rough set. 

Fig. 2. δ neighborhood rough set. 
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not handle numerical features directly. Zhou et al. [10] proposed

a new online streaming feature selection method OFS-A3M based

on a new neighborhood rough set relation with adapted neighbors.

With the maximal-dependency, maximal-relevance and maximal-

significance evaluation criteria, OFS-A3M can select features with

high correlation, high dependency, and low redundancy. There are

mainly two differences between this work and OFS-A3M. First,

OFS-A3M proposed a new neighborhood relation named as Gap,

which uses the gap information of the neighbors. In this paper, we

proposed a new neighborhood relation called Density, which uses

the density information of the neighbors. Density-based neighbor-

hood relation uses the information of surrounding neighbors as a

whole, while Gap just uses the distance information of the previ-

ous instance and next instance. Second, OFS-A3M uses exact de-

pendency equal constraint for the analysis of feature redundancy.

It is too strict for real-world data sets, and it probably leads to

some redundant features in the selected feature subset. In this

manuscript, we use a fuzzy equal constraint for redundant anal-

ysis, which makes the selected feature subset present lower re-

dundancy than OFS-A3M. Zhou et al. [11] proposed a new on-

line streaming feature selection method for high-dimensional and

class-imbalanced data, called K-OFSD. K-OFSD uses the dependency

between condition features and decision classes for feature selec-

tion. In terms of Neighborhood Rough Set theory, K-OFSD uses

the information of K nearest neighbors to select relevant features

which can get higher separability between the majority class and

the minority class. K-OFSD is designed for class-imbalanced data

and it needs to specify the parameter K in advance. Diao et al.

[37] proposed new methods to carry out the online selection with

incrementally changing on features or instances. Four possible dy-

namic selection scenarios (feature addition, feature removal, in-

stance addition, instance removal) are considered, with algorithms

proposed in order to handle such individual situations. Based on

fuzzy-rough sets theory, the proposed methods need not specify

any parameters before learning and are demonstrated to be effec-

tive in dealing with real-world data sets. 

3. Neighborhood rough set 

In the classical rough set model [12] , the objects with the same

feature values in terms of attributes B are drawn together and

form an equivalence class, denoted by [ x ] B . The family of elemen-

tal granules {[ x i ] B | x i ∈ U } builds a concept system to describe an

arbitrary subset of the sample space, where U = { x 1 , x 2 , . . . , x n } is

a nonempty finite set of objects, called a universe. For subset X ,

two unions of elemental granules: lower approximation and upper

approximation are defined as follow: 

B X = { [ x i ] B | [ x i ] B ⊆ X, x i ∈ U} (1)

B X = { [ x i ] B | [ x i ] B ∩ X � = ∅ , x i ∈ U} (2)

The lower approximation is the maximal union of elemental

granules consistently contained in X , while the upper approxima-

tion is the minimal union of elemental granules containing X . The

difference between lower approximation and upper approxima-

tion is called approximation boundary of X : BN(X ) = B X − B X . The

lower approximation is also called positive region. The positive re-

gion, negative region and the boundary region of X are shown as

Fig. 1 . 

Classical rough sets are originally proposed to deal with cate-

gorical data. However, in real-world applications, there are many

integer-valued and real-valued data. Thus, some extended models

of the classical rough set were proposed to deal with this problem.

Fuzzy rough set [13,15,17] and neighborhood rough set [38] are
wo representative extensions of the classical rough set. Neigh-

orhood Rough Set used neighborhood relation to replace the ap-

roximation based on equivalence relation of the traditional rough

et model, which supports both continuous and discrete data sets

19,39] . In this section, we briefly review some basic concepts and

otations of neighborhood rough set as follows. 

An information system S = (U, A ) , where U = { x 1 , x 2 , . . . , x n }
s a nonempty finite set of objects, called a universe. A =
 a 1 , a 2 , . . . , a m 

} is a nonempty finite set of attributes (features).

ore specifically, S = (U, A, V, f ) is called a decision table if A =
 

⋃ 

D, where C is a set of condition attributes and D is a set of

ecision attributes, C 
⋂ 

D = ∅ . V = 

⋃ 

a ∈ A V a , V a is a domain of at-

ribute a. f : U × A → V is an information function such that f ( x,

 ) ∈ V a for every x ∈ U, a ∈ A. f ( x i , a j ) denotes the value of object x i
n the attributes a j . 

There are mainly two types of neighborhood relations: 1)

eighborhood relation with a fixed distance ( δ neighborhood), as

hown in Fig. 2 ; 2) neighborhood relation with a fixed number of

eighbors ( k -nearest neighborhood), as shown in Fig. 3 . 

efinition 1. A metric � is a distance function from R N × R N → R ,

nd �( x, y ) denotes the distance between x and y . For ∀ x, y, z ∈ U ,

t satisfies: 

1) �( x, y ) ≥ 0; �(x, y ) = 0 if and only if x = y ; 

2) �(x, y ) = �(y, x ) 

3) �(x, z) ≤ �(x, y ) + �(y, z) 

efinition 2. Given U and C , let B ⊆C be a subset of attributes,

 ∈ U . The neighborhood δB ( x ) of arbitrary object x on the feature

ubset B is defined as: 

B (x ) = { y | �(x, y ) ≤ δ, y ∈ U} (3)
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Fig. 3. k-nearest neighborhood rough set (k = 3). 
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efinition 3. Considering object x and given a set of numerical at-

ributes B to describe the object, we call the k-nearest neighbors

f x in terms of a k-nearest neighborhood information granule, de-

otes as k B ( x ). 

 B (x ) = { y | y ∈ Min k { Neighbors (x ) } , y ∈ U} (4)

Where Neighbors ( x ) denotes all the neighbors of x , and

in k { Neighbors ( x )} denotes the k nearest neighbors calculated on

eature subset B . 

Like classical rough set model, we give the lower and upper ap-

roximations of neighborhood relation R as follows. 

efinition 4. Given a neighborhood approximation space � N =
(U, R ) , for ∀ X ⊆U , two subsets of objects, called lower and upper

pproximations of X in terms of R neighborhood relation, are de-

ned as 

 (X ) = { x i ∈ U | R (x i ) ⊆ X, x i ∈ U} (5)

 (X ) = { x i ∈ U | R (x i ) ∩ X � = ∅ , x i ∈ U} (6)

The boundary region of X in the approximation space is formu-

ated as 

R (X ) = R (X ) − R (X ) (7)

As shown in Fig. 2 , all the δ neighbor samples of x 1 have the

ame class label L 1 with mark “∗” and the neighborhood samples

f x 3 in a δ area are completely marked with “o” with another

lass label L 2 . Meanwhile, the samples in the neighborhood of x 2 
ome from classes L 1 and L 2 . We define the samples of x 2 as the

oundary objects. Meanwhile, as shown in Fig 3 , all the k-nearest

eighbor (k = 3) samples of x 1 have the same class label L 1 and

he neighborhood samples of x 3 have the same class label L 2 . The

eighbors of x 2 come from classes L 1 and L 2 . In general, we need

o find a feature subspace on which the boundary region is main-

ained as little as possible. 

