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ABSTRACT

Online streaming feature selection which deals with streaming features in an online manner plays a crit-
ical role in big data problems. Many approaches have been proposed to handle this problem. However,
most existing methods need domain information before learning and specify some parameters in ad-
vance. In real-world applications, we cannot always require the domain information and it is a big chal-
lenge to specify uniform parameters for all different types of data sets. Motivated by this, we propose a
new online streaming feature selection method based on adaptive density neighborhood relation, named
OFS-Density. More specifically, with the neighborhood rough set theory, OFS-Density does not require the
domain information before learning. Meanwhile, we propose a new adaptive neighborhood relation using
the density information of the surrounding instances, which does not need to specify any parameters in
advance. By the fuzzy equal constraint, OFS-Density can select features with a low redundancy. Finally,
experimental studies on fourteen datasets show that OFS-Density is superior to traditional feature selec-
tion methods with the same numbers of features and state-of-the-art online streaming feature selection
algorithms in an online manner.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Feature selection aims to select a subset of feature space from
the original data set which is “as good as possible”. It plays an im-
portant role in machine learning and pattern recognition [1]. The
main task of feature selection is to remove irrelevant and redun-
dant features from the feature space. There are many benefits from
feature selection, such as reducing storage requirements and train-
ing time, facilitating data visualization and improving predictive
accuracy [2].

With the increase of the data volume and dimensionality, tra-
ditional feature selection methods cannot fit the demand in ef-
ficiency any more [3]. Online streaming feature selection which
deals with streaming features has attracted much attention in re-
cent years [3-11]. Streaming features are defined as features that
flow in one by one over time whereas the number of training ex-
amples is fixed [6]. As the features flow in one by one over time,
we must decide whether to keep or discard the new arriving fea-
ture at each time stamp and we do not know the information of
whole feature space before learning. There are two major reasons
for online streaming feature selection: 1) The feature space is un-
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known or even infinite and 2) the feature space is known but fea-
ture streaming offers many advantages [9]. However, most of ex-
isting online streaming feature selection methods need domain in-
formation before learning and need specifying some parameters in
advance. For instance, Grafting [4]| needs to specify the parameter
A before learning and a proper value of A is important to the final
predictive accuracy. However, in real-world applications, we can
not require the domain information before learning. Meanwhile, it
is a challenge to specify uniform parameters for all types of data
sets and it is infeasible to specify different parameters for differ-
ent data sets. Motivated by this, we design a new online streaming
feature selection method which need not any domain information
and does not need to specify any parameters before learning.
Rough set theory [12], as an effective tool for feature selection,
rule extraction, and knowledge discovery can provide an important
advantage, that is, rough set-based data mining does not require
any domain knowledge other than the given dataset. For example,
OS-NRRSARA-SA [9] is a classical rough set based online streaming
feature selection method which need not specify any parameters
in advance. However, OS-NRRSARA-SA cannot deal with numeri-
cal data directly, because the classical Rough Set theory is origi-
nally proposed to deal with categorical data. In real-world appli-
cations, there are many numerical features in the data sets. Thus,
fuzzy rough set [13-18] and neighborhood rough set [19-21] which
supports both continuous and discrete data was proposed to deal
with this challenge. OFS-A3M [10] based on neighborhood rough
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set theory is a new method for online streaming feature selec-
tion. With a new GAP neighborhood relation, OFS-A3M does not
require domain information before learning and need not specify
any parameters in advance. Nevertheless, OFS-A3M uses exact de-
pendency equal constraint for feature redundancy analysis, which
is too strict for real data sets and leads to some redundant features
in the selected feature subset.

Therefore, in this paper, we propose a new online streaming
feature selection method, named OFS-Density. Our contributions
are as follows:

» Based on neighborhood rough set, OFS-Density does not require
domain information before learning. As we know that, rough
set-based data mining does not require any domain knowledge.

» We propose a new neighborhood relation which using the den-
sity information of the surrounding instances. With this new
density neighborhood relation, OFS-Density can automatically
select a proper number of neighbors during online feature se-
lection. Therefore, OFS-Density need not specify any parameters
in advance.

o OFS-Density uses a fuzzy equal constraint for redundant anal-
ysis to make the selected feature subset with low redundancy.
Rough set based feature selection methods always use the con-
dition of feature significance equal to zero for feature redun-
dant analysis. However, in real data sets, the exactly equal con-
straint is too strict. With fuzzy equal constraint, OFS-Density
can consider more candidate features for feature redundancy
analysis which makes the final selected feature subset small
and discriminative. The parameter A used for fuzzy equal con-
straint makes OFS-Density can consider more features for re-
dundant analysis. Meanwhile, in Section 5.2, we conclude that
the A value is not the bigger the better and it is set to A = 0.05
for OFS-Density.
Extensive experimental studies of eight traditional feature se-
lection methods and seven online streaming feature selec-
tion approaches show that our proposed algorithm can get
better performance than traditional feature selection methods
with the same number of features and state-of-the-art online
streaming feature selection approaches in an online manner.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 gives a brief introduc-
tion to neighborhood rough set theory. Section 4 presents our new
proposed method for streaming feature selection. Section 5 reports
experimental results and Section 6 concludes the paper.

2. Related work

In this section, we give an introduction to some representative
traditional feature selection methods and the state-of-the-art on-
line streaming feature selection algorithms.

Feature selection can have numerous benefits such as faster
model training, reduced susceptibility to overfitting, offsetting the
pernicious effects of the curse of dimensionality, and reducing stor-
age, memory, and processing requirements during data analysis [1].
According to how the label information is used, feature selection
algorithms can be divided into supervised [22-24], unsupervised
[25] and semi-supervised [26] ones. More specifically, Fisher Score
[27] computes a score for each feature as the ratio of inter-class
separation and intra-class variance. ReliefF [28] estimates the qual-
ity of the features according to how well their values differenti-
ate data samples that are near to each other. MI [29] considers
the mutual information between the distribution of the values of a
given feature and the membership to a particular class. FSV [30] is
a wrapper method, where the feature selection process is injected
into the training of an SVM by a linear programming technique.

Laplacian Score [31] does not use the class information of each in-
stance, and the importance of a feature is evaluated by its power
of locality preserving. In order to model the local geometric struc-
ture, this method constructs a nearest neighbor graph. Laplacian
Score algorithm seeks those features that respect this graph struc-
ture. INF [32] is an unsupervised graph-based filter method. In the
INF formulation, each feature is a node in the graph, a path is a
selection of features. The higher the centrality score, the more im-
portant (or more different) the feature. It assigns a score of impor-
tance to each feature by taking into account all possible feature
subsets as paths on a graph. LLC-FS [33] associates a weight to
each feature or kernel and incorporates it into the built-in regular-
ization of the LLC [34] algorithm to take into account the relevance
of each feature or kernel for the clustering. Correspondingly, the
weights are estimated iteratively in the clustering process. Then,
the weights of those irrelevant features or kernels can be shrunk
to zero.

Traditional feature selection methods assume that all features
in the feature space are available before learning. However, in
some real-world applications such as [35,36], features may exist in
a streaming format. Online streaming feature selection which deals
with feature streams in an online manner, has attracted much at-
tention in recent years and played a critical role in dealing with
high-dimensional problems [3-7,9].

