
Expert Systems With Applications 97 (2018) 163–176

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Document-specific keyphrase candidate search and ranking

Qingren Wang

a , ∗, Victor S. Sheng

b , ∗, Xindong Wu

c

a Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province 230 0 09 China
b University of Central Arkansas, 201 Donaghey Ave., Conway, AR 72035 USA
c School of Computing and Informatics, University of Louisiana at Lafayette, 222 James R. Oliver Hall, Lafayette, LA 70504-3694, USA

a r t i c l e i n f o

Article history:

Received 30 June 2017

Revised 14 December 2017

Accepted 16 December 2017

Available online 16 December 2017

Keywords:

Keyphrase candidate search

Sequential pattern mining

Keyphrase candidate ranking

Entropy

a b s t r a c t

This paper proposes an approach KeyRank to extract proper keyphrases from a document in English.

It first searches all keyphrase candidates from the document, and then ranks them for selecting top- N

ones as final keyphrases. Existing studies show that extracting a complete keyphrase candidate set that

includes semantic relations in context, and evaluating the effectiveness of each candidate are crucial to

extract high quality keyphrases from documents. Based on that words do not repeatedly appear in an

effective keyphrase in English, a novel keyphrase candidate search algorithm using sequential pattern

mining with gap constraints (called KCSP) is proposed to extract keyphrase candidates for KeyRank. And

then an effectiveness evaluation measure pattern frequency with entropy (called PF-H) is proposed for

KeyRank to rank these keyphrase candidates. Our experimental results show that KeyRank has better

performance. Its first component KCSP is much more efficient than a closely related approach SPMW, and

its second component PF-H is an effective evaluation mechanism for ranking keyphrase candidates. 1

© 2017 Elsevier Ltd. All rights reserved.

1

o

g

t

f

t

a

h

d

e

p

c

K

s

a

k

t

s

d

(

W

u

t

t

b

k

H

t

e

t

k

h

o

c

a

w

s

p

e

m

f

h

0

. Introduction

A keyphrase (Liu, Song, Liu, & Wang, 2012) is an ordered list

f words that captures the main points discussed in a natural lan-

uage document. Keyphrases in a document can help understand

he main points of this document. Keyphrases have been success-

ully used in many text mining tasks, such as automatic indexing,

opic extraction, document summarization and text categorization,

nd so on. Due to the importance of keyphrase, many studies

ave been conducted to extract high quality keyphrases from

ocuments. This is called keyphrase extraction. Existing keyphrase

xtraction approaches are based on unsupervised learning and su-

ervised learning (Xie, Wu, & Zhu, 2014). They usually contain two

omponents, keyphrase candidate search and keyphrase selection.

eyphrase candidate search is to extract a keyphrase candidate

et from a document. After a keyphrase candidate set is extracted,

ll these approaches conduct keyphrase selection to select proper

eyphrases from the keyphrase candidate set using different

echnologies. For supervised learning based approaches, keyphrase

election is formulated as a classification task, where each can-

idate is classified as either a keyphrase or a non-keyphrase. For
∗ Corresponding authors.

E-mail addresses: qingren.wang@mail.hfut.edu.cn (Q. Wang), ssheng@uca.edu

V.S. Sheng), xwu@louisiana.edu (X. Wu).
1 Our two-page extended abstract is published in AAAI 2017 (Wang, Sheng, &

u, 2017).

(

e

w

m

2

2

ttps://doi.org/10.1016/j.eswa.2017.12.031

957-4174/© 2017 Elsevier Ltd. All rights reserved.
nsupervised learning based approaches, keyphrase selection is

o rank keyphrase candidates in terms of a specific measure, and

hen the top- N (N is the number of proper keyphrases, specified

y users for a document) keyphrase candidates are selected as

eyphrases. Studies (Ercan & Cicekli, 2007; Xu, Yang, & Lau, 2010;

addoudand & Abdeddaim, 2014) showed that semantic rela-

ions in context can help improve the performance for keyphrase

xtraction. Thus, extracting a complete keyphrase candidate set

hat includes semantic relations in context, and selecting proper

eyphrases from the keyphrase candidate set are crucial to extract

igh quality keyphrases from documents. In this paper, we focus

n the two crucial components of keyphrase extraction, keyphrase

andidate search and keyphrase selection, and propose an efficient

pproach for keyphrase extraction (Wang, Sheng, & Wu, 2017).

The original work on keyphrase extraction simply treats single

ords with high frequency as keyphrase candidates. However,

ingle words do not capture semantic relations in context. Ap-

roaches based on single words with high frequency cannot

xtract a complete keyphrase candidate set that includes se-

antic relations in context. Some studies considered contiguous

requently-occurring words as keyphrase candidates, such as Kea

 Witten, Paynter, Frank, Gutwin, & Nevill-Manning, 1999). Nev-

rtheless, no matter how many contiguous frequently-occurring

ords that a keyphrase candidate has, it still ignores some se-

antic relations in context (Fu, Huang, Sun, Vasilakos, & Yang,

016; Fu, Ren, Shu, Sun, & Huang, 2016; Li, Li, Yang, & Sun,

015). Intuitively, single words in a document are the minimum

https://doi.org/10.1016/j.eswa.2017.12.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.12.031&domain=pdf
mailto:qingren.wang@mail.hfut.edu.cn
mailto:ssheng@uca.edu
mailto:xwu@louisiana.edu
https://doi.org/10.1016/j.eswa.2017.12.031

164 Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176

Fig. 1. Examples of using frequent words vs. wildcard based sequential patterns for keyphrase extraction. (Xie et al., 2014).

q

e

s

r

b

u

a

p

o

L

e

i

c

e

e

u

a

t

p

b

n

o

s

c

m

f

s

t

i

t

T

b

i
meaningful and independent units, and meanwhile a document

is an ordered list of words. Therefore, some studies treat the

keyphrase candidate search as a task of sequential pattern mining

with gap constraints, where single words of documents are viewed

as characters of sequences and keyphrase candidates are viewed

as patterns. Xie et al. (2014) combined wildcards into sequential

pattern mining to search keyphrase candidates from a document

(called SPMW), since wildcards can provide gap constraints with a

great flexibility for mining patterns to capture semantic relations

in the document (Agrawal & Srikant, 1995). Compared with the

approaches based on single or contiguous frequently-occurring

words, approaches based on sequential pattern mining can dis-

cover a richer pattern (keyphrase candidate) set, which helps im-

prove the quality of keyphrase extraction. Note that in this paper a

pattern is actually defined as a keyphrase candidate, and keyphrase

candidates and patterns are exchangeable respectively since then.

