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ABSTRACT Cross-domain classification is a challenging problem, in which, how to learn domain
invariant features is critical. Recently, significant improvements to this problem have emerged with the wide
application of deep learning models, which have been proposed to learn higher level and robust feature
representation. Marginalized stacked denoising autoencoder model (mSDA) has proved to be effective to
address this problem. However, the performance of mSDA is sensitive to the noise probability. In previous
works, the noise probability is usually set as a constant value by cross-validation in the source domain. There
is few work focus on the relationship between the noise probability and cross-domain task. In this paper,
we try to compute the value of noise probability adaptively. Thus, an approach called Marginalized Stacked
Denoising Autoencoders with Adaptive noise Probability (mSDA-AP) is proposed. Firstly, we extract an
informative feature space by an improved index, weighted log-likehood ratio TWLLR), then aggregate these
informative features by weighting. Secondly, we compute the value of noise probability adaptively according
to the distance between source domain and target domain, and then with the adaptive noise probability, we
disturb the input data to learn a stronger feature space with mSDA. Finally, experimental results show the

effectiveness of our proposed approach.

INDEX TERMS Domain adaptation, mSDA, noise probability, adaptive parameter.

I. INTRODUCTION

ROSS-domain classification aims to train a classifier

from the source domain, in which the labeled instances
are relatively sufficient, to learn a classifier for unseen or
unlabeled data in a target domain. Both domains are assumed
to be related, but not identical. And cross-domain text classi-
fication is thought as a challenging problem, because there
are some domain-specific words, which only occur in the
source domain and do not occur in the target domain [1]—
[4]1, [39]. Cross-domain classification is also called transfer
learning, domain adaptation.

Learning an invariant and shared feature space is a com-
mon and efficient way to address this problem. Most works
can be divided into two sub-categories: raw feature space
based on approaches [5], [6] and the latent or higher feature
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space based on approaches [7], [8], [41]. These works extract
a shared feature set and build the mapping relation between
the specific features of two domains with the shared features
as a bridge.

Recently, deep learning models attract attention from re-
searchers widely. Deep learning models try to learn a feature
space which is suitable for source and target domains to
address cross-domain classification. Specially, deep learning
models learn a stronger feature space by yielding multiple
layers of intermediate concepts between raw input and target.
These intermediate concepts can been seen as higher-level
feature representation. In recent years, deep learning has been
used as a generic solution in Natural Language Processing
and achieved significant effect. Models such as Convolution-
al Neural Network [9]-[11], [32], Recurrent Neural Network
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[12]-[15] and Autoencoders [17], [19], [31] have been used
in cross-domain classification.

As an unsupervised model, stacked denoising autoen-
coders (SDA) [17] has shown great success in cross-domain
classification, which stacked multiple layers of denoising
autoencoders to form a deep learning model and learned
a strong latent space for the cross-domain classification.
However, SDA optimized the network structure iteratively,
which led to a higher computational cost. Chen et al. [19]
proposed the marginalized stacked denoising autoencoders
(mSDA), it optimized the structure and parameters with a
liner approach instead of the expensive iteration process. In
addition, Clinchant et al. [20] suggested a more appropriate
regularization for denoising autoencoders (MDA-TR) based
on the work of [21], which made the invariant features can
be focused more easily. However, MDA-TR only performed
well in one-layer model. In addition, Csurka et al. [22]
proposed an extended framework for marginalized domain
adaptation with a domain regularization that may be either
a domain prediction loss or a maximum mean discrepancy
between the source and target data, aimed at addressing un-
supervised, supervised and semi-supervised scenarios. Jiang
et al. [23], [33] used /5 ;-norm to measure the reconstruction
error to learn powerful representation for domain adaptation
tasks.

