
Multi-Fuzzy-Constrained Graph Pattern

Matching with Big Graph Data

Guliu Liua,b, Lei Lia,b,∗, and Xindong Wuc,a,b

aKey Laboratory of Knowledge Engineering with Big Data (Hefei
University of Technology), Ministry of Education, Hefei, 230009, China

bSchool of Computer Science and Information Engineering,
Hefei University of Technology, 230009, Anhui, China

cMininglamp Academy of Sciences, Mininglamp Technologies,
100084, Beijing, China

adjworld@outlook.com, lilei@hfut.edu.cn, xwu@hfut.edu.cn

∗Correspondence information:
Lei Li
School of Computer Science and Information Engineering,
Hefei University of Technology, 230009, Anhui, China
+8618356055575, lilei@hfut.edu.cn

Abstract

Graph pattern matching has been widespread used for protein struc-
ture analysis, expert finding and social group selection, ect. Recently, the
study of graph pattern matching using the abundant attribute information
of vertices and edges as constraint conditions has attracted the attention of
scholars, and multi-constrained simulation has been proposed to address
the problem in contextual social networks. Actually, multi-constrained
graph pattern matching is an NP-complete problem and the fuzziness of
constraint variables may exist in many applications. In this paper, we in-
troduce a multi-fuzzy-constrained graph pattern matching problem in big
graph data, and propose an efficient first-k algorithm Fuzzy-ETOF-K for
solving it. Specifically, exploration-based method based on edge topology
is adopted to improve the efficiency of edge connection, and breadth-first
bounded search is used for edge matching instead of shortest path query
between two nodes to improve the efficiency of edge matching. The results
of our experiments conducted on three datasets of real social networks
illustrate that our proposed algorithm Fuzzy-ETOF-K significantly out-
performs existing approaches in efficiency and the introduction of fuzzy
constraints makes our proposed algorithm more efficient and effective.

Keywords:graph pattern matching,big graph data, multi-fuzzy-constrained

1



1 Introduction

In recent years, Big data become increasing important in acadamic and in-
dustry, It has been widely studied by scholars. Big data are generated from
multi-source, heterogeneous and autonomous data [1], and usually have the
characteristics of distributed and decentralized control. Furthermore, extensive
application scenario makes it more changeable and huge in scale, which brings
great challenges to its processing and analysis [2]. Therefore, how to represent
and mine useful information become a major issue in big data research. As
an important data structure, graphs are used to represent big data with com-
plex relationships. We will call it big graph later, such as biological networks,
social networks and knowledge graphs. In order to conduct effective analysis
over those graphs, various queries have been investigated, such as reachabil-
ity [3], shortest path query [4], frequent subgraph mining [5, 6, 7, 8], subgraph
matching [9, 10, 13, 14, 33], keyword search [11] and Graph Pattern Matching
(GPM) [12,16,23,35,41], etc.

Early, for the search of graphs, researchers studied the reachability and the
shortest path query in graphs. Subgraph queries for small-scale static graphs
have also been extensively studied [13, 14]. However, with the continuous in-
crease of data size and the increasing complexity of data relationships, the query
and analysis of graph data are facing new challenges. Subgraph matching , which
refers to finding subgraphs that is isomorphic to a given pattern graph GP from
the data graph GD, has attracted the attention of researchers due to its wide
applications. For example, there is a protein of unknown properties. How do we
know his nature? The protein interaction network of known properties can be
used as the pattern graph, and the protein interaction network of the unknown
property protein as the data graph. Then the same interactive network can be
matched through the pattern graph, and used to guess the properties of the
unknown protein [15].

However, this isomorphic subgraph matching does not adapt well to some
applications in social networks, such as expert finding [16], social group discovery
[17], personalized recommendation [18, 19, 20, 21], ect. In order to extend the
application of graph pattern matching in social networks, Fan et al. [22] proposed
bounded simulation, which was based on binary correspondence between nodes
and relaxes strict edge-to-edge mathcing to length bounded path matching.
But they still didn’t take the rich information on the nodes and edges in the big
graph data to get better query results. Therefore, Liu et al. [23] proposed Multi-
Constrained Graph Pattern Matching (MC-GPM) problem based on Contextual
Social Graph (CSG), which required matching more effective results by multiple
constraints on vertices and edges. In addition, there are often fuzzy attribute
constraints that are not considered in existing MC-GPM methods, such as the
social influence of participants, the degree of trust between social participants,
ect.

In this paper, we present the problem of Multi-Fuzzy-Constrained Graph
Pattern Matching (MFC-GPM), which makes MC-GPM more suitable for appli-
cations in general big graph data. In addition, based on the Baseline algorithm
proposed by Liu et al. [23], we propose a more efficient Edge Topologically Or-
dered First-K(ETOF-K) algorithm, and expand it to Fuzzy-ETOF-K alogrithm
for solving MFC-GPM problem. Finally, we experiment on three real-world so-
cial networks of different sizes to compare the efficiency of our algorithm with

2



two existing algorithms, which validates that our proposed algorithm signifi-
cantly outperforms existing approaches and introducing fuzzy to MC-GPM is
necessary.

The rest of this paper is organized as follows. We first review the related
work on GPM in Section 2. Then, the introduction of necessary concepts and the
definition of MFC-GPM are presented in Section 3. Section 4 proposes our Edge
Topologically Ordered First-K algorithm. Section 5 presents our experimental
sets and results, and section 6 concludes this paper.

2 Related Work

Graph pattern matching has developed for many years. At first, It is often
used for isomorphic matching tasks, such as protein property detection [15].
It requires matching subgraphs to have the same topology structure as the
pattern graph. However, the continuous increase of data scales and the increas-
ingly complex relationship between data, the traditional graph pattern matching
method based on isomorphism cannot meet the applications of emerging fields
due to its high algorithm complexity. Simulation based graph pattern match-
ing [22, 23, 24, 35, 36] has attracted the attention of researchers in recent years
because of its ability to return matching results in cubic time.

Isomorphism-based GPM Isomorphism-based graph pattern matching is
to find subgraphs that are isomorphic to the pattern graph, it is also called
subgraph matching. The earliest Ullmann [13] proposed a depth-first-based
matching algorithm, which is a brute-force enumeration search method. In or-
der to improve the efficiency of the algorithm, Cordella et al. [14] proposed
the VF2 algorithm by improving the pruning strategy of the Ullmann algo-
rithm. More pruning strategies based on pattern graph semantics and structure
in [25, 26] were studied. But isomorphic graph pattern matching is an NP-
complete problem, in order to further improve the efficiency of matching, Yan
et al. [27] proposed a GIndex algorithm based on frequent subgraph mining
and indexing. This algorithm significantly improves the performance of graph
pattern matching. Path-based indexing algorithm was also proposed by Shasha
et al. [28]. More approaches about index-based matching can be found in the
literature [29,30,31].

In recent years, with the rapid growth of data scale and the increasing com-
plexity of data relationships, the above mentioned methods can not adapt to
the exact matching of pattern graph on very large scale graph data. Afrati
et al. [32] proposed a distributed parallel computing method based on map-
reduce. They decomposed the pattern graph into serveral subgraphs, and then
obtained the final matching subgraphs through distributed computing and join
operations. However, the connection operation is very computationally inten-
sive, which seriously affects the efficiency of the matching. Shao et al. [33]
proposed a parallel computing framework PSgL which obtained matching re-
sults by iterative computation of intermediate matching results. In addition,
incremental-based matching [18,26,30] and top-k algorithms [34] have also been
studied in response to the dynamic growth of graphs and the need for real-time
applications, respectively.