More specifically, Perkins and Theiler [4] proposed the Graft-
ing algorithm based on a stagewise gradient descent approach
for online feature selection. Grafting treats feature selection as an
integral part of learning a predictor within a regularized frame-
work. If the improvement of adding a new arriving feature in the
model is greater than a predefined threshold A, this new arriv-
ing feature will be selected. Grafting needs the information of the
global feature space to choose a good value for the important reg-
ularization parameter A in advance. Zhou et al. [5] proposed the
Alpha-investing algorithm based on streamwise regression for on-
line streaming feature selection. Alpha-investing does not need a
global model and it is one of the penalized likelihood ratio meth-
ods. Nevertheless, Alpha-investing requires prior knowledge of the
structure of the feature space to heuristically control the choice
of candidate feature selection. Wu et al. [6] presented an online
streaming feature selection framework with two algorithms called
OSFS (Online Streaming Feature Selection) and fast-OSFS. There
are two major steps in OSFS, including online relevance analy-
sis (discards irrelevant features) and online redundancy analysis
(eliminates redundant features). OSFS uses the conditional inde-
pendence test for feature selection which needs a large number
of training instances. Thus, on the datasets with high dimension-
ality and small samples, this may lead to information missing. Yu
et al. [3] proposed a Scalable and Accurate Online feature selection
Approach (SAOLA) for extremely high dimensional datasets. SAOLA
employs novel online pairwise comparison techniques and main-
tains a parsimonious model over time in an online manner. SAOLA
needs to specify a relevance threshold « in advance to determine
whether two features are relevant, although the relevance thresh-
olds do not have a significant impact on the algorithm.

In addition, rough set theory, proposed by Pawlak [12], is an
effective tool for feature selection, rule extraction, and knowledge
discovery. Rough set based data mining does not require any do-
main knowledge before learning. There are some research works
of online streaming feature selection by using Rough set theory.
More specifically, Eskandari et al.[9] proposed a classical Rough
Set based method (OS-NRRSARA-SA) for online streaming feature
selection. OS-NRRSARA-SA uses classical significance analysis con-
cepts in Rough Set theory to control an unknown feature space
in online streaming feature selection problems. OS-NRRSARA-SA
need not specify any parameters before learning. However, OS-
NRRSARA-SA is a classical Rough Set based method which can-
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not handle numerical features directly. Zhou et al. [10] proposed
a new online streaming feature selection method OFS-A3M based
on a new neighborhood rough set relation with adapted neighbors.
With the maximal-dependency, maximal-relevance and maximal-
significance evaluation criteria, OFS-A3M can select features with
high correlation, high dependency, and low redundancy. There are
mainly two differences between this work and OFS-A3M. First,
OFS-A3M proposed a new neighborhood relation named as Gap,
which uses the gap information of the neighbors. In this paper, we
proposed a new neighborhood relation called Density, which uses
the density information of the neighbors. Density-based neighbor-
hood relation uses the information of surrounding neighbors as a
whole, while Gap just uses the distance information of the previ-
ous instance and next instance. Second, OFS-A3M uses exact de-
pendency equal constraint for the analysis of feature redundancy.
It is too strict for real-world data sets, and it probably leads to
some redundant features in the selected feature subset. In this
manuscript, we use a fuzzy equal constraint for redundant anal-
ysis, which makes the selected feature subset present lower re-
dundancy than OFS-A3M. Zhou et al. [11] proposed a new on-
line streaming feature selection method for high-dimensional and
class-imbalanced data, called K-OFSD. K-OFSD uses the dependency
between condition features and decision classes for feature selec-
tion. In terms of Neighborhood Rough Set theory, K-OFSD uses
the information of K nearest neighbors to select relevant features
which can get higher separability between the majority class and
the minority class. K-OFSD is designed for class-imbalanced data
and it needs to specify the parameter K in advance. Diao et al.
[37] proposed new methods to carry out the online selection with
incrementally changing on features or instances. Four possible dy-
namic selection scenarios (feature addition, feature removal, in-
stance addition, instance removal) are considered, with algorithms
proposed in order to handle such individual situations. Based on
fuzzy-rough sets theory, the proposed methods need not specify
any parameters before learning and are demonstrated to be effec-
tive in dealing with real-world data sets.

3. Neighborhood rough set

In the classical rough set model [12], the objects with the same
feature values in terms of attributes B are drawn together and
form an equivalence class, denoted by [x]g. The family of elemen-
tal granules {[x;]z|x; € U} builds a concept system to describe an
arbitrary subset of the sample space, where U = {x1,X3,...,Xn} is
a nonempty finite set of objects, called a universe. For subset X,
two unions of elemental granules: lower approximation and upper
approximation are defined as follow:

BX = {[xi]z | [xi]z < X, x; € U} (1)

BX = {[xilp | [xi]lsN X # @, x; € U} (2)

The lower approximation is the maximal union of elemental
granules consistently contained in X, while the upper approxima-
tion is the minimal union of elemental granules containing X. The
difference between lower approximation and upper approxima-
tion is called approximation boundary of X: BN(X) = BX — BX. The
lower approximation is also called positive region. The positive re-
gion, negative region and the boundary region of X are shown as
Fig. 1.

Classical rough sets are originally proposed to deal with cate-
gorical data. However, in real-world applications, there are many
integer-valued and real-valued data. Thus, some extended models
of the classical rough set were proposed to deal with this problem.
Fuzzy rough set [13,15,17] and neighborhood rough set [38] are
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Fig. 2. § neighborhood rough set.

two representative extensions of the classical rough set. Neigh-
borhood Rough Set used neighborhood relation to replace the ap-
proximation based on equivalence relation of the traditional rough
set model, which supports both continuous and discrete data sets
[19,39]. In this section, we briefly review some basic concepts and
notations of neighborhood rough set as follows.

An information system S= (U,A), where U = {x{,X5,...,Xn}
is a nonempty finite set of objects, called a universe. A=
{ay,a;,...,an} is a nonempty finite set of attributes (features).
More specifically, S= (U,A,V, f) is called a decision table if A=
CUUD, where C is a set of condition attributes and D is a set of
decision attributes, C\D =¢. V = Jzea Vo, Vo is a domain of at-
tribute a. f: UxA—V is an information function such that f(x,
a)eVq for every xeU, acA. fix; g;) denotes the value of object x;
on the attributes g;.

There are mainly two types of neighborhood relations: 1)
neighborhood relation with a fixed distance (6 neighborhood), as
shown in Fig. 2; 2) neighborhood relation with a fixed number of
neighbors (k-nearest neighborhood), as shown in Fig. 3.

Definition 1. A metric A is a distance function from RN x RN — R,
and A(x, y) denotes the distance between x and y. For Vx, y, ze U,
it satisfies:

1) A(x, ¥)>0; A(x,y) =0 if and only if x = y;

2) Ax,y) =AW, x)

3) Ax,2) <= A y)+ Ay, 2)

Definition 2. Given U and C, let BCC be a subset of attributes,

x e U. The neighborhood §g(x) of arbitrary object x on the feature
subset B is defined as:

) ={y|Alx,y) <8,y €U} (3)
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Fig. 3. k-nearest neighborhood rough set (k = 3).

Definition 3. Considering object x and given a set of numerical at-
tributes B to describe the object, we call the k-nearest neighbors
of x in terms of a k-nearest neighborhood information granule, de-
notes as kg(x).

kg(x) = {y | y € Min,{Neighbors(x)},y € U} (4)

Where Neighbors(x) denotes all the neighbors of x, and
Min{Neighbors(x)} denotes the k nearest neighbors calculated on
feature subset B.

Like classical rough set model, we give the lower and upper ap-
proximations of neighborhood relation R as follows.

Definition 4. Given a neighborhood approximation space %y =
(U,R), for YXCU, two subsets of objects, called lower and upper
approximations of X in terms of R neighborhood relation, are de-
fined as

R(X) ={x; €U | R(x;)) € X, x; € U} (5)

R(X):{Xieu|R(Xi)ﬂX75@,X,'€U} (6)

The boundary region of X in the approximation space is formu-
lated as

BR(X) = R(X) —R(X) (7)

As shown in Fig. 2, all the § neighbor samples of x; have the
same class label L; with mark “*” and the neighborhood samples
of x3 in a § area are completely marked with “0” with another
class label L,. Meanwhile, the samples in the neighborhood of x;
come from classes Ly and L,. We define the samples of x, as the
boundary objects. Meanwhile, as shown in Fig 3, all the k-nearest
neighbor (k = 3) samples of x; have the same class label L; and
the neighborhood samples of x3 have the same class label L,. The
neighbors of x, come from classes L; and L,. In general, we need
to find a feature subspace on which the boundary region is main-
tained as little as possible.