Although these SDA and mSDA can learn good feature
representation, their performances were sensitive to the noise
probability, which were used to disturb the input data. Most
works set the noise probability as a constant value through
experimental results. In this paper, we find that the value
of noise probability should be varied with the difference
of cross-domain tasks. Therefore, an adaptive computing
way for the optimal value of noise probability is proposed
for cross-domain classification. Our main contributions are
summarized below:

o We propose a mechanism to compute the value of noise
probability adaptively for mSDA according to the di-
vergence between the source and target domain, with
which, we can get a more robust feature space. More-
over, this mechanism can make sure that the adaptation
is not sensitive to different datasets because of the value
of parameter.

e We propose an improved Weighted Log-likehood Ra-
tio IWLLR) index, which is improved from WLL-
R (Weighted Log-likehood Ratio), to distinguish the
shared features and special features. Compared with
WLLR, ITWLLR makes the important features have
higher polarity values. Thus it is more suitable for the
cross-domain task.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews related work. Section 3 gives the details
of our mSDA-AP algorithm. Section 4 shows the effective-
ness of our approach with experimental results. Section 5
summarizes the paper.

Il. RELATED WORK

The goal of cross-domain classification is to reduce the
performance degradation of classifier between source domain
and target domain. Recent works have mainly investigated
two techniques for alleviating the difference: learning joint
feature representations [1], [2], [24], and learning a robust
feature space with deep learning models [17], [19], [25]. This
paper belongs to the second one.

In view of raw words, Blitzer et al. [1] proposed a struc-
tural correspondence learning (SCL) method to find the
correspondence between features from different domains via
pivot features. Pan et al. [2] proposed a spectral feature
alignment (SFA) method to align domain-specific words
from different domains into unified clusters. Bollegala et al.
[16] grouped different features expressing the same senti-
ment into one thesaurus, and proposed an asymmetric related
measure to compute the similarity of features. III et al.
[5] augmented instances with features differentiating source
and target domains to improve a nonlinear kernel mapping
between domains. Lan et al. [40] proposed a multiple sparse
representation framework for visual tracking which jointly
utilized the shared and feature-specific properties of different
features by decomposing multiple sparsity patterns.

Many researchers have used autoencoders as a powerful
tool for automatic extraction of nonlinear features. Glorot et
al. [17] trained a SDA to reconstruct the input vectors on the
union of the source and target data, and extracted features for
domain adaptation from partial and random corruption. The
denoiseres can be stacked into deep learning architectures.
Chen et al. [19] proposed the marginalized stacked denoising
autoencoders (mSDA) that addressed two crucial limitations
of SDA: high computational cost and the lack of scalability
to high-dimensional features. mSDA marginalized noise and
adopted the liner denoiser to learn parameters instead of the
stochastic gradient descent algorithm. Yang et al. [25] pro-
posed marginalized structured dropout, which exploited the
feature structure to obtain a remarkably simple and efficient
feature projection. They also proposed two alternative nois-
ing techniques: feature scrambling and structured dropout.
And the structured dropout can make marginalization easier
and obtain dramatic speedups without sacrificing accuracy.
Deep nonlinear feature coding (DNFC) [35] was presented
to address two main limitations of mSDA: the divergence
between source and target domains in the new feature space
was not taken into consideration and the nonlinear relation-
ship in the data with the new feature representation may not
be captured because mSDA injected the nonlinearity after
feature learning. DNFC minimized domain divergence with
empirical maximum mean discrepancy (MMD) metric and
used kernelization for nonlinear coding. Feature analysis of
marginalized stacked denoising autoenconder (DTFC) [31]
disturbed the input data with multinomial dropout noise to
obtain richer feature representation. Unsupervised learning
has a major disadvantage that is easy to overfit on the source
training data. Yang et al. [36] presented a representation
learning framework via serial autoencoders (SEAE), which
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learned richer feature representation by serially connecting
two different types of autoencoders. Based on the work of
Ganin and Lempitsky [21], Clinchant et al. [20] proposed
an unsupervised regularization method for mSDA to make
the adaptation easier. Ziser et al. [26] proposed a neural
network model that marries two ideas together: SCL [1]
and autoencoder neural networks. Their model was a three-
layer neural network that encoded the non-pivot features
of an input example into a low dimensional representation,
so that the existence of pivot features in the example can
be decoded. Zhuang et al. [11] proposed transfer learning
with deep autoencoders (TLDA). It was a supervised repre-
sentation learning method based on deep autoencoders, and
consisted of the methods of distance minimization between
source and target domains and label encoding of the data in
source domain, the main drawback of TLDA was that the
common autoencoder was used for feature learning, and it
did not consider the sparse and over-complete features in
learning feature representation. In addition, there are some
variant models based on SDA and mSDA [28], [29]. Jiang
et al. [23] proposed 5 1-norm stacked robust autoencoders
to learn useful representations for domain adaptation tasks.
It was based on a loss and regularizer framework, each
layer of f5; -SRA contained two steps: a robust linear
reconstruction step which was based on ¢ ; robust regression
and a non-linear squashing transformation step, which made
their method easier to implement. Stacked reconstruction
independent component analysis (SRICA) [27] minimized
the KL-Divergence between source and target domains and
used the softmax regression to encode label information of
the data in source domain. Wasserstein distance guided repre-
sentation learning (WDGRL) [34] obtained domain invariant
feature representations in an adversarial manner by mini-
mizing the wasserstein distance between source and target
domains. Zhou et al. [37] proposed a transfer learning model
DATNet for low-resource NER to address the problems of
representation difference and resource data imbalance. Zhou
et al. [38] presented a framework named transfer hashing
with privileged information to solve the data sparsity issue
in hashing. Zhou et al. [42] proposed a method of multi-class
heterogeneous domain adaptation to obtain a sparse feature
transformation between domains with multiple classes.