The size of the boundary region reflects the roughness degree

f X in the approximation space. Usually, we hope that the bound-

ry region of the decision is as little as possible for decreasing un-

ertain in the decision procedure. The lower approximation is also

alled positive region, denoted as POS ( x ). 

efinition 5. Let B ⊆C , the dependency degree of B to D is defined

s the ratio of consistent objects: 

B (D ) = 

CARD (P OS B (D )) 

CARD (U) 
, (8) 
where POS B ( D ) denotes the lower approximation of D on feature

ubset B . 

Thus, feature selection using neighborhood rough set aims to

elect a subset B from the feature set C that gets the maximal de-

endency degree of B to D . 

. Our new online streaming feature selection approach 

In this section, we will introduce our new online streaming fea-

ure selection approach in detail. We first give a formal definition

f online streaming feature selection. Then we introduce our new

on-parameter neighborhood relation and the dependency calcula-

ion method. In terms of the new neighborhood relation and three

valuation criteria, we will present a new online streaming feature

election algorithm subsequently. 

.1. Definition of online streaming feature selection 

Let OSF S = (U, C ∪ D, h, t) denote an online streaming feature

election framework, where U is a nonempty finite set of ob-

ects, C is the condition attribute set, and D is the decision at-

ribute set. Let C = [ x 1 , x 2 , . . . , x n ] 
T ∈ R n ×d consist of n samples

ver a d -dimensional feature space F = [ f 1 , f 2 , . . . , f d ] 
T ∈ R d . Let

 = [ y 1 , y 2 , . . . , y n ] 
T ∈ R n ×1 consist of n samples over the class la-

el (decision feature space) L = { l 1 , l 2 , . . . , l m 

} , where l i denotes the

alue of a class label. Given U, C and D , at each time stamp t , we

et a new feature f t of C ∪ D without knowing the exact number

f d in advance. The problem of online streaming feature selection

or mixed data is to derive a mapping h t : x i → L ( x i ∈ C ) at each time

tamp t , which is as good as possible using a subset of features

hat have arrived so far. 

There are three challenges for online streaming feature selec-

ion. 1) Unlike traditional feature selection, we do not know the

eature space before learning. Thus, we can not get any domain

nowledge before selection. 2) Features are arriving randomly at

ach time. In order to decide whether detaining or discarding the

ew arriving features, we need to consider the new arriving fea-

ure and the selected feature subset as integration. 3) Although

eighborhood rough set-based data mining does not require any

omain knowledge, it is still a challenge to specify unified parame-

ers δ for the δ neighborhood and k for the k -nearest neighborhood

efore learning. In the next, we will introduce a new neighborhood

elation which need not specify any parameters before learning. 

.2. Our new neighborhood relation 

efinition 6. Let N B ( x i ) denote all of the neighbors of x i sorted by

he distance from the nearest to the farthest on feature subset B ,

 B (x i ) = < x (i, 1) , x (i, 2) , . . . , x (i, j) , . . . , x (i,n −1) > (9)

here { x i , x (i, 1) , x (i, 2) , . . . , x (i,n −1) } = U and �(x i , x (i, 1) ) ≤
(x i , x (i, 2) ) ≤ . . . ≤ �(x i , x (i,n −1) ) . 

We define the density of x i to neighbor x ( i, k ) as

ensity (x i , x (i,k ) ) = 

�(x i ,x (i,k ) ) 

k 
, denoted as d ( k ) for short. From

 ( i , 1) to x (i,n −1) , assuming the density value first decreases at

eighbor x ( i, k ) , then, we call x ( i, k ) the first Inflection Point , de-

oted as IP ( x ( i, k ) ). We use the samples between x i and the first

nflection Point as the nearest neighbors of x i , shown as Fig. 4 . 

Based on this, we proposed a new neighborhood relation with

daptive neighbors using the Inflection Point, denoted as IP C ( x ) as

hown in Eq. (10) . 

efinition 7. Given a set of finite and nonempty objects U =
 x , x , . . . , x n } , the condition feature set C and a feature subset B



52 P. Zhou et al. / Pattern Recognition 86 (2019) 48–61 

Fig. 4. our new neighborhood relation. 

Table 1 

An example dataset. 

x ∈ U f 1 f 2 f 3 f 4 d 

x 1 3 5.6 1 1 -1 

x 2 5 6.9 1 2 1 

x 3 8 5.3 1 1 1 

x 4 13 12.3 0 1 1 

x 5 6 15.2 0 3 -1 

x 6 5 2.6 0 2 1 

x 7 9 6.8 1 2 -1 

x 8 15 8.4 0 2 -1 
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( B ⊆C ). For target object x i , let N B (x i ) = < x (i, 1) , x (i, 2) , . . . , x (i,n −1) >

denote all the neighbors of x i from the nearest to the farthest on

B . The adaptive neighborhood of arbitrary object x i ⊆U on B is de-

fined as: 

IP B (x i ) = { x (i, 1) , x (i, 2) , . . . , x (i,k −1) } , (10)

where IP ( x ( i, k ) ) is the first Inflection Point from x ( i , 1) to x (i,n −1) . 

Table 1 shows an example dataset used to illustrate the defini-

tion of our new neighborhood relation, where x 1 to x 8 are the sam-

ples with four condition features ( f 1 to f 4 ) and one decision feature

( d ). The distance function is calculated using Euclidean distance. 

Let’s take object x 3 and feature set B = { f 1 , f 2 } as an ex-

ample. First, we calculate all distances between x 3 and x i 

( i � = 3) on B namely: �B (x 3 , x 1 ) = 

√ 

(8 − 3) 2 + (5 . 3 − 5 . 6) 2 =
5 . 009 , �B (x 3 , x 2 ) = 3 . 4 , �B (x 3 , x 4 ) = 8 . 602 , �B (x 3 , x 5 ) = 

10 . 1 , �B (x 3 , x 6 ) = 4 . 036 , �B (x 3 , x 7 ) = 1 . 803 , �B (x 3 , x 8 ) = 7 . 655 . 

All the neighbors of x 3 from the nearest to the farthest are

N B (x 3 ) = { x 7 , x 2 , x 6 , x 1 , x 8 , x 4 , x 5 } . 
For Density neighborhood, Density (x 3 , x 7 ) = 

�(x 3 ,x 7 ) 
1 = 1 . 803 ,

Density (x 3 , x 2 ) = 1 . 7 . Thus, x 2 is the first Inflection Point and the

Density neighborhood of x 3 is IP B (x 3 ) = { x 7 } . 
Based on this new density neighborhood relation, we proposed

the new dependency calculation method as follows. 

In Algorithm 1, we calculate the CARD value of each instance x i 
and get the sum for the final dependency degree. The CARD value

ranges from 0 to 1, denoted as the consistency of x i ’s class attribute

with its neighbors’ class attributes. In order to find the neighbors

of x i , we need to sort all neighbors of x i by the distance. The time

complexity of quicksort function is O ( n ∗logn ). Thus, the time com-

plexity of Dependency-Mixed is O (| X S | 
2 ∗log | X S |). 

4.3. Our new algorithm 

For online streaming feature selection, features flow in one by

one over time. At time stamp t , we have the new arriving feature
 t and the selected candidate subset S t−1 . The aim of our new al-

orithm is to select features from S t−1 ∪ f t with high correlation,

igh dependency, and low redundancy. 

