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a b s t r a c t 

The Markov blanket (MB), a key concept in a Bayesian network (BN), is essential for large- 

scale BN structure learning and optimal feature selection. Many MB discovery algorithms 

that are either efficient or effective have been proposed for addressing high-dimensional 

data. In this paper, we propose a new algorithm for E fficient and E ffective MB discov- 

ery, called EEMB. Specifically, given a target feature, the EEMB algorithm discovers the PC 

(i.e., parents and children) and spouses of the target simultaneously and can distinguish 

PC from spouses during MB discovery. We compare EEMB with the state-of-the-art MB 

discovery algorithms using a series of benchmark BNs and real-world datasets. The exper- 

iments demonstrate that EEMB is competitive with the fastest MB discovery algorithm in 

terms of computational efficiency and achieves almost the same MB discovery accuracy as 

the most accurate of the compared algorithms. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The Markov blanket (MB) in a Bayesian network (BN) was developed by Pearl [16] . Under the faithfulness assumption

(see Definition 3 in Section 3 ), the MB of a feature (i.e., a node) in a BN consists of the feature’s parents, children, and

spouses (other parents of the feature’s children), as shown in Fig. 1 [27] . MB discovery plays an essential role in scalable BN

structure learning and optimal feature selection. For example, by finding the MB of each feature in a dataset, we can use

the discovered MBs as constraints to develop efficient and effective local-to-global BN structure learning algorithms [2,23] .

Meanwhile, conditioning on the MB of a class attribute in a dataset, all the remaining features are conditionally independent

of the class attribute; thus, the MB of the class attribute is theoretically optimal for feature selection [6,25,26,28,29] . 

Many algorithms for MB discovery have been proposed and can be divided into two main types. Given a target feature,

the first type of algorithm finds the parents and children (PC) and spouses of the target simultaneously; for example, GS

[15] and IAMB [22] . These methods use the entire set of currently selected features in each iteration as a conditioning set to

determine whether to add/remove a feature to/from the currently selected features. This type of method is computationally

efficient but requires an exponential number of data samples with respect to the size of the MB of the target. In addition,

such MB discovery algorithms cannot distinguish PC from spouses in the discovered MB set. 
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Fig. 1. The Markov blanket (in blue) of the node “Cancer” comprises “Exposure to Toxins” and “Smoking” (parents), “Serum Calcium” and “Lung Tumor”

(children), and “ Diet” (spouse). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second type of algorithm first discovers the PC of a given target feature and then finds the spouses of the target;

for example, MMMB [21] , HITON-MB [3] , PCMB [18] and IPCMB [11] . Instead of using the entire set of currently selected

features as a conditioning set, these methods perform an exhaustive subset search within the currently selected features to

find the PC of the target. Moreover, this type of method must find the PC of each feature in the found PC set of the target

to find the spouses of the target. These approaches substantially reduce the required number of data samples and improve

the MB discovery performance, especially with high-dimensional data with small-sized data samples. However, this type of

algorithm is computationally expensive or even prohibitive when the size of the PC set of the features within the target’s

PC set is large. 

Recently, Gao and Ji [12] proposed the Simultaneous Markov Blanket (STMB) algorithm. Given a target feature, STMB first

discovers the PC and then finds the spouses of the target. However, STMB finds the spouses of the target from all features,

excluding the found PC set of the target, instead of discovering spouses from the union of the PC set of each feature within

the found PC set of the target. Thus, in this case, the time complexity of STMB is related only to the size of the PC set of

the target, which makes STMB more efficient than the second type of method. However, STMB adopts the same strategy as

the first type of method to remove the false positives in the found PC and spouse sets, which deteriorates the performance

of STMB for MB discovery when a dataset is high-dimensional with small-sized data samples. 

Accordingly, the question arises of whether we can propose a new method that is both as efficient as the first type of

method and as effective as the second type of method. To address this task, in this paper, our main contributions are the

following: 

1. We propose the EEMB algorithm, a new algorithm for E fficient and E ffective discovery of M arkov B lankets. The EEMB

algorithm integrates the PC discovery strategy of the second type of MB discovery method and the spouse discovery

method of STMB. By means of this integration, EEMB discovers the PC and spouses of a given target simultaneously and

can distinguish the PC from spouses during MB discovery. 

2. On a series of benchmark Bayesian networks and real-world datasets, comparison with the state-of-the-art MB discovery

algorithms shows that EEMB is approximately as fast as the first type of method and as accurate as the second type of

method, especially with high-dimensional data with small-sized data samples. 

The rest of this paper is organized as follows: Section 2 discusses related work. Section 3 provides notations and defini-

tions. Section 4 presents the proposed algorithm. Section 5 discusses the experimental results, and Section 6 concludes the

paper. 

2. Related work 

Margaritis and Thrun [15] proposed the first MB discovery algorithm, the Grow-Shrink algorithm (GS), which consists

of two steps, growing and shrinking. Given a target feature, in the growing step, GS finds the candidate MBs of the target,

and in the shrinking step, GS removes false positives from the found candidate MBs. The Incremental Association Markov

Blanket (IAMB) was proposed based on the GS algorithm [22] . The difference between GS and IAMB is the growing step: in

the growing step, in each iteration, GS (randomly) selects a feature that is not independent of the target conditioned on the

currently selected features, whereas IAMB adopts a dynamic strategy that selects the feature with the highest association

with the target conditioned on the currently selected features. Since then, many variants of IAMB, such as inter-IAMB, IAMB-

nPC, inter-IAMBnPC, and Fast-IAMB [27] , have been proposed. However, the number of data samples required by IAMB and

its variants scales exponentially with the size of the MB of the target. In addition, these methods are not able to distinguish

the PC from the spouses during MB discovery. 
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To reduce the number of data samples required for MB discovery, the Min-Max Markov Blanket (MMMB) algorithm

[21] implements a divide-and-conquer approach to discover the PC and spouses separately. MMMB performs a subset search

within the currently selected features to discover the PC set of the target. HITON-Markov Blanket (HITON-MB) [3] uses the

same framework as MMMB but attempts to remove false positives from the PC set as early as possible by interleaving the

shrinking phase into the growing phase. Although MMMB and HITON-MB proved to be incorrect under the faithfulness

assumption [18] , they provide a solid foundation for MB discovery. 

The Parents-and-Children-based Markov Blanket algorithm (PCMB) [18] is an algorithm that is proved to be correct under

the faithfulness assumption. PCMB uses a symmetry constraint to ensure the correctness of the discovered PC set, but the

excessively cautious symmetry constraint checking leads to high computational cost. Accordingly, the Iterative Parent-Child-

based search of Markov Blanket (IPCMB) algorithm [11] uses the same method as the PC algorithm [19] to find PC set,

which greatly increases the efficiency without sacrificing accuracy. These algorithms greatly improve the effectiveness of MB

discovery, especially with a small-sized sample dataset. However, for spouse discovery and symmetry constraint checking,

these algorithms need to discover the PC of each feature within the PC set of the target, which is very computationally

expensive [12] . 

The STMB algorithm [12] was proposed to address the problem of computational inefficiency. STMB first finds the PC

of the target and then discovers the spouses of the target from the features, excluding the found PC set of the target. This

spouse discovery strategy makes STMB efficient. However, when removing false positives from the found PC and spouse sets,

instead of performing a subset search within the currently selected features, STMB considers the entire found PC or spouse

set as a conditioning set, which may degrade the MB discovery performance of STMB. 

3. Notations and definitions 

In this section, we will introduce BNs and MBs. Table 1 defines the notation used in this paper. 

Definition 1 (Conditional Independence [16] ) . Variable X is conditionally independent of variable Y given Z , if and only if

P (X = x, Y = y | Z = z) = P (X = x | Z = z) P (Y = y | Z = z) . 

Definition 2 (Bayesian Network [16] ) . Let G denote a directed acyclic graph (DAG) defined on U , and let P represent the

conditional probability distribution of each feature X ∈ U given its parents. We call the triplet < U, G, P > a BN if < U, G, P >

satisfies the Markov condition : all variables in U are independent of all its non-descendants given its parents. 

Definition 3 (Faithfulness. [19] ) . A BN < U, G, P > is faithful, if and only if all conditional independencies between features

in G are captured by P . 

Definition 3 states that in a faithful BN, if X and Y are d -separated by S in G , then they will be conditionally independent

conditioned on S in P . 