lll. PROPOSED ALGORITHM
In this section, we first give some basic concepts used in this
paper, and then give the details of our mSDA-AP approach.
Given a labeled source domain D, and an unlabeled target
domain Dy, where Dy = {(zf,y7)}i2; and Dy = {(2%)},.
Among them, ns and n; are the number of instances in the
source and target domain respectively; 27 and ch are the ¢-th,
j-th instance in the source and target domain respectively; y?
is the label of the ¢-th instance in the source domain D;. The
goal of this paper is to learn a robust feature representation
F from D, U D;. Dy U D; can be denoted as R(7=+7ne)xd
where d is the dimension of feature space of D, U D;. And
with the learnt F', we will train a classifier for target domain.
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In this paper, we propose an adaptive approach for noise
probability based on the Marginalized Stacked Denoising
Autoencoders (mSDA-AP). Firstly, we select the shared fea-
tures using our proposed IWLLR and weight this feature
space to get an informative input data. Then, we compute the
value of noise probability according to the distance between
two domains, and disturb the weighted data with this noise
probability to learn the stronger feature space using mSDA.
Lastly, a classifier based on the stronger feature space is
trained for the target domain classification. The framework
of our mSDA-AP is shown in Figure 1.

A. SELECT SHARED FEATURES AND WEIGHT THEM
Shared features are critical for cross-domain tasks. In this
subsection, we select some informative shared features ac-
cording to the frequency and polarity index, and then high-
light the shared features by weighting.

In SCL [1], the frequency is used to select shared features,
and some features with lower polarities will be selected. In
SFA [2], both mutual information (MI) and frequency are
used, and some features with higher polarities in D, but
not in D, will be selected. In this subsection, we expect to
select the features with higher polarities and frequency in
both domains. So we select some candidate words that appear
more than 3 times in both source and target domains as a
set CW = {wj,ws,- - -}, based which, IWNLLR index is
designed.

We propose IWLLR index by introducing 3 into WLLR,
which is a polarity index of features. IWLLR makes the
important features present higher polarity values, and is more
suitable for the cross-domain task. The process is shown in
Eq. (1). Besides, we consider both the importance of features
in the target domain and the polarities of features (as shown
in Eq. (2)) to select shared features.

Py (1—pY%)

IWLLR(wi,y*) = piy, (1 = ply Jlog(=——"2) (1)
pw,y(l - pwi)
s o P(wi|Dy)
r(wily®) = IWLLR(w;, y®) ———t2 )
(wily®) (wi,y )p(wile)

where w; is a word in the set of CW, y° is the sentiment
label, y* is the opposite label of y*, and p%ui_ is the probability
of feature w; in sentence labeled with y*®, and pfj means
the probability of w; in sentences those labels are not y°.
p(w;|Ds) and p(w;|Dy) is the probability of feature w; in the
source and target domain respectively. p(w;|D:)/p(w;|Ds)
is used to measure the dependency of feature w; with the
target domain. If p(w;| Dy )/p(w;|Ds) > 1, it means that w; is
more dependent to the target domain than that to the source
domain, and vice versa. Therefore, some features with higher
polarities in Dy but not in D; will not be selected. Then,
we rank the candidate features CW in a decreasing order of
r(w;|y®) . Finally, the former k words were selected to form
the shared feature set of SW.