3



Simulation-based GPM Although the graph pattern matching based on iso-
morphism can be used to detect isomorphic structures of chemical substances
and predict the interaction between proteins [15], and it can also be applied
to expert discovery [16], social group query [17], personalized recommenda-
tion [18, 19], etc. However, isomorphic-based matching is too strict for the
applications of social networks. Henzinger et al. [24] proposed graph simu-
lation, which obtained a set of simulated nodes by calculating the similarity
of nodes, and the computation can be completed in polynomial time. But
this is still based on edge-to-edge matching, and its flexibility does not meet
the needs of new applications such as in social networks. Fan et al. [22] pro-
posed bounded simulation, which requires that the edges satisfy the bounded
length path matching and can be completed in cubic time. Then, in order to
adapt to specific applications, some improved methods based on bounded sim-
ulation have been proposed, such as graph pattern view [35], resource-bounded
query [36] ect. Moverover, a strong simulation [37] is proposed for matching
the pattern graph topological structure that was not well retained by bounded
simulation. Exactly, strong simulation uses the duality to ensure the topologi-
cal relationship between node and it’s adjacent points, and then further secure
it with the locality of the pattern graph. However, all the existing work has
failed to use the abundant vertices and edges information contained in the big
graph data. Shemshadi et al. [38] considered multi-label information on ver-
tices but did not consider the constraints on the edges. Liu et al. [23] proposed
the MC-GPM problem, put constraints on nodes and edges to match more ac-
curate results, and proposed a Baseline algorithm based on exploration-based
method and a heuristic algorithm(HAMC) based on compressed index of data
graph. MC-GPM is useful for contextual social networking applications, such
as crowdsourcing travel [21, 39, 39], social network based e-commerce [40], ect.
Liu et al. [41, 42] also studied the top-k algorithm and the parallel algorithm.
However, these tasks have not substantially improved the performance of the
Baseline algorithm and the HAMC algorithm, but only use more computing
resources in exchange for shortening the matching time. In this paper, we will
propose an ETOF-K algorithm to improve the performance of the algorithm
from the aspects of edge matching and edge joining, respectively. And the gen-
eral mode of multi-fuzzy-constrained graph pattern matching in big graph data
is proposed.

3 Multi-Fuzzy-Constrained Graph Pattern Match-
ing (MFC-GPM)

In this section, first, we will give the definition of the data graph and the pat-
tern graph in the graph pattern matching. Then the definition of the graph
simulation is given. Finally, we introduce our proposed MFC-GPM based on
graph simulation.

3.1 Data Graph and Pattern Graph

Data Graph A data graph is a labeled directed graph and can be represented
by GD = (V,E, fDv , f

D
e ), where

4



Fig. 1: Data Graph and Pattern Graph in a CSG

• V is a set of vertices;

• E is a set of edges, and (vi, vj) ∈ E denotes a directed edge from vertex
vi to vertex vj ;

• fDv is a function defined on V such that for each vertex v ∈ V , fDv (v) is a
set of attributes of v. As in a CSG, for a vertex v, fDv (v) may represent
the social role ρr of domain Di to which v belongs and the social influence
ρDi
v of v in domain Di;

• fDe is a function defined on E such that for each directed edge (vi, vj) ∈ E,
fDe (vi, vj) is a set of attribute of (vi, vj). As in a CSG, fDe (vi, vj) may
denote social relationship Rvivj and social trust Tvivj between vi and vj .

Pattern Graph A pattern graph is defined as a labeled directed graph and
is denoted as GP = (VP , EP , f

P
v , f

P
e , f

P
l , f

P
m), where

• VP and EP are the set of vertices and the set of directed edges, respectively;

• fPv is a function defined on VP such that for each vertex u ∈ VP , fPv (u) is
a set of attribute constraints of u. As in a CSG in Fig.1, each vertex has
a social role constraint ρr and a social influence constraint ρDi

v ;

• fPe is a function defined on EP such that for each directed edge (ui, uj) ∈
EP , fPe (ui, uj) is a set of attribute constraints of (ui, uj);

• fPl is a function defined on EP such that for each edge (ui, uj), f
P
l (ui, uj)

is the bounded length of (ui, uj) which is either a positive integer k or
a symbol ∗, indicates that the interval length between ui and uj cannot
exceed k or there is no requirement for it, respectively;

• fPm is a set of membership functions defined on each attribute constraints.

Example 1. As shown in Fig.1, in the data graph GD, each vertex represents
a social participant and has a label ρr that represents its social role and an ag-
gregated attribute ρDi

v that represents its influence in a particular domain Di.
Each edge has two aggregated attributes Rvivj and Tvivj , which represent the

5



social relationship and social trust between the two vertices vi and vj ,respec-
tively. In the pattern graph GP , each vertex has constraints on its social role
and influence in a particular domain. Each edge has multiple aggregated social
constraints λρ, λT and λR, which respectively represent the social influence,
social trust and social relationship, and constraint l that limit the length of the
matching path. It should be noted that all the vaule of aggregated attributes can
be mined from the existing social networks. Moveover, The membership func-
tions of all aggregated attributes can be defined as uniform, such as equation
1.

fm =

{ fD
fP

0 < fD < fP
1 fP ≤ fD

(1)

where fm represents the uniform membership function, fP and fD represent
the constraints in the pattern graph and the corresponding aggregated matching
values obtained in the data graph, respectively. In addition, the set of the
membership constraint values of all membership functions can be set to 0.9.

3.2 Graph Simulation

Graph Simulation proposed by Henzinger et al. [24]. They used it to calculate
the similarity of the nodes for verification and refinement of the reaction system.
Fan et al. [22]improved the graph simulation, proposed bounded simulation, and
applied it to graph pattern matching. The definition of the graph simulation is
as follows:

Consider a data graph GD = (V,E, fDv ) and a pattern graph GP = (VP , EP ,
fPv , f

P
l ). A subgraph of data graph GD matches pattern graph GP via graph

simulation denoted by GP EBGD. If there exists a binary relation SB ⊆ VP ×V
such that

• for all u ∈ VP , there exists v ∈ V such that (u, v) ∈ SB , and the attributes
fDv (v) of v satisfies the constraint function fPu (v) of u;

• for each pair (u, v) ∈ S,
– u ∼ v, and
– for each edge (u, u′) in EP , there exists a nonempty path p from v to
v′ in GD such that (u′, v′) ∈ SB , and length(p) ≤ k, if fPl (u, u′) = k;

Then SB is a match in GD for GP via graph simulation.
It should be noted that this type of graph simulation matching results not

only include nodes that match the vertices in the pattern graph, but also include
nodes on the edge matching path. In addition, u ∼ v means that u is similar to
v. That is, u and v satisfy the same node labels or the v-labels contain all the
labels of u, and within the path length constraint, all subsequent nodes of u are
included in the successor node of v, and these corresponding successor nodes
are also similar. This is the weakest constraint graph simulation definition,
proposed by Fan et al. [22]. In the original simulation proposed by Henzinger
et al. [24], the matching path length is defined as 1, which is an edge-to-edge
matching. Later, Ma et al. [37] further requested on the basis of the bounded
simulation. If u ∼ v, then the parent nodes of v contain all the father nodes of
u. That is, ∀u′, (u′, u) ∈ EP there exist a vertex v′, (v′, v) ∈ E and (u′, v′) ∈ SB
, if (u, v) ∈ SB . Liu et al. [23] proposed Multi-Constrained Simulation (MCS)
based on bounded simulation to adapt to multi-constrained matching.