.3.1. High correlation 

For high correlation, it means the features selected in S t at time

tamp t should be maximal correlated to the decision attributes.

or each feature f i , we can calculate the dependency γ f i 
(D ) with

q. (8) . Thus, in order to get the high correlation, we should maxi-

ize the mean value of all dependency values between individual

eature f i and target class label D : 

ax { R (S, D ) } , R = 

1 

| S t | 
∑ 

f i ∈ S t 
γ f i 

(D ) . (11)

For the new arriving features f t at time stamp t , we calculate

f t 
(D ) and compare it with R (S t−1 , D ) . If γ f t 

(D ) < R (S t−1 , D ) , f t
ill be discarded. 

heorem 1. Suppose at time stamp t − 1 , the selected feature set

s S t−1 . At time stamp t, the new arriving feature is f t . If γ f t 
(D ) <

 (S t−1 , D ) and we add f t into S t−1 , then R (S t , D ) < R (S t−1 , D ) . 

roof. Let | S t−1 | = N t−1 and R (S t−1 , D ) = r t−1 . It is obvious that
 

f i ∈ S t−1 
γ f i 

(D ) = r t−1 × N t−1 . For γ f t 
(D ) < R (S t−1 , D ) . If we add f t

nto S , then S t = S t−1 ∪ f j and | S t | = N t−1 + 1 . 

R (S t , D ) = 

1 
| S t | 

∑ 

f i ∈ S t γ f i 
(D ) 

= 

1 
N t−1 +1 

(N t−1 × r t−1 + γ f j 
(D )) 

= 

N t−1 

N t−1 +1 
r t−1 + 

1 
N t−1 +1 

γ f j 
(D ) 

= r t−1 + 

1 
N t−1 +1 

(γ f j 
(D ) − r t−1 ) . 

∵ γ f t (D ) < R (S t−1 , D ) , ∴ γ f j 
(D ) − r t−1 < 0 , ∴ R (S t , D ) < R (S t−1

�

.3.2. High dependency 

For neighborhood rough set based feature selection, the final

oal is to get a subset from feature space which can achieve the

aximal dependency according to Eq. (8) . In other words, at each

ime stamp t , for the selected candidate subset S t , we should make

ure that 

ax { D (S t , D ) } , D = γS t (D ) . (12)

or the new arriving features f t at time stamp t , if γS t−1 ∪ f t (D ) ≥
S t (D ) , we should add f t into S t−1 . Otherwise, we will discard f t . 

heorem 2. [40] Suppose B is a subset of conditional features, f is an

rbitrary conditional attribute that belongs to the dataset, and D is

he set of decision attributes. Then γ ( B ∪ f, D ) ≥γ ( B, D ) . 

roof. The proof of this theorem is available in [40] page 90. �

With Theorem 2 , we can find that, if we only use high depen-

ency and high correlation for feature selection, there will be a

ot of redundant features in the candidate subset ( γS t−1 ∪ f t (D ) ==
S t (D ) ). Thus, we need to consider the redundancy of the selected

ubset. 

.3.3. Low redundancy 

In order to measure each feature’s importance in the selected

andidate subset, we need to define the significance of single fea-

ure to its feature set. The significance of a feature f to feature set

 ( f ∈ B ) is defined as follows: 

efinition 8. Given a condition attribute set B ( B ⊆C ) and a deci-

ion attribute set D , a feature f ∈ B , the significance of the feature f

o B is defined as: 

B ( f, B ) = γB (D ) − γ{ B − f } (D ) (13)
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Algorithm 2 OFS-Density. 

Require: ~~

X: the data samples with condition features; 

Y : the decision classes; 

Ensure: ~~

S: the selected feature set; 

1: S: the selected feature set, initialized to {}; 

2: λ: the parameter control the fuzzy equal constraint(default 

value 0.05); 

3: Dep S :the dependency of S to Y , initialized to 0; 

4: Mean Dep S 
: the mean dependency of features in S, initialized to 

0; 

5: Repeat 

6: Get a new feature f i of X at time stamp t i as X f i ; 

7: Calculate the dependency of X f i as γ f i 
using Dependency- 

Density ; 

8: IF γ f i 
< Mean Dep S 

9: Discard feature f i and go to Step 24; 

10: END IF 

11: IF γS∪ f i > Dep S 
12: S = S ∪ f i ; 

13: Dep S = γS , Mean Dep S 
= 

1 
| S| 

∑ 

f i ∈ S γ f i 
(Y ) ; 

14: ELSE IF | (Dep S − γS∪ f i ) /Dep S | < = λ
15: S = S ∪ f i ; 

16: FOR each feature in S

17: Randomly select a feature f ′ in S; 

18: Calculate f ′ ’s significance as σS ( f ′ ) ; 
19: IF σS ( f ′ ) == 0 

20: Remove feature f ′ from S; 

21: END IF 

22: END FOR 

23: END IF 

24: Until no more features are available; 

25: return S; 
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In order to select the features with low redundancy, we should

ake the mean significance of each feature f i in S achieve the max-

mal. That is 

ax { S (S t , D ) } , S = 

1 

| S t | 
∑ 

f i ∈ S t 
{ σS t ( f i , D ) } . (14)

With the high dependency constraint and Theorem 2 , we can

ee that ∀ f i ∈ S t , σS t ( f i , D ) ≥ 0 is satisfied. Thus, we should discard

he features in S which satisfy the constraint σS t ( f i , D ) = 0 . 

However, in real data sets, we find it rare that the dependency

f S ∪ f i is exactly equal to the dependency of S . Thus, we relax

he exactly equal restriction and change it to an interval restriction.

hat is, if 

Dep S − γS∪ f i 
Dep S 

∣∣∣ ≤ λ, (15) 

hen we will execute the redundancy analysis. With this new fuzzy

qual constraint, more candidate features will be considered into

he redundancy analysis step and this will make the final selected

eature subset lower redundancy. The default value of λ is 0.05,

ore details refer to Section 5.2 . 

To sum up, we propose our new online streaming feature selec-

ion algorithm as Algorithm 2 . 

lgorithm 1 Dependency-Density . 

equire: ~~

X S : sample values on feature set S; 

R : density neighborhood relation; 

nsure: ~~

dep S : dependency on feature set S; 

1: card S : the number of positive samples on S, initialized to 0; 

2: card U : the number of instances of X S ; 

3: FOR each x i in X S 
4: find the neighbor samples of x i on R as S R (x i ) ; 

5: calculate the card value of x i as Card(S R (x i )) ; 

6: card S = card S + Card(S R (x i )) ; 

7: END FOR 

8: dep S = card S /card U ; 

9: return dep S ; 

More specifically, if a new feature f i arrives at time stamp t i ,

tep 7 calculates the dependency of f i using the dependency calcu-

ation method Dependency-Density . Step 8 compares the depen-

ency of f i with the mean dependency of the selected feature set

 . If γ f i 
is smaller than Mean Dep S 

, f i is discarded. Step 11 compares

he dependency of current feature set S with the dependency of

he feature set S ∪ f i . If the dependency of S ∪ f i is bigger than Dep S ,

hich means adding new feature f i will increase the dependency

f the selected feature set, then we add f i into S . Otherwise, if the

atio of the difference between the dependency of S ∪ f i and Dep S 
ith Dep S is less than a fixed value λ, we will analyse the feature

edundancy. For each feature in S ∪ f i , we randomly select a fea-

ure from the candidate feature set and calculate its significance

ccording to Eq. (14) . We will discard features whose significance

qual to 0. In sum, with this new online streaming feature selec-

ion algorithm, we can select features with high correlation, high

ependency, and low redundancy. 