The size of the boundary region reflects the roughness degree
of X in the approximation space. Usually, we hope that the bound-
ary region of the decision is as little as possible for decreasing un-
certain in the decision procedure. The lower approximation is also
called positive region, denoted as POS(x).

Definition 5. Let BCC, the dependency degree of B to D is defined
as the ratio of consistent objects:

CARD(POSg (D))

D) =—pw)

(8)

where POSg(D) denotes the lower approximation of D on feature
subset B.

Thus, feature selection using neighborhood rough set aims to
select a subset B from the feature set C that gets the maximal de-
pendency degree of B to D.

4. Our new online streaming feature selection approach

In this section, we will introduce our new online streaming fea-
ture selection approach in detail. We first give a formal definition
of online streaming feature selection. Then we introduce our new
non-parameter neighborhood relation and the dependency calcula-
tion method. In terms of the new neighborhood relation and three
evaluation criteria, we will present a new online streaming feature
selection algorithm subsequently.

4.1. Definition of online streaming feature selection

Let OSFS = (U,CUD, h,t) denote an online streaming feature
selection framework, where U is a nonempty finite set of ob-
jects, C is the condition attribute set, and D is the decision at-
tribute set. Let C=[x1,X,...,%:]" € R™¢ consist of n samples
over a d-dimensional feature space F = [f1,f2,...,fd]T e R, Let
D=1[y1.y2,---» yn]T e R™1 consist of n samples over the class la-
bel (decision feature space) L = {I1, I, ..., i}, where I; denotes the
value of a class label. Given U, C and D, at each time stamp t, we
get a new feature f; of CuD without knowing the exact number
of d in advance. The problem of online streaming feature selection
for mixed data is to derive a mapping h¢: x; — L(x; € C) at each time
stamp t, which is as good as possible using a subset of features
that have arrived so far.

There are three challenges for online streaming feature selec-
tion. 1) Unlike traditional feature selection, we do not know the
feature space before learning. Thus, we can not get any domain
knowledge before selection. 2) Features are arriving randomly at
each time. In order to decide whether detaining or discarding the
new arriving features, we need to consider the new arriving fea-
ture and the selected feature subset as integration. 3) Although
neighborhood rough set-based data mining does not require any
domain knowledge, it is still a challenge to specify unified parame-
ters & for the § neighborhood and k for the k-nearest neighborhood
before learning. In the next, we will introduce a new neighborhood
relation which need not specify any parameters before learning.

4.2. Our new neighborhood relation

Definition 6. Let Np(x;) denote all of the neighbors of x; sorted by
the distance from the nearest to the farthest on feature subset B,

Np(Xi) =< X(11), XG.2)s -5 X(ijys - - > X(in-1) > 9
where {X,‘,X(L]),X(,’,Z),...,X(Ln,])} =U and A(Xivx(i.l)) <
A(xivx(i,Z)) <...=< A(xivx(i,n—l))‘

We define the density of x; to neighbor x; as

. A S X
Denszty(xi,x(i,k))zw, denoted as d(k) for short. From

X(i 1) 1O X(in_1), assuming the density value first decreases at
neighbor x; x), then, we call x; i) the first Inflection Point, de-
noted as IP(x; 1)) We use the samples between x; and the first
Inflection Point as the nearest neighbors of x;, shown as Fig. 4.

Based on this, we proposed a new neighborhood relation with
adaptive neighbors using the Inflection Point, denoted as IP-(x) as
shown in Eq. (10).

Definition 7. Given a set of finite and nonempty objects U =
{x1.%2,...,xn}, the condition feature set C and a feature subset B
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Fig. 4. our new neighborhood relation.

Table 1
An example dataset.

xeU fi  f fi fa d
X1 3 5.6 1 1 -1
X3 5 6.9 1 2 1
X3 8 53 1 1 1
X4 13 12.3 0 1 1
X5 6 15.2 0 3 -1
X6 5 26 0 2 1
X; 9 68 1 2 -
Xg 15 8.4 0 2 -1

(BSC). For target object x;, let Np(x;) =< X(i 1), X(i2)> - - - » X(i,n—1) >
denote all the neighbors of x; from the nearest to the farthest on
B. The adaptive neighborhood of arbitrary object x;CU on B is de-
fined as:

IPe(x;) = {X(i1), X(i2)» - - » X(ik-1) )} (10)
where [P(x; 1)) is the first Inflection Point from x; 1) t0 X(; n_1).

Table 1shows an example dataset used to illustrate the defini-
tion of our new neighborhood relation, where x; to xg are the sam-
ples with four condition features (f; to f4) and one decision feature
(d). The distance function is calculated using Euclidean distance.

Let's take object x3 and feature set B={f;,f,} as an ex-
ample. First, we calculate all distances between x3 and x;
(i#3) on B namely: Ap(x3,x;) =+/(8—3)2+(53-56)2=
5.009, AB(X3,X2) =34, AB(X3, X4) = 8.602, AB(Xg, X5) =
10.1, Ag(x3,x5) = 4.036, Ag(x3,x7) = 1.803, Ap(x3,xg) = 7.655.
All the neighbors of x3 from the nearest to the farthest are
Np(x3) = {X7, X2, X6, X1, Xg, X4, X5}

For Density neighborhood, Density(xs,x7) = =1.803,
Density (x3,Xp) = 1.7. Thus, x, is the first Inflection Point and the
Density neighborhood of x3 is IP3(x3) = {x7}.

Based on this new density neighborhood relation, we proposed
the new dependency calculation method as follows.

In Algorithm 1, we calculate the CARD value of each instance x;
and get the sum for the final dependency degree. The CARD value
ranges from O to 1, denoted as the consistency of x;’s class attribute
with its neighbors’ class attributes. In order to find the neighbors
of x;, we need to sort all neighbors of x; by the distance. The time
complexity of quicksort function is O(n*logn). Thus, the time com-
plexity of Dependency-Mixed is O(|Xs|2*log|Xs]).

A(x3.X7)
1

4.3. Our new algorithm

For online streaming feature selection, features flow in one by
one over time. At time stamp t, we have the new arriving feature

ft and the selected candidate subset S;_;. The aim of our new al-
gorithm is to select features from S;_; U f; with high correlation,
high dependency, and low redundancy.

4.3.1. High correlation

For high correlation, it means the features selected in S; at time
stamp t should be maximal correlated to the decision attributes.
For each feature f;, we can calculate the dependency Y, (D) with
Eq. (8). Thus, in order to get the high correlation, we should maxi-
mize the mean value of all dependency values between individual
feature f; and target class label D:

Max{R(S.D)}. R = |S | Y (D). (11)
fieSt

For the new arriving features f; at time stamp t, we calculate
Y5, (D) and compare it with R(S;_1, D). If y (D) <R(S;-1,D), fi
will be discarded.

Theorem 1. Suppose at time stamp t — 1, the selected feature set
is S;_q. At time stamp t, the new arriving feature is f. If vy, (D) <
R(S;_1,D) and we add f; into S;_1, then R(S;, D) < R(S¢_1, D).

Proof. Let |S;_1| = N;_; and R(S;_4,D) =r;_q. It is obvious that
Zfie_g[71 )/fl (D) =Tt X Nt—l' For Vft (D) < R(St_],D). If we add f[
into S, then S = S;_; U fj and |S¢| = Ny_1 + 1.