Definition 4 (V-Structure [16] ) . The triplet of nodes X, Y , and Z forms a v-structure if node Z has two incoming edges from

X and Y but X and Y are non-adjacent, e.g., X → Z ← Y . 
Table 1 

Summary of Notations. 

Notation Meaning 

U a feature set 

G a directed acyclic graph over U 

P a joint probability distribution over U 

X, Y a feature 

x, y a discrete value that a feature may take 

T a given target feature in U 

Z, S a conditioning set within U 

X ⊥⊥ Y | Z X is conditionally independent of Y given Z 

X �⊥⊥ Y | Z X is conditionally dependent on Y given Z 

U �{ X } all features in U excluding X 

MB T a Markov blanket of T 

PC T parents and children of T 

PCS T a superset of PC T 
SP T spouses of T 

SP T { X } a subset of spouses of T with regard to T ’s child X 

SPS T { X } a superset of SP T { X } 

CanPC T a candidate PC set of T 

Sep T { X } a set that d -separates X from T 

IND T a set containing all the features independent of T in U 

dep (.) a measure of the strength of the dependence 

| U | the total number of features in U 

| PC | the largest size of the PC set among all features 

| SP T { X }| the size of SP T { X } 
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Definition 5 (D-Separation [16] ) . A collider on a path p is a node with two incoming edges that belong to p . A path between

X and Y given a conditioning set S ⊆U �{ X ∪ Y } is open, if and only if every collider in p is in S or has a descendant in S and

no other nodes on p are in S . A path is blocked if it is not open. X and Y are d -separated by S if every path from X to Y is

blocked by S . 

Definition 6 (Markov Blanket [16] ) . In a faithful BN, given a target feature T , the Markov blanket of T, MB T , is unique and

consists of the parents, children, and spouses of T . 

Property 1 [16] . In a faithful BN, given MB T of T, T is conditionally independent of all remaining features in U �MB T , that is,

T ⊥⊥ X | MB T , for ∀ X ∈ U �{ T ∪ MB T } . 

In the following, Theorem 1 demonstrates the relationship between the parents and children in a BN, and Theorem 2 presents

the property of a spouse in an MB. 

Theorem 1 [17,19] . In a BN, for any two distinct features X ∈ U and Y ∈ U, if an edge exists between X and Y, then ∀ S ⊆U �{ X ∪ Y },

X �⊥⊥ Y | S holds. 

Since any feature X that has an edge with Y belongs to the PC Y , Theorem 1 gives rise to an immediate algorithm for identifying

PC Y : for any feature X ∈ U �{ Y } and all S ⊆U �{ X ∪ Y }, test whether X ⊥⊥ Y | S. If an S exists for which X ⊥⊥ Y | S, then X �∈ P C Y ; otherwise,

X ∈ PC Y . 

Theorem 2 [17,19] . In a BN, X, Y, Z ∈ U, X and Y are not adjacent and Z is a collider (e.g., X → Z ← Y). If for ∃ S ⊆U �{ X ∪ Y ∪ Z }

such that X ⊥⊥ Y | S and X �⊥⊥ Y |{ S ∪ Z} , X is a spouse of Y. 

For Theorem 2 , we distinguish two cases: (1) X is a spouse of Y and X ∈ PC Y , for example, X → Z ← Y and X → Y. In this case,

we cannot use Theorem 2 to identify Z as a collider and X as a spouse. However, we do not have to because X ∈ PC Y , so it will be

identified by PC discovery. (2) X ∈ MB Y �PC Y , in which case, we can use Theorem 2 to locally discover the subgraph X → Z ← Y and

determine that X should be included in MB Y . 

Property 2 (Symmetry constraint [12] ) . In a BN, if X ∈ PC T exists, then T ∈ PC X holds. 

4. Proposed algorithm 

4.1. Overview of the EEMB algorithm 

In this section, we propose the EEMB algorithm, as described in Algorithm 1 . EEMB consists of two subroutines: ADDTrue

( Algorithm 2 ) and RMFalse ( Algorithm 3 ). In the growing phase, the ADDTrue subroutine simultaneously discovers a superset

of the PC of the target feature T ( PCS T ) and a superset of the spouses of T ( SPS T ). Then, in the shrinking step, the RMFalse

subroutine removes false positives from PCS T and SPS T . 

Algorithm 1 EEMB . 

Require: T : target; D : dataset 

Ensure: [ P C T : Parents and children of T ; SP T : spouses of T ]: Markov blanket of T 

Phase I: Growing phase 

1: [ P CS T , SP S T ] ← ADDT rue (T , D ) 

Phase II: Shrinking phase 

2: [ P C T , SP T ] ← RMF alse (T , P CS T , SP S T , D ) 

4.2. The ADDTrue subroutine 

Before describing the ADDTrue subroutine ( Algorithm 2 ) step by step, we discuss the main idea of Algorithm 2 . 

Strategy . Given a target feature, EEMB proposes a new divide-and-conquer approach to find the PC and spouses of the

target simultaneously. 

1) Strategy for finding spouses : The divide-and-conquer approach is more effective than the first type of MB discovery algo-

rithm [18] but is computationally expensive. The second type of algorithm finds spouses by finding the PC set of each

feature in the found PC set of the target, so these algorithms spend much more time on MB discovery than do the first

type of algorithms. Compared with these algorithms, STMB efficiently finds spouses from the non-PC set, but STMB still

requires time to search the non-PC set to find spouses after finding the PC set. EEMB directly finds spouses from all

features that are conditionally independent of T during PC discovery; therefore, EEMB finds the PC and spouses simulta-

neously. Thus, the time complexity of EEMB depends mainly on the computational cost of PC discovery and not spouse

discovery. 

2) Strategy for finding PC : As discussed above, an efficient strategy to find PC is crucial to improve the efficiency of EEMB.

EEMB uses a forward strategy to find PC. Initially, EEMB assumes that the PC set of the target feature is empty and

then adds features one by one by selecting the feature with the highest association with a target in each iteration.
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Algorithm 2 ADDTrue . 

Require: T : target; D : dataset 

Ensure: P CS T : superset of PC set of T ; SP S T : superset of spouses of T 

1: P CS T ← ∅ 
2: CanP C T ← U\ { T } 
3: IND T ← all X in { U\ { T } } and T ⊥⊥ X|∅ 
4: repeat 

5: Y ← argmax X∈ CanPC T 
dep(T , X|∅ ) 

6: P CS T ← P CS T ∪ { Y } 
7: C anP C T ← C anP C T \ { Y } 
8: for each X ∈ P CS T do 

9: if T ⊥⊥ X| Z for some Z ⊆ P CS T \ { X } then 

10: P CS T ← P CS T \ { X } 
11: SP S T { X } ← ∅ 
12: Sep T { X } ← Z 

13: I ND T ← I ND T ∪ { X} 
14: for each A ∈ P CS T do 

15: if T �⊥⊥ X | Sep T { X } ∪ { A } 
16: SP S T { A } ← SP S T { A } ∪ { X } 
17: end if 

18: end for 

19: else if X is the last feature added to P CS T then 

20: for each B ∈ IND T 

21: if T �⊥⊥ B | Sep T { B } ∪ { X } then 

22: SP S T { X } ← SP S T { X } ∪ { B } 
23: end if 

24: end for 

25: end if 

26: end for 

27: until CanP C T is empty 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meanwhile, when a new feature is added to the current set of selected features, the EEMB checks the currently selected

features and removes false positives. The forward strategy can keep the number of currently selected features as small

as possible in each iteration by removing false positive features when adding features. This strategy is beneficial because

conditioning on larger sets of features would increase the risk of missing features that are weakly associated with the

target [8] . Compared to the backward strategy used by STMB for PC discovery, the forward strategy is similar in terms of

computational complexity (we will discuss the computational complexity of the forward strategy and backward strategy

in IV-E), but the runtime of the forward strategy is shorter than that of the backward strategy when finding the PC set

because most BNs have a large number of features but a small-sized PC set of each feature. 

Description . For each feature in { U �{ T }} (line 2), EEMB first checks whether X is conditionally dependent on T and then

adds all features in U that are conditionally independent of T given the empty set into IND T (line 3). The features with the

strongest association with T (line 5) are added to the PCS T set in each iteration (line 6). Subsequently, EEMB checks each

feature X in PCS T . The following two cases can occur. 