.4. Time complexity of OFS-Density 

The time complexity of OFS-Density mainly depends on the de-

endency function Dependency-Density . 

Suppose the data set is D , the number of instances in D is N

nd the number of features in D is F . According to Section 4.2 ,

he time complexity of Dependency-Density is O ( N 

2 logN ). At time
tamp t i , a new feature f i is presented to the algorithm. Steps 6–

 calculate the dependency of f i and compare it with Mean Dep S 
the mean dependency value of each feature in selected feature

et S ). The time complexity is O ( N 

2 logN ). If the dependency of f i 
s smaller than Mean Dep S 

, f i will be discarded. Otherwise, we cal-

ulate the dependency of S ∪ f i and compare it with Dep S (the de-

endency of currently selected feature set). This time complexity is

lso O ( N 

2 logN ). If the dependency of S ∪ f i is bigger than Dep S , we

dd f i into S and go on to the next feature. If the dependency of

 ∪ f i is equal to or little smaller than Dep S , we will calculate each

eatures’ significance and remove the redundant features from S .

he time complexity of this phase is O (| S | ∗N 

2 logN ). 

Thus, the worst time complexity of OFS-Density is

 ( F 2 ∗N 

2 logN ). 

. Experimental 

.1. Experiment setup 

In this section, we apply the proposed online feature selec-

ion algorithm on fourteen data sets, including four UCI data sets

WDBC, HILL VALLEY, IONOSPHERE,SONAR), nine DNA microarray

ata sets (PROSTATE-std, COLON, LYMPHOMA-std, DLBCL, GLIOMA,

RBCT-std, LUNG2, LEUKEMIA-std, MLL) [41,42] and one NIPS 2003

ata set (ARCENE) [6] as shown in Table 2 . 

In our experiments, we use three basic classifiers, KNN, SVM,

nd CART in Matlab R2015b to evaluate a selected feature subset.

e perform 10-fold cross-validation on each data set. Feature se-

ection is training on 9/10 data samples and testing on the rest
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Table 2 

Experimental data sets. 

Data set Instances Features Classes 

IONOSPHERE 351 34 2 

WDBC 569 30 2 

SONAR 208 60 2 

HILL 606 100 2 

COLON 62 20 0 0 2 

SRBCT 63 2308 4 

LUNG2 203 3312 5 

LYMPHOMA 62 4026 3 

GLIOMA 50 4433 4 

MLL 72 5848 3 

PROSTATE 102 6033 2 

DLBCL 77 6285 2 

LEU 72 7129 2 

ARCENE 200 10 0 0 0 2 

Fig. 5. Predictive accuracy in KNN varying with four different values of λ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Predictive accuracy in SVM varying with four different values of λ . 

Fig. 7. Predictive accuracy in CART varying with four different values of λ . 

Fig. 8. Running Time varying with four different values of λ . 
1/10 data. All competing algorithms use the same training and

testing data for each fold. All experimental results are conducted

on a PC with Intel(R) i5-3470S, 2.9 GHz CPU, and 8GB memory. 

To validate whether OFS-Density and its rivals have significant

differences in the predictive accuracy, we conduct the Friedman

test at a 95% significance level [43] , under the null-hypothesis. The

performance of OFS-Density and its rivals has no significant differ-

ence if the null-hypothesis is accepted. When the null-hypothesis

at the Friedman test is rejected, we continuously proceed with the

Nemenyi test [43] as a post-hoc test. With the Nemenyi test, the

performance of those two methods is significantly different if the

corresponding average rankings differ by at least the critical differ-

ence (how to calculate the critical difference, please see [43] ). 

5.2. Analysis of λ in OFS-Density 

In this subsection, we will analyse the influence of λ in OFS-

Density. We select three values (0.01, 0.05 and 0.1) of λ and the

exactly equal constraint ( λ = 0 ) as compared ones. 

Figs. 5–7 show the experimental results of our new algorithm

with four different λ values (0, 0.01, 0.05 and 0.1) on these

data sets (the data sets from 1 to 14 are IONOSPHERE, WDBC,

SONAR, HILL, COLON, SRBCT, LUNG2, LYMPHOMA , GLIOMA , MLL,

PROSTATE, DLBCL, LEU, ARCENE). Figs. 8 and 9 show the mean

number of selected features and running time on these data sets.

In these experiments, we select KNN, SVM, and CART as the basic

classifiers, and the value of k in KNN is set to 1. 
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Fig. 9. The mean number of selected features on four different values of λ . 

Table 3 

The mean values of different λ on predictive accuracy, running time 

and number of selected features. 

λ = 0 λ = 0 . 01 λ = 0 . 05 λ = 0 . 1 

KNN classifer 0.8213 0.8215 0.8467 0.8433 

SVM classifer 0.8321 0.8272 0.8411 0.8405 

CART classifer 0.7942 0.7950 0.7982 0.8029 

Running time 4.1152 4.1929 5.6289 25.3083 

Selected features 16.5785 7.3571 11.7785 26.1428 

Table 4 

P -values of λ = 0 VS. λ = 0 . 01 , 0 . 05 , 0 . 1 . 

λ = 0 λ = 0 . 01 λ = 0 . 05 λ = 0 . 1 

KNN classifer – 0.5930 0.2482 0.7815 

SVM classifer – 0.7815 0.0833 0.5930 

CART classifer – 0.5930 0.4054 0.4054 

Running time – 0.5930 0.0075 0.0075 

Selected features – 0.0 0 02 0.0075 0.1088 
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Fig. 10. Predictive accuracy using KNN on different feature stream orders. 

Fig. 11. predictive accuracy using SVM on different feature stream orders. 
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In Fig. 8 , the running time of λ = 0 . 1 is 308.956. In Fig. 9 , the

umber of selected features of λ = 0 . 1 is 223.9. Table 3 shows the

ean value of predictive accuracy, running time and number of

elected features with different values of λ. 

Besides, with the Friedman test, the p -values of λ = 0 (exactly

qual) vs. λ = 0 . 01 , 0 . 05 , 0 . 1 on predictive accuracy, running time

nd number of selected features can be seen in Table 4 . 

From Figs. 5–9 and Tables 3 and 4 , we have the following ob-

ervations. 

• There is no significant difference in predictive accuracy with

different values of λ. λ = 0 . 05 gets the best performance with

KNN and SVM classifiers and λ = 0 . 1 gets the highest mean

predictive accuracy with CART classifier. 
• With the increasing of values of λ, the corresponding running

time increases rapidly. This is because a bigger λ value means

more times to run the feature redundancy analysis. 
• On the number of selected features, λ = 0 selects more fea-

tures than λ = 0 . 01 and λ = 0 . 05 . This indicates that the exactly

equal constraint can lead to some redundant features. However,

λ = 0 . 1 selects the maximum number of features and consumes

the maximum running time. Thus, bigger values of λ do not

mean a better performance. 