Here we employ and adapt one of the examples provided by

Xie et al. (2014) to explain why utilizing sequential pattern mining

with gap constraints to search keyphrase candidates is better (see

Fig. 1). The example is the title and the abstract of a journal paper

published in Knowledge and Information Systems (2013). The left

part of the second row shows the original title (in italics) and

the original abstract, and the right part shows the title and the

abstract in a stemmed form. The last row shows four keyphrases

labeled by its authors. Among the four keyphrases, the entire

string “topic-aware propagation model ” occurs 0 times in the text

(either stemmed or not stemmed). However, sequential pattern

mining with gap constraints can extract “topic-awar propag model ”

four times from the text, once in title and three times in the

abstract (refer to bold-faced words in the right part of the second

row in Fig. 1). Therefore, “topic-awar propag model ” is extracted as

a keyphrase candidate as shown in the fourth row in Fig. 1 .

Although sequential pattern mining with gap constraints can

extract keyphrase candidates with a higher quality, existing se-
uential pattern mining based approaches are computational

xpensive due to two weaknesses. On the one hand, the gap con-

traints in these approaches play a very important role, but they

equire users to explicitly specify appropriate gap constraint(s)

eforehand. In reality it is often nontrivial and time-consuming for

sers to provide a proper gap constraint. On the other hand, these

pproaches need to scan a document multiple times for searching

atterns. Repeated document scanning can cause a lot of time

verhead, even for a short document. Many studies (Fumarola,

anotte, Ceci, & Malerba, 2016; Loglisci & Malerba, 2009; Xie

t al., 2014) toward closed patterns showed that they preserve

nformation and help keep the computational complexity under

ontrol. However, closed patterns do not work well on keyphrase

xtraction because it neglects to consider the three inherent prop-

rties of a pattern to capture a point in a document, especially

ncertainty. In this paper, we focus on documents in English

nd solve the following two issues: 1) reducing the computation

ime of searching keyphrase candidates, and 2) measuring the

robability of a keyphrase candidate to capture a point expressed

y its corresponding document.

After having consulted linguists, they confirmed that words do

ot repeatedly appear in an effective keyphrase in English. Based

n their confirmation, we treat keyphrase candidate search as a

equential pattern mining task, and propose a novel keyphrase

andidate search algorithm (called KCSP) using sequential pattern

ining with gap constraints. KCSP only scans a document once

or obtaining every word whose frequency is no less than a given

upport threshold, and its corresponding appearing positions in

he document. Then KCSP generates a corresponding position

nterval for each word at each appearing position, and treats it as

he gap constraint of the word at the current appearing position.

herefore, the gap constraint of a word at an appearing position

ecomes the inherent property of the word at the current appear-

ng position, rather than an external parameter specified by users.

Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176 165

T

i

b

a

d

p

o

t

o

e

o

t

n

k

t

c

p

c

b

L

i

n

k

o

k

t

r

r

i

e

s

o

s

2

(

e

n

p

w

p

t

a

n

P

N

t

i

m

S

s

m

t

2

c

o

I

2

o

l

f

i

F

C

d

c

C

s

k

m

f

t

c

w

C

p

d

n

g

a

o

i

l

s

a

s

m

I

p

u

s

(

b

s

s

p

o

i

i

o

a

u

c

W

w

S

s

d

l

g

i

d

i

e

c

i

r

w

c

c

c

t

f

k
he gap constraints of words at different appearing positions

n a document can be specified automatically and appropriately

y words’ own appearing positions, which greatly improves the

ccuracy and the appropriateness of gap constraints of words at

ifferent appearing positions and significantly reduces the com-

utation time for searching patterns. Finally, KCSP utilizes a series

f calculations between the gap constraints of a front word and

he appearing positions of words after to search patterns, which

vercomes the weakness of repeatedly scanning a document in the

xisting sequential pattern mining based approaches. In addition,

ur KCSP utilizes the order of words appearing in each paragraph

o extract keyphrases from each paragraph. It intends to extract

eighbor words as keyphrases. In other words, KCSP extracts

eyphrases with considering the context of words. This is a way to

ake advantage of semantics. We notice that KCSP generates dupli-

ation patterns during the pattern search process and duplication

roduction and elimination consume time. Therefore, we further

ompletely eradicate duplication production in KCSP.

We further need to determine that keyphrase selection should

e treated as a classification task or a ranking task. Jiang, Hu, and

i (2009) claimed that keyphrase selection by nature is a rank-

ng problem rather than a classification problem. First, it is more

atural to consider the likelihood of a keyphrase candidate is a

eyphrase in a relative sense, instead of in an absolute sense. Sec-

nd, the difficulty of making hard decisions on keyphrases or non-

eyphrases could be avoided. Finally, information (features) for de-

ermining whether a keyphrase candidate is a keyphrase is also

elative. Moreover, unsupervised learning based approaches do not

equire training data. This is one of the most important advantages

n the big data era, because there are massive unlabeled data gen-

rated in the Internet every day. Thus, we will treat the keyphrase

election as a ranking task in this paper. Many mechanisms based

n TF-IDF have been shown to work well in practice despite of its

implicity (Liu, Pennell, Liu, & Liu, 2009; Xia, Wang, Sun, & Wang,

015), such as pattern frequency-inverse document frequency

 Yang & Yu, 2007; Zanmatkesh & Hassanpour, 2011, 2012). How-

ver, they are not quite suitable for ranking patterns since they do

ot consider the three inherent properties of a pattern to capture a

oint: meaningfulness, uncertainty and uselessness. In this paper,

e employ entropy (Shannon, 1948) to measure the three inherent

roperties of a pattern to capture a point. Intuitively, the greater

he entropy of a pattern, the lower probability the pattern captures

 point of the corresponding document. Therefore, we propose a

ew evaluation mechanism pattern frequency with entropy (called

F-H) to rank patterns in the pattern set, and then select the top-

 patterns as proper keyphrases. Our ranking measurement PF-H

akes sub-patterns and parent patterns (including closed patterns)