R(St’ D) = \S ‘ Zf,esf 147 (D)
= N5 1+1 (Ne_1 x rt 1+ VfJ(D))
= Nf\iﬁrl Te-1+ NHH Y5, (D)
=T+ ﬁ()’fj (D) —re1).
YR (D) < R(S-1,D), ..

O

4.3.2. High dependency

For neighborhood rough set based feature selection, the final
goal is to get a subset from feature space which can achieve the
maximal dependency according to Eq. (8). In other words, at each
time stamp t, for the selected candidate subset S;, we should make
sure that

Max{D(S¢. D)}. D = ys, (D). (12)

For the new arriving features f; at time stamp ¢, if y5 5 (D) >
s, (D), we should add f; into S;_;. Otherwise, we will discard f;.

Theorem 2. [40] Suppose B is a subset of conditional features, f is an
arbitrary conditional attribute that belongs to the dataset, and D is
the set of decision attributes. Then y(BUf, D)> y (B, D).

Proof. The proof of this theorem is available in [40]| page 90. O

With Theorem 2, we can find that, if we only use high depen-
dency and high correlation for feature selection, there will be a
lot of redundant features in the candidate subset (VsHuf[ (D) ==
¥s.(D)). Thus, we need to consider the redundancy of the selected
subset.

4.3.3. Low redundancy

In order to measure each feature’s importance in the selected
candidate subset, we need to define the significance of single fea-
ture to its feature set. The significance of a feature f to feature set
B (feB) is defined as follows:

Definition 8. Given a condition attribute set B (BCC) and a deci-
sion attribute set D, a feature fe B, the significance of the feature f
to B is defined as:

og(f, B) = ¥8(D) — y_5; (D) (13)

]/f] (D) —I1 < O, R(S[, D) < R(S[_l, D)
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In order to select the features with low redundancy, we should
make the mean significance of each feature f; in S achieve the max-
imal. That is

Max(5 (5., D). = 51 Y-los (f D)) (14)
t fieSe

With the high dependency constraint and Theorem 2, we can
see that Vf; eS¢, s, (f;, D) = 0 is satisfied. Thus, we should discard
the features in S which satisfy the constraint o5, (f;, D) = 0.

However, in real data sets, we find it rare that the dependency
of SUf; is exactly equal to the dependency of S. Thus, we relax
the exactly equal restriction and change it to an interval restriction.
That is, if

‘ Deps — ysuf,

then we will execute the redundancy analysis. With this new fuzzy
equal constraint, more candidate features will be considered into
the redundancy analysis step and this will make the final selected
feature subset lower redundancy. The default value of A is 0.05,
more details refer to Section 5.2.

To sum up, we propose our new online streaming feature selec-
tion algorithm as Algorithm 2.

Algorithm 1 Dependency-Density .
Require: ~~
Xs: sample values on feature set S;
R: density neighborhood relation;
Ensure: ~~
deps: dependency on feature set S;
: cards: the number of positive samples on S, initialized to 0;
: cardy: the number of instances of X;
: FOR each x; in X
find the neighbor samples of x; on R as Sg(x;);
calculate the card value of x; as Card (Sg(x;));
cards = cards + Card(Sg(x;));
: END FOR
. deps = cards/cardy;
: return deps;

More specifically, if a new feature f; arrives at time stamp ¢;,
Step 7 calculates the dependency of f; using the dependency calcu-
lation method Dependency-Density. Step 8 compares the depen-
dency of f; with the mean dependency of the selected feature set
S.If Yf is smaller than Meanpey,, f; is discarded. Step 11 compares
the dependency of current feature set S with the dependency of
the feature set SUf;. If the dependency of SUf; is bigger than Deps,
which means adding new feature f; will increase the dependency
of the selected feature set, then we add f; into S. Otherwise, if the
ratio of the difference between the dependency of SUf; and Deps
with Deps is less than a fixed value A, we will analyse the feature
redundancy. For each feature in SUf;, we randomly select a fea-
ture from the candidate feature set and calculate its significance
according to Eq. (14). We will discard features whose significance
equal to 0. In sum, with this new online streaming feature selec-
tion algorithm, we can select features with high correlation, high
dependency, and low redundancy.

4.4. Time complexity of OFS-Density

The time complexity of OFS-Density mainly depends on the de-
pendency function Dependency-Density.

Suppose the data set is D, the number of instances in D is N
and the number of features in D is F. According to Section 4.2,
the time complexity of Dependency-Density is O(N2logN). At time

Algorithm 2 OFS-Density.

Require: ~~
X: the data samples with condition features;
Y: the decision classes;

Ensure: ~~
S: the selected feature set;

1: S: the selected feature set, initialized to {};

2: A: the parameter control the fuzzy equal constraint(default
value 0.05);

3: Deps:the dependency of S to Y, initialized to 0;

4: Meanp,p: the mean dependency of features in S, initialized to

5: Repeat

6: Get a new feature f; of X at time stamp ¢; as Xg;

7: Calculate the dependency of X A using Dependency-
Density;

8: IF Vg < Meanpep,

9: Discard feature f; and go to Step 24;

10: END IF

11: IF Vsuf; > Deps

12: S=Suf;

13: Deps = ys, Meanp,p, = |1T| Yres V(YD

14: ELSE IF |(Deps — ysufi)/Dep5| <=A

15: S=SuUf;

16: FOR each feature in S

17: Randomly select a feature f’ in S;
18: Calculate f’ 's significance as os(f’);
19: IF os(f) ==

20: Remove feature f’ from S;

21: END IF

22: END FOR

23: END IF

24: Until no more features are available;
25: return S;

stamp t;, a new feature f; is presented to the algorithm. Steps 6-
8 calculate the dependency of f; and compare it with Meanpep,
(the mean dependency value of each feature in selected feature
set S). The time complexity is O(N2logN). If the dependency of f;
is smaller than Meanp,y,. f; will be discarded. Otherwise, we cal-
culate the dependency of SUf; and compare it with Deps (the de-
pendency of currently selected feature set). This time complexity is
also O(N2logN). If the dependency of SUS; is bigger than Deps, we
add f; into S and go on to the next feature. If the dependency of
SuUf; is equal to or little smaller than Deps, we will calculate each
features’ significance and remove the redundant features from S.
The time complexity of this phase is O(|S|*N2IogN).

Thus, the worst time complexity of OFS-Density is
O(F2*N21ogN).

5. Experimental
5.1. Experiment setup

In this section, we apply the proposed online feature selec-
tion algorithm on fourteen data sets, including four UCI data sets
(WDBC, HILL VALLEY, IONOSPHERE,SONAR), nine DNA microarray
data sets (PROSTATE-std, COLON, LYMPHOMA-std, DLBCL, GLIOMA,
SRBCT-std, LUNG2, LEUKEMIA-std, MLL) [41,42] and one NIPS 2003
data set (ARCENE) [6] as shown in Table 2.

In our experiments, we use three basic classifiers, KNN, SVM,
and CART in Matlab R2015b to evaluate a selected feature subset.
We perform 10-fold cross-validation on each data set. Feature se-
lection is training on 9/10 data samples and testing on the rest
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Table 2

Experimental data sets.
Data set Instances Features Classes
IONOSPHERE 351 34 2
WDBC 569 30 2
SONAR 208 60 2
HILL 606 100 2
COLON 62 2000 2
SRBCT 63 2308 4
LUNG2 203 3312 5
LYMPHOMA 62 4026 3
GLIOMA 50 4433 4
MLL 72 5848 3
PROSTATE 102 6033 2
DLBCL 77 6285 2
LEU 72 7129 2
ARCENE 200 10000 2
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Fig. 5. Predictive accuracy in KNN varying with four different values of X .

1/10 data. All competing algorithms use the same training and
testing data for each fold. All experimental results are conducted
on a PC with Intel(R) i5-3470S, 2.9 GHz CPU, and 8GB memory.