In sum, relaxing the exactly equal restriction can remove re-

undant features and get a promotion on the predictive accuracy.

owever, the λ value is not the bigger the better. In the next ex-

eriments, we will use λ = 0 . 05 for the OFS-Density algorithm. 
.3. Influence of feature stream order 

In this subsection, we will validate the influence of feature

tream order on our new neighborhood relation and new online

treaming feature selection algorithm. We compare three types of

eature stream orders: original, inverse and random. 

Figs. 10–12 show the experimental results of our new algo-

ithm with three different f eature stream orders on these data sets.

igs. 13 and 14 show the mean number of selected features and

unning time on these data sets. In these experiments, we select

NN, SVM, and CART as the basic classifiers and the value of k in

NN is set to 1. 

The p-values of original vs. inverse and random on predictive

ccuracy, running time and number of selected features can be

een in Table 5 . 

From Figs. 10–14 , we can see that there are minor fluctuations

n predictive accuracy, running time and number of selected fea-

ures varying with different feature stream orders. From Table 5 ,

e can see that there is no significant difference among these

hree orders on predictive accuracy, running time and number of

elected features, except in the cases of original vs. inverse with

VM classifier. The main reason is that SVM classifier is robust and

he predictive accuracy basically increases with the number of se-



56 P. Zhou et al. / Pattern Recognition 86 (2019) 48–61 

Fig. 12. Predictive accuracy using CART on different feature stream orders. 

Fig. 13. Running time varying with different feature stream orders. 

Fig. 14. The mean number of selected features on different feature stream orders. 

Table 5 

The p -values of original VS. inverse and random. 

Original Inverse Random 

KNN classifer – 0.5637 0.5271 

SVM classifer – 0.0039 0.1317 

CART classifer – 0.7815 0.5930 

Running time – 1.0 0 0 0 0.2850 

Selected features – 0.2850 0.5930 
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ected features. Meanwhile, our new method selects few features

nd this makes the predictive performance with SVM is unstable.

n sum, the feature stream order has little influence on our new

nline streaming feature selection method. 

.4. OFS-Density vs. traditional feature selection methods 

In this subsection, we compare OFS-Density with eight rep-

esentative traditional feature selection methods, including Fisher

core [27] , ReliefF [28] , PCC (Pearson Correlation Coefficient) [44] ,

aplacian Score [31] , MI (mutual information) [29] , INF [32] , LLC-FS

33] and FSV [30] . 

All these algorithms are implemented in MATLAB [45] . The K

alue of ReliefF is set to 5 for the best performance. None of these

ight traditional feature selection methods can handle the scenario

f feature streaming in an online manner. Thus, we rank all the

eatures evaluated by these traditional feature selection methods

rom high to low and select the same number of features as OFS-

ensity. We evaluate OFS-Density and all competing ones on the

redictive accuracy with 10-fold cross-validation. 

Tables 6–8 summarize the predictive accuracy of OFS-Density

gainst the other eight competing algorithms using the basic clas-

ifiers of KNN (k = 1), SVM and CART. The p -values of Fried-

an test on KNN, SVM and CART are 2.9390e −10, 1.2618e −07, and

.7607e −07. Thus, there is a significant difference between OFS-

ensity and other eight competing algorithms respectively on pre-

ictive accuracy. According to the Nemenyi test, the value of CD

critical difference) is 3.2132. 

From Tables 6–8 , we have the following observations. 

• OFS-Density vs. Fisher. According to the values of average rank-

ings and CD, there is no significant difference between OFS-

Density and Fisher on predictive accuracy with these three

classifiers. OFS-Density outperforms Fisher on ten of fourteen

datasets in cases with KNN, SVM, and CART. This is because

Fisher measures the features independently, and it can not con-

sider the information of the selected feature set as an integral.

In total, OFS-Density performs better than Fisher. 
• OFS-Density vs. PCC. There is a significant difference between

OFS-Density and PCC in predictive accuracy with KNN, and

there is no significant difference between them with CART

and SVM. OFS-A3M outperforms PCC on eleven of the four-

teen datasets. For some data sets, such as SRBCT, DLBCL, and

ARCENE, OFS-Density is higher PCC over 20% on predictive ac-

curacy. PCC can not handle some datasets well. OFS-Density is

superior to PPC. 
• OFS-Density vs. ReliefF. There is no significant difference in pre-

dictive accuracy between OFS-A3M and ReliefF with KNN, SVM,

and CART. OFS-Density gets the higher predictive accuracy than

ReliefF on twelve of the fourteen datasets. ReliefF also uses the

neighbors’ information for feature selection. However, ReliefF

does not discriminate redundant features which makes it per-

formance bad on some data sets, such as GLIOMA. 
• OFS-Density vs. MI. There is a significant difference between

OFS-Density and MI with these three classifiers. OFS-A3M out-

performs MI on thirteen of the fourteen datasets at least. The
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Table 6 

Predictive accuracy using the KNN classifier. 

Data set OFS-Density Fisher PCC ReliefF MI Laplacian INF LLC-FS FSV 

IONOSPHERE 0.8943 0.88 0.8743 0.8229 0.7943 0.8343 0.8171 0.8543 0.7943 

WDBC 0.9385 0.9332 0.9332 0.8962 0.9016 0.9244 0.9367 0.9086 0.9016 

SONAR 0.6827 0.7108 0.7108 0.6779 0.5479 0.5955 0.6955 0.6684 0.5479 

HILL 0.595 0.5314 0.5314 0.557 0.5545 0.4967 0.5033 0.5479 0.5545 

COLON 0.75 0.7333 0.7333 0.7167 0.5167 0.5167 0.5667 0.6167 0.5167 

SRBCT 0.8833 0.8833 0.5833 0.8667 0.6333 0.3167 0.2667 0.3833 0.6333 

LUNG2 0.93 0.79 0.815 0.8 0.745 0.765 0.81 0.79 0.835 

LYMPHOMA 1 0.9833 0.95 0.9667 0.7833 0.9333 0.6 0.95 0.7833 

GLIOMA 0.68 0.64 0.66 0.26 0.56 0.42 0.4 0.48 0.62 

MLL 0.9286 0.9 0.7857 0.9286 0.6429 0.8429 0.9143 0.8714 0.8286 

PROSTATE 0.93 0.91 0.91 0.91 0.63 0.59 0.48 0.72 0.63 

DLBCL 0.95 0.7925 0.4425 0.8125 0.605 0.685 0.7375 0.7625 0.7875 

LEUKEMIA 0.9571 0.8714 0.8714 0.8429 0.6 0.5857 0.4714 0.4714 0.6 

ARCENE 0.86 0.655 0.615 0.675 0.585 0.7 0.715 0.655 0.69 

AVG. ACCURACY 0.8556 0.8010 0.7439 0.7666 0.6499 0.6575 0.6367 0.6913 0.6944 

AVG. RANKS 8.7143 6.5714 5.50 0 0 5.6071 2.8571 3.2857 3.9643 4.2857 4.2143 

Table 7 

Predictive accuracy using the SVM calssifier. 