nto consideration. This is another way to take advantage of se-

antics. Our entire approach is denoted as KeyRank hereafter.

The remainder of the paper is organized as follows.

ection 2 introduces related work. Section 3 proposes the pattern

earch algorithm KCSP. Section 4 introduces the pattern ranking

echanism PF-H. Section 5 reports our experimental results, and

hen we conclude the paper in Section 6 .

. Related work

Keyphrase extraction approaches usually contain two main

omponents. One performs the keyphrase candidate search. An-

ther performs keyphrase selection from keyphrase candidate set.

n the following, we review related work from these two aspects.

.1. Keyphrase candidate search

Kea (Witten et al., 1999) considered contiguous frequently-

ccurring words as keyphrase candidates, which usually are

imited to three words. However, no matter how many contiguous
requently-occurring words a keyphrase candidate has, it still

gnores some semantic relations in context (Fu, Huang et al., 2016;

u, Ren et al., 2016; Li et al., 2015). Chen, Luesukprasert, and

hou (2007) used the frequency of a term plus its life cycle to

etermine whether this term is a candidate, which also cannot

apture semantic relations in context. Some studies (Ercan &

icekli, 2007; Xu et al., 2010; Haddoudand & Abdeddaim, 2014)

howed that semantic features can improve the performance of

eyphrase candidate search and keyphrase extraction. Therefore,

any studies used co-occurrence to capture semantic features

or keyphrase candidate search. Wan and Xiao (2008) considered

hat only nouns and adjectives could be used to form a keyphrase

andidate, and uses co-occurrence between two words within a

indow of maximum w words to generate a keyphrase candidate.

heng, Yan, Lan, and Guo (2014) denoted an unordered word

air co-occurrence as a candidate in short texts with a limited

ocument length, and any two distinct words in a document,

o matter contiguous or non-contiguous, can be a candidate. In

eneral, keyphrase candidates extracted by co-occurrence based

pproaches hold semantic relations in context. However, co-

ccurrence means the maximum length of a keyphrase candidate

s two, which ignores the keyphrase candidates whose lengths are

arger than two. Ceci, Appice, and Malerba (2008, 2014) ranked

entences of a document using preference-relations modeled by

 probabilistic relational data mining method, and used these

entences to construct the summary of the document.

Sequential pattern mining plays an important role in data

ining, and was first introduced by Agrawal and Srikant (1995) .

t seeks to discover sets of frequent items sharing some tem-

oral relationships, and such patterns have been found to be

seful for many applications (Wu, Zhu, He, & Arslan, 2013):

tock market (Dorr & Denton, 2009) and sequence classification

 Exarchos, Tsipouras, Papaloukas, & Fotiadis, 2008), etc. A num-

er of methods use gap constraints to mine patterns from DNA

equences (Zhang, Kao, Cheung, & Yip, 2007; Zhu & Wu, 2007),

ince gap constraints (wildcards) can provide a great flexibility for

atterns to capture relations. Besides, there exist methods based

n Apriori properties (Agrawal & Srikant, 1994; Pei et al., 2001) to

mprove the efficiency of pattern mining.

Since single words in a document are the minimum mean-

ngful and independent units, and meanwhile a document is an

rdered list of words, keyphrase candidate search can be treated

s a sequential pattern mining task, where single words of doc-

ments are viewed as characters of sequences and keyphrase

andidates are viewed as patterns. Feng, Xie, Hu, Li, Cao, and

u (2011) and Xie et al. (2014) applied sequential pattern mining

ith wildcards to search keyphrase candidates (called SPAM and

PMW respectively). SPAM utilizes a depth-first traversal of the

earch space with a vertical bitmap representation. SPMW uses a

epth-first pattern growth strategy based on a data structure, a

evel instance graph, to represent all instances of a pattern with a

ap constraint. Although a complete keyphrase candidate set that

ncludes semantic relations in context can be extracted, repeated

ocument scanning and manually setting gap constraints are two

nevitable weaknesses. INSGrow (Ding, Lo, & Khoo, 2009) is an

fficient algorithm for repetitive gapped subsequence mining. It

ombines repetitive support into sequential pattern mining to

mprove the efficiency, since repetitive support captures not only

epetitions of a pattern in different sequences but also repetitions

ithin a sequence. PMBC (Wu, Zhu et al., 2013) can automati-

ally and efficiently discover patterns without user-specified gap

onstraints, and meanwhile recommends the most common gap

onstraints for users. Although INSGrow and PMBC do not need

o set gap constraints manually, they are still not quite suitable

or document-specific keyphrase candidate search since most

eyphrase candidates they discovered have duplicate words and

166 Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176

p

i

A

w

i

c

l

w

c

M

M

o

c

D

P

s

1

(

G

i

i

t

(

m

f

o

s

t

D

a

n

n

p

D

P

s

k

p

3

t

s

i

s

p

p

i

T

i

many keyphrase candidate sets they extracted are not complete.

Besides, they have another common weakness that both of them

depend on repeated document scanning. By contrast, our algorithm

KCSP can automatically generate appropriate gap constraints, and

only scans a document once since it employs interval calculations

instead of repeated document scanning.