• Case 1: If feature X is conditionally independent of T (line 9), then X is removed from PCS T (line 10). There is no need

to continue checking whether the features in the PCS T set belong to the PCS T (this idea is also applied to the removing

phase). The spouses ( SPS T { X }) that have a corresponding child feature X with T must also be removed (line 11) since

feature X has been removed. Meanwhile, EEMB keeps the set that d -separates X from T (line 12) and adds X into IND T to

update the set containing all the features independent of T in U (line 13). 

Moreover, EEMB considers whether the just removed feature X belongs to the spouses of T corresponding to each feature

within PCS T (lines 14–18): if T �⊥⊥ X | Sep T { X } ∪ { A } and A ∈ PCS T , feature X could be a spouse of T with regard to T ’s child

A (line 16). 

• Case 2: If feature X is conditionally dependent on T , then X belongs to PCS T , and when checking the features in PCS T ,

only the newly generated subsets by the addition of X must be tested (this optimization is also applied to the removing

phase). 

Moreover, if X is the last feature added to PCS T (line 19), EEMB directly finds the spouses from all features in U that are

conditionally independent of T (lines 20–24): if T �⊥⊥ B | Sep T { B } ∪ { X } , feature B could be a spouse of T with regard to T ’s
child X (line 22). 
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Algorithm 3 RMFalse . 

Require: T : target; D : dataset; P CS T : superset of PC set of T ; SP S T : superset of spouses of T 

Ensure: P C T : Parents and children of T ; SP T : spouses of T 

Phase I: Remove false positives from SP S T 
1: for each Y in SP S T do 

2: SP T { Y } ← ∅ 
3: repeat 

4: A ← argmax X∈ SPS T { Y } dep(T , X | Sep T { X } ∪ { Y } ) 
5: SP T { Y } ← SP T { Y } ∪ { A } 
6: SP S T { Y } ← SP S T { Y } \ { A } 
7: for each X ∈ SP T { Y } do 

8: if T ⊥⊥ X| Z ∪ Y for some Z ∈ SP T { Y } \ { X } then 

9: SP T { Y } ← SP T { Y } \ { X } 
10: end if 

11: end for 

12: until SP S T { Y } is empty 

13: SP S T { Y } ← SP T { Y } 
14: SP T { Y } ← ∅ 
15: repeat 

16: B ← argmax X∈ SPS T { Y } dep(T , X | Sep T { X } ∪ { Y } ) 
17: SP T { Y } ← SP T { Y } ∪ { B } 
18: SP S T { Y } ← SP S T { Y } \ { B } 
19: for each X ∈ SP T { Y } do 

20: if T⊥⊥ X| Z∪ Y for some Z ⊆ P CS T ∪ SP T { Y } \ { X } then 

21: SP T { Y } ← SP T { Y } \ { X } 
22: end if 

23: end for 

24: until SP S T { Y } is empty 

25: end for 

Phase II: Remove false positives from P CS T 
26: P C T ← ∅ 
27: repeat 

28: C ← argmax X∈ PCS T 
dep(T , X|∅ ) 

29: P C T ← P C T ∪ { C } 
30: P CS T ← P CS T \ { C } 
31: for each X ∈ P C T do 

32: if T ⊥⊥ X| Z ∪ Y ∈ Z SP T { Y } for some Z⊆P C T \ { X } then 

33: P C T ← P C T \ { X } 
34: SP T { X } ← ∅ 
35: end if 

36: end for 

37: until P CS T is empty 

 

 

 

 

 

 

 

 

 

However, some false positives will be added to PCS T and SPS T after Algorithm 2 . For example, as shown in Fig. 2 , by

Definition 5 , the non-child descendant X is in PCS T , and the spouses’ parent Y remains in SPS T . Algorithm 3 is proposed in

the next section to remove these false positives. 

4.3. The RMFalse subroutine 

In the section, we first present the main idea of the RMFalse subroutine ( Algorithm 3 ) and then describe the subroutine

step by step. 

Strategy . The second type of algorithm removes false positives using the symmetry constraint by finding the PC set of

each feature in the found PC set of T . These algorithms are effective but inefficient. Compared with these algorithms, the first

type of algorithm and STMB sacrifice accuracy for efficiency, especially in high-dimensional datasets with small-sized data

samples, by using the entire set of currently selected features as a conditioning set to remove false positives. By contrast,

EEMB removes false positives by performing a subset search within the found MB to improve the effectiveness. Moreover,

EEMB uses a forward strategy in this phase to achieve far better efficiency and effectiveness. 

Description . EEMB divides the phase of removing false positives into two steps: removing false spouses and removing

false PC. 
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Fig. 2. PC T = { A } , X / ∈ PC T . Note that no subsets within the PC of T make X conditionally independent of T : X �⊥⊥ T |∅ , X �⊥⊥ T | A . In addition, SP T = { B } , Y / ∈ SP T . 

Since Y ⊥⊥ T | ∅ and Y �⊥⊥ T | A, Y could be a spouse of T . However, the MB of T can make X and Y conditionally independent of T: X ⊥⊥ T |{ A ∪ B }, Y ⊥⊥ T |{ A ∪ B }. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Remove false positive spouses from SPS T : In lines 2–12, EEMB aims to filter false positive spouses and thus considers the

union of Y and the subsets within SP T { Y } as the conditioning set (line 8). Then, in lines 13–24, EEMB removes all false

spouses and considers the subset of the union of PCS T and SP T { Y } as a conditioning set (line 20). 

• Remove false positives from PCS T : EEMB removes false PC by conditioning on the subsets within the currently selected

features within PCS T and SPS T (line 32). SP T { X } must be removed since X is conditionally independent of T (line 34). 

For example, as shown in Fig. 2 , the MB of T can make X and Y conditionally independent of T . Consequently, the false

positive Y will be removed at line 9 or 21, and the false positive X will be removed at line 33. Thus, no false positives exist

in PC T and SP T . 

4.4. Correctness of EEMB 

Theorem 3. Under the faithfulness assumption, EEMB finds the exact MB of a given target. 

Proof. In the growing phase, ADDTrue ( Algorithm 2 ) finds all true MB of T . EEMB adds the features that are conditionally

dependent on T given an empty set to the PCS T (line 6) and removes some false positives of PC from PCS T by conditioning on

the subset within PCS T based on Theorem 1 (line 10). According to Theorem 1 , the feature X ∈ PC T is conditionally dependent

on T given all S ⊆U �{ X ∪ T }; thus, PCS T contains all the true PC of T . While finding PCS T , EEMB finds the spouses of T simul-

taneously, but this process does not affect finding PCS T . If feature Z is a collider that forms a V-structure, Y → Z ← T , then

feature Y is considered a candidate spouse of T via Z by Theorem 2 (lines 16 and 22). Due to the exhaustive search, EEMB

would not miss any true positive spouses among all features in U that are conditionally independent of T given an empty

set (line 3) or some false PC nodes (line 9); thus, we find all true positive spouses. Consequently, PCS T and SPS T together

contain all the true PC and spouses of T . 

In the shrinking phase, Algorithm 3 removes false positives in the PC and spouse set found in the growing phase. As

shown in Fig. 2 , two types of false positives exist in the found MB: (1) non-child descendants of T in PCS T (e.g., node X );

and (2) parents of the spouses of T in SPS T (e.g., node Y ). EEMB directly applies Property 1 to remove all false spouses

from SPS T (lines 8 and 20) because conditional independence relationships with T given some PC nodes and spouses (i.e.,

a candidate set of MB) would indicate false MB nodes. Then, EEMB contains only the true spouses in SP T as the exhaustive

test ensures that no false positive spouses remain. The subsets within PCS T and the corresponding SP T { Y } together constitute

the complete MB of T since PCS T contains all true PC; thus, EEMB removes non-child descendant nodes of T owing to

Property 1 (line 32). Consequently, PC T and SP T together contain all and only the true positive PC set and spouses after

Algorithm 3 . In other words, PC T and SP T together contain all and only the true positive MB nodes. �

4.5. Computational complexity 

Since almost all state-of-the-art MB discovery algorithms employ conditional independence tests (CITs) to calculate the

dependence/independence of features [1] , in this paper, we use the number of CITs to represent the computational com-

plexity of the EEMB algorithm and its rivals. Algorithm 2 first sorts the features using | U | measures of association and then

performs an exhaustive subset search in the currently selected PC set in each iteration. Thus, the computational complexity

of Algorithm 2 is O (| U |2 | PC | ) CITs. The computational complexity of phase I of Algorithm 3 is O (| SP T { X}| 2 (| PC| + | SP T { X}| ) ) CITs,

and the complexity of phase II of Algorithm 3 is O (| PC |2 | PC | ) CITs. Overall, the computational complexity of EEMB is O (| U |2 | PC |

+ | SP { X}| 2 (| PC| + | SP T { X}| ) + | PC |2 | PC | ) = O (| U |2 | PC | ) CITs. 
T 
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Table 2 

Computational Complexity of Each Markov Blanket Discovery Algorithm. 