6



3.3 MFC-GPM

The simulation-based graph pattern matching is more flexible than isomorphism-
based and can complete matching queries in polynomial time, so it is more suit-
able for social group discovery [22], personalized recommendation [18,19,20,21],
etc. in social networks with higher real-time requirements. However, big graph
data usually contains a large amount of vertex and edge information, which
can be used to match more accurate results. Liu et al. [23] proposed MC-GPM
problem and proposed two matching method based on MCS. MC-GPM can
be used for crowd-sourcing travel [39], social network-based e-commerce [40],
etc. However, in the practical application of big graph data, there are usually
constraints that are inherently fuzzy, such as the social influence on the vertex
and the social trust on the edge in a CSG. Obviously, MC-GPM does not take
this fuzzy property of constraints into account. As a result, some actual useful
match results be lost. For example, the results that only one attribute is slightly
below the constraint and other constraints are well satisfied are lost. Therefore,
in this paper, the MFC-GPM problem is proposed, in which all constraints are
set to a membership function. For constraints without fuzzy property, set its
membership value to be equal to 1. Moreover, we can set different membership
functions for different constraints. But for the sake of illustration, in this paper,
all constraints are set to the same membership function.

When a vertex v ∈ V satisfy the node label constraint of vertex u ∈ VP ,
we use the membership function defined on vertex constraints to calculate the
membership value of other constraints defined on u, and if the membership
constraint is satisfied, the matching vertex v is saved. Moreover, when a path
p satisfies the length constraint defined on its corresponding pattern edge, we
use the membership function defined on it to calculate the membership value
of other constraints defined on the pattern edge. The edge matching result is
saved when all constraints satisfy the membership constraints. When all the
vertices and edges are matched, a subgraph matching result will be returned.
The specific definition of MFC-GPM is as follows:

Consider a data graph GD = (V,E, fDv , f
D
e ) and a pattern graph GP =

(VP , EP , f
P
v , f

P
e , f

P
l , f

P
m), where fPm = {fmv , fmT , fmR , fmρ }, indicate that the mem-

bership functions defined on corresponding attribute constaints. GD matches
GP via MFC-GPM, denoted by GP EMFC GD, if there exists a binary relation
S ⊆ VP × V such that

• for all u ∈ VP , there exists v ∈ V such that (u, v) ∈ S, where (u, v) ∈ S
means that there is a vertex v that matches u, that is, v satisfies fPv (u)
or ρDi

v satisfies fmv , if fPv (u) contains attribute constraint ρDi
v and fmv

represent membership function defined on ρDi
v ;

• for each pair (u, v) ∈ S,
– u ∼ v, and
– for each edge (u, u′) in EP , there exists a nonempty path p from v to
v′ in GD such that (u′, v′) ∈ S, and length(p) ≤ k, if fPl (u, u′) = k;
– ATDi(v, v′) ≥ fmT , AR(v, v′) ≥ fmR and AρDi(v, v′) ≥ fmρ , where
fmT , f

m
R , f

m
ρ are the membership functions of λT , λR, λρ, respectively. If

fPe (u, u′) = {λT , λR, λρ} and ATDi(v, v′), AR(v, v′), AρDi(v, v′) represent
aggregated attributes of path (v, v′);

then S is a match in GD for GP via MFC-GPM.

7



Example 2. See pattern graph in Fig.1, we can easily get matching pre-
selected set for each vertex, where vertex SPM (i.e., A, a Senior Project Man-
ager), vertex PM (i.e., B, a Project Manager) in GP can be mapped to the
same vertices SPM and PM in GD, respectively; vertex AM (i.e., C, an As-
sistant Manager) in GP corresponds to multiple AMs (i.e., C1 and C2) in GD
and vertex PG (i.e., D, a Programmer) in GP corresponds to multiple PGs
(i.e., D1 and D2) in GD. For edge matching we can easily get (A,C) in GP
to match (A,C1) in GD (denoted as (A,C1, GD) ' (A,C,GP )), and others
edge matching (A,C1, D1, GD) ' (A,D,GP ), (A,C1, D2, GD) ' (A,D, GP ),
(B,C2, C1, GD) ' (B,C,GP ) and (B,C2, GD) ' (B,C,GP ). For edge (B,D)
in GP , if the matching is performed by the conventional MC-GPM, the path
(B,D1) can be obtained. However, since ATDi(B,D2) = 0.49, which is less
than the constraint value 0.5 of the corresponding pattern edge (B,D) to λT ,
path (B,D2) is discarded. In our proposed MFC-GPM, since the path (B,D2)
satisfies the fuzzy constraint, it is saved.

4 Edge Topologically Ordered First-K (ETOF-
K) Algorithm

In this section, the ETOF-K algorithm will be introduced first. Then, the multi-
constrained edge matching and the topologically ordered edge connection are
explained in detail.

4.1 Methodology

MC-GPM is an NP-complete problem. In order to solve this problem effectively,
Liu et al. [23], proposed two First-K algorithms based on MCS. First, they
proposed a Baseline algorithm based on bounded simulation, which performs
the edge connection based on the depth-first traversal of the graph, and the
edge matching is performed by the shortest path query between nodes. Then
they proposed a heuristic algorithm (HAMC) based on the compression and
indexing of strongly linked subgraphs (they called Strong Social Component,
SSC) in data graph, which also uses the depth-first traversal method of the graph
for edge connection. But for the edge matching, the query is first performed in
the SSC index. If it exists, the edge matching result is returned and if it does
not exist, the Dijkstra algorithm is used to search in the data graph.

In this paper, An Edge Topologically Ordered First-K algorithm has been
proposed based on Baseline algorithm. First, ETOF-K algorithm performs edge
matching by breadth-first bounded search based on the current matching vertex,
instead of matching the shortest path between two vertices. This will greatly
reduce the query of the shortest path between unnecessary vertices. Second,
the edge topologically ordered sequence is used to edge connection processing
instead of the graph depth-first search. Because when we match an edge, if
there is still an edge pointing to its starting vertex that has not yet matched,
then the current matching may be invalid. Therefore, the topologically ordered
edge join method can achieve pruning by filtering the vertices before matching
the edges starting from it.

8



Fig. 2: Pattern and Data Graph for Illustrating Edge Connection (Note that
we omit the attributes and attribute constraints on the nodes and edges in the
graph, which are the same as in Fig.1.)

Example 3. Consider a pattern graph in Fig.2, for edge join operations, if we
already get (A,C1, GD) ' (A,C,GP ) and (A,C2, GD) ' (A,C,GP ). Then, if
using the depth-first method of Baseline algorithm, the match edge (C,D) will
be started from vertex C1. But obviously, there is no path from C1 to vertex
D, so this step should be reduced. By using topologically ordered edge join
method, when the matching result of edge (A,C) is obtained, the edge (B,C)
should be matched. It then connects the edges (A,C) and (B,C) through the
vertex C, and filters the matching results of the two edges. Therefore, when
matching edge (C,D), only the matching path with C2 as the starting vertex
needs to be considered. For edge matching, our proposed ETOF-K algorithm
will not need to consider whether there is a shortest path between the vertex B
and C1 that satisfies the bounded length. Instead, we start from B to conduct
a breadth-first bounded search for matching edges that satisfy the constraints.