2.2. Keyphrase selection

For supervised learning based approaches, the keyphrase selec-

tion is formulated as a classification task, where each keyphrase

candidate is classified as either keyphrase or non-keyphrase.

GenEx (Turney, 1999) and Kea (Witten et al., 1999) are two typical

supervised approaches for keyphrase selection. In GenEx, a set of

feature parameters are tuned by a genetic algorithm to maximize

the performance on a training dataset. Kea uses two features, i.e.,

a TF-IDF value and the first occurrence position of a keyphrase

candidate, as input to Naïve Bayes. KeyEx (Xie et al., 2014) also

uses these two features. The only difference between Kea and

KeyEx is the way of generating the keyphrase candidate set.

For unsupervised learning based approaches, the keyphrase

selection is treated as a ranking task (Fu, Sun, Liu, Zhou, & Shu,

2015; Fu, Wu et al., 2016), where keyphrase candidates are ranked

by their scores in terms of corresponding measures, and the top- N

candidates are selected as keyphrases. TF-IDF is not only widely

used in supervised approaches, but also widely used in unsu-

pervised approaches (Grineva, Grinev, & Lizorkin, 2009; Zhang,

Zincir-Heywood, & Milios, 2005), and the ranking measurements

based on TF-IDF have been shown to work well in practice (Liu

et al., 2009; Xia et al., 2015) despite of its simplicity. Yang and

Yu (2007) used two or three sequent words to form a key pattern

to replace the keyword as the feature, and the distributive strength

of key patterns is measured by pattern frequency-inverse docu-

ment frequency (PF-IDF in short). Hassanpour and Zanmatkesh

(2011, 2012) used n -gram, where n ≤ 3, to form a main phrase

with frequency greater than two to replace the keyword, and the

importance of a main phrase is also calculated by PF-IDF. Note

that the types of patterns in previous works are different from

the pattern in our ranking mechanism PF-H. The pattern in the

previous works is a contiguous sequence of two or three items

extracted from a given sequence of text. However, the pattern

in this paper can be a contiguous or a non-contiguous sequence

without length limitation.

Some studies (Hasan & Ng, 2014; Liu, Huang, Zheng, & Sun,

2010; Mihalcea & Tarau, 2004) used graph-based ranking methods

for automatic keyphrase extraction, in which the importance of

a keyphrase candidate is determined by its relatedness to other

keyphrase candidates, where “relatedness” may be measured by

the frequency of co-occurrence or the semantic relatedness of

two keyphrase candidates (DeWilde, 2014). TextRank (Mihalcea &

Tarau, 2004) is one of the most famous graph-based approaches.

However, TextRank only aggregates the keyphrase candidates of a

document, so that the corresponding frequency of co-occurrence

or semantic relatedness is not stable and could not accurately re-

veal the “relatedness” between keyphrase candidates. Our ranking

mechanism PF-H is based on an entire corpus.

3. Algorithm for pattern search

3.1. Existing definitions

In this section, we review and adapt some definitions for the

problem of sequential pattern mining with gap constraints used in

(Wu, Xie, Huang, Hu, & Gao, 2013; Xie et al., 2014).

A paragraph D = w 1 w 2 …w n is an ordered list of words. Since a

document contains a set of paragraphs, which can be viewed as a
aragraph database, defined as SeqDB = { D 1 , D 2 ,…, D N }. A wildcard

s a special symbol that can be matched by any word in SeqDB .

 gap is a list of wildcards, and its size refers to the number of

ildcards. g [N i , M i] (0 ≤ N i < M i , i ≥ 1) is used to represent the

 th gap whose size is within the range [N i , M i], and is called a gap

onstraint with the gap flexibility gf i = M i − N i + 1.

A pattern P = w 1 g [N 1 , M 1] w 2 g [N 2 , M 2]…g [N m-1 , M m-1] w m

is a

ist of words and gaps, which begins and ends with words, where

 i (1 ≤ i ≤ m) is a word, and g [N i , M i] (1 ≤ i < m) is the gap

onstraint between w i and w i + 1 . In addition, these ranges ([N 1 ,

 1], [N 2 , M 2],…, [N m-1 , M m-1]) of gap constraints (g [N 1 , M 1], g [N 2 ,

 2],…, g [N m-1 , M m-1]) can be the same or different. The number

f words in P is called the length of P , denoted by | P |, without

ounting wildcards inside.

efinition 3.1. (Pattern Occurrence and Instance): Given a pattern

 = p 1 p 2 …p m

and a paragraph D = w 1 w 2 …w n , if there exists a po-

ition sequence 1 ≤ i 1 < i 2 < … < i m

≤ n , such that w i j
= p j for all

 ≤ j ≤ m , and N j ≤ i j − i j-1 ≤ M j for all 2 ≤ j ≤ m , then

 i 1 , i 2 ,…, i m

) is called an occurrence of P in D with gap constraints.

iven a pattern P and a paragraph database SeqDB = { D 1 , D 2 ,…, D N },

f (i 1 , i 2 ,…, i m

) is an occurrence of P in D j (D j ∈ SeqDB), then (j , < i 1 ,

 2 ,…, i m

>) is said to be an instance of P in D j (D j ∈ SeqDB). Note

hat if (t 1 , t 2 ,…, t m

) is another occurrence of P in D j (t m

� = i m

), then

 j , < t 1 , t 2 ,…, t m

>) is its corresponding instance of P in SeqDB , and

eanwhile (j , < i 1 , i 2 ,…, i m

>) and (j , < t 1 , t 2 ,…, t m

>) are two dif-

erent instances of P in SeqDB . If (t 1 , t 2 ,…, t m

) is another occurrence

f P in D l (t m

� = i m

), then (l , < t 1 , t 2 ,…, t m

>) is its corresponding in-

tance of P in SeqDB , and meanwhile (j , < i 1 , i 2 ,…, i m

>) and (l , < t 1 ,

 2 ,…, t m

>) are also different instances of P in SeqDB.

efinition 3.2. (Pattern Support): The support of a pattern P in

 paragraph database SeqDB , denoted by sup(P) , is defined as the

umber of different instances of P in SeqDB . If the support of P is

ot less than a given support threshold, we say that P is a frequent

attern.

efinition 3.3. (Parent Pattern & Sub-pattern): Given two patterns

 = p 1 p 2 …p m

and Q = q 1 q 2 …q t , if m ≤ t , and there exists a position

equence 1 ≤ j 1 < j 2 < … < j m

≤ t , such that p k = q j k for all 1 ≤
 ≤ m , then P is called a sub-pattern of Q , and Q is called a parent

attern of P .