Algorithms IAMB MMMB HITON-MB PCMB IPCMB STMB EEMB 

Complexity O (| U | 2 ) O (| U || PC |2 | PC | ) O (| U || PC |2 | PC | ) O (| U || PC | 2 2 | PC | ) O (| U || PC |2 | U | ) O (| U |2 | U | ) O (| U |2 | PC | ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm used to enforce the symmetry constraint requires additional | PC | CITs. Specifically, the forward strategy

used by Algorithm 2 tests T ⊥⊥ X | Z for all subsets Z of the largest PC set in each iteration, and the backward strategy used by

STMB for PC discovery tests T ⊥⊥ X | Z for all subsets Z of the entire set in each iteration. Consequently, Algorithm 2 requires

O (| U |2 | PC | ) CITs. The backward strategy used by STMB for PC discovery requires O (| U |2 | U | ) CITs, and the forward strategy is

much faster than the backward strategy due to | PC | 
 | U |. 

The computational complexities of the state-of-the-art MB discovery algorithms are summarized in Table 2 .

Table 2 shows that IAMB is the fastest, and EEMB is the second-fastest and is very close to IAMB in terms of computa-

tional efficiency. 

5. Experiments 

In this section, we compare the EEMB algorithm with the state-of-the-art MB discovery algorithms in terms of efficiency

and effectiveness using six benchmark BNs and ten real-world datasets. The compared MB discovery algorithms are IAMB

[22] , MMMB [21] , HITON-MB [3] , PCMB [18] , IPCMB [11] and STMB [12] . All algorithms are implemented in MATLAB. All

experiments are conducted in Windows 7 with an Intel Core i5-5200U with 8 GB RAM. The conditional independence test

is the G 

2 test at the 0.01 significance level. The best results are highlighted in bold face in the tables. 

To determine whether EEMB and its rivals have significantly different accuracy, we conduct the Friedman test at the

5% significance level [9] . The null hypothesis states that the performance of EEMB and that of its rivals is not significantly

different. The average ranks are calculated using the Friedman test (for the calculation of the average ranks, please see [9] ).

When the null hypothesis of the Friedman test is rejected, we proceed with the Nemenyi test [9] as a post hoc test. In the

Nemenyi test, the performance of two methods is significantly different if the corresponding average ranks differ by at least

the critical difference (for calculating the critical difference, please see [9] ). 

5.1. Benchmark BN datasets 

The six benchmark BN datasets are described in Table 3. 1 For each benchmark BN network, we use two groups of data,

one group includes 10 datasets with 500 data instances to represent small-sized dataset samples, and the other group

contains 10 datasets with 50 0 0 data instances to represent large-sized dataset samples. The MB of each feature can be read

from the benchmark BN networks. Accordingly, in the experiments, we evaluate the algorithms with respect to the following

metrics. 

• Effectiveness. F 1 = 2 ∗ precision ∗ recal l / (precision + recal l ) . Precision denotes the number of true positives in the output

(i.e., the features in the output of an algorithm belonging to the true MB of a given target in a test DAG) divided by the

total number of features in the output of the algorithm. Recall represents the number of true positives in the output

divided by the number of true positives (the number of true MB of a given target) in a test DAG. The F1 score is the

harmonic average of precision and recall, where F 1 = 1 is the best case (perfect precision and recall) and F 1 = 0 is the

worst case. 

• Efficiency. We measure the efficiency of an algorithm using both the number of CITs and runtime. 

For each algorithm, we report the average F1, precision, recall, number of CITs, and runtime for ten datasets. In the

following tables, the results are shown in the format of A ± B , where A represents the average F1, precision, recall, number

of CITs, or runtime, and B is the standard deviation. 

Using small-sized BNs . We report the results of EEMB and its rivals on three small-sized networks, Child [7] , Insurance

[5] and Alarm [4] . We run each algorithm to discover the MBs for all nodes in each BN. Table 4 summarizes the F1, precision,

recall, number of CITs, and runtime of each network for different sam ple sizes, and Table 5 summarizes the average results

for different sample sizes. 

On the Child network with small-sized data samples, EEMB is the most accurate in terms of the F1 metric and is com-

petitive with IAMB in terms of computational efficiency (number of CITs corresponds to the runtime). On the Child network

with large-sized data samples, EEMB has comparable accuracy to that of HITON-MB, but EEMB is much faster (more than 17

times) than HITON-MB in terms of the number of CITs. On the Insurance network, MMMB and EEMB are the most accurate

algorithms with both small-sized and large-sized data samples. Meanwhile, EEMB has comparable running speed to that of

IAMB and is much faster (over 12 times) than HITON-MB in terms of CITs on large-sized sample datasets. On the Alarm
1 These datasets are publicly available at http://www.dsl-lab.org/supplements/mmhc _ paper/mmhc _ index.html . 

http://www.dsl-lab.org/supplements/mmhc_paper/mmhc_index.html


H. Wang, Z. Ling and K. Yu et al. / Information Sciences 509 (2020) 227–242 235 

Fig. 3. Crucial difference diagram of the Nemenyi test of the F1 metric for small-sized BNs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

network, EEMB achieves competitive F1 values with HITON-MB and PCMB and is faster. Although IAMB is faster than EEMB,

it is significantly inferior to EEMB in terms of the F1 metric in all cases. 

To further compare the accuracy of EEMB with that of IAMB, MMMB, HITON-MB, PCMB, IPCMB, and STMB on small-

sized networks, we conduct the Friedman test at the 5% significance level. The null hypothesis states that the performance

of EEMB and that of its rivals is the same. The average rank of EEMB against its rivals in terms of F1 is shown in the last

column of Table 5 . With small-sized data samples, the null hypothesis is rejected, and the average ranks for IAMB, MMMB,

HITON-MB, PCMB, IPCMB, STMB, and EEMB are 2.50, 5.17, 6.33, 3.33, 1.83, 2.50, and 6.33, respectively (the higher the average

rank is, the better the prediction accuracy). Then, we proceed with the Nemenyi test as a post hoc test. The Nemenyi test

indicates that the performance of the seven methods is significantly different if the corresponding average ranks differ by at

least the critical difference, which is 5.20. Thus, EEMB is significantly better than IPCMB on small-sized sample datasets. For

large-sized data samples, the null hypothesis is rejected, and the average ranks for IAMB, MMMB, HITON-MB, PCMB, IPCMB,

STMB, and EEMB are 3.00, 5.33, 6.17, 5.17, 2.67, 1.0, and 4.67, respectively. Thus, HITON-MB is significantly better than STMB

on large-sized sample datasets. We plot the crucial difference diagram of the Nemenyi test in Fig. 3 . 

Using large-sized BNs. We validate our proposed EEMB algorithm using three large-sized networks: Child10, Insurance10,

and Alarm10. These three networks were generated by tiling 10 copies of the Child, Insurance, and Alarm networks, respec-

tively [20] . We randomly select 10% of the features in each BN, find their MBs, and report the F1, precision, recall, number

of CITs, and runtime. Table 6 summarizes the results of EEMB and its rivals using different data samples, and Table 7 sum-

marizes the average results. 

On large-sized networks, EEMB has comparable speed with that of IAMB but is much faster than the other algorithms.

In terms of the F1 metric, EEMB illustrates comparable accuracy with HITON-MB. EEMB is the most accurate on small-sized

sample data. 