In order to achieve a better performance in domain adap-
tation, a feature w; should have a higher weight if it has a

3
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FIGURE 1. The whole framework of our proposed mSDA-AP.

higher polarity in the source domain and a higher frequency
in the target domain. In this subsection, we will weight the
feature space with «, as shown in Eq. (3).

|SW]

lp%. — pY [p(w;| Dy)

o =

And then the shared feature set ST is weighted by «, and
the special feature set is weighted by 1 — a. The process is
shown in Eq. (4).

[ sin(a)w; Jw; € SW
wi = { (1= sin(@))w; ,w; & SW. @)

B. LEARN STRONGER FEATURE SPACE

In this subsection, we first compute the noise probability
adaptively, and then disturb the feature space with the adap-
tive noise probability to learn stronger feature representation
using mSDA.

It is known that the performance of mSDA is sensitive
to the noise probability. Obviously, it is not suitable to
give a constant value for the noise probability. For different
cross-domain tasks, the divergence between source and target
domains differs. Therefore, the noise disturbing should also
vary. In this paper, we think the value of noise probability
is related to the divergence of the source domain and target
domain. Thus we compute a distance between source and
target domains as the value of noise probability.

More specifically, the distance between source and target
domains is measured by the distribution distance of CW
between two domains. We define a third mapping space M,
which is shown in Eq. (§), and then we calculate the KL
distance from the source domain D, to M;, and the distance
from the target domain Dy to the M;. We take the distance
(as shown in Eq. (6)) as the distribution difference value
between the two domains. Then our optimal noise probability
is computed according to Eq. (7).

o T fls

Mi: )
2

&)

SWl = max{pfﬂ.,p%Ti}max{p(wi|Dt>,p<wi|Ds(>3};'

|[CW]|

JSD = Z fo log v, +fo logf““

Z

)i (6)

noises = JSD + . @)

where f;; and ffu,- indicate the frequency of candidate word
w; in source and target domains respectively, and ~ is a
penalty factor. Thus, we can get the value of noise probability
according to different cross-domain tasks.

With this noise probability, we disturb the input data
(including the source domain and target domain), and then
learn a more robust feature space using mSDA. Then we train
a classifier based on the robust feature space.

Specially, we take the weighted instances X eR(7stne)xd
in both source and target domains as the input, where d is the
dimension of the feature space. These input data is corrupted
with noises, which means each feature is set to 0 with the
probability noises. The corrupted version of X; is denoted
as X;. Then, the corruption inputs X; is reconstructed by
minimizing the squared reconstruction loss, as shown in Eq.
(8), in which, K is the time of corruption.

K
. 1 112
= min E_l IX —UX;|°. 8)

minl(U)

According to [19], a unique and optimal solution is yield,
and the mapping U can be expressed in closed form as U =
PQ~!, and P and Q is shown in Eq. (9) and Eq. (10).

Sijqiq;  sif 1#]
ij = . S 9
Qe { Siai L if i=1; ®
Pij == Siij- (10)
In Eq. (9) and Eq. (10), ¢ = [l — noises,- - -,1 —

noises, 1]eR%!, and S = X X7 is the covariance matrix
of the uncorrupted data X. S;; and @);; is the i-th row, j-th
column element in matrix .S and @) respectively.