.2. Algorithm KCSP

In this section, we will explain our algorithm KCSP in detail

hrough a simple example. We will employ a stemmed text

nippet with length L = 69 from Fig. 1 (see words with underline

n Fig. 1) as Example 3.1 in Section 3.3 , and the given pattern

upport threshold min_sup is set as 3. Before starting KCSP, some

re-processing techniques (i.e., stop-word removing, stemming and

unctuation-mark removing) are utilized to make each paragraph

n a paragraph database as an uninterrupted sequence of words.

he problem of searching keyphrase candidates can be formalized

nto four functional parts as follows.

• Part 1: KCSP uses the left-most priority strategy to scan a para-

graph database with length L once to obtain every word whose

frequency is no less than a given support threshold (min_sup)

and its corresponding positions and intervals, which are put

into an ordered array called WordArray . After that, KCSP sorts

WordArray according to words’ first appearing positions from

low to high, outputs these words as qualified patterns, and calls

Part 2 (with input WordArray).
• Part 2: KCSP tries to use the words in WordArray one by one as

the first word of a pattern. If a word w can be the first word of

a pattern P , KCSP calls Part 3 (with input P). When all words in

WordArray have been tried, KCSP stops.

Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176 167

f

d

D

S

p

p

a

p

n

a

A

e

p

g

u

[

fl

p

p

i

a

R

w

o

p

p

t

o

a

t

c

w

F

a

t

t

p

2

t

g

p

n

i

a

a

i

“

s

i

t

1

2

a

(

4

t

R

d

a

fi

T

t

t

w

H

o

e

R

d

o

o

t

m

o

t

u

t

F

p

S

(

a

P

P

N

o

p

(

w

w

u

t

w

o

a

b

E

b

s

a

a

a

n

D

i

g

t

t

p

w

a

p

b

b
• Part 3: KCSP chooses a word v from the remaining words in

WordArray , and calls Part 4 to verify whether P and v could be

concatenated as a new pattern P 1 . If positive, KCSP outputs P 1
as a qualified pattern and calls Part 3 (with input P 1) recur-

sively; otherwise, KCSP calls Part 2.
• Part 4: KCSP lists all intervals of the last word of pattern P to

calculate how many positions of v meet these intervals. If the

number of positions of v that meet intervals is no less than

min_sup , it returns positive.

The notion “qualified pattern ” mentioned in Part 1 means a

requent pattern with different words, and the notion “interval ” is

efined as follows.

efinition 3.4. (Position Interval of Single Word, Interval in short):

uppose there is a word w with m different appearing positions

os i in a paragraph database with length L (1 ≤ i ≤ m < L , 1 ≤
os i < pos i + 1 < L + 1). Any two adjacent appearing positions pos i
nd pos i + 1 of w can generate an interval, denoted by Range [pos i ,

os i + 1].

Since w at its last appearing position pos m

does not have a

ext adjacent appearing position, the last interval is presented

s Range [pos m

, L + 1], where L + 1 is called virtual end position .

 virtual end position is a common position, which does not

xist in reality. It is obvious to determine how many appearing

ositions w has, how many intervals are generated for w . Like

 [N i , M i] (0 ≤ N i < M i , i ≥ 1), the interval Range [pos i , pos i + 1] is

sed to represent the i th gap whose size is within the range

 pos i , pos i + 1], and also can be called a gap constraint with the gap

exibility gf i = pos i + 1 − pos i + 1. That is, Range [pos i , pos i + 1] not only

resents the gap constraint between w at the appearing position

os i and w at the appearing position pos i + 1 , but also becomes the

nherent property of w at the appearing position pos i , rather than

n external parameter specified by users. Therefore, the interval

ange [pos i , pos i + 1] between w at the appearing position pos i and

 at the appearing position pos i + 1 can be called the gap constraint

f w at pos i .

The Round 1 in Example 3.1 (discussed in Section 3.3) com-

letes the work of Part 1. During Round 1, KCSP scans the given

aragraph once to obtain every word whose frequency is no less

han min_sup . Meanwhile, KCSP records the appearing positions

f these words, and generates intervals for words at different

ppearing positions according to their appearing positions and

he virtual end position. Note that each interval denotes a gap

onstraint for a word at an appearing position. For example,

ord topic-awar has three appearing positions 4, 27 and 52 (see

ig. 2 (a)). The adjacent appearing positions 4 and 27 generate

n interval Range [4, 27], which presents the gap constraint of

opic-awar at the appearing position 4. It means that topic-awar at

he appearing position 4 can be extended with words at appearing

ositions from 5 to 26. Similarly, the adjacent appearing positions

7 and 52 generates an interval Range [27, 52], which presents

he gap constraint of topic-awar at the appearing position 27. The

ap constraint of topic-awar at its last appearing position 52 is

resented as Range [52, 70], since the appearing position 52 does

ot have the next adjacent appearing position and the position 70

s the virtual end position of the corresponding paragraph. Words

nd their appearing positions and intervals are put into WordArray

ccording to their first appearing positions from low to high (listed

n blue dashed rectangles in Fig. 2(a)). After Round 1, KCSP outputs

topic-awar ”, “propag ”, “model ” and “propos ” four qualified patterns

ince their frequencies are no less than min_sup (which is set as 3).