Meanwhile, we use the Friedman test at the 5% significance level to further evaluate the accuracy, and we summarize the

average ranks of EEMB against its rivals in terms of F1 in the last column of Table 7 . For small-sized data samples, the null

hypothesis is rejected, and the average ranks for IAMB, MMMB, HITON-MB, PCMB, IPCMB, STMB, and EEMB are 2.67, 5.50,

5.83, 4.00, 2.33, 1.00, and 6.67, respectively. Then, we proceed with the Nemenyi test as a post hoc test. In the Nemenyi

test, the critical difference is 5.20. Thus, EEMB has significantly better accuracy than STMB for small-sized data samples. For

large-sized data samples, the null hypothesis is rejected, and the average ranks for IAMB, MMMB, HITON-MB, PCMB, IPCMB,

STMB, and EEMB are 2.67, 5.50, 6.50, 4.33, 2.67, 1.00, and 5.33, respectively. Then, we proceed with the Nemenyi test as a

post hoc test and conclude that HITON-MB is significantly more accurate than STMB for large-sized data samples. We plot

the crucial difference diagram of the Nemenyi test in Fig. 4 . 

Summary. For the benchmark BN datasets, as discussed in Section 4.5 and according to the detailed information of each

dataset provided in the Table 3 , the experimental results are mostly consistent with the computational complexity analysis.

The differences in efficiency and effectiveness for different numbers of data samples can be contributed to the fact that

small-sized sample datasets could introduce more erroneous dependencies [12] . 

For the benchmark BNs, HITON-MB is the most accurate algorithm while IAMB is the fastest. For small-sized datasets,

EEMB is the most accurate. In summary, EEMB is approximately as fast as IAMB and almost as accurate as HITON-MB. 

5.2. Real-World datasets 

In addition to the benchmark BNs, in this section, we use ten real-world datasets with low to high dimensionality, as

shown in Table 8 . Since the MBs in the real-world datasets are unknown, we use the MBs discovered by the EEMB algorithm

and its rivals for feature selection for classification [14] . In Table 8 , the first five datasets are from the UCI machine learning
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Fig. 4. Crucial difference diagram of the Nemenyi test for the F1 metric on large-sized BNs. 

Table 3 

Summary of Benchmark BNs. 

Network Num. Num. Max In-/out- Min/Max Domain 

Vars Edges Degree |PCset| Range 

Child 20 25 2/7 1/8 2–6 

Insurance 27 52 3/7 1/9 2–5 

Alarm 37 46 4/5 1/6 2–4 

Child10 200 257 2/7 1/8 2–6 

Insurance10 270 556 5/8 1/11 2–5 

Alarm10 370 570 4/7 1/9 2–4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

repository [10] , the hiva, ovariancancer , and breastcancer datasets are three biomedical datasets [13,24] , and the madelon and

dexter datasets are from the NIPS 2003 feature selection challenge. To avoid bias in the error estimation we apply 10-fold

cross-validation for all datasets. We use the following metrics for the feature selection evaluation. 

• Effectiveness. Com pactness is the number of selected features. Prediction accuracy is the percentage of the correctly

classified test instances that were previously unseen. We report both compactness and the prediction accuracy of the

KNN classifier and SVM classifier 2 as the effectiveness measures of the different algorithms. 

• Efficiency. We report both the number of CITs and runtime as the efficiency measures of the different algorithms. 

Tables 9 and 10 summarize the results of the feature selection by the different algorithms. The results are shown in the

format of A ± B , where A represents the accuracy, compactness, number of CITs, or time, and B is the corresponding standard

deviation. Table 11 reports the win/tie/loss counts of EEMB against other algorithms. The results are shown in the format of

A / B / C: A denotes the number of times EEMB outperforms the other algorithms on ten datasets while B and C represent the

numbers of ties and losses, respectively. Table 12 shows the average results on 10 real-world datasets. 

Performance. In terms of prediction accuracy, Table 11 shows that EEMB is superior to IAMB, MMMB, HITON-MB, PCMB,

IPCMB, and STMB on most datasets when using SVM. Furthermore, the prediction accuracy of EEMB is never worse than

that of the other algorithms when using KNN. Tables 9 and 10 show that for the first five datasets, the accuracy advantage

of EEMB is not obvious due to the small number of features. However, for the latter five feature sets with more than 500

features, the accuracy of EEMB is much higher than that of the other algorithms. In Table 12 , on average, EEMB is the

most accurate algorithm, and EEMB is 9% and 5% more accurate than the least accurate IAMB when using KNN and SVM,

respectively. Moreover, IAMB is much worse than MMMB, HITON-MB, and EEMB in terms of average prediction accuracy.

For the four datasets heart, spectf, sonar , and dexter , IAMB is 10% less accurate than EEMB when using KNN. 

To further evaluate the prediction accuracy of EEMB against its rivals, we conduct the Friedman test at the 5% significance

level. The null hypothesis states that the prediction accuracy of EEMB and that of its rivals is the same. The average ranks

of EEMB against its rivals when using KNN and SVM are summarized in the last two columns of Table 12 . For KNN, the

null hypothesis is rejected, and the average ranks for IAMB, MMMB, HITON-MB, and EEMB are 1.55, 2.10, 2.70, and 3.65,

respectively. Then, we proceed with the Nemenyi test as a post hoc test. In the Nemenyi test, the performance of the four

methods is significantly different if the corresponding average ranks differ by at least the critical difference, which is 1.48.

Thus, EEMB is significantly better than IAMB and MMMB when using the KNN classifier. We plot the crucial difference

diagram of the Nemenyi test in Fig. 5 . For SVM, the null hypothesis is accepted, and the average ranks for IAMB, MMMB,
2 The LIBSVM library is available at www.csie.ntu.edu.tw/ ∼cjlin/libsvm . 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 4 

F1, Precision, Recall, Number of CITs, and Runtime (in Seconds) on Small-Sized BNs Using Different Data Sizes. 

Size Dataset Algorithm F1 Precision Recall CITs Time 

IAMB 0.75 ± 0.03 0.95 ± 0.03 0.67 ± 0.03 49 ± 1 0.01 ± 0.00 

MMMB 0.77 ± 0.04 0.78 ± 0.05 0.85 ± 0.05 1120 ± 254 0.16 ± 0.03 

HITON-MB 0.79 ± 0.04 0.79 ± 0.04 0.87 ± 0.05 3852 ± 1241 0.39 ± 0.10 

Child PCMB 0.73 ± 0.03 0.79 ± 0.04 0.77 ± 0.04 7405 ± 2257 0.95 ± 0.22 

IPCMB 0.69 ± 0.04 0.68 ± 0.06 0.80 ± 0.04 1184 ± 92 0.20 ± 0.01 

STMB 0.77 ± 0.04 0.81 ± 0.05 0.79 ± 0.03 215 ± 7 0.05 ± 0.00 

EEMB 0.81 ± 0.04 0.84 ± 0.04 0.83 ± 0.04 176 ± 22 0.04 ± 0.00 

IAMB 0.56 ± 0.03 0.89 ± 0.04 0.45 ± 0.02 75 ± 2 0.02 ± 0.00 

MMMB 0.62 ± 0.03 0.68 ± 0.04 0.61 ± 0.03 513 ± 105 0.13 ± 0.02 

HITON-MB 0.62 ± 0.03 0.71 ± 0.04 0.61 ± 0.03 1069 ± 238 0.24 ± 0.04 

500 Insurance PCMB 0.57 ± 0.02 0.68 ± 0.02 0.54 ± 0.03 2663 ± 842 0.65 ± 0.15 

IPCMB 0.56 ± 0.02 0.54 ± 0.04 0.66 ± 0.07 41,819 ± 35,409 4.68 ± 3.86 

STMB 0.56 ± 0.03 0.59 ± 0.08 0.61 ± 0.05 1811 ± 1338 0.24 ± 0.15 

EEMB 0.62 ± 0.02 0.75 ± 0.03 0.58 ± 0.02 174 ± 19 0.05 ± 0.01 

IAMB 0.73 ± 0.04 0.90 ± 0.05 0.66 ± 0.04 109 ± 2 0.03 ± 0.00 

MMMB 0.78 ± 0.04 0.81 ± 0.04 0.80 ± 0.04 480 ± 74 0.12 ± 0.01 

HITON-MB 0.80 ± 0.03 0.84 ± 0.03 0.82 ± 0.03 1631 ± 293 0.33 ± 0.04 

Alarm PCMB 0.74 ± 0.03 0.80 ± 0.04 0.74 ± 0.03 2397 ± 469 0.61 ± 0.09 

IPCMB 0.73 ± 0.03 0.74 ± 0.03 0.77 ± 0.04 879 ± 37 0.25 ± 0.01 

STMB 0.65 ± 0.04 0.69 ± 0.05 0.72 ± 0.04 324 ± 10 0.09 ± 0.00 

EEMB 0.79 ± 0.03 0.84 ± 0.04 0.79 ± 0.03 178 ± 8 0.05 ± 0.00 

IAMB 0.90 ± 0.02 0.95 ± 0.03 0.88 ± 0.01 63 ± 1 0.06 ± 0.00 

MMMB 0.97 ± 0.01 0.96 ± 0.02 0.99 ± 0.01 897 ± 25 0.96 ± 0.03 

HITON-MB 0.98 ± 0.02 0.97 ± 0.03 0.99 ± 0.01 2771 ± 112 3.08 ± 0.12 

Child PCMB 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 5031 ± 106 5.49 ± 0.13 