Following the same strategy adopted by other autoencoder-
s, mSDA-AP learns the new representations layer by layer
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Algorithm 1: mSDA-AP.
Input:
labeled source domain Dy = {(z%, y¢)} 2, unlabeled
target domain data Dy = { (%)}, parameter [ and k
Output:
the adaptive classifier f : X — Y
1: Initialize X° = [2f,- - - a5 ,at, - af |;
2: Select shared features and weight the X° using Eq.
(3-4);
3: Compute the optimal value of noise probability
adaptively using Eq. (5-7);
Forr <—1tol do
Solve U" according to Eq.(9-10);
Computer h" = tanh(U" X"~ 1);
Define X" = [X"~1; h"];
end
Build the classifier f on the final union source feature
space X and predict in the target domain X7 ;
10: return the adaptive classifier f

t

D AN

greedily. Moreover, mSDA-AP uses the same strategy as
Chen et al. [19], mSDA-AP does not need an end-to-end
fine-tuning with the BP algorithm and can be computed in
a closed form with a less time cost. To apply mSDA-AP to
domain adaptation, we first learn feature representation in
an unsupervised way on source domain and target domain
data. Then the output of all layers, after squashing function
tanh(-), are combined with original features h° to form new
representations. Finally a linear SVM is trained on the new
features, it only uses one epoch to train the last layer using
the linear SVM. The whole process of our mSDA-AP model
is summarized in Algorithm 1.

IV. EXPERIMENTS

In this section, we perform a comprehensive experimental
study on domain adaption problem to evaluate both the effec-
tiveness and scalability of the proposed mSDA-AP models,
including sentiment polarity prediction, email spam filtering
and Office-Caltech10 dataset.

A. DATASETS

Amazon Review Dataset'. The Amazon review Dataset has
been widely adopted as the benchmark dataset for domain
adaptation and sentiment analysis. It contains a collection
of product reviews from Amazon.com about four product
domains: Books (B), DVDS (D), Electronics (E) and Kitchen
appliances (K). And we can construct 12 cross-domain tasks
including B—D, E—K and so on. In this dataset, each review
is assigned a sentiment label, -1 (negative review) or +1
(positive review), based on the rating score. Reviews with
rating 4 or 5 are labeled as positive, and reviews with rating
1 or 2 are labeled as negative. For each domain, there are

thttp://www.cs.jhu.edu/ mdredze/datasets/sentiment/.
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TABLE 1. Description of Office-Caltech10 dataset.

Dataset Type Instances Features Classes
Caltech-256  Object 1123 800 10
AMAZON  Object 958 800 10
Webcam Object 295 800 10
DSLR Object 157 800 10

1000 positive and 1000 negative reviews. As mSDA-AP and
mSDA focus on feature learning, we use the raw bag-of-
words (bow) features as their input, and adopt the setting
of paper [19] with the 5000 most frequent common features
selected for each adaptation task with TF-IDF as weight.

Email Spam Filtering Dataset’>. It is from the ECM-
L/PKDD 2006 discovery challenge. In this dataset, 4000 la-
beled training samples were collected from publicly available
sources (source domain), with half of them are spam and the
other half are non-spam. The testing samples were collected
from 3 different user inboxes UQ, U1 and U2, which is treated
as target domain, each of which consists of 2500 samples.
Thus, we construct 3 cross-domain tasks including Pub—UO0,
Pub— U1 and Pub—U2. As on Amazon review dataset, we
also chose the 5000 most frequent terms as features.

Office-Caltech10 dataset. Office-Caltech10 contains 10
object categories from an office environment in 4 image
domains: Amazon (Am), Webcam (We), DSLR (DS), and
Caltech256 (Ca). There are 8 to 151 samples per category
per domain, and there are 2,533 images in total. Details of
the Office-Caltech10 dataset are described in Table 1. In
our experiment, we construct 3 cross-domain tasks Ca—Am,
Ca—We, Ca—DS. Because our algorithm is designed for
binary classification problems, on Office-Caltech10 dataset,
we computer « by treating categories 1-5 as positive samples
and categories 6-10 as negative samples.

B. COMPARED METHODS
We compare our approach with several state-of-the-art meth-
ods to test the effectiveness of our work.

(1) Support Vector Machine (SVM). It is the traditional
SVM classifier without transfer learning. We train a linear
SVM on the raw TF-IDF representation of the labeled source
data and test it on the target domain.

(2) Marginalized Stacked Denoising Autoencoders (mSDA)3
[19]. It is a transfer learning algorithm based on stacked
denoising autoencoders. Since mSDA is better than SDA, we
only provide our comparisons with mSDA. The performance
metric is classification accuracy.