Data set OFS-Density Fisher PCC ReliefF MI Laplacian INF LLC-FS FSV 

IONOSPHERE 0.8143 0.8571 0.8343 0.6914 0.84 0.6971 0.6686 0.7771 0.84 

WDBC 0.9614 0.9526 0.9526 0.9209 0.9244 0.9297 0.9526 0.9437 0.9244 

SONAR 0.7504 0.7361 0.7361 0.7008 0.5674 0.6165 0.6456 0.6476 0.5674 

HILL 0.5339 0.5074 0.5074 0.5207 0.5074 0.5099 0.5058 0.5149 0.5074 

COLON 0.8167 0.85 0.85 0.8667 0.65 0.7 0.6833 0.7167 0.65 

SRBCT 0.8 0.8833 0.6667 0.75 0.6833 0.3833 0.3667 0.3 0.6833 

LUNG2 0.935 0.845 0.84 0.85 0.85 0.82 0.865 0.86 0.85 

LYMPHOMA 0.9833 0.9333 0.9 0.9167 0.6833 0.9 0.65 0.9167 0.6833 

GLIOMA 0.6 0.58 0.6 0.28 0.6 0.46 0.48 0.42 0.48 

MLL 0.9286 0.9429 0.9 0.9429 0.7 0.9143 0.9429 0.8857 0.9 

PROSTATE 0.94 0.92 0.92 0.94 0.59 0.6 0.47 0.73 0.59 

DLBCL 0.975 0.8625 0.7875 0.825 0.6925 0.71 0.685 0.7625 0.8 

LEUKEMIA 0.9429 0.9 0.9 0.8857 0.6143 0.6429 0.5857 0.6 0.6143 

ARCENE 0.805 0.725 0.625 0.65 0.575 0.635 0.67 0.66 0.725 

AVG. ACCURACY 0.8418 0.8210 0.7871 0.7672 0.6769 0.6799 0.6550 0.6953 0.7010 

AVG. RANKS 8.1071 7.0 0 0 0 5.3214 5.6429 3.3929 3.6786 3.4643 4.3214 4.0714 

Table 8 

Predictive accuracy using the CART calssifier. 

Data set OFS-Density Fisher PCC ReliefF MI Laplacian INF LLC-FS FSV 

IONOSPHERE 0.9114 0.8829 0.86 0.7943 0.8371 0.8314 0.8029 0.8114 0.8371 

WDBC 0.9262 0.9227 0.9227 0.891 0.9158 0.9209 0.9245 0.9121 0.9158 

SONAR 0.6965 0.7261 0.7261 0.5807 0.514 0.5331 0.6436 0.5875 0.514 

HILL 0.5926 0.5107 0.5107 0.5248 0.5091 0.4983 0.4835 0.5124 0.5091 

COLON 0.7833 0.7833 0.7833 0.7667 0.6333 0.5333 0.6167 0.6667 0.6333 

SRBCT 0.75 0.9167 0.65 0.8167 0.7 0.3 0.25 0.3167 0.7 

LUNG2 0.83 0.795 0.785 0.82 0.715 0.82 0.8 0.82 0.8 

LYMPHOMA 0.9667 0.85 0.8833 0.85 0.65 0.8833 0.7 0.9 0.65 

GLIOMA 0.52 0.62 0.62 0.34 0.4 0.48 0.38 0.5 0.48 

MLL 0.8571 0.8143 0.8571 0.8571 0.6 0.8286 0.8571 0.7714 0.8714 

PROSTATE 0.89 0.91 0.91 0.93 0.65 0.59 0.48 0.65 0.65 

DLBCL 0.9125 0.825 0.8125 0.7875 0.68 0.7225 0.6475 0.725 0.8 

LEUKEMIA 0.8714 0.9286 0.9286 0.8429 0.5429 0.6714 0.6 0.5 0.5429 

ARCENE 0.805 0.65 0.585 0.645 0.595 0.68 0.66 0.66 0.715 

AVG. ACCURACY 0.8080 0.7953 0.7738 0.7461 0.6387 0.6637 0.6318 0.6666 0.6870 

AVG. RANKS 7.9643 6.6071 6.2143 5.0 0 0 0 2.8571 4.0 0 0 0 3.3929 4.4643 4.50 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

features are evaluated independently with MI which makes it

performance inferior to OFS-Density. 
• OFS-Density vs. Laplacian Score. There is a significant difference

between OFS-Density and Laplacian in predictive accuracy with

these three classifiers. OFS-Density outperforms Laplacian Score

on all of these datasets. As an unsupervised method, Laplacian

Score does not use the class information for feature selection.

In general, Laplacian Score performance inferior to OFS-Density.
• OFS-Density vs. INF. INF gets the lowest mean predictive ac-

curacy and there is a significant difference between OFS-

Density and INF with these three classifiers. OFS-Density out-
performs INF on thirteen of the fourteen datasets. On some

data sets, such as SRBCT, LYMPHOMA , GLIOMA , PROSTATE, and

LEUKEMIA, INF performs badly. INF is an unsupervised method

and the performance is inferior to OFS-Density. 
• OFS-Density vs. LLC-FS. There is a significant difference be-

tween OFS-Density and LLC-FS with these three classifiers.

Meanwhile, OFS-Density performs better than LLC-FS on all

these data sets. 
• OFS-Density vs. FSV. There is a significant difference between

OFS-Density and FSV in predictive accuracy. Although FSV is a

wrapper method, OFS-Density performs better than FSV on thir-
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Table 9 

Predictive accuracy using KNN as the base classifier. 

Data set OFS-Density Grafting α-investing OSFS Fast-OSFS SAOLA OS-SA OFS-A3M 

IONOSPHERE 0.9057 0.8714 0.9 0.8686 0.8743 0.8714 0 0.8571 

WDBC 0.9403 0.9403 0.9561 0.9614 0.9632 0.9104 0.186 0.9561 

SONAR 0.6759 0.8599 0.7817 0.7256 0.7093 0.6293 0.7632 0.8308 

HILL 0.5686 0.5397 0.638 0 0 0 0 0.6182 

COLON 0.85 0.7167 0.4667 0.6667 0.75 0.8333 0.6333 0.8 

SRBCT 0.8833 0.7167 0.5667 0.7167 0.7333 0.7667 0.6833 0.85 

LUNG2 0.925 0.92 0.825 0.79 0.83 0.88 0 0.9 

LYMPHOMA 0.9833 0.8833 0.7333 0.9333 0.9167 0.9667 0.9333 0.9 

GLIOMA 0.56 0.5 0.46 0.54 0.54 0.66 0 0.76 

MLL 0.9 0.9714 0.9571 0.7714 0.8143 0.9429 0 0.9286 

PROSTATE 0.94 0.7 0.77 0.85 0.84 0.88 0.76 0.78 

DLBCL 0.875 0.925 0.825 0.775 0.9375 0.925 0 0.8125 

LEUKEMIA 0.9143 0.7 0.6 0.8857 0.9143 0.9143 0.8 0.8571 

ARCENE 0.865 0.595 0.675 0.62 0.705 0.63 0 0.765 

AVG. ACCURACY 0.8418 0.7742 0.7253 0.7217 0.7519 0.7721 0.3399 0.8296 

AVG. RNAKS 6.3929 4.2857 3.8929 3.7857 5.0714 5.1786 2.0714 5.3214 

Table 10 

Predictive accuracy using SVM as the base classifier. 