IPCMB 0.96 ± 0.02 0.95 ± 0.03 0.99 ± 0.01 1877 ± 155 1.94 ± 0.17 

STMB 0.89 ± 0.03 0.84 ± 0.04 0.98 ± 0.02 374 ± 35 0.39 ± 0.04 

EEMB 0.95 ± 0.02 0.95 ± 0.03 0.98 ± 0.02 161 ± 4 0.17 ± 0.00 

IAMB 0.76 ± 0.01 0.94 ± 0.02 0.67 ± 0.01 104 ± 2 0.13 ± 0.00 

MMMB 0.79 ± 0.02 0.88 ± 0.03 0.76 ± 0.02 1186 ± 124 1.63 ± 0.18 

HITON-MB 0.78 ± 0.02 0.89 ± 0.03 0.74 ± 0.02 3175 ± 414 4.47 ± 0.62 

5000 Insurance PCMB 0.74 ± 0.01 0.86 ± 0.02 0.68 ± 0.02 7206 ± 1145 10.00 ± 1.68 

IPCMB 0.66 ± 0.03 0.64 ± 0.03 0.74 ± 0.03 3509 ± 449 4.67 ± 0.61 

STMB 0.65 ± 0.02 0.64 ± 0.04 0.77 ± 0.03 703 ± 47 0.96 ± 0.07 

EEMB 0.79 ± 0.01 0.89 ± 0.02 0.75 ± 0.02 267 ± 12 0.37 ± 0.02 

IAMB 0.90 ± 0.02 0.94 ± 0.02 0.89 ± 0.01 142 ± 2 0.19 ± 0.00 

MMMB 0.94 ± 0.02 0.92 ± 0.02 0.97 ± 0.01 604 ± 26 0.83 ± 0.04 

HITON-MB 0.96 ± 0.01 0.97 ± 0.02 0.97 ± 0.01 1543 ± 38 2.15 ± 0.06 

Alarm PCMB 0.95 ± 0.02 0.95 ± 0.01 0.96 ± 0.02 2870 ± 215 3.97 ± 0.32 

IPCMB 0.86 ± 0.02 0.81 ± 0.02 0.97 ± 0.01 1656 ± 54 2.18 ± 0.07 

STMB 0.78 ± 0.02 0.73 ± 0.02 0.96 ± 0.01 531 ± 15 0.73 ± 0.03 

EEMB 0.94 ± 0.02 0.97 ± 0.03 0.94 ± 0.01 212 ± 4 0.29 ± 0.01 

Table 5 

Average Results on Small-Sized BNs Using Different Data Sizes. 

Size Algorithm F1 Precision Recall CITs Time Rank-F1 

IAMB 0.68 0.91 0.59 78 0.02 2.50 

MMMB 0.72 0.76 0.75 704 0.14 5.17 

HITON-MB 0.73 0.78 0.77 2184 0.32 6.33 

500 PCMB 0.68 0.76 0.68 4155 0.74 3.33 

IPCMB 0.66 0.65 0.74 14,627 1.71 1.83 

STMB 0.66 0.70 0.71 783 0.13 2.50 

EEMB 0.74 0.81 0.73 176 0.05 6.33 

IAMB 0.85 0.94 0.81 103 0.13 3.00 

MMMB 0.90 0.92 0.91 896 1.14 5.33 

HITON-MB 0.91 0.94 0.90 2496 3.23 6.17 

5000 PCMB 0.89 0.93 0.88 5036 6.49 5.17 

IPCMB 0.83 0.80 0.90 2347 2.93 2.67 

STMB 0.77 0.74 0.90 536 0.69 1.00 

EEMB 0.89 0.94 0.89 213 0.28 4.67 
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Table 6 

F1, Precision, Recall, Number of CITs, and Runtime (in Seconds) on Large-Sized BNs Using Different Data Sizes. 