Part 2 first uses a for loop to try words (except the last one)

n WordArray one by one as the first word w of a pattern P . Note

hat every such a for loop corresponds to a round (except Round

) in Example 3.1. Then Part 2 calls Part 3 to extend P (from line
 to 8 in Fig. 3). For example, words topic-awar, propag and model

re treated as the first word of a pattern in Round 2 (see figures

a)–(d) in Fig. 2), Round 3 (see figures (e)–(g) in Fig. 2) and Round

 (see Fig. 2 (h)) respectively in Example 3.1 before starting the ex-

ension jobs. The pseudo-codes from line 9 to 14 in Fig. 3 are called

ound Refreshing Operation (denoted as RRO), which updates Wor-

Array to let the for loop start over. That is, RRO is called to start

 new round after finishing the current round. Specifically, RRO

rst finds w ’s next adjacent word v in WordArray (line 9 in Fig. 3).

hen, it deletes all appearing positions of w that are smaller than

he first appearing position of v . After that, it uses an if statement

o check whether the frequency of w is less than min _sup . If it is,

 would be deleted from WordArray (from line 11 to 13 in Fig. 3).

ere what needs to be illustrated is that all deletion operations

f RRO are valid during the whole running process of KCSP. For

xample, after finishing Round 2 in Example 3.1, shown in Fig. 2 (a),

RO finds that the appearing position 4 of the first word in Wor-

Array (i.e., topic-awar) is smaller than the appearing position 6

f the second word in WordArray (i.e., the first appearing position

f propag), so RRO deletes it. After that, because the frequency of

opic-awar goes down from three to two, which is smaller than

in_sup , RRO deletes topic-awar from WordArray . Since all deletion

perations of RRO are valid during the whole running process,

opic-awar does not appear again in Round 3 and Round 4 (see fig-

res (e)–(h) in Fig. 2). Finally, RRO sorts WordArray again according

o the first appearing positions of words in WordArray (line 14 in

ig. 3). The last word in WordArray is always viewed as a qualified

attern (line 16 in Fig. 3), since it is no longer necessary to call

tep 3 for extension when WordArray only has one word left.

Part 3 is called by Part 2 or itself, and starts from the i th

 i > 1) word w in WordArray to search word candidates to extend

 pattern P that is initially formed in Part 2 or Part 3 before. If

 and w could be concatenated as a new qualified pattern P 1 ,

art 3 outputs P 1 and calls itself to keep extending P 1 recursively.

ote that every such a recursion process corresponds to a step

f a round (except Round 1) in Example 3.1. After the recursion

rocess is done, Step Refreshing Operation (denoted as SRO) starts

from line 8 to 14 in Fig. 4). SRO first finds w ’s next adjacent

ord v in WordArray . Then, it deletes all appearing positions of

 that are smaller than the first appearing position of v , and

ses an if statement to check whether the frequency of w is less

han min_sup . If it is, w would be deleted from WordArray . Here

hat needs to be said is that all deletion operations of SRO are

nly valid in the current round. That is, all appearing positions

nd intervals deleted by SRO during the current round need to

e recruited back before starting a new round. For example, in

xample 3.1, the appearing positions 7 and 21 of model are deleted

efore starting the third step of Round 2, so that they are not

hown in the third and the fourth step of Round 2 (see figures (c)

nd (d) in Fig. 2). But they appear again in Round 3 (see Fig. 2 (e))

nd Round 4 (see Fig. 2 (h)). Finally, SRO sorts WordArray again

ccording to the first appearing position of words in WordArray .

Before introducing Part 4, there are some new notions that

eed to be defined as follows.

efinition 3.5. (Free Interval): Suppose there is a word w with

ntervals Range [pos j , pos j + 1] and Range [pos i , pos i + 1] in a para-

raph database with length L (1 ≤ pos j < pos i < L + 1). Note

hat Range [pos i , pos i + 1] is behind of Range [pos j , pos j + 1]. During

he keyphrase candidate extension step, when interval Range [pos j ,

os j + 1] is not allocated to an appearing position of any other

ords, but interval Range [pos i , pos i + 1] has been allocated to an

ppearing position of any other words, then interval Range [pos j ,

os j + 1] is called free interval. When an interval Range [pos i , pos i + 1]
ecomes a free interval, its original upper limit pos i + 1 is replaced

y the virtual end position, which means a free interval can

168 Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176

Fig. 2. Running KCSP with an example.

D

d

w

w

1

t

e

c

t

p

c

p

i

t

p

R

p
be allocated to appearing position from pos i to L . If an interval

Range [pos j , pos j + 1] has been allocated to an appearing position of

any other words, it is no longer a free interval.

Consider Example 3.1 as an example, shown in Fig. 2 (h),

Range [7, 21] and Range [21, 34] are two of intervals of word model

and Range [21, 34] is behind of Range [7, 21]. During the pattern

extension step, Range [21, 34] has been allocated to the appearing

position 25 of word propos , but Range [7, 21] is not allocated to

any appearing position of propos . Therefore, Range [7, 21] is a free

interval during this pattern extension step and its upper limit 21

is replaced by the virtual end position 70 (see left blue rectangle

in Fig. 2 (h)). Similarly, Range [34, 37] is also a free interval and its

upper limit 37 is replaced by the virtual end position 70 when

Range [37, 48] has been allocated to appearing position 44 of propos

(see right blue rectangle in Fig. 2 (h)). However, Range [59, 70] is

not a free interval because there is no allocated interval behind.
efinition 3.6. (Qualified Position & Qualified Interval and Redun-