Data set OFS-Density Grafting α-investing OSFS Fast-OSFS SAOLA OS-SA OFS-A3M 

IONOSPHERE 0.8229 0.8686 0.8657 0.8714 0.8771 0.8686 0 0.7771 

WDBC 0.9614 0.9631 0.9737 0.9649 0.9631 0.9139 0.1912 0.9684 

SONAR 0.7637 0.7398 0.7336 0.7546 0.7531 0.7236 0.7388 0.714 

HILL 0.5364 0.5124 0.5554 0 0 0 0 0.538 

COLON 0.8833 0.65 0.65 0.7833 0.7667 0.8667 0.6333 0.8333 

SRBCT 0.8 0.7333 0.3667 0.7 0.7 0.8167 0.7167 0.9167 

LUNG2 0.915 0.94 0.9 0.865 0.89 0.9 0 0.915 

LYMPHOMA 1 0.8667 0.7667 0.9667 0.9 0.9667 0.9333 0.8667 

GLIOMA 0.68 0.64 0.44 0.58 0.6 0.62 0 0.7 

MLL 0.8857 0.9714 0.9857 0.8429 0.8571 0.9 0 0.9143 

PROSTATE 0.96 0.66 0.84 0.9 0.91 0.87 0.86 0.78 

DLBCL 0.8875 0.9375 0.855 0.85 0.925 0.925 0 0.85 

LEUKEMIA 0.9143 0.6714 0.6857 0.9 0.9714 0.9429 0.8714 0.9 

ARCENE 0.82 0.68 0.76 0.65 0.695 0.625 0 0.75 

AVG. ACCURACY 0.8450 0.7738 0.7413 0.7592 0.7720 0.7813 0.3531 0.8159 

AVG. RANKS 6.1786 4.6429 4.1429 4.2500 4.8571 4.8214 2.1786 4.9286 
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teen of the fourteen datasets. Thus, OFS-Density is superior to

FSV. 

In sum, OFS-Density provides best overall performance on these

data sets with the same number of selected features and gets the

highest mean predictive accuracy and ranks with KNN, SVM, and

CART. 

5.5. OFS-Density vs. online streaming feature selection methods 

In this subsection, we compare our algorithm with seven state-

of-the-art online feature selection methods: Grafting [4] , Alpha-

investing [5] , OSFS [6] , Fast-OSFS [6] , SAOLA [3] , OS-NRRSARA-SA

[9] and OFS-A3M [10] . 

All aforementioned algorithms are implemented in MATLAB

[46] . For we cannot get the source code of OS-NRRSARA-SA, we

implemented it by ourselves. The significance level α is set to 0.01

for OSFS, Fast-OSFS, and SAOLA. For Grafting, the parameter λ is

set to 0.5. For Alpha-investing, the parameters are set to the values

used in [5] . For OS-NRRSARA-SA, it can not deal with real-valued

data directly. In order to convert real-valued data to discrete value

data, we used the method proposed by Guyon and Elisseeff [2] . 

Tables 9–11 summarize the predictive accuracy of OFS-Density

against the other seven algorithms using the KNN (k = 1), SVM

and CART classifiers. Tables 12 and 13 show the running time and

the number of selected features of OFS-Density against other algo-

rithms. If the algorithm selects all the features in data sets or se-

lects none of the features, we set the predictive accuracy and the

number of selected features to 0. The p -values of Friedman test on

KNN, SVM, CART, running time and number of selected features are
.3499e −04, 0.0056, 0.0179, 1.3351e −28 and 3.8769e −14 respec-

ively. Thus, there is a significant difference between OFS-Density

nd other seven competing algorithms respectively on predictive

ccuracy, running time and number of selected features. According

o the Nemenyi test, the value of CD (critical difference) is 2.8085. 

From Tables 9–13 , we have the following observations. 

• OFS-Density vs. Grafting. With the Friedman test and Nemenyi

test, there is no significant difference between OFS-Density and

Grafting on predictive accuracy with KNN, SVM, and CART, but

there is a significant difference on the number of selected fea-

tures. OFS-Density outperforms Grafting on nine of the fourteen

datasets at least in predictive accuracy, while Grafting selects

the most number of features among all these compared meth-

ods. Thus, there must a lot of redundant features in the selected

feature subset with Grafting. Meanwhile, OFS-Density is faster

than Grafting. 
• OFS-Density vs. Alpha-investing. Alpha-investing is the fastest

algorithm among all these compared algorithms. There is no

significant difference between OFS-Density and Alpha-investing

on predictive accuracy with KNN, SVM, and CART. OFS-Density

outperforms Alpha-investing on ten of the fourteen datasets at

least. In the same time, the features selected by Alpha-investing

cannot fit for some datasets well. For instance, Alpha-investing

only gets the predictive accuracy of around 0.3 and 0.4 on

dataset SRBCT with KNN and SVM respectively. For some data

sets, such as COLON, SRBCT, and LEUKEMIA, Alpha-investing

only selects one or two features. The reason is that these data
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Table 11 

Predictive accuracy using CART as the base classifier. 

Data set OFS-Density Grafting α-investing OSFS Fast-OSFS SAOLA OS-SA OFS-A3M 

IONOSPHERE 0.8971 0.8886 0.8743 0.8743 0.8829 0.8829 0 0.8457 

WDBC 0.9209 0.9263 0.9227 0.9403 0.9368 0.891 0.1737 0.9174 

SONAR 0.6722 0.7113 0.7336 0.6351 0.6802 0.6817 0.7446 0.7504 

HILL 0.5901 0.5066 0.5884 0 0 0 0 0.5992 

COLON 0.7333 0.65 0.5333 0.7167 0.7667 0.8333 0.6667 0.7167 

SRBCT 0.8167 0.5667 0.6333 0.7167 0.7333 0.8833 0.7 0.7833 

LUNG2 0.855 0.915 0.81 0.78 0.795 0.83 0 0.815 

LYMPHOMA 0.85 0.7833 0.7667 0.8667 0.8667 0.85 0.95 0.8833 

GLIOMA 0.54 0.56 0.4 0.6 0.5 0.62 0 0.58 

MLL 0.9143 0.8286 0.7429 0.7714 0.9 0.8571 0 0.7857 

PROSTATE 0.9 0.78 0.84 0.89 0.85 0.83 0.82 0.76 

DLBCL 0.8 0.6925 0.775 0.7975 0.81 0.8 0 0.825 

LEUKEMIA 0.8857 0.7857 0.5714 0.9143 0.8714 0.8714 0.8571 0.8429 

ARCENE 0.7 0.69 0.76 0.615 0.72 0.655 0 0.7 

AVG. ACCURACY 0.7910 0.7346 0.7108 0.7227 0.7366 0.7489 0.3508 0.7717 

AVG. RANKS 5.8929 4.0 0 0 0 3.5357 4.4286 5.2857 5.1071 2.6786 5.0714 

Table 12 

Running time (seconds). 