To validate whether OFS-Density and its rivals have significant
differences in the predictive accuracy, we conduct the Friedman
test at a 95% significance level [43], under the null-hypothesis. The
performance of OFS-Density and its rivals has no significant differ-
ence if the null-hypothesis is accepted. When the null-hypothesis
at the Friedman test is rejected, we continuously proceed with the
Nemenyi test [43] as a post-hoc test. With the Nemenyi test, the
performance of those two methods is significantly different if the
corresponding average rankings differ by at least the critical differ-
ence (how to calculate the critical difference, please see [43]).

5.2. Analysis of A in OFS-Density

In this subsection, we will analyse the influence of A in OFS-
Density. We select three values (0.01, 0.05 and 0.1) of A and the
exactly equal constraint (A = 0) as compared ones.

Figs. 5-7 show the experimental results of our new algorithm
with four different A values (0, 0.01, 0.05 and 0.1) on these
data sets (the data sets from 1 to 14 are IONOSPHERE, WDBC,
SONAR, HILL, COLON, SRBCT, LUNG2, LYMPHOMA, GLIOMA, MLL,
PROSTATE, DLBCL, LEU, ARCENE). Figs. 8 and 9 show the mean
number of selected features and running time on these data sets.
In these experiments, we select KNN, SVM, and CART as the basic
classifiers, and the value of k in KNN is set to 1.
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Fig. 6. Predictive accuracy in SVM varying with four different values of A .
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Table 3

The mean values of different A on predictive accuracy, running time
and number of selected features.

Data Sets

A=0 A=001 A=005 A=0.1
KNN classifer 0.8213 0.8215 0.8467 0.8433
SVM classifer 0.8321 0.8272 0.8411 0.8405
CART classifer 0.7942 0.7950 0.7982 0.8029
Running time 41152 41929 5.6289 25.3083
Selected features 16.5785 7.3571 11.7785 26.1428
Table 4
P-values of A =0 VS. A =0.01,0.05,0.1.
A=0 A=001 A=005 A=0.1
KNN classifer - 0.5930 0.2482 0.7815
SVM classifer - 0.7815 0.0833 0.5930
CART classifer - 0.5930 0.4054 0.4054
Running time - 0.5930 0.0075 0.0075
Selected features - 0.0002 0.0075 0.1088

In Fig. 8, the running time of A = 0.1 is 308.956. In Fig. 9, the
number of selected features of A = 0.1 is 223.9. Table 3 shows the
mean value of predictive accuracy, running time and number of
selected features with different values of A.

Besides, with the Friedman test, the p-values of A =0 (exactly
equal) vs. A =0.01,0.05,0.1 on predictive accuracy, running time
and number of selected features can be seen in Table 4.

From Figs. 5-9 and Tables 3 and 4, we have the following ob-
servations.

e There is no significant difference in predictive accuracy with
different values of A. A = 0.05 gets the best performance with
KNN and SVM classifiers and A = 0.1 gets the highest mean
predictive accuracy with CART classifier.

o With the increasing of values of A, the corresponding running

time increases rapidly. This is because a bigger A value means

more times to run the feature redundancy analysis.

On the number of selected features, A =0 selects more fea-

tures than A = 0.01 and A = 0.05. This indicates that the exactly

equal constraint can lead to some redundant features. However,

A = 0.1 selects the maximum number of features and consumes

the maximum running time. Thus, bigger values of A do not

mean a better performance.

In sum, relaxing the exactly equal restriction can remove re-
dundant features and get a promotion on the predictive accuracy.
However, the A value is not the bigger the better. In the next ex-
periments, we will use A = 0.05 for the OFS-Density algorithm.
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Fig. 11. predictive accuracy using SVM on different feature stream orders.

5.3. Influence of feature stream order

In this subsection, we will validate the influence of feature
stream order on our new neighborhood relation and new online
streaming feature selection algorithm. We compare three types of
feature stream orders: original, inverse and random.

Figs. 10-12 show the experimental results of our new algo-
rithm with three different feature stream orders on these data sets.
Figs. 13 and 14 show the mean number of selected features and
running time on these data sets. In these experiments, we select
KNN, SVM, and CART as the basic classifiers and the value of k in
KNN is set to 1.

The p-values of original vs. inverse and random on predictive
accuracy, running time and number of selected features can be
seen in Table 5.

From Figs. 10-14, we can see that there are minor fluctuations
on predictive accuracy, running time and number of selected fea-
tures varying with different feature stream orders. From Table 5,
we can see that there is no significant difference among these
three orders on predictive accuracy, running time and number of
selected features, except in the cases of original vs. inverse with
SVM classifier. The main reason is that SVM classifier is robust and
the predictive accuracy basically increases with the number of se-
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The p-values of original VS. inverse and random.
Original  Inverse ~ Random

KNN classifer - 0.5637 0.5271
SVM classifer - 0.0039 0.1317
CART classifer - 0.7815 0.5930
Running time - 1.0000 0.2850
Selected features - 0.2850 0.5930
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Fig. 13. Running time varying with different feature stream orders.
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lected features. Meanwhile, our new method selects few features
and this makes the predictive performance with SVM is unstable.
In sum, the feature stream order has little influence on our new
online streaming feature selection method.

5.4. OFS-Density vs. traditional feature selection methods

In this subsection, we compare OFS-Density with eight rep-
resentative traditional feature selection methods, including Fisher
Score [27], ReliefF [28], PCC (Pearson Correlation Coefficient) [44],
Laplacian Score [31], MI (mutual information) [29], INF [32], LLC-FS
[33] and FSV [30].

All these algorithms are implemented in MATLAB [45]. The K
value of ReliefF is set to 5 for the best performance. None of these
eight traditional feature selection methods can handle the scenario
of feature streaming in an online manner. Thus, we rank all the
features evaluated by these traditional feature selection methods
from high to low and select the same number of features as OFS-
Density. We evaluate OFS-Density and all competing ones on the
predictive accuracy with 10-fold cross-validation.

Tables 6-8 summarize the predictive accuracy of OFS-Density
against the other eight competing algorithms using the basic clas-
sifiers of KNN (k = 1), SVM and CART. The p-values of Fried-
man test on KNN, SVM and CART are 2.9390e—10, 1.2618e—07, and
2.7607e—07. Thus, there is a significant difference between OFS-
Density and other eight competing algorithms respectively on pre-
dictive accuracy. According to the Nemenyi test, the value of CD
(critical difference) is 3.2132.

From Tables 6-8, we have the following observations.

o OFS-Density vs. Fisher. According to the values of average rank-
ings and CD, there is no significant difference between OFS-
Density and Fisher on predictive accuracy with these three
classifiers. OFS-Density outperforms Fisher on ten of fourteen
datasets in cases with KNN, SVM, and CART. This is because
Fisher measures the features independently, and it can not con-
sider the information of the selected feature set as an integral.
In total, OFS-Density performs better than Fisher.

o OFS-Density vs. PCC. There is a significant difference between
OFS-Density and PCC in predictive accuracy with KNN, and
there is no significant difference between them with CART
and SVM. OFS-A3M outperforms PCC on eleven of the four-
teen datasets. For some data sets, such as SRBCT, DLBCL, and
ARCENE, OFS-Density is higher PCC over 20% on predictive ac-
curacy. PCC can not handle some datasets well. OFS-Density is
superior to PPC.

o OFS-Density vs. ReliefF. There is no significant difference in pre-
dictive accuracy between OFS-A3M and ReliefF with KNN, SVM,
and CART. OFS-Density gets the higher predictive accuracy than
ReliefF on twelve of the fourteen datasets. ReliefF also uses the
neighbors’ information for feature selection. However, ReliefF
does not discriminate redundant features which makes it per-
formance bad on some data sets, such as GLIOMA.

o OFS-Density vs. MI. There is a significant difference between
OFS-Density and MI with these three classifiers. OFS-A3M out-
performs MI on thirteen of the fourteen datasets at least. The
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Table 6