Size Dataset Algorithm F1 Precision Recall CITs Time 

IAMB 0.52 ± 0.24 0.81 ± 0.32 0.43 ± 0.27 557 ± 174 0.21 ± 0.06 

MMMB 0.60 ± 0.26 0.70 ± 0.33 0.61 ± 0.30 1850 ± 1163 0.71 ± 0.47 

HITON-MB 0.60 ± 0.26 0.69 ± 0.34 0.61 ± 0.30 5316 ± 3824 1.32 ± 0.91 

Child10 PCMB 0.57 ± 0.29 0.67 ± 0.37 0.58 ± 0.33 11,291 ± 10,334 3.75 ± 3.19 

IPCMB 0.55 ± 0.27 0.59 ± 0.33 0.60 ± 0.33 5122 ± 4051 2.68 ± 2.05 

STMB 0.44 ± 0.27 0.39 ± 0.31 0.65 ± 0.36 2015 ± 1540 0.90 ± 0.50 

EEMB 0.61 ± 0.30 0.65 ± 0.34 0.64 ± 0.32 1503 ± 1648 0.56 ± 0.54 

IAMB 0.39 ± 0.22 0.72 ± 0.35 0.29 ± 0.19 799 ± 240 0.52 ± 0.16 

MMMB 0.47 ± 0.26 0.61 ± 0.34 0.46 ± 0.32 1948 ± 1176 1.40 ± 0.82 

HITON-MB 0.47 ± 0.26 0.60 ± 0.33 0.46 ± 0.32 4344 ± 3288 2.73 ± 1.99 

500 Insurance10 PCMB 0.46 ± 0.26 0.64 ± 0.36 0.42 ± 0.30 10,657 ± 7408 7.53 ± 5.17 

IPCMB 0.33 ± 0.18 0.27 ± 0.15 0.55 ± 0.30 82,483 ± 237,186 63.44 ± 181.53 

STMB 0.24 ± 0.13 0.17 ± 0.09 0.56 ± 0.32 7606 ± 4419 5.53 ± 2.85 

EEMB 0.47 ± 0.26 0.54 ± 0.31 0.46 ± 0.29 1439 ± 940 1.52 ± 0.95 

IAMB 0.51 ± 0.26 0.77 ± 0.32 0.43 ± 0.29 1190 ± 342 0.97 ± 0.26 

MMMB 0.54 ± 0.27 0.73 ± 0.32 0.50 ± 0.32 1540 ± 855 1.42 ± 0.76 

HITON-MB 0.56 ± 0.28 0.78 ± 0.33 0.50 ± 0.31 2339 ± 1887 1.97 ± 1.49 

Alarm10 PCMB 0.52 ± 0.29 0.80 ± 0.33 0.45 ± 0.32 6053 ± 6052 5.44 ± 5.06 

IPCMB 0.42 ± 0.28 0.45 ± 0.29 0.53 ± 0.33 34,323 ± 158,384 36.84 ± 171.12 

STMB 0.36 ± 0.21 0.34 ± 0.20 0.52 ± 0.33 3269 ± 1545 3.24 ± 1.33 

EEMB 0.57 ± 0.29 0.74 ± 0.32 0.51 ± 0.32 1332 ± 698 1.71 ± 0.88 

IAMB 0.87 ± 0.14 0.93 ± 0.15 0.85 ± 0.18 888 ± 236 3.42 ± 0.92 

MMMB 0.95 ± 0.07 0.91 ± 0.12 0.99 ± 0.03 2125 ± 903 8.26 ± 3.52 

HITON-MB 0.95 ± 0.07 0.92 ± 0.12 0.99 ± 0.03 4938 ± 2406 21.30 ± 10.50 

Child10 PCMB 0.95 ± 0.07 0.91 ± 0.12 0.99 ± 0.03 12,439 ± 7319 55.26 ± 32.71 

IPCMB 0.90 ± 0.10 0.83 ± 0.17 1.00 ± 0.00 9288 ± 5792 40.55 ± 25.38 

STMB 0.52 ± 0.23 0.40 ± 0.27 0.98 ± 0.08 4202 ± 4499 18.90 ± 20.67 

EEMB 0.95 ± 0.07 0.95 ± 0.10 0.96 ± 0.08 1298 ± 908 5.64 ± 4.07 

IAMB 0.59 ± 0.19 0.92 ± 0.21 0.47 ± 0.23 1164 ± 367 6.24 ± 2.12 

MMMB 0.66 ± 0.23 0.78 ± 0.24 0.62 ± 0.28 3496 ± 1672 19.29 ± 9.45 

HITON-MB 0.71 ± 0.24 0.86 ± 0.23 0.64 ± 0.28 12,678 ± 8543 71.85 ± 49.08 

5000 Insurance10 PCMB 0.58 ± 0.30 0.69 ± 0.33 0.56 ± 0.35 20,977 ± 13088 118.66 ± 74.57 

IPCMB 0.46 ± 0.24 0.44 ± 0.27 0.59 ± 0.34 20,267 ± 13,421 111.52 ± 73.72 

STMB 0.35 ± 0.18 0.30 ± 0.24 0.56 ± 0.33 5344 ± 6547 30.20 ± 38.15 

EEMB 0.70 ± 0.22 0.88 ± 0.22 0.62 ± 0.27 1742 ± 856 9.49 ± 4.77 

IAMB 0.66 ± 0.24 0.80 ± 0.27 0.64 ± 0.30 1707 ± 548 12.23 ± 4.05 

MMMB 0.77 ± 0.24 0.90 ± 0.21 0.72 ± 0.30 2126 ± 1064 15.06 ± 7.61 

HITON-MB 0.78 ± 0.23 0.92 ± 0.21 0.73 ± 0.29 4525 ± 3869 32.30 ± 27.98 

Alarm10 PCMB 0.76 ± 0.23 0.95 ± 0.18 0.68 ± 0.27 8,936 ± 6039 63.42 ± 43.11 

IPCMB 0.68 ± 0.20 0.72 ± 0.27 0.76 ± 0.28 14,184 ± 10,102 101.78 ± 72.36 

STMB 0.45 ± 0.19 0.40 ± 0.27 0.76 ± 0.28 4,207 ± 2721 30.47 ± 19.59 

EEMB 0.76 ± 0.24 0.86 ± 0.25 0.73 ± 0.29 1,651 ± 744 11.69 ± 5.33 

Table 7 

Average Results on Large-Sized BNs Using Different Data Sizes. 

Size Algorithm F1 Precision Recall CITs Time Rank-F1 

IAMB 0.47 0.77 0.38 849 0.57 2.67 

MMMB 0.54 0.68 0.52 1779 1.18 5.50 

HITON-MB 0.54 0.69 0.52 4000 2.01 5.83 

500 PCMB 0.52 0.70 0.48 9334 5.57 4.00 

IPCMB 0.43 0.44 0.56 40,643 34.32 2.33 

STMB 0.35 0.30 0.58 4297 3.22 1.00 

EEMB 0.55 0.64 0.54 1425 1.26 6.67 

IAMB 0.71 0.88 0.65 1253 7.30 2.67 

MMMB 0.79 0.86 0.78 2582 14.20 5.50 

HITON-MB 0.81 0.90 0.79 7380 41.82 6.50 

5000 PCMB 0.76 0.85 0.74 14,117 79.11 4.33 

IPCMB 0.68 0.66 0.78 14,580 84.62 2.67 

STMB 0.44 0.37 0.77 4584 26.52 1.00 

EEMB 0.80 0.90 0.77 1564 8.94 5.33 
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Table 8 

Summary of the Benchmark Real-World 

Datasets. 

Dataset Features Instances 

Heart 13 270 

Spect 22 267 

Unblanced 32 856 

Sepctf 44 267 

Sonar 60 208 

Bankruptcy 147 7063 

ovariancancer 2190 216 

Breastcancer 12,533 181 

Madelon 500 2000 

Dexter 20,000 300 

Table 9 

Accuracy, Number of Selected Features, Number of CITS, and Runtime (in Seconds) on Small-Sized Real-World Datasets. 

Dataset Algorithm KNN SVM Compactness CITs Time 

IAMB 0.68 ± 0.13 0.76 ± 0.07 3 ± 1 40 ± 2 0.01 ± 0.00 

MMMB 0.79 ± 0.10 0.81 ± 0.09 7 ± 1 444 ± 153 0.08 ± 0.02 

HITON-MB 0.79 ± 0.11 0.81 ± 0.09 7 ± 0 724 ± 226 0.12 ± 0.02 

heart PCMB 0.79 ± 0.10 0.81 ± 0.09 7 ± 1 2733 ± 1087 0.44 ± 0.13 

IPCMB 0.77 ± 0.09 0.84 ± 0.07 7 ± 1 684 ± 233 0.11 ± 0.01 

STMB 0.78 ± 0.06 0.83 ± 0.06 5 ± 1 323 ± 259 0.05 ± 0.02 

EEMB 0.79 ± 0.09 0.81 ± 0.08 5 ± 1 226 ± 86 0.04 ± 0.01 

IAMB 0.77 ± 0.06 0.79 ± 0.02 3 ± 0 85 ± 16 0.03 ± 0.00 

MMMB 0.75 ± 0.06 0.79 ± 0.02 3 ± 1 325 ± 53 0.11 ± 0.02 

HITON-MB 0.77 ± 0.06 0.79 ± 0.02 3 ± 0 667 ± 188 0.23 ± 0.06 

spect PCMB 0.60 ± 0.33 0.63 ± 0.33 1 ± 1 779 ± 374 0.27 ± 0.12 

IPCMB 0.59 ± 0.32 0.64 ± 0.34 2 ± 2 707 ± 224 0.27 ± 0.08 

STMB 0.61 ± 0.33 0.64 ± 0.34 2 ± 2 337 ± 120 0.14 ± 0.07 

EEMB 0.78 ± 0.06 0.79 ± 0.02 3 ± 0 133 ± 23 0.05 ± 0.01 

IAMB 0.81 ± 0.07 0.99 ± 0.00 2 ± 0 92 ± 10 0.04 ± 0.01 

MMMB 0.81 ± 0.07 0.99 ± 0.00 2 ± 0 48,788 ± 7023 8.79 ± 0.97 

HITON-MB 0.81 ± 0.07 0.99 ± 0.00 2 ± 0 170,130 ± 29,508 26.94 ± 3.87 

unblanced PCMB – – FAIL – –

IPCMB – – FAIL – –

STMB 0.57 ± 0.40 0.69 ± 0.48 1 ± 1 69 ± 4 0.03 ± 0.01 

EEMB 0.81 ± 0.07 0.99 ± 0.00 2 ± 0 68 ± 12 0.03 ± 0.00 

IAMB 0.50 ± 0.00 0.74 ± 0.16 1 ± 0 88 ± 0 0.03 ± 0.01 

MMMB 0.70 ± 0.20 0.74 ± 0.15 29 ± 3 8214 ± 3686 0.87 ± 0.30 

HITON-MB 0.70 ± 0.20 0.74 ± 0.15 29 ± 3 10,879 ± 5482 0.99 ± 0.38 

spectf PCMB 0.70 ± 0.20 0.74 ± 0.15 29 ± 3 106,510 ± 56,074 7.44 ± 3.42 

IPCMB 0.70 ± 0.20 0.74 ± 0.15 29 ± 3 5,105,274 ± 833,386 203.92 ± 56.05 

STMB 0.70 ± 0.20 0.81 ± 0.14 9 ± 2 584,999 ± 45 30.82 ± 0.98 

EEMB 0.70 ± 0.20 0.81 ± 0.14 9 ± 2 2557 ± 1631 0.41 ± 0.28 

IAMB 0.49 ± 0.06 0.72 ± 0.08 1 ± 0 120 ± 0 0.02 ± 0.00 

MMMB 0.83 ± 0.11 0.86 ± 0.07 59 ± 1 2,911,123 ± 506,561 134.53 ± 19.28 

HITON-MB 0.83 ± 0.11 0.86 ± 0.07 59 ± 1 6,749,894 ± 1,284,965 438.56 ± 103.26 

sonar PCMB 0.83 ± 0.11 0.86 ± 0.07 59 ± 1 201,897,470 ± 39,974,255 9,262.85 ± 1,846.32 

IPCMB 0.83 ± 0.11 0.86 ± 0.07 59 ± 1 42,370,453 ± 2,600,838 2,237.13 ± 286.48 

STMB 0.83 ± 0.07 0.82 ± 0.07 20 ± 1 1,852,266 ± 649,304 118.97 ± 41.72 

EEMB 0.84 ± 0.06 0.83 ± 0.06 20 ± 2 51,622 ± 14,671 7.19 ± 2.31 

 

 

 

 

 

 

 

HITON-MB, and EEMB are 1.80, 2.50, 2.50 and 3.20, respectively. Since PCMB, IPCMB, and STMB fail on some datasets, we

do not use the Friedman test to compare EEMB with PCMB, IPCMB, and STMB. 