(3) Regularization Denosing Autoencoders (MDA-TR)*
[20]. It is an appropriate regularization for the denoising
autoencoders, in particular for MDA. With the aim to make

Zhttp://www.ecmlpkdd2006.org/challenge.html.
Shttp://www.cse.wustl.edu/~mchen.
“http://github.com/sclincha/xrce_msda_da_regularization.
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TABLE 2. Performance (accuracy %) on Amazon review dataset.

task SVM MDA-TR mSDA /3,;-SRA DNFC WDGRL DTFC mSDA-AP
B—D 80.65 83.32 84.36 84.72 83.83 83.05 56.50 84.77
B—E 72.58 75.29 76.43 76.06 81.17 83.28 60.01 79.00
B—K 75.44 82.86 82.46 84.32 84.29 85.45 60.56 86.21
D—B 78.59 83.20 83.49 83.65 83.07 80.72 55.45 83.58
D—E 72.82 80.00 82.05 80.64 83.54 83.58 58.85 83.47
D—K 76.40 86.14 87.38 87.55 87.52 86.24 58.32 88.26
E—B 70.48 78.66 79.37 78.99 78.90 77.22 56.28 80.47
E—-D 7236 79.14 79.34 80.12 79.56 78.28 56.25 80.28
E—K 86.19 86.16 88.46 88.07 88.73 88.16 75.04 88.36
K—B 7149 79.06 79.13 79.35 78.84 77.16 62.37 80.20
K—D 74.40 79.39 79.39 79.95 80.15 79.89 61.52 80.56
K—E 84.49 87.33 87.38 87.64 87.94 86.29 74.46 87.45
Avg 76.32 81.71 82.44 82.59 83.13 82.43 61.30 83.55
TABLE 3. Performance (accuracy %) on Spam dataset.
task SVM MDA-TR mSDA /3;-SRA DNFC WDGRL DTFC mSDA-AP
Public—U0 72.79 82.55 78.00 81.99 83.84 85.67 81.96 90.48
Public—U1 73.94 85.87 85.12 85.99 85.20 88.62 85.12 92.67
Public—U2 78.64 85.92 90.44 91.36 85.24 95.76 80.56 93.64
Avg 75.12 84.78 84.52 86.45 84.76 89.90 82.41 92.26
TABLE 4. Performance (accuracy %) on Office-Caltech10 dataset.
Dataset SVM MDA-TR mSDA /¢3,-SRA DNFC WDGRL DTFC mSDA-AP
Ca—Am 51.98 44.15 54.70 54.80 52.19 55.22 37.68 57.52
Ca—We 3492 41.69 37.29 37.29 42.37 42.37 32.54 43.05
Ca—DS  43.31 45.68 45.86 47.13 49.04 48.41 33.76 52.87
Avg 43.40 43.90 45.95 46.41 47.87 48.67 34.66 51.14
TABLE 5. Running time (seconds) of training the last layer using linear SVM on Amazon review dataset.
task SVM MDA-TR mSDA /3;-SRA DNFC WDGRL DTFC mSDA-AP
B—D 4.10 35.71 227.52 274.23 152.61 35.44 35.42 195.08
B—E 420 31.36 188.34  265.83 154.13 35.54 35.68 158.49
B—K 422 31.01 197.05 274.59 152.60 35.35 35.40 146.92
D—B 4.02 31.29 194.79 255.38 144.66 35.03 35.18 153.00
D—E 397 32.32 189.44 269.88 144.42 35.20 35.20 159.85
D—K 394 31.84 193.21 277.39 156.64 35.29 35.26 158.75
E—B 3.06 31.71 180.22 256.97 141.51 34.86 34.22 120.04
E—D 3.02 31.50 185.02 254.86 140.86 3443 34.80 114.11
E—-K 3.02 27.39 19526  244.88 140.52 32.33 32.42 141.93
K—B 278 31.34 184.09 251.19 141.12 35.19 34.65 144.20
K—D 274 31.80 192.08 259.03 137.18 35.09 35.34 130.91
K—E 273 25.62 200.86 238.67 133.63 33.61 32.59 107.70

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.
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TABLE 6. Running time (seconds) of training the last layer using linear SVM on Spam dataset.

task SVM MDA-TR mSDA /;;-SRA DNFC WDGRL DTFC mSDA-AP
Public—UO  6.63 44.13 218.41 167.51 157.33 88.24 191.53 178.38
Public—U1  6.52 35.67 177.38 164.37 158.17 83.72 180.79 143.11
Public—U2  6.52 31.16 161.39 137.54  144.08 70.95 158.08 153.00

TABLE 7. Running time (seconds) of training the last layer using linear SVM on Office-Caltech10 dataset.