ancy Position & Redundancy Interval): Suppose there is a word

 1 with intervals Range [pos 1i , pos 1(i + 1)] (1 ≤ pos 1i < L + 1), and a

ord w 2 with n different appearing positions pos 2j (1 ≤ j ≤ n < L ,

 ≤ pos j < L + 1) in a paragraph database with length L. w 2 has in-

ervals like Range [pos 2j , pos 2(j + 1)]. During the keyphrase candidate

xtension step, 1) if an appearing position pos 2j of w 2 has an allo-

ated interval Range [pos 1i , pos 1(i + 1)] of w 1 , then the appearing posi-

ion pos 2j of w 2 is called a qualified position of interval Range [pos 1i ,

os 1(i + 1)] and its corresponding interval Range [pos 2j , pos 2(j + 1)] is

alled a qualified interval; and 2) if any two (or more) adjacent ap-

earing positions pos 2j and pos 2(j + 1) of w 2 have the same allocated

nterval Range [pos 1i , pos 1(i + 1)] of w 1 , meanwhile there is no free in-

erval in front of interval Range [pos 1i , pos 1(i + 1)], then the appearing

osition pos 2j of w 2 is also called an qualified position of interval

ange [pos 1i , pos 1(i + 1)] and its corresponding interval Range [pos 2j ,

os 2(j + 1)] is called a qualified interval too. However, the appearing

Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176 169

Fig. 3. Part 2 of KCSP.

Fig. 4. Part 3 of KCSP.

p

R

p

t

R

i

t

(

l

a

T

v

R

Fig. 5. Part 4 of KCSP.

a

H

a

i

i

a

p

s

a

t

R

w

r

i

a

c

2

(

l

i

p

(

p

R

i

t

t

i

i

a

2

t
osition pos 2(j + 1) of w 2 is called a redundancy position of interval

ange [pos 1i , pos 1(i + 1)] and its corresponding interval Range [pos 2(j + 1) ,

os 2(j + 2)] is called a redundancy interval. The redundancy posi-

ion needs to be deleted, and intervals Range [pos 2j , pos 2(j + 1)] and

ange [pos 2(j + 1) , pos 2(j + 2)] need to be merged into a new interval,

.e., Range [pos 2j , pos 2(j + 2)]. The new interval is still a qualified in-

erval.

For example, during the pattern extension step in Example 3.1

see Fig. 2 (e)), the appearing position 7 of word model has an al-

ocated interval Range [6, 20] of propag , so it is a qualified position,

nd its corresponding interval Range [7, 21] is a qualified interval.

he appearing positions 21 and 34 have the same allocated inter-

al Range [20, 36] of propag , since there is no free interval before

ange [20, 36], the appearing position 21 is a qualified position
nd its corresponding interval Range [21, 34] is a qualified interval.

owever, the appearing position 34 is a redundancy position

nd its corresponding interval Range [34, 37] is a redundancy

nterval. The redundancy position 34 needs to be deleted and the

ntervals Range [21, 34] and Range [34, 37] need to be merged into

 new qualified interval Range [21, 37]. Analogously, the appearing

osition 37 of word model is a qualified position, and its corre-

ponding interval Range [37, 48] is a qualified interval. But the

ppearing positions 48 and 59 are redundancy positions that need

o be deleted, and their corresponding intervals Range [48, 59] and

ange [59, 70] are redundancy intervals that need to be merged

ith Range [37, 48] to generate a new qualified Range [37, 70].

Part 4 has a two-layer embedded for loop, which plays a key

ole in KCSP. The input parameter WordUsedGap stores all qualified

ntervals (gap constraints) of the last word p in a pattern P , which

re used to verify the input word candidate w if P and w could be

oncatenated as a new qualified pattern. The outside for loop (line

 in Fig. 5) is used to choose w ’s appearing positions one by one

line 3 in Fig. 5). When a position pos of w is chosen, the inner for

oop (line 4 in Fig. 5) tries to find an interval Range [i_Min, i_Max]

n WordUsedGap to calculates whether pos could be an qualified

osition of Range [i_Min, i_Max]. If it could be, Part 4 records pos

from line 5 to 16 in Fig. 5). There are four situations between the

os and Range [i_Min, i_Max]: 1) pos is not a qualified position of

ange [i_Min, i_Max]; 2) pos is a qualified position of Range [i_Min,

_Max], and this interval has not been allocated to another posi-

ion; 3) pos is a qualified position of Range [i_Min, i_Max], although

his interval has been allocated to another position, there is a free

nterval before it; and 4) pos is a qualified position of Range [i_Min,

_Max], but this interval has been allocated to another position

nd meanwhile there is no free interval before it. The situations

) and 3) are what we expect. In other words, Part 4 is used

o calculate how many appearing positions of a word candidate

170 Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176

f

p

s

g

d

a

s

p

F

a

m

p

s

o

2

3

3

p

r

p

F

o

h

t

p

p

o

a

a

s

t

o

t

i

b

4

R

7

S

a

e

S

t

s

n

R

p

a

p

i

b

t

l

p

a

t

7

a

A

a

m

i

K
w could meet intervals of the last word p in P . For example,

during the calculation process in Example 3.1 (see Fig. 2 (b)), Part

4 calculates how many appearing positions of model could meet

intervals of topic-awar . The appearing positions 7 and 21 of model

meet Range [4, 27] of topic-awar respectively. However, there is

no free interval of topic-awar in front of Range [4, 27]. According

to Definition 3.6 , the appearing position 21 needs to be deleted

and the intervals Range [7, 21] and Range [21, 34] of model need to

be merged into a new interval, i.e., Range [7, 34] (see the left red

rectangle in Fig. 2 (b)). Similarly, the appearing positions 34, 37

and 48 of model meet Range [27, 52] of topic-awar respectively. Part

4 performs the same operations for the appearing positions 34,

37 and 48 of model (see the right red rectangle in Fig. 2 (b)). The

appearing position 59 of model meets Range [52, 70] of topic-awar

(presented as a black solid line in Fig. 2 (b)). After that, model has

three qualified positions 7, 34 and 59 and three qualified intervals

Range [7, 34], Range [34, 59] and Range [59, 70]. At the end, Part 4

revises WordUsedGap using w ’s qualified intervals, and returns w if

its frequency is no less than min_sup . Besides, sup(P) needs to be

revised as w ’s frequency if its frequency is less than P ’s frequency

(from line 19 to 22 in Fig. 5). Otherwise, Part 4 returns null .