For fast return matching results, the ETOF-K algorithm proved to be very
effective by our experiments. It is a process of edge-joining while edge matching.
First, we need to get the indegree of all the vertices in the pattern graph, and
then use the topological sorting algorithm to get the order of accessing the edges.
We call it the topologically ordered sequence of edges. Then we perform edge
matching and join operations based on this sequence.

4.2 Multi-Constrained Edge Pattern Matching

Multi-constrained edge pattern matching is the main part of our algorithm. It is
usually a query in the data graph to match the edges or paths that satisfy all the
constraints defined on the edges in the pattern graph. In practical applications,
it usually means to query whether a set of specified conditions can be satisfied
between two participants. In this paper, A pattern edge matching algorithm
based on candidate node breadth-first depth bounded search is proposed. First,
we conduct a breadth first depth bounded search from a candidate vertex v ∈ V
of u, and get all matching paths (v, v′) ∈Mpath that satisfy a bounded length of
(u, u′), where u′ ∼ v′. Then, whether these matching paths in Mpath satisfy the
multiple constraints defined on the corresponding pattern edge is checked. If
there are matching paths in Mpath that satisfy all constraints, add them to the
list M i

ep and return the edge matching results list M i
ep . Otherwise, it returns

an empty set ∅.
The detailed steps of the algorithm are shown in Algorithm 1, where pathw

represents an empty path with a starting point of v, an end point of v, and a
length of zero. ep represents the pattern edge currently to be matched, and v
represents the candidate node of the starting node of the edge ep. We use the

9



Algorithm 1 Muti-Constrained Edge Pattern Matching, MC-EPM

Input: ep ∈ EP , v ∈ V and GD
Output: path set M i

ep

1: Push(Q, pathw)
2: while !QueueEmpty(Q) do
3: pathj = Pop(Q)
4: if pathj.end satisfy constraint fPv (ep.end) then
5: Push(Mpath, pathj)
6: end if
7: if pathj.length < ep.boundedlength then
8: p = G.vertices[pathj.end].firstarc
9: while p != NULL do

10: pathi = pathj.push(p)
11: Push(Q, pathi)
12: p = p − > nextarc
13: end while
14: end if
15: end while
16: while l ++ < Mpath.length do
17: if Mpath[l] satisfy constraints fPe (ep) then
18: Push(M i

ep , Mpath[l])
19: end if
20: end while
21: return M i

ep

queue Q to help perform a breadth-first search on the data graph, as shown
in line 2-15. When the path length is less than the bounded length, all edges
starting from the end vertex of the current path are added to pathi, and then
added to the queue Q, as shown by line 7-14. If the end vertex of the current
path is similar to the end vertex of the edge ep, then the current path is added
to the candidate path list Mpath, as shown by line 4-6. Finally, it is looped
to determine whether the path in the paths set Mpath satisfies a plurality of
constraints defined on the corresponding pattern edge ep, as shown by line 16-
20.

For different applications, the multiple constraints defined on the edge may
be different. For example, in CSG, the multiple constraints defined on the
edges are often social influence factors, social trust, and social relationships; in
medical big data, it can be reliability determined by the doctor’s experience,
data quality determined by data sources and data imbalance, ect. In addition,
for our proposed MFC-GPM, whether a path satisfies multiple constraints will
be determined by its membership function and corresponding membership value
defined on different constraints, such as example 2.

4.3 Exploration-Based Topologically Ordered Edge Con-
nection

Our proposed ETOF-K algorithm is a exploration-based method for graph pat-
tern matching, which aims to quickly answer a GPM query. The matching

10



Algorithm 2 ETOF-K Algorithm

Input: GD, GP
Output: results set Msub

1: Get the indegree of all vertices in GP , indegree[VP ].
2: Get the topological ordered sequence of edges in GP , Edge T [EP ].
3: Matches candidate vertex sets V mi for all vertices with indegree[vi] = 0.
4: while there exists v ∈ V m0 , v.visited=False do
5: M0

ep = MC-EPM ((u, u′), u ∼ v,GD)

6: if M0
ep 6= φ then

7: while l++ < M0
ep .length do

8: Mtemp.add(M i
ep [l])

9: M ′sub = EC(GD, Edge T [EP ],Mep , i+ 1)
10: Msub.add(M ′sub)
11: end while
12: else
13: continue
14: end if
15: end while
16: return Msub

process can be described in two parts. In the previous section, we have already
introduced the edge matching process. Therefore, in this section, the edge
connection method will be introduced. For our proposed MC-GPM algorithm
ETOF-K, before performing edge matching and connection, it is necessary to
obtain the indegree of all vertices indegree[VP ], the topological ordered sequence
of edges Edge T [EP ] and the candidate sets V mi of vertices with zero indegrees
in the pattern graph. Then, starting from the first edge in Edge T [EP ], each
edge is matched in turn, and after each edge matching set is obtained, the Edge
Connection (EC) method is used for the edge connection. Note that we need
to save a list of matching results for each matched edge. The pseudo code
of the ETOF-K algorithm and its EC method are shown in Algorithm 2 and
Algorithm 3, respectively.

In Algorithm 2, V m0 represents the candidate matching node of the starting
node of the first edge in Edge T [EP ]. The loop matches each candidate node
in V m0 as shown in line 4-15. First, the MC-EPM algorithm is used to get the
matching results M0

ep of the first pattern edge (u, u′) in Edge T [EP ]. Then,

Recursive matching is performed for each matching edge in M0
ep , as shown in

line 7-11. The detailed process of edge recursive matching is shown in Algorithm
3.

In Algorithm 3, the matching results M i
ep of the current pattern edge (u, u′)

should be obtained firstly. If M i
ep is empty, return to the previous level; oth-

erwise, judge the list of matched edges whether there is an edge (u′′, u′) with
the same end node as the current pattern edge, as shown in line 3-4; if it exists,
the matching result of the edge and the matching result of the current edge are
filtered first, and then the next pattern edge is matched; If not, the next pattern
edge is matched directly , as shown in line 10-13. If the Edge currently being
matched is the last pattern Edge in Edge T [EP ], the matching result is recorded
in the list Msub, and return to the previous matching edge in Edge T [EP ] to

11



Algorithm 3 Edge Connection, EC

Input: GD, Mep , Edge T [EP ], (u, u′) ∈ EP
Output: result set Msub

1: M i
ep = MC-EPM((u, u′), u ∼ v,GD)

2: if M i
ep 6= ∅ then

3: if there is a matching result of (u′′, u′) then
4: Join edges (u, u′) and (u′′, u′) to get candidate sets for vertex u′, and

update the candidate set M i
ep of the current matching edge.

5: end if
6: if Edge (u, u′) is the last edge in Edge T [EP ] then
7: Record the current matching result in Msub.
8: Return to the previous edge to match other results.
9: end if

10: while l++ < M i
ep .length do

11: Mtemp.add(M i
ep [l])

12: Match the next edge in Edge T [EP ] by EC.
13: end while
14: else
15: return φ
16: end if
17: return Msub

matching other results, as shown in line 6-9. You can find an example of a
matching process in Example 4.