Predictive accuracy using the KNN classifier.
Data set OFS-Density  Fisher PCC ReliefF ~ MI Laplacian  INF LLC-FS FSV
IONOSPHERE 0.8943 0.88 0.8743  0.8229 0.7943  0.8343 0.8171 0.8543  0.7943
WDBC 0.9385 0.9332 09332 0.8962 0.9016  0.9244 0.9367 0.9086  0.9016
SONAR 0.6827 0.7108  0.7108 0.6779  0.5479  0.5955 0.6955 0.6684  0.5479
HILL 0.595 0.5314 05314  0.557 0.5545  0.4967 0.5033 05479  0.5545
COLON 0.75 0.7333 07333  0.7167  0.5167 0.5167 0.5667  0.6167  0.5167
SRBCT 0.8833 0.8833 05833 0.8667 0.6333  0.3167 0.2667 03833  0.6333
LUNG2 0.93 0.79 0.815 0.8 0.745 0.765 0.81 0.79 0.835
LYMPHOMA 1 0.9833  0.95 0.9667 07833  0.9333 0.6 0.95 0.7833
GLIOMA 0.68 0.64 0.66 0.26 0.56 0.42 0.4 0.48 0.62
MLL 0.9286 0.9 0.7857  0.9286  0.6429  0.8429 0.9143 0.8714  0.8286
PROSTATE 0.93 0.91 0.91 0.91 0.63 0.59 0.48 0.72 0.63
DLBCL 0.95 0.7925 04425 0.8125 0.605 0.685 0.7375 07625  0.7875
LEUKEMIA 0.9571 0.8714 08714 08429 06 0.5857 0.4714 04714 06
ARCENE 0.86 0.655 0.615 0.675 0.585 0.7 0.715 0.655 0.69
AVG. ACCURACY  0.8556 0.8010  0.7439  0.7666  0.6499  0.6575 0.6367 0.6913  0.6944
AVG. RANKS 8.7143 6.5714 55000 5.6071 2.8571 3.2857 3.9643 42857  4.2143

Table 7

Predictive accuracy using the SVM calssifier.
Data set OFS-Density  Fisher PCC ReliefF ~ MI Laplacian  INF LLC-FS  FSV
IONOSPHERE 0.8143 0.8571 0.8343 0.6914 0.84 0.6971 0.6686  0.7771 0.84
WDBC 0.9614 0.9526 09526  0.9209  0.9244  0.9297 0.9526 09437  0.9244
SONAR 0.7504 0.7361 0.7361 0.7008  0.5674  0.6165 0.6456  0.6476  0.5674
HILL 0.5339 0.5074 05074  0.5207 05074  0.5099 0.5058 05149  0.5074
COLON 0.8167 0.85 0.85 0.8667  0.65 0.7 0.6833 07167  0.65
SRBCT 0.8 0.8833 0.6667 0.75 0.6833  0.3833 0.3667 0.3 0.6833
LUNG2 0.935 0.845 0.84 0.85 0.85 0.82 0.865 0.86 0.85
LYMPHOMA 0.9833 09333 09 09167  0.6833 0.9 0.65 0.9167  0.6833
GLIOMA 0.6 0.58 0.6 0.28 0.6 0.46 0.48 0.42 0.48
MLL 0.9286 09429 09 09429 0.7 0.9143 09429 0.8857 09
PROSTATE 0.94 0.92 0.92 0.94 0.59 0.6 0.47 0.73 0.59
DLBCL 0.975 0.8625  0.7875  0.825 0.6925  0.71 0.685 0.7625 0.8
LEUKEMIA 0.9429 0.9 0.9 0.8857  0.6143 0.6429 0.5857 0.6 0.6143
ARCENE 0.805 0.725 0.625 0.65 0.575 0.635 0.67 0.66 0.725
AVG. ACCURACY  0.8418 0.8210  0.7871  0.7672  0.6769  0.6799 0.6550  0.6953  0.7010
AVG. RANKS 8.1071 70000 53214 5.6429 33929  3.6786 34643 43214  4.0714

Table 8

Predictive accuracy using the CART calssifier.
Data set OFS-Density  Fisher PCC ReliefF MI Laplacian  INF LLC-FS FSV
IONOSPHERE 09114 0.8829  0.86 0.7943  0.8371 0.8314 0.8029 0.8114 0.8371
WDBC 0.9262 0.9227 09227  0.891 0.9158  0.9209 0.9245  0.9121 0.9158
SONAR 0.6965 0.7261 0.7261 0.5807  0.514 0.5331 0.6436  0.5875 0.514
HILL 0.5926 0.5107 0.5107 0.5248  0.5091 0.4983 04835 05124  0.5091
COLON 0.7833 0.7833 0.7833  0.7667 0.6333  0.5333 0.6167  0.6667  0.6333
SRBCT 0.75 09167  0.65 0.8167 0.7 0.3 0.25 0.3167 0.7
LUNG2 0.83 0.795 0.785 0.82 0.715 0.82 0.8 0.82 0.8
LYMPHOMA 0.9667 0.85 0.8833  0.85 0.65 0.8833 0.7 0.9 0.65
GLIOMA 0.52 0.62 0.62 0.34 0.4 0.48 0.38 0.5 0.48
MLL 0.8571 0.8143  0.8571 0.8571 0.6 0.8286 0.8571 0.7714  0.8714
PROSTATE 0.89 0.91 0.91 0.93 0.65 0.59 0.48 0.65 0.65
DLBCL 0.9125 0.825 0.8125 07875  0.68 0.7225 0.6475  0.725 0.8
LEUKEMIA 0.8714 09286 0.9286 0.8429 05429 06714 0.6 0.5 0.5429
ARCENE 0.805 0.65 0.585 0.645 0.595 0.68 0.66 0.66 0.715
AVG. ACCURACY  0.8080 0.7953  0.7738  0.7461 0.6387  0.6637 0.6318 0.6666  0.6870
AVG. RANKS 7.9643 6.6071 6.2143  5.0000 2.8571 4.0000 33929 44643  4.5000

features are evaluated independently with MI which makes it
performance inferior to OFS-Density.

OFS-Density vs. Laplacian Score. There is a significant difference
between OFS-Density and Laplacian in predictive accuracy with
these three classifiers. OFS-Density outperforms Laplacian Score
on all of these datasets. As an unsupervised method, Laplacian
Score does not use the class information for feature selection.
In general, Laplacian Score performance inferior to OFS-Density.
OFS-Density vs. INE. INF gets the lowest mean predictive ac-
curacy and there is a significant difference between OFS-
Density and INF with these three classifiers. OFS-Density out-

performs INF on thirteen of the fourteen datasets. On some
data sets, such as SRBCT, LYMPHOMA, GLIOMA, PROSTATE, and
LEUKEMIA, INF performs badly. INF is an unsupervised method
and the performance is inferior to OFS-Density.

OFS-Density vs. LLC-FS. There is a significant difference be-
tween OFS-Density and LLC-FS with these three classifiers.
Meanwhile, OFS-Density performs better than LLC-FS on all
these data sets.