Dataset SVM MDA-TR mSDA /;;-SRA DNFC WDGRL DTFC mSDA-AP
Ca—Am 6.63 1.91 15.83 12.01 8.12 8.83 7.91 5.83
Ca—We 6.52 1.93 15.03 12.83 8.11 8.81 7.84 6.04
Ca—DS  6.52 1.97 14.84 12.63 8.18 8.80 7.88 6.17
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FIGURE 2. Accuracy of our mSDA-AP with different numbers of shared features on 3 datasets.
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source data resemble the target data, it is easy to address
domain adaptation.

(4) {£3,-Norm Stacked Robust Autoencoders (£2 1-SRA)
[23]. It is a simple combination of statistics tool and deep
arcitecture. And it can learn effective representations.

(5) Deep Nonlinear Feature Coding framework (DNFC)
[35] introduce kernelization and MMD into mSDA to obtain
nonlinear deep feature representation. In DNFC, we use
SVM as the basic classifier.

(6) Wasserstein Distance Guided Representation Learning
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Accuracy of our mSDA-AP with different numbers of layers on 3 datasets.

(WDGRL)’ [34], which is an adversarial method and it learns
domain invariant feature representations by minimizing the
wasserstein distance between source domain and target do-
main.

(7) Feature analysis of marginalized stacked denoising
autoenconder (DTFC) [31], which extracted effective feature

representations by corrupting the raw input data with multi-
nomial dropout noise.

Shttps://github.com/RockySJ/WDGRL.
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Parameter setting: In our experiments, we set the number
of shared features k£ as 200 on all datasets, and set the number
of layers [ as 5, 4, 2 Amazon, Spam and Office-Caltech10
datasets, v are 0.5, 0.7, 0.4 for Amazon Review, Spam
and Office-Caltech10 dataset respectively. In the method of
mSDA, the best parameters will be shown in the experiment.
For MDA-TR and WDGRL, we use the default parameters
as reported in [20] and [34] respectively. For /5 ;-SRA, the
number of layers are 5, 3 and 2 for Amazon Review, Spam
and Office-Caltech10. The parameter « is 2 for Amazon
Review, 20 for spam, and 10 for Office-Caltech10. And the
parameter A are 0.5, 10, 10 for Amazon Review, Spam and
Office-Caltech10. In the method of DNFC, we set 6 as 1000
on all datasets, and set layer as 3, 2, 3 for Amazon, Spam,
Office-Caltech10 respectively. For DTFC, we set 6 as 1000
on all datasets, and set layer as 3, 3, 3 for Amazon, Spam,
Office-Caltech10 respectively. All experimental results are
conducted on a PC with Intel(R) i7-7700T, 2.9 GHz CPU,
and 16GB memory.

C. CLASSIFICATION ACCURACY

Tables 2 3 4 show the accuracy of results on three datasets.
The best results in each task have been marked in bold. And
SVM is a traditional approach, the accuracy is the lower lim-
its. We have the following observations from experimental
results.

The first one is that our mSDA-AP performs better than
MDA-TR and mSDA, DNFC, DTFC, which shows the su-
periority of applying adaptive noise probability. In mSDA
and DNFC, the best value of noise probability is set by
experiment results, MDA-TR sets noise as 0.9, and DTFC
used the second-order statistic of features to obtain the noise
probabilities. If the noise probability is equal to 1, which
means the feature is removed. In DTFC, the performance
is depressing because of our data dimension is very high
and the noise probability is closed to 1 for each feature.
While mSDA-AP computes the noise probability adaptively.
Additionally, our mSDA-AP also has a little superior to {5 ;-
SRA and WDGRL on three datasets, which also indicates the
importance of weighting the feature space to learn a good

8

representation feature in transfer learning. It indicates that
the invariant features is important for cross-domain classi-
fication. In a word, our mSDA-AP is superior to all the other
baselines in these three datasets.