Example 4. Consider MC-GPM example in Fig.1. First, the indegree of all
vertices indegree[VP ] (indegree[A] = 0, indegree[B] = 0, indegree[C] = 2 and
indegree[D] = 2) should be calculated, then the topological ordered sequence
Edge T [EP ] ((A,C), (A,D), (B,C), (B,D)) of the pattern edges should be ob-
tained by topological sorting algorithm based on indegree[VP ], and then, the set
of candidate vertices V mA = {A} and V mB = {B} for vertices A and B can be get-
ting. Then, the MC-EPM method is used to perform multiple constraints match-
ing on the edges in Edge T [EP ] in turn. When matching the third edge (B,C),
the edge matching (A,C1, GD) ' (A,C,GP )), (A,C1, D1, GD) ' (A,D,GP )
and (A,C1, D2, GD) ' (A,D,GP ) have to be completed, so when getting the
edge matching result (B,C2, C1, GD) ' (B,C,GP ) and (B,C2, GD) ' (B,C,
GP ), the connection of the matching results of the edges (A,C) and (B,C)
should be performed to get the candidate edge (B,C2, C1, GD) ' (B,C,GP )
of (B,C), and the candidate vertex C1 of C. In a similar way, the edge
connection operations on edges (A,D) and (B,D) are performed. Finally,
we will get two matching results Msub1 = (Vm, Em, LV, LE), where Vm =
{A,B,C1, C2, D1} and Em = {(A,C1), (B,C2), (C2, C1), (C1, D1)} by using
MC-GPM and Msub2 = (Vm, Em, LV, LE), where Vm = {A,B,C1, C2, D2} and
Em = {(A,C1), (B,C2), (C2, C1), (C1, D2), (C2, D2)} by using MFC-GPM.

12



5 Experiments

In this section, we conduct experiments on three real-world social graphs. The
details of the three datasets are shown in Table 1. The Baseline and HAMC
algorithm have been implemented based on source code of Liu et al. [23] and
an algorithm, we call it the Baseline2 algorithm, has been implemented by
using our edge matching method instead of the original one of the Baseline
algorithm. Then, our proposed ETOF-K algorithm has been implemented by
ourself. Finally, we compare the efficiency of the Baseline, HAMC, Baseline2
and ETOF-K algorithms. The effectiveness of introducing fuzzy constraints
into MC-GPM is proved by comparing the ETOF-K algorithm and the Fuzzy-
ETOF-K algorithm.

5.1 Experiment Settings and Implementation

The datasets used for our experiments contain only vertices and edges, which
are available at snap.stanford.edu. The aggregated attributes of the vertices and
edges mentioned earlier can be mined from the existing social networks, which
is another very challenging problem. In our experiments, without loss of gener-
ality, we randomly generate them with the function rand() in SQL. In Exp-1,
the constraint ρDi

v of the nodes is set to 0.01, and the multi-constraint attribute
settings on the edges are as follows, λDi

T = 0.01, λDi
r = 0.01, λDi

ρ = 0.01. The

length constraint fPl of the edges is set to 3. The settings of those parame-
ters will ensure that all algorithms have a result return, which is necessary for
comparing the efficiency of the algorithms. In Exp-2, the constraint ρDi

v of the
nodes is set to 0.1, and the multi-constraint attribute settings on the edges are
as follows, λDi

T = 0.1, λDi
r = 0.1, λDi

ρ = 0.1. The length constraint fPl of the
edges is set to 3. These settings of those parameters are for us to easily observe
the impact of fuzzy constraints on the matching, while ensuring the return of
matching results. In addition, we use equation 1 as the membership function of
all aggregated constraints in a pattern graph, and set the membership value to
0.9. For the generation of strong linked components (SSC) in the HAMC algo-
rithm, we require that all attributes of the vertices and edges selected into the
SSC must be greater than or equal to 0.2, and the number of SSC acquisitions
is set to 100. For a more detailed understanding of SSC, you can refer to [23].

Since MC-GPM is an NP-complete problem, it is impossible to get all the
matching results in GD. We compare the efficiency of these algorithms by the
number of results returned over a certain period of time. All the Baseline,
HAMC, Baseline2, ETOF-K and Fuzzy-ETOF-K algorithms are implemented
using Visual C++ and running on a PC with Intel(R) Core(TM) i7-8700K CPU
@3.70GHz,48GB RAM, Windows 10 operating system and Mysql 5.6 database.

5.2 Experimental Results and Analysis

Exp-1: This experiment is to investigate the efficiency of our ETOF-K algo-
rithm by comparing the number of matching results returned in the same time
of four algorithms.

As shown in Fig.3-Fig.5. (1) The Baseline and HAMC algorithms return
almost the same number of results at all statistical time for all three datasets.
This is because the matching process between the HAMC algorithm and the

13



Table 1: The detail information of three real-world data graph

Dataset Vertices Edges Description

Epinions 75879 508837
A trust-oriented
social network

DBLP 317080 1049866
A co-author

relationship network

Pokec 1632803 30622564
A general online
social network

Fig. 3: The number of matching results GM in different time on Epinions

Fig. 4: The number of matching results GM in different time on DBLP

Baseline algorithm is almost the same, except that the HAMC algorithm can
speed up the matching process of the partial edges by using the compression and
indexing of the SSC subgraph. However, as a whole, the HAMC algorithm first
queries the index file when performing edge matching, so the overall efficiency is
not as good as the Baseline algorithm. (2) Baseline2 algorithm that replaces the
shortest path query’s edge matching method with our edge matching method
can get more matching results than Baseline and HAMC algorithms at same

14



Fig. 5: The number of matching results GM in different time on Pokec

statistical time. This proves that our vertex-based breadth-first bounded edge
matching method is more efficient than the previous edge matching method.
(3) And the number of matching results obtained by our ETOF-K algorithm is
much higher than the previous three algorithms at three datasets. This proves
that the edge matching process based on edge topologically ordered sequences
can effectively prun the edge matching process, thus improving the matching
efficiency.

In addition, the statistics of the specific number of matching subgraphs in
Tables 2-4. T represents the algorithm execution time in minutes. From those
tables we can see that the Baseline algorithm and the HAMC algorithm perform
very poorly on the Epinions dataset and the Pokec dataset. On the Epinions
dataset, the two algorithms do not return matching results after 20 hours of exe-
cution. On the Pokec dataset, the Baseline algorithm did not return a matching
result for 5 hours, and the HAMC algorithm did not return a matching result
after 30 hours of execution. Moreover, the number of matching results does
not increase linearly with the execution time of the algorithm, but rising in a
fold line. This is because the social complexity of different candidate nodes
in the network is different. When the social relationship of a candidate node
is complex, we need to judge the matching of all its complex social relation-
ships, this results in a significant increase in the computational complexity of
its matching. If it is finally determined that the candidate node does not meet
the requirements, no matching result will be returned for a long time.

Exp-2: This experiment is to investigate the efficiency and effectiveness of
introduce fuzzy constraints to our ETOF-K algorithm. Due to the fact that
we cannot get all match subgraph, the efficiency of the two algorithms is com-
pared by using the method in Exp-1 and the effectiveness of two algorithms is
compared by the number of results that concerned to the same first edge in the
topological ordered sequence of pattern edges after running 2500 minutes.