With respect to the number of selected features, according to Tables 11 and 12 , EEMB is very competitive with its rivals.

Thus, EEMB does not choose an excessive number of features. STMB chooses too many features in ovariancancer, hiva , and

madelon but still has poor accuracy. 

The CIT and running time results in Table 11 show that the speed of EEMB is comparable with that of IAMB and is much

faster than that of the other algorithms on each dataset. On unblanced , EEMB is faster than IAMB. According to the average

CITs shown in Table 12 , MMMB is 4.6 times slower than EEMB, and HitonMB is 19.6 times slower than EEMB. 

Summary. For real-world datasets. Since no PC sets overlap during the symmetry check, PCMB and IPCMB fail on un-

blanced . Furthermore, due to the high computational complexity, PCMB, IPCMB, and STMB fail on datasets with more than

500 features (since the running time exceeds three days). 
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Table 10 

Accuracy, Number of Selected Features, Number of CITS, and Runtime (in Seconds) on Large-Sized Real-World Datasets. 

Dataset Algorithm KNN SVM Compactness CITs Time 

IAMB 0.88 ± 0.02 0.90 ± 0.01 9 ± 0 1,373 ± 0 6.54 ± 0.10 

MMMB 0.88 ± 0.01 0.90 ± 0.00 62 ± 3 1,145,668 ± 260,384 4,335.81 ± 926.50 

HITON-MB 0.88 ± 0.01 0.90 ± 0.00 58 ± 2 12,865,161 ± 3,272,809 17,352.28 ± 4,321.48 

bankruptcy PCMB – – FAIL – –

IPCMB – – FAIL – –

STMB 0.88 ± 0.01 0.89 ± 0.00 80 ± 4 1,354,802 ± 158,508 8,008.75 ± 1,115.70 

EEMB 0.89 ± 0.01 0.90 ± 0.01 26 ± 3 506,054 ± 50,403 2,196.56 ± 246.20 

IAMB 0.82 ± 0.08 0.88 ± 0.06 3 ± 0 9,074 ± 669 22.96 ± 2.75 

MMMB 0.86 ± 0.08 0.91 ± 0.04 10 ± 2 47,792 ± 6285 108.20 ± 20.06 

HITON-MB 0.88 ± 0.04 0.91 ± 0.05 7 ± 1 522,089 ± 288,407 1,333.17 ± 676.11 

ovariancancer PCMB – – FAIL – –

IPCMB – – FAIL – –

STMB 0.79 ± 0.11 0.81 ± 0.09 377 ± 103 940,233 ± 383,711 2,942.46 ± 1,202.45 

EEMB 0.89 ± 0.05 0.94 ± 0.04 20 ± 3 26,157 ± 2,817 63.11 ± 7.74 

IAMB 0.81 ± 0.09 0.82 ± 0.08 4 ± 0 79,710 ± 4935 1,515.98 ± 206.95 

MMMB 0.83 ± 0.06 0.85 ± 0.04 14 ± 6 367,847 ± 174,313 6,938.67 ± 3,105.52 

HITON-MB 0.85 + 0.09 0.84 ± 0.05 11 ± 2 1,980,752 ± 9,709,183 21,472.25 ± 6,302.57 

breastcancer PCMB – – FAIL – –

IPCMB – – FAIL – –

STMB – – FAIL – –

EEMB 0.86 ± 0.05 0.86 ± 0.06 30 ± 8 321,842 ± 48,599 5,683.22 ± 1,040.81 

IAMB 0.58 ± 0.04 0.63 ± 0.03 6 ± 0 3,020 ± 0 10.99 ± 1.08 

MMMB 0.56 ± 0.04 0.60 ± 0.02 6 ± 1 3717 ± 581 15.78 ± 2.55 

HITON-MB 0.58 ± 0.03 0.61 ± 0.03 6 ± 1 6173 ± 2865 28.98 ± 14.20 

madelon PCMB 0.50 ± 0.04 0.56 ± 0.04 2 ± 1 9067 ± 4561 38.88 ± 19.25 

IPCMB 0.55 ± 0.02 0.61 ± 0.03 7 ± 2 28,191 ± 5390 122.71 ± 24.14 

STMB 0.55 ± 0.03 0.61 ± 0.04 26 ± 6 8050 ± 838 34.84 ± 3.70 

EEMB 0.62 ± 0.06 0.63 ± 0.04 8 ± 1 3935 ± 488 16.85 ± 2.12 

IAMB 0.73 ± 0.09 0.81 ± 0.07 4 ± 0 46,881 ± 171 1,675.52 ± 59.32 

MMMB 0.81 ± 0.09 0.85 ± 0.09 11 ± 4 790,907 ± 840,530 16,813.61 ± 18,185.93 

HITON-MB 0.82 ± 0.09 0.85 ± 0.07 12 ± 1 358,990 ± 70,608 7,600.82 ± 1,487.94 

dexter PCMB – – FAIL – –

IPCMB - - FAIL - - 

STMB - - FAIL - - 

EEMB 0.84 ± 0.09 0.89 ± 0.06 21 ± 3 246,040 ± 21,707 5,708.22 ± 475.29 

Table 11 

Comparison Results of EEMB on 10 Real-World Datasets. 

Algorithm KNN SVM Compactness CITs Time 

IAMB 9/1/0 6/4/0 0/2/8 1/0/9 1/0/9 

MMMB 7/3/0 5/4/1 4/2/4 9/0/1 9/0/1 

HITON-MB 7/3/0 5/4/1 4/2/4 10/0/0 10/0/0 

PCMB 8/2/0 8/1/1 8/0/2 10/0/0 10/0/0 

IPCMB 9/1/0 8/0/2 8/0/2 10/0/0 10/0/0 

STMB 9/1/0 8/1/1 5/3/2 10/0/0 8/2/0 

Table 12 

Average Results on 10 Real-World Datasets. 

Algorithm KNN SVM Compactness CITs Time Rank-KNN Rank-SVM 

IAMB 0.71 0.80 4 14,048 323.21 1.55 1.80 

MMMB 0.78 0.83 20 532,483 2835.65 2.10 2.50 

HITON-MB 0.79 0.83 19 2,266,546 4825.43 2.70 2.50 

PCMB – – – – – – –

IPCMB – – – – – – –

STMB – – – – – – –

EEMB 0.80 0.85 14 115,863 1367.57 3.65 3.20 
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Fig. 5. Crucial difference diagram of the Nemenyi test for KNN on 10 real-world datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On real-world datasets, IAMB is the fastest but the least accurate. EEMB is not only the most accurate algorithm but also

the second-fastest. 

6. Conclusion 

In this paper, we proposed the EEMB algorithm, which is able to discover MBs efficiently and effectively with high-

dimensional data with small-sized data samples. The extensive experiments show that EEMB is not only as fast as IAMB

but also as accurate as HITON-MB for both MB discovery and feature selection. The advantages of EEMB are more obvious

with small-sized sample data. Almost all state-of-the-art MB discovery algorithms depend on conditional independence

tests, which leads to ineffectiveness on large-sized MBs. Thus, future research directions may include (1) developing new

algorithms to address large-sized MB discovery and (2) proposing new methods for MB discovery rather than conditional

independence testing. 
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