OFS-Density vs. FSV. There is a significant difference between
OFS-Density and FSV in predictive accuracy. Although FSV is a
wrapper method, OFS-Density performs better than FSV on thir-
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Table 9

Predictive accuracy using KNN as the base classifier.
Data set OFS-Density ~ Grafting  «-investing ~ OSFS Fast-OSFS ~ SAOLA  0S-SA OFS-A3M
IONOSPHERE 0.9057 0.8714 0.9 0.8686  0.8743 08714 0 0.8571
WDBC 0.9403 0.9403 0.9561 0.9614  0.9632 0.9104  0.186 0.9561
SONAR 0.6759 0.8599 0.7817 0.7256  0.7093 0.6293  0.7632  0.8308
HILL 0.5686 0.5397 0.638 0 0 0 0 0.6182
COLON 0.85 0.7167 0.4667 0.6667  0.75 0.8333  0.6333 0.8
SRBCT 0.8833 0.7167 0.5667 0.7167 0.7333 0.7667  0.6833  0.85
LUNG2 0.925 0.92 0.825 0.79 0.833 0.88 0 0.9
LYMPHOMA 0.9833 0.8833 0.7333 09333 09167 0.9667 09333 09
GLIOMA 0.56 0.5 0.46 0.54 0.54 0.66 0 0.76
MLL 0.9 0.9714 0.9571 0.7714  0.8143 09429 0 0.9286
PROSTATE 0.94 0.7 0.77 0.85 0.84 0.88 0.76 0.78
DLBCL 0.875 0.925 0.825 0.775 0.9375 0.925 0 0.8125
LEUKEMIA 0.9143 0.7 0.6 0.8857  0.9143 09143 038 0.8571
ARCENE 0.865 0.595 0.675 0.62 0.705 0.63 0 0.765
AVG. ACCURACY  0.8418 0.7742 0.7253 0.7217 0.7519 0.7721 0.3399  0.8296
AVG. RNAKS 6.3929 4.2857 3.8929 3.7857  5.0714 5.1786 2.0714 53214

Table 10

Predictive accuracy using SVM as the base classifier.
Data set OFS-Density ~ Grafting  «-investing  OSFS Fast-OSFS ~ SAOLA  0S-SA OFS-A3M
IONOSPHERE 0.8229 0.8686 0.8657 0.8714  0.8771 0.8686 0 0.7771
WDBC 0.9614 0.9631 0.9737 0.9649  0.9631 09139 01912 0.9684
SONAR 0.7637 0.7398 0.7336 0.7546  0.7531 0.7236  0.7388  0.714
HILL 0.5364 0.5124 0.5554 0 0 0 0 0.538
COLON 0.8833 0.65 0.65 0.7833  0.7667 0.8667  0.6333  0.8333
SRBCT 0.8 0.7333 0.3667 0.7 0.7 0.8167 07167  0.9167
LUNG2 0.915 0.94 0.9 0.865 0.89 0.9 0 0.915
LYMPHOMA 1 0.8667 0.7667 0.9667 0.9 0.9667 09333  0.8667
GLIOMA 0.68 0.64 0.44 0.58 0.6 0.62 0 0.7
MLL 0.8857 0.9714 0.9857 0.8429  0.8571 09 0 0.9143
PROSTATE 0.96 0.66 0.84 0.9 0.91 0.87 0.86 0.78
DLBCL 0.8875 0.9375 0.855 0.85 0.925 0.925 0 0.85
LEUKEMIA 0.9143 0.6714 0.6857 09 0.9714 09429 0.8714 09
ARCENE 0.82 0.68 0.76 0.65 0.695 0.625 0 0.75
AVG. ACCURACY  0.8450 0.7738 0.7413 0.7592  0.7720 0.7813 03531  0.8159
AVG. RANKS 6.1786 4.6429 41429 42500  4.8571 48214 21786  4.9286

teen of the fourteen datasets. Thus, OFS-Density is superior to
FSV.

In sum, OFS-Density provides best overall performance on these
data sets with the same number of selected features and gets the
highest mean predictive accuracy and ranks with KNN, SVM, and
CART.

5.5. OFS-Density vs. online streaming feature selection methods

In this subsection, we compare our algorithm with seven state-
of-the-art online feature selection methods: Grafting [4], Alpha-
investing [5], OSFS [6], Fast-OSFS [6], SAOLA [3], OS-NRRSARA-SA
[9] and OFS-A3M [10].

All aforementioned algorithms are implemented in MATLAB
[46]. For we cannot get the source code of OS-NRRSARA-SA, we
implemented it by ourselves. The significance level « is set to 0.01
for OSFS, Fast-OSFS, and SAOLA. For Grafting, the parameter A is
set to 0.5. For Alpha-investing, the parameters are set to the values
used in [5]. For OS-NRRSARA-SA, it can not deal with real-valued
data directly. In order to convert real-valued data to discrete value
data, we used the method proposed by Guyon and Elisseeff [2].

Tables 9-11 summarize the predictive accuracy of OFS-Density
against the other seven algorithms using the KNN (k = 1), SVM
and CART classifiers. Tables 12 and 13 show the running time and
the number of selected features of OFS-Density against other algo-
rithms. If the algorithm selects all the features in data sets or se-
lects none of the features, we set the predictive accuracy and the
number of selected features to 0. The p-values of Friedman test on
KNN, SVM, CART, running time and number of selected features are

1.3499e-04, 0.0056, 0.0179, 1.3351e—28 and 3.8769e—14 respec-

tively. Thus, there is a significant difference between OFS-Density

and other seven competing algorithms respectively on predictive

accuracy, running time and number of selected features. According

to the Nemenyi test, the value of CD (critical difference) is 2.8085.
From Tables 9-13 , we have the following observations.

o OFS-Density vs. Grafting. With the Friedman test and Nemenyi
test, there is no significant difference between OFS-Density and
Grafting on predictive accuracy with KNN, SVM, and CART, but
there is a significant difference on the number of selected fea-
tures. OFS-Density outperforms Grafting on nine of the fourteen
datasets at least in predictive accuracy, while Grafting selects
the most number of features among all these compared meth-
ods. Thus, there must a lot of redundant features in the selected
feature subset with Grafting. Meanwhile, OFS-Density is faster
than Grafting.