As shown in Fig.6 and Fig.8, on the Epinions and Pokec datasets, the Fuzzy-
ETOF-K algorithm can return more matching results than the ETOF-K algo-
rithm at all the same statistical times. On the DBLP dataset, the number of
results returned by the Fuzzy-ETOF-K algorithm and the ETOF-K algorithm

15



T
ab

le
2:

D
et

ai
ls

of
th

e
n
u

m
b

er
o
f

re
su

lt
s

re
tu

rn
ed

a
t

d
iff

er
en

t
ti

m
e

p
o
in

ts
o
n

th
e

E
p

in
io

n
s

d
a
ta

se
t

T
=
1
0
0

T
=
2
0
0

T
=
3
0
0

T
=
4
0
0

T
=
5
0
0

T
=
6
0
0

T
=
7
0
0

T
=
8
0
0

T
=
9
0
0

T
=
1
0
0
0

T
=
1
1
0
0

T
=
1
2
0
0

T
=
1
3
0
0

B
a
se
li
n
e

0
0

0
0

0
0

0
0

0
0

0
0

3
4
2
9

H
A
M
C

0
0

0
0

0
0

0
0

0
0

0
0

3
4
2
9

B
a
se
li
n
e2

2
2
3
3
4

4
8
4
9
8

7
7
0
0
8

1
0
5
2
4
1

1
3
2
6
1
5

1
5
6
8
5
0

1
8
9
3
6
4

2
1
8
3
2
3

2
4
3
3
6
6

2
7
1
9
0
7

2
9
6
9
5
4

3
2
9
9
3
4

3
5
4
0
3
8

E
T
O
F
-K

6
2
5
4
3

1
4
7
8
4
2

2
6
1
7
4
1

3
5
9
3
0
1

4
9
1
1
9
1

6
3
7
0
4
3

7
4
4
3
2
2

8
7
6
3
2
7

1
0
0
4
7
2
3

1
1
2
4
6
4
4

1
1
7
1
1
6
8

1
2
4
7
5
5
5

1
3
4
7
3
0
2

T
=
1
4
0
0

T
=
1
5
0
0

T
=
1
6
0
0

T
=
1
7
0
0

T
=
1
8
0
0

T
=
1
9
0
0

T
=
2
0
0
0

T
=
2
1
0
0

T
=
2
2
0
0

T
=
2
3
0
0

T
=
2
4
0
0

T
=
2
5
0
0

B
a
se
li
n
e

3
4
2
9

3
4
2
9

3
4
2
9

3
4
2
9

3
4
2
9

3
4
2
9

3
4
2
9

3
4
2
9

5
3
2
2

5
3
2
2

5
3
2
2

5
3
2
2

H
A
M
C

3
4
2
9

3
4
2
9

3
4
2
9

3
4
2
9

3
4
2
9

3
4
2
9

3
4
2
9

3
4
2
9

5
3
2
2

5
3
2
2

5
3
2
2

5
3
2
2

B
a
se
li
n
e2

3
8
2
5
0
0

4
0
0
5
3
3

4
1
6
1
0
4

4
4
4
9
7
5

4
7
0
5
1
8

4
9
8
9
8
9

5
2
9
6
9
2

5
5
8
7
0
7

5
8
6
9
7
7

6
1
8
0
8
5

6
4
6
7
5
3

6
7
3
0
7
5

E
T
O
F
-K

1
4
4
9
6
1
9

1
5
3
7
7
6
4

1
6
6
8
9
6
3

1
8
2
7
0
5
6

1
9
5
5
8
2
4

2
0
0
7
1
7
3

2
0
7
3
8
8
5

2
1
5
0
6
7
8

2
2
2
4
7
6
6

2
2
9
0
7
0
1

2
3
7
7
2
9
2

2
4
6
4
5
1
6

T
ab

le
3:

D
et

ai
ls

of
th

e
n
u

m
b

er
o
f

re
su

lt
s

re
tu

rn
ed

a
t

d
iff

er
en

t
ti

m
e

p
o
in

ts
o
n

th
e

D
B

L
P

d
a
ta

se
t

T
=
1
0
0

T
=
2
0
0

T
=
3
0
0

T
=
4
0
0

T
=
5
0
0

T
=
6
0
0

T
=
7
0
0

T
=
8
0
0

T
=
9
0
0

T
=
1
0
0
0

T
=
1
1
0
0

T
=
1
2
0
0

T
=
1
3
0
0

B
a
se
li
n
e

2
1

6
4
7

1
3
5
8

1
6
0
3

1
6
4
2

1
7
2
9

2
2
2
2

2
3
5
9

2
3
5
9

2
5
8
2

2
7
9
3

2
8
6
5

2
8
6
5

H
A
M
C

2
1

6
4
7

1
3
5
8

1
5
2
6

1
6
4
2

1
7
2
9

2
2
2
2

2
2
2
2

2
3
5
9

2
4
2
5

2
6
8
1

2
7
9
3

2
8
6
5

B
a
se
li
n
e2

3
7
8
9

6
9
9
2

8
0
6
6

8
4
7
0

8
6
5
5

8
6
5
5

8
6
5
5

8
6
5
5

8
6
5
5

8
6
5
5

8
6
5
5

8
6
5
5

8
6
5
5

E
T
O
F
-K

3
2
6
0

4
9
9
2

6
1
0
5

6
2
1
6

7
2
6
2

8
2
0
1

8
4
9
6

8
5
7
2

9
7
2
2

1
1
6
0
5

1
4
8
6
3

1
6
8
9
0

1
7
4
3
0

T
=
1
4
0
0

T
=
1
5
0
0

T
=
1
6
0
0

T
=
1
7
0
0

T
=
1
8
0
0

T
=
1
9
0
0

T
=
2
0
0
0

T
=
2
1
0
0

T
=
2
2
0
0

T
=
2
3
0
0

T
=
2
4
0
0

T
=
2
5
0
0

B
a
se
li
n
e

3
4
1
2

3
4
7
6

3
8
5
3

3
9
9
8

4
0
4
6

4
2
7
3

4
2
8
5

4
3
8
5

4
4
6
0

4
4
8
8

4
5
9
3

4
6
6
4

H
A
M
C

3
2
5
3

3
4
1
2

3
4
7
6

3
8
5
3

3
9
9
8

4
0
4
6

4
0
5
0

4
2
7
3

4
3
8
5

4
3
8
5

4
4
6
0

4
5
9
3

B
a
se
li
n
e2

8
6
7
0

8
6
8
9

8
6
8
9

8
7
3
2

8
7
6
0

8
7
7
6

8
7
9
2

8
8
0
5

8
8
0
5

8
8
0
5

8
8
0
5

8
8
0
5

E
T
O
F
-K

1
7
7
5
3

1
8
6
2
5

1
8
7
2
2

1
8
9
1
1

1
9
1
6
3

1
9
2
8
0

2
1
9
6
4

2
2
8
3
2

2
3
4
5
0

2
3
7
8
0

2
3
9
4
4

2
4
4
9
0

T
ab

le
4:

D
et

ai
ls

of
th

e
n
u

m
b

er
o
f

re
su

lt
s

re
tu

rn
ed

a
t

d
iff

er
en

t
ti

m
e

p
o
in

ts
o
n

th
e

P
o
ke

c
d

a
ta

se
t

T
=
1
0
0

T
=
2
0
0

T
=
3
0
0

T
=
4
0
0

T
=
5
0
0

T
=
6
0
0

T
=
7
0
0

T
=
8
0
0

T
=
9
0
0

T
=
1
0
0
0

T
=
1
1
0
0

T
=
1
2
0
0

T
=
1
3
0
0

B
a
se
li
n
e

0
0

0
1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

H
A
M
C

0
0

0
0

0
0

0
0

0
0

0
0

0
B
a
se
li
n
e2

5
3
1
5

1
3
5
5
7

2
3
6
6
8

2
5
6
1
4

2
5
6
1
4

2
5
6
1
4

2
5
6
1
4

2
5
6
1
4

2
5
6
1
4

2
5
6
1
4

2
5
6
1
4

2
6
1
0
7

2
6
4
7
3

E
T
O
F
-K

2
0
4
1
3

3
3
0
7
3

3
3
0
7
3

3
3
0
7
3

3
4
1
8
7

3
7
0
0
8

8
4
2
3
4

8
4
2
3
4

8
4
2
3
4

1
4
6
6
8
6

1
8
3
8
0
0

1
8
3
8
0
0

2
1
8
5
2
5

T
=
1
4
0
0

T
=
1
5
0
0

T
=
1
6
0
0

T
=
1
7
0
0

T
=
1
8
0
0

T
=
1
9
0
0

T
=
2
0
0
0

T
=
2
1
0
0

T
=
2
2
0
0

T
=
2
3
0
0

T
=
2
4
0
0

T
=
2
5
0
0

B
a
se
li
n
e

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

H
A
M
C

0
0

0
0

0
0

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

1
8
5

B
a
se
li
n
e2

2
6
4
7
3

2
6
5
2
2

2
6
5
2
2

2
6
5
2
2

2
7
0
0
2

2
7
0
0
2

2
7
0
0
2

2
7
0
0
2

2
7
0
0
2

2
7
0
1
9

2
7
0
1
9

2
7
2
0
3

E
T
O
F
-K

2
3
8
3
5
4

2
3
8
3
5
4

2
3
8
3
5
4

2
4
1
1
8
2

2
4
1
2
8
3

2
4
3
6
2
0

2
4
3
6
8
3

2
4
3
8
6
0

2
4
3
8
6
0

2
4
3
8
6
0

2
4
3
9
1
0

2
4
4
0
2
1

16



Fig. 6: The number of matching results GM in different time on Epinions

Fig. 7: The number of matching results GM in different time on DBLP

Fig. 8: The number of matching results GM in different time on Pokec

is similar in the first 30 hours, and the ETOF-K algorithm is superior to the
Fuzzy-ETOF-K algorithm, as shown in Fig.7. This is because fuzzy constraints

17



Table 5: The comparison of the number of results between ETOF-K and Fuzzy-
ETOF-K on three datasets

Dataset
Matching

edges
ETOF-K

Fuzzy-
ETOF-K

Percentage

Epinions 2 136626 176116 28.90%
DBLP 140 11322 13680 20.83%
Pokec 11 4005 5253 31.16%

require membership calculation for each constraint condition, so the access of
Fuzzy-ETOF-K algorithm to candidate nodes is slightly slower than that of
ETOF-K algorithm as a whole. These experimental results prove that although
Fuzzy-ETOF-K algorithm is not better than ETOF-K algorithm in all cases,
but it is not much worse than ETOF-K algorithm even if it is poor. This also
proves that the influence of the fuzzy calculation on the matching efficiency
is slightly less than the effect of the effective matching result discard on the
matching efficiency.

In addition, as shown in Table 5, after 2500 minutes of algorithm execution,
on the Epinions dataset, we can get the two matching results of the first edge and
all the 136626 matching subgraphs associated with the two matching edges by
ETOF-K algorithm and 175289 matching subgraphs associated with the same
two matching edges by introducing fuzzy into ETOF-K algorithm. It is 28.90
% more effective than ETOF-K. Similarly, we can see that the Fuzzy-ETOF-
K algorithm is 20.83% and 31.16% more efficient than ETOF-K on the DBLP
dataset and on the Pokec dataset, respectively. This proves that it is necessary
and more effective to introduce fuzzy constraints into MC-GPM.

6 Conclusion

In this paper, we presented a Multi-Fuzzy-Constrained Graph Pattern Matching
(MFC-GPM) problem and then proposed a Fuzzy-ETOF-K algorithm to solve
it. For Multi-Constrained Graph Pattern Matching (MC-GPM) problem, we
proposed an ETOF-K algorithm to improve its efficiency and conducted valida-
tion experiments on three real social network datasets by comparing Baseline,
HAMC, Baseline2 and ETOF-K algorithms. Furthermore, we proved the neces-
sity and effectiveness of introducing fuzzy constraints into MC-GPM problem
by comparing ETOF-K and Fuzzy-ETOF-K algorithms.

In the future, we will further study and improve the Fuzzy-ETOF-K algo-
rithm, and consider the dynamic graph and super-large graph pattern matching
problem in combination with parallel computing and distributed computing
techniques. Research combined with practical applications is also under consid-
eration.

Acknowledgments

This work has been supported by the National Key Research and Development
Program of China under Grant No. 2016YF-B1000901, the National Natural

18



Science Foundation of China under Grant No. 91746209, and the Program for
Changjiang Scholars and Innovative Research Team in University (PCSIRT) of
the Ministry of Education under Grant No. IRT17R32.

References

[1] X. Wu, X. Zhu, G. Wu, Data mining with big data, IEEE Transactions on
Knowledge and Data Engineering 26(1) (2014), 97-107.

[2] L. Li, J. He, M. Wang, X. Wu, Trust agent-based behavior induction in
social networks, IEEE Intelligent Systems 31(1) (2016), 24-30.

[3] H. Wei, J. X. Yu, C. Lu, R. Jin, Reachability querying: an independent per-
mutation labeling approach, The VLDB JournalThe International Journal
on Very Large Data Bases 27(1) (2018), 1-26.

[4] D. Eppstein, Finding the k shortest paths, SIAM Journal on computing
28(2) (1998), 652-673.

[5] A. Ray, L. B. Holder, A. Bifet, Efficient frequent subgraph mining on large
streaming graphs, Intelligent Data Analysis 23(1) (2019), 103-132.

[6] S. Zhang, Z. Du, J. T. L. Wang, H. Jiang, Discovering frequent induced
subgraphs from directed networks, Intelligent Data Analysis 22(6) (2018),
1279-1296.

[7] S. Liu, and C.K. Poon, On mining approximate and exact fault-tolerant
frequent itemsets, Knowledge and Information Systems, 55 (2) (2018), 361-
391.

[8] Z. Peng, T. Wang, W. Lu, H. Huang, X. Du, F. Zhao, and A.K.H. Tung,
Mining frequent subgraphs from tremendous amount of small graphs using
MapReduce, Knowledge and Information Systems, 56 (3) (2018), 663-690.

[9] W. Zheng, L. Zou, X. Lian, H. Zhang, W. Wang, D. Zhao, SQBC: An effi-
cient subgraph matching method over large and dense graphs, Information
Sciences 261 (2014), 116-131.

[10] D. Natarajan, and S. Ranu, Resling: A scalable and generic framework to
mine top-k representative subgraph patterns, Knowledge and Information
Systems, 54 (1) (2018), 123-149.