Data set OFS-Density Grafting α-investing OSFS Fast-OSFS SAOLA OS-SA OFS-A3M 

IONOSPHERE 0.3373 0.2074 0.0021 0.1265 0.0162 0.0117 0.162 0.0117 

WDBC 0.6073 3.6651 0.0036 0.1225 0.0584 0.0136 0.3312 0.0136 

SONAR 0.1874 0.4152 0.0037 0.0503 0.0216 0.0159 3.2413 0.0159 

HILL 10.8671 33.1627 0.0109 0.015 0.0149 0.0153 0.5784 0.0153 

COLON 0.9031 4.1893 0.0716 0.4131 0.2945 0.3117 35.7356 0.3117 

SRBCT 1.0019 7.5742 0.0912 1.8171 0.5312 0.8129 87.2487 0.8129 

LUNG2 9.6493 10.607 0.6714 62.784 3.3015 2.172 47.6706 2.172 

LYMPHOMA 3.4191 6.0938 0.2181 10.2915 2.0148 4.4564 68.2504 4.4564 

GLIOMA 1.8031 2.9393 0.2362 5.0781 1.3078 2.3033 17.4906 2.3033 

MLL 3.102 2.0967 0.4509 12.4407 2.0482 4.9122 39.708 4.9122 

PROSTATE 4.51 9.8044 0.3489 2.4136 1.14 4 4 1.4457 186.6152 1.4457 

DLBCL 3.7305 2.6564 0.4503 3.0092 1.204 1.5468 52.3555 1.5468 

LEUKEMIA 3.801 7.9587 0.4426 4.2189 1.3923 1.9461 121.5487 1.9461 

ARCENE 36.2364 70.4346 0.9856 9.0093 2.0664 3.049 446.1125 3.049 

AVG. ACCURACY 5.7253 11.5574 0.2847 7.9849 1.1011 1.6437 79.0749 1.6437 

AVG. RANKS 5.5714 6.50 0 0 1.0 0 0 0 5.7143 2.5714 3.5714 7.50 0 0 3.5714 

Table 13 

The number of selected features. 

Data set OFS-Density Grafting α-investing OSFS Fast-OSFS SAOLA OS-SA OFS-A3M 

IONOSPHERE 3.7 31.7 7.7 3.7 4 3.9 0 5.8 

WDBC 5.7 15.7 18.8 3 4 2 3.1 15.2 

SONAR 4.1 29.4 12.1 2.9 3 2.6 11.4 23 

HILL 6 1 9.3 0 0 0 0 19.1 

COLON 5.8 66.3 1 1.9 2.5 3.9 7.4 32.1 

SRBCT 4.6 74.9 1 2.3 5.1 20.3 8.2 11.7 

LUNG2 20.5 166.7 37.5 6 9.9 29.7 0 21.7 

LYMPHOMA 25.8 71.3 3.4 3.2 5.6 37 4.1 6.9 

GLIOMA 5.5 58.4 3.4 1.5 4 16.7 0 21.5 

MLL 8.7 53.6 9.5 2.6 5.1 32.9 0 8.9 

PROSTATE 5.4 114.2 2 1.7 3.5 11.7 6.9 50.1 

DLBCL 10.4 61.2 7.3 2.3 5.1 20.2 0 13 

LEUKEMIA 4.2 81.6 1.9 2.6 5.3 20.3 6.4 14.6 

ARCENE 60.4 122.3 8.3 2.5 5.5 19.1 0 44.4 

AVG. ACCURACY 12.2 67.7 8.8 2.5 4.4 15.7 3.3 20.5 

AVG. RANKS 4.5357 7.7143 4.2143 1.9286 3.4643 5.0357 2.8929 6.2143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sets are very sparse and Alpha-investing can only select the

first few features of these data sets. 
• OFS-Density vs. OSFS. There is no significant difference between

OFS-Density and OSFS on predictive accuracy, running time and

number of selected features. OFS-Density outperforms OSFS on

eleven of the fourteen datasets at least. On dataset HILL, OSFS

cannot select any features and gets the prediction accuracy 0.

In addition, OFS-Density is faster than OSFS in running time.

OSFS selects the least number of features among all these com-

pared algorithms. Thus, some important information is proba-

bly missed which causes the low predictive accuracy. 
• OFS-Density vs. Fast-OSFS. There is no significant difference be-

tween OFS-A3M and Fast-OSFS on predictive accuracy. OFS-A3M

performs better than Fast-OSFS on ten of the fourteen datasets.

Meanwhile, Fast-OSFS is faster than OFS-A3M. However, as sim-

ilar to OSFS, Fast-OSFS also selects very few features on data

sets, which leads to the missing of some important information.
• OFS-Density vs. SAOLA. There is no significant difference be-

tween OFS-Density and SAOLA on predictive accuracy with

KNN, SVM, and CART. SAOLA is faster than OFS-Density and se-

lects more features than OFS-Density. However, OFS-A3M out-

performs SAOLA on nine of the fourteen datasets at least in pre-
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dictive accuracy. Thus, the features selected by OFS-Density is

more discriminative. Meanwhile, on the data set HILL, SAOLA

cannot select any features and get the predictive accuracy 0.

This demonstrates that SAOLA cannot handle some types of

data well. 
• OFS-Density vs. OS-NRRSARA-SA. There is a significant differ-

ence between OFS-Density and OS-NRRSARA-SA on predictive

accuracy. On seven of the fourteen datasets, OS-NRRSARA-SA

selects all the features of the datasets and we set the predictive

accuracy and number of selected features to 0. The main rea-

son for this is OS-NRRSARA-SA cannot deal with continues fea-

tures directly and it can not select discriminative features after

data converted. Meanwhile, OS-NRRSARA-SA spends the max-

imum running time among all these compared methods. OS-

NRRSARA-SA uses the classical rough set for feature selection

which makes it need not set any parameters before learning.

However, it cannot deal with real-valued data directly and can-

not handle some datasets well. 
• OFS-Density vs. OFS-A3M. There is no significant difference be-

tween OFS-Density and OFS-A3M on predictive accuracy. OFS-

Density performs a little better than OFS-A3M. Meanwhile, OFS-

A3M runs faster and selects more features. Similar to OFS-

Density, OFS-A3M also uses adaptive neighborhood rough set

relation for feature selection. However, OFS-A3M uses the ex-

actly equal constraint for feature redundant analysis, which

makes it select more features and cause more redundancy. 

In our experiments, we have conducted 10-fold cross-validation

on each data set. We randomly divided the instances of each

data set into 10 folds. The instances used for feature selection in

Sections 5.4 and 5.5 are different. Thus, the corresponding selected

features in Sections 5.4 and 5.5 are probably different. For OFS-

Density, there is not only one combination of features, which can

make the dependency of the selected feature subset achieve the

maximal. Thus, although given the same data set, if the training in-

stances are different, the final selected feature subset will be prob-

ably different too. 

In sum, OFS-Density is not faster than some compared methods,

but it outperforms all competing algorithms on predictive accuracy.

6. Conclusion 

In this paper, we proposed a new method for online stream-

ing feature selection. Our new algorithm is based on neighborhood

rough set theory which does not require domain information be-

fore learning. We proposed a new density neighborhood relation

which automatically decides the number of neighbors during de-

pendency calculation by the density information of the surround-

ing instances. With this new neighborhood relation, we need not

specify any parameters in advance. Meanwhile, we use a fuzzy

equal constraint for redundancy analysis which makes the selected

feature subset small and discriminative. As compared to eight tra-

ditional feature selection methods and seven state-of-the-art on-

line streaming feature selection algorithms, the proposed algorithm

is superior to traditional feature selection methods with the same

number of features and performs better than online streaming fea-

ture selection algorithms in an online manner. As we have known,

neighborhood rough set is one of tolerance rough sets. In our fu-

ture work, we will attempt to apply fuzzy rough sets in online

streaming feature selection. 
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