o OFS-Density vs. Alpha-investing. Alpha-investing is the fastest
algorithm among all these compared algorithms. There is no
significant difference between OFS-Density and Alpha-investing
on predictive accuracy with KNN, SVM, and CART. OFS-Density
outperforms Alpha-investing on ten of the fourteen datasets at
least. In the same time, the features selected by Alpha-investing
cannot fit for some datasets well. For instance, Alpha-investing
only gets the predictive accuracy of around 0.3 and 0.4 on
dataset SRBCT with KNN and SVM respectively. For some data
sets, such as COLON, SRBCT, and LEUKEMIA, Alpha-investing
only selects one or two features. The reason is that these data
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Table 11
Predictive accuracy using CART as the base classifier.
Data set OFS-Density ~ Grafting  «-investing  OSFS Fast-OSFS ~ SAOLA  0S-SA OFS-A3M
IONOSPHERE 0.8971 0.8886 0.8743 0.8743  0.8829 0.8829 0 0.8457
WDBC 0.9209 0.9263 0.9227 0.9403  0.9368 0.891 0.1737 0.9174
SONAR 0.6722 0.7113 0.7336 0.6351 0.6802 0.6817  0.7446  0.7504
HILL 0.5901 0.5066 0.5884 0 0 0 0 0.5992
COLON 0.7333 0.65 0.5333 0.7167 0.7667 0.8333 0.6667 0.7167
SRBCT 0.8167 0.5667 0.6333 0.7167 0.7333 0.8833 0.7 0.7833
LUNG2 0.855 0.915 0.81 0.78 0.795 0.833 0 0.815
LYMPHOMA 0.85 0.7833 0.7667 0.8667  0.8667 0.85 0.95 0.8833
GLIOMA 0.54 0.56 0.4 0.6 0.5 0.62 0 0.58
MLL 0.9143 0.8286 0.7429 0.7714 0.9 0.8571 0 0.7857
PROSTATE 0.9 0.78 0.84 0.89 0.85 0.83 0.82 0.76
DLBCL 0.8 0.6925 0.775 0.7975  0.81 0.8 0 0.825
LEUKEMIA 0.8857 0.7857 0.5714 09143 08714 0.8714  0.8571 0.8429
ARCENE 0.7 0.69 0.76 0.615 0.72 0.655 0 0.7
AVG. ACCURACY  0.7910 0.7346 0.7108 0.7227  0.7366 0.7489 03508  0.7717
AVG. RANKS 5.8929 4.0000 3.5357 44286  5.2857 5.1071 2.6786  5.0714
Table 12
Running time (seconds).
Data set OFS-Density ~ Grafting  «-investing  OSFS Fast-OSFS ~ SAOLA 0S-SA OFS-A3M
IONOSPHERE 0.3373 0.2074 0.0021 0.1265 0.0162 0.0117 0.162 0.0117
WDBC 0.6073 3.6651 0.0036 0.1225 0.0584 0.0136  0.3312 0.0136
SONAR 0.1874 0.4152 0.0037 0.0503 0.0216 0.0159  3.2413 0.0159
HILL 10.8671 33.1627 0.0109 0.015 0.0149 0.0153 0.5784 0.0153
COLON 0.9031 4.1893 0.0716 0.4131 0.2945 0.3117 35.7356 0.3117
SRBCT 1.0019 7.5742 0.0912 1.8171 0.5312 0.8129  87.2487 0.8129
LUNG2 9.6493 10.607 0.6714 62.784 3.3015 2172 47.6706 2172
LYMPHOMA 3.4191 6.0938 0.2181 10.2915  2.0148 44564  68.2504 4.4564
GLIOMA 1.8031 2.9393 0.2362 5.0781 1.3078 23033  17.4906 2.3033
MLL 3.102 2.0967 0.4509 12.4407  2.0482 49122 39.708 49122
PROSTATE 4.51 9.8044 0.3489 2.4136 11444 1.4457 186.6152  1.4457
DLBCL 3.7305 2.6564 0.4503 3.0092 1.204 1.5468  52.3555 1.5468
LEUKEMIA 3.801 7.9587 0.4426 42189 1.3923 1.9461 121.5487  1.9461
ARCENE 36.2364 704346  0.9856 9.0093 2.0664 3.049 446.1125  3.049
AVG. ACCURACY  5.7253 11.5574 0.2847 7.9849 11011 1.6437  79.0749 1.6437
AVG. RANKS 5.5714 6.5000 1.0000 5.7143 2.5714 3.5714 7.5000 3.5714
Table 13
The number of selected features.
Data set OFS-Density ~ Grafting  «-investing ~ OSFS Fast-OSFS ~ SAOLA  0S-SA OFS-A3M
IONOSPHERE 3.7 317 7.7 3.7 4 39 0 5.8
WDBC 5.7 15.7 18.8 3 4 2 31 15.2
SONAR 4.1 294 121 29 3 2.6 114 23
HILL 6 1 9.3 0 0 0 0 19.1
COLON 5.8 66.3 1 1.9 2.5 39 74 321
SRBCT 4.6 749 1 23 51 203 8.2 11.7
LUNG2 20.5 166.7 375 6 9.9 29.7 0 217
LYMPHOMA 25.8 713 34 3.2 5.6 37 41 6.9
GLIOMA 5.5 58.4 34 1.5 4 16.7 0 215
MLL 8.7 53.6 9.5 2.6 5.1 329 0 8.9
PROSTATE 5.4 114.2 2 1.7 35 1.7 6.9 50.1
DLBCL 10.4 61.2 7.3 2.3 5.1 20.2 0 13
LEUKEMIA 42 81.6 19 2.6 53 203 6.4 14.6
ARCENE 60.4 1223 83 2.5 5.5 19.1 0 444
AVG. ACCURACY 122 67.7 8.8 2.5 44 15.7 33 20.5
AVG. RANKS 4.5357 7.7143 42143 1.9286  3.4643 5.0357 2.8929 6.2143

sets are very sparse and Alpha-investing can only select the
first few features of these data sets.

OFS-Density vs. OSFS. There is no significant difference between
OFS-Density and OSFS on predictive accuracy, running time and
number of selected features. OFS-Density outperforms OSFS on
eleven of the fourteen datasets at least. On dataset HILL, OSFS
cannot select any features and gets the prediction accuracy O.
In addition, OFS-Density is faster than OSFS in running time.
OSEFS selects the least number of features among all these com-
pared algorithms. Thus, some important information is proba-
bly missed which causes the low predictive accuracy.

OFS-Density vs. Fast-OSFS. There is no significant difference be-
tween OFS-A3M and Fast-OSFS on predictive accuracy. OFS-A3M
performs better than Fast-OSFS on ten of the fourteen datasets.
Meanwhile, Fast-OSFS is faster than OFS-A3M. However, as sim-
ilar to OSFS, Fast-OSFS also selects very few features on data
sets, which leads to the missing of some important information.
OFS-Density vs. SAOLA. There is no significant difference be-
tween OFS-Density and SAOLA on predictive accuracy with
KNN, SVM, and CART. SAOLA is faster than OFS-Density and se-
lects more features than OFS-Density. However, OFS-A3M out-
performs SAOLA on nine of the fourteen datasets at least in pre-
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dictive accuracy. Thus, the features selected by OFS-Density is
more discriminative. Meanwhile, on the data set HILL, SAOLA
cannot select any features and get the predictive accuracy O.
This demonstrates that SAOLA cannot handle some types of
data well.

OFS-Density vs. OS-NRRSARA-SA. There is a significant differ-
ence between OFS-Density and OS-NRRSARA-SA on predictive
accuracy. On seven of the fourteen datasets, OS-NRRSARA-SA
selects all the features of the datasets and we set the predictive
accuracy and number of selected features to 0. The main rea-
son for this is OS-NRRSARA-SA cannot deal with continues fea-
tures directly and it can not select discriminative features after
data converted. Meanwhile, OS-NRRSARA-SA spends the max-
imum running time among all these compared methods. OS-
NRRSARA-SA uses the classical rough set for feature selection
which makes it need not set any parameters before learning.
However, it cannot deal with real-valued data directly and can-
not handle some datasets well.

OFS-Density vs. OFS-A3M. There is no significant difference be-
tween OFS-Density and OFS-A3M on predictive accuracy. OFS-
Density performs a little better than OFS-A3M. Meanwhile, OFS-
A3M runs faster and selects more features. Similar to OFS-
Density, OFS-A3M also uses adaptive neighborhood rough set
relation for feature selection. However, OFS-A3M uses the ex-
actly equal constraint for feature redundant analysis, which
makes it select more features and cause more redundancy.

In our experiments, we have conducted 10-fold cross-validation
on each data set. We randomly divided the instances of each
data set into 10 folds. The instances used for feature selection in
Sections 5.4 and 5.5 are different. Thus, the corresponding selected
features in Sections 5.4 and 5.5 are probably different. For OFS-
Density, there is not only one combination of features, which can
make the dependency of the selected feature subset achieve the
maximal. Thus, although given the same data set, if the training in-
stances are different, the final selected feature subset will be prob-
ably different too.

In sum, OFS-Density is not faster than some compared methods,
but it outperforms all competing algorithms on predictive accuracy.

6. Conclusion

In this paper, we proposed a new method for online stream-
ing feature selection. Our new algorithm is based on neighborhood
rough set theory which does not require domain information be-
fore learning. We proposed a new density neighborhood relation
which automatically decides the number of neighbors during de-
pendency calculation by the density information of the surround-
ing instances. With this new neighborhood relation, we need not
specify any parameters in advance. Meanwhile, we use a fuzzy
equal constraint for redundancy analysis which makes the selected
feature subset small and discriminative. As compared to eight tra-
ditional feature selection methods and seven state-of-the-art on-
line streaming feature selection algorithms, the proposed algorithm
is superior to traditional feature selection methods with the same
number of features and performs better than online streaming fea-
ture selection algorithms in an online manner. As we have known,
neighborhood rough set is one of tolerance rough sets. In our fu-
ture work, we will attempt to apply fuzzy rough sets in online
streaming feature selection.
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