Tables 5 6 7 display the running time of training the
last layer using the linear SVM. Because the original input
and output from all layers are concatenated to form the
final feature representations, thus we use the final feature
representations to train the linear SVM. With the number
of layer increases, the feature dimension of the final feature
representations increases, and the training time will increase.
From Tables 5 6 7, we observe that mSDA-AP is faster than
mSDA and /3 1-SRA when using the same stacked layers.
The stacked layers are 4 and 3 in DTFC and mSDA-AP
respectively, we find mSDA-AP is faster than DTFC, which
can be seen from Table 6. Since the proposed mSDA-AP
adopts the weighting strategy, the weight of some unimpor-
tant features will be close to 0, so mSDA-AP is relatively
faster when using the same number of stacked layers.

D. PARAMETER SENSITIVITY

In this subsection, we conduct empirical parameter sensi-
tivity analysis, which validates that mSDA-AP can achieve
optimal performance under wide range of parameter values.
There are two parameters in our method: the number of
domain shared number &k and the number of layers [. We
study the effects of two parameters on three datasets. When
we change one parameter, the rest one parameter is fixed.

The number of domain shared features k: We run
mSDA-AP varying with the values of k. Theoretically, k
should be neither too small nor too large. If & is too small,
some shared features with a higher polarity are not chosen,
which will result in the sparsity in classification. However,
if k£ is too large, some features those are not important
in classification will be selected. We plot the classification
accuracy with regard to different values of & in Figure 2. As
shown in Figure 2, the best value of k falls into & € [200,400]
on Amazon review dataset, k& € [200,500] on Spam dataset,
k € [100,200] on Office-Caltech10 dataset respectively.
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The number of layers: We run mSDA-AP varying with
the values of [, the number of layers for mSDA model to
validate the sensitiveness of our mSDA-AP to the parameter
l. We plotted the accuracies with different numbers of layers
on the same datasets as above, which are shown in Figure
3. We can see that the accuracy of our mSDA-AP increases
as the number of layers increases totally. On Amazon review
and Spam datasets, the number of layers usually performs
best when [ = 5. On Office-Caltech10 dataset, the number of
layers usually performs best when [ = 2.

E. TRANSFER DISTANCE

Ben-David et al. [30] suggested a proxy-A-distance to mea-
sure the similarity between source domain and target domain.
In practice, it is impossible to [30] suggest the proxy-A-
distance as a measure of how different two domains are
from each other. A proxy-A-distance is defined as d4 =
2(1 — 2¢), where € is the generalization error of a clas-
sifier (a linear SVM in our case) trained on the binary
classification problem to discriminate source domain and
target domain. Here we use this proxy-A-distance to measure
the performance of cross-domain task. The value of proxy-
A-distance increasing after cross-domain task means that
the new representations are benefit to domain classification
tasks. As we show in Figure 4, the points of Amazon and
spam datsets increase according to the blue line, while it
decreases on Office-Caltech10 dataset. Although the proxy-
A-distance with new representation decreases on Office-
Caltech10 dataset, mSDA-AP achieves promising results on
Office-Caltech10 dataset. We can get the same result as men-
tioned in reference [23], the proxy-A-distance might become
smaller or bigger after feature learning.

V. CONCLUSION

In this paper, we proposed a transfer learning algorithm
for learning feature representation with a deep learning ar-
chitecture. mSDA is a remarkable model to learn feature
representation. In order to avoid the sensitiveness of noise
probability in mSDA, we proposed a marginalized stacked
denoising autoencoder with adaptive noise probability for
domain adaptation (mSDA-AP), in which, the value of noise
probability is calculated according to the distance between
the source and target domains. Our algorithm can compute
the right noise probability according to different transfer
learning tasks, thus it will benefit the classification for target
domain. And a series of experimental results demonstrate the
effectiveness of our proposed mSDA-AP. In the future, we
will focus on the change of invariant features in disturbing
step.
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