[11] T. Tran, H. Wang, S. Rudolph, P. Cimiano, Top-k exploration of query
candidates for efficient keyword Search on graph-shaped (RDF) data,
IEEE 25th International Conference on Data Engineering, IEEE, Shanghai,
China, 2009, pp. 405-416.

[12] S. G. Baek, D. H. Kang, S. Lee, Y. I. Eom, Efficient graph pattern matching
framework for network-based in-vehicle fault detection, Journal of Systems
and Software 140 (2018), 17-31.

[13] J. R. Ullmann, An algorithm for subgraph isomorphism, Journal of the
ACM (JACM) 23(1) (1976), 31-42.

19



[14] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub) graph isomorphism
algorithm for matching large graphs, IEEE transactions on pattern analysis
and machine intelligence 26(10) (2004), 1367-1372.

[15] J. T. Hu, A. L. Ferguson, Global graph matching using diffusion maps,
Intelligent Data Analysis 20(3) (2016), 637-654.

[16] W. Fan, X. Wang, Y. Wu, Expfinder: Finding experts by graph pattern
matching, IEEE 29th International Conference on Data Engineering, IEEE,
Brisbane, QLD, Australia, 2013, pp. 1316-1319.

[17] D. Tang, Y. Zhang, Y. He, Z. Xiao, Research and application on crime
rule based on graph data mining algorithm, Computer Technology and
Development 11 (2011), 89-91.

[18] W. Fan, X. Wang, Y. Wu, Incremental graph pattern matching, ACM
Transactions on Database Systems (TODS) 38(3) (2013), 18.

[19] M. Lenin, E. William, M. Maitrayi, Personalized news recommendation
using graph-based approach, Intelligent Data Analysis 22(4) (2018), 881-
909.

[20] C. Li, H. Chen, R. Chen, and H. Hsieh, On route planning by inferring
visiting time, modeling user preferences, and mining representative trip
patterns, Knowledge and Information Systems, 56 (3) (2018), 581-611.

[21] K.H. Lim, J. Chan, C. Leckie, and S. Karunasekera, Personalized trip rec-
ommendation for tourists based on user interests, points of interest visit
durations and visit recency, Knowledge and Information Systems, 54 (2)
(2018), 375-406.

[22] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, Y. Wu, Graph pattern matching:
from intractable to polynomial time, Proceedings of the VLDB Endowment
3(1-2) (2010), 264-275.

[23] G. Liu, K. Zheng, Y. Wang, M. A. Orgun, A. Liu, L. Zhao, X. Zhou,
Multi-constrained graph pattern matching in large-scale contextual social
graphs, IEEE 31st International Conference on Data Engineering, IEEE,
Seoul, South Korea, 2015, pp. 351-362.

[24] M. R. Henzinger, T. A. Henzinger, P. W. Kopke, Computing simulations
on finite and infinite graphs, IEEE 36th Annual Foundations of Computer
Science, IEEE, Milwaukee, WI, USA, 1995, pp. 453-462.

[25] S. Zhang, S. Li, J. Yang, GADDI: Distance index based subgraph matching
in biological networks, Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, ACM,
Saint Petersburg, Russia, 2009, pp. 192-203.

[26] C. Wickramaarachchi, R. Kannan, C. Chelmis, V. K. Prasanna, Distributed
exact subgraph matching in small diameter dynamic graphs, IEEE Inter-
national Conference on Big Data, IEEE, Washington, DC, USA, 2017, pp.
3360-3369.

20



[27] X. Yan, P. S. Yu, J. Han, Graph indexing: a frequent structure-based
approach, Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, SIGMOD, Paris, France, 2004, pp. 335-346.

[28] D. Shasha, J. T. L. Wang, R. Giugno, Algorithmics and applications of tree
and graph searching, Acm Sigmod-sigact-sigart Symposium on Principles
of Database Systems, ACM, Madison, Wisconsin, 2002.

[29] J. Cheng, Y. Ke, W. Ng, A. Lu, Fg-index: towards verification-free query
processing on graph databases, Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, ACM, Beijing, China,
2007, pp. 857-872.

[30] J. Mondal, A. Deshpande, CASQD: continuous detection of activity-based
subgraph pattern queries on dynamic graphs, Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems, ACM,
Irvine, California, 2016, pp. 226-237.

[31] H. Tran, J. Kim, B. He, Fast subgraph matching on large graphs using
graphics processors, Database Systems for Advanced Applications, DAS-
FAA, Hanoi, Vietnam, 2015, pp. 299-315.

[32] F. N. Afrati, D. Fotakis, J. D. Ullman, Enumerating subgraph instances us-
ing map-reduce, IEEE 29th International Conference on Data Engineering,
IEEE, Brisbane, QLD, Australia, 2013, pp. 62-73.

[33] Y. Shao, B. Cui, C. Lei, M. Lin, J. Yao, X. Ning, Parallel subgraph listing in
a large-scale graph, Acm Sigmod International Conference on Management
of Data, ACM, Snowbird, Utah, USA, 2014, pp. 625-636.

[34] J. Gao, B. Song, P. Liu, W. Ke, J. Wang, X. Hu, Parallel top-k subgraph
query in massive graphs: Computing from the perspective of single vertex,
IEEE International Conference on Big Data, IEEE, Washington, DC, USA,
2017, pp. 636-645.

[35] W. Fan, X. Wang, Y. Wu, Answering graph pattern queries using views,
IEEE 30th International Conference on Data Engineering, IEEE, Chicago,
IL, USA, 2014, pp. 184-195.

[36] W. Fan, X. Wang, Y. Wu, Querying big graphs within bounded resources,
Proceedings of the 2014 ACM SIGMOD International Conference on Man-
agement of Data, ACM, New York, NY, USA, 2014, pp. 301-312.

[37] S. Ma, Y. Cao, W. Fan, J. Huai, T. Wo, Strong simulation: Capturing
topology in graph pattern matching, ACM Transactions on Database Sys-
tems (TODS) 39(1) (2014), 4.

[38] A. Shemshadi, Q. Z. Sheng, Y. Qin, Efficient pattern matching for graphs
with multi-Labeled nodes, Knowledge-Based Systems 109 (2016), 256-265.

[39] R. Milano, R. Baggio, R. Piattelli, The effects of online social media on
tourism websites, ENTER2011 18th International Conference on Informa-
tion Technology and Travel & Tourism, Congress und Messe Innsbruck
GmbH, Innsbruck, Austria, 2011, pp. 471-483.

21



[40] G. Liu, Y. Wang, M. A. Orgun, Optimal social trust path selection in
complex social networks, AAAI Conference on Artificial Intelligence, AAAI,
Atlanta, GA, 2010.

[41] Q. Shi, G. Liu, K. Zheng, A. Liu, Z. Li, L. Zhao, X. Zhou, Multi-constrained
top-K graph pattern matching in contextual social graphs, IEEE Interna-
tional Conference on Web Services, IEEE, Honolulu, HI, USA, 2017, pp.
588-595.

[42] G. Liu, Y. Liu, K. Zheng, A. Liu, Z. Li, Y. Wang, X. Zhou, MCS-GPM:
Multi-constrained simulation based graph pattern matching in contextual
social graphs, IEEE Transactions on Knowledge and Data Engineering
30(6) (2018), 1050-1064.

22