3.3. Full rounds and steps of Example 3.1

In this section, we will introduce the full rounds and steps oc-

curred in Example 3.1. KCSP altogether takes four rounds to finish

extracting and outputting qualified patterns as follows (see Fig. 2).

Round 1. KCSP scans the given paragraph once to obtain every

word whose frequency is no less than min_sup . Meanwhile, KCSP

records the appearing positions of these words, and generates

intervals for words at different appearing positions according to

their appearing positions and the virtual end position. Words

and their appearing positions and intervals are put into WordArray

according to their first appearing positions from low to high (listed

in blue dashed rectangles in Fig. 2 (a)). Each interval denotes a gap

constraint for a word at an appearing position. For example, the

interval Range [4, 27] of topic-awar is the gap constraint of topic-

awar at the appearing position 4, which means topic-awar at the

appearing position 4 can be extended with a word at appearing

positions from 5 to 26. After Round 1, KCSP outputs “topic-awar ”,

“propag ”, “model ” and “propos ” four qualified patterns since their

frequencies are no less than min_sup (which is set as 3).

Round 2. KCSP treats topic-awar (the first word in WordArray) as

the first word of a pattern. KCSP first calculates how many appear-

ing positions of propag (the next word of topic-awar) could meet

intervals of topic-awar . Shown in Fig. 2 (a), the appearing positions

6 and 36 of propag meet intervals Range [4, 27] and Range [27, 52]

of topic-awar respectively (represented as black solid lines). Al-

though the appearing position 20 of propag also meets the interval

Range [4, 27] (represented as a red solid line), unfortunately this

interval has been allocated to the appearing position 6 of propag ,

and meanwhile there is no free interval of topic-awar in front of

Range [4, 27]. Therefore, the appearing position 20 of propag is a

redundancy position and its corresponding interval Range [20, 36]

is a redundancy interval. However, propag only has two qualified

positions 6 and 36, which means the pattern “topic-awar propag ” is

not a qualified pattern since its frequency is smaller than min_sup

(which is set as 3). Therefore, KCSP stops extending “topic-awar

propag ”, and calls SRO to start the second step of Round 2. Because

of this, it is no longer necessary to delete and merge the redun-

dancy position and the redundancy interval of propag respectively.

SRO first finds all appearing positions of the second word in

WordArray (i.e., propag) that are smaller than the first appearing

position of the third word in WordArray (i.e., model) and deletes

them. Then SRO checks whether the frequency of propag is smaller

than min_sup (which is set as 3). If it is, propag would be deleted
rom WordArray . Shown in Fig. 2 (a), the appearing position 6 of

ropag is smaller than the first appearing position 7 of model ,

o SRO deletes it. Since SRO finds that the frequency of propag

oes down from three to two, which is smaller than min_sup , SRO

eletes propag from WordArray . That is why propag is not shown

gain during Round 2 (see figures (b)–(d) in Fig. 2). Finally, SRO

orts words in WordArray again according to their first appearing

ositions from low to high.

The second step of Round 2 starts after finishing SRO (see

ig. 2 (b)). Similar to the first step, KCSP first calculates how many

ppearing positions of model (the next word of topic-awar) could

eet intervals of topic-awar . Shown in Fig. 2 (b), the appearing

ositions 7 and 21 of model meet Range [4, 27] of topic-awar re-

pectively. However, there is no free interval of topic-awar in front

f Range [4, 27]. According to Definition 3.6 , the appearing position

1 needs to be deleted and the intervals Range [7, 21] and Range [21,

4] of model need to be merged into a new interval, i.e., Range [7,

4] (see the left red rectangle in Fig. 2 (b)). Similarly, the appearing

ositions 34, 37 and 48 of model meet Range [27, 52] of topic-awar

espectively. KCSP performs the same operations for the appearing

ositions 34, 37 and 48 of model (see the right red rectangle in

ig. 2 (b)). The appearing position 59 of model meets Range [52, 70]

f topic-awar (represented as a black solid line). After that, model

as three qualified positions 7, 34 and 59 and three qualified in-

ervals Range [7, 34], Range [34, 59] and Range [59, 70]. KCSP outputs

attern “topic-awar model ” and continues extending it with word

ropos (the next word of model in WordArray). However, propos

nly has two qualified positions 25 and 44 (two black solid lines)

fter finishing the pattern extension, which means pattern “topic-

war model propos ” is not a qualified pattern since its frequency is

maller than min_sup (which is set as 3). Therefore, KCSP calls SRO

o start the third step of Round 2. Since the deletion and merging

perations for redundant positions and intervals are only valid in

he current step, all redundant positions deleted and redundant

ntervals merged during the current step need to be recruited back

efore KCSP calls SRO. That is why the appearing positions 37 and

8 of model are shown again during the third and fourth step of

ound 2 (see Fig. 2 (c) and (d)). However, the appearing positions

 and 21 of model are not shown again because of SRO.

Similar to the second step, the third step starts after finishing

RO (see Fig. 2 (c)). After this step, KCSP outputs patterns “topic-

war propos ” and “topic-awar propos model ” since their frequencies

qual to min_sup .

Similar to the second step, the fourth step starts after finishing

RO (see Fig. 2 (d)). The appearing position 34 of model meets

he interval Range [27, 52] of topic-awar (represented as a black

olid line). Note that the interval Range [4, 27] of topic-awar is

ot allocated to an appearing position of model while the interval

ange [27, 52] of topic-awar has been allocated to the appearing

osition 34 of model . Therefore, the interval Range [4, 27] becomes

 free interval and its upper limit 27 is replaced by the virtual end

osition 70 (represented as a blue solid rectangle). This operation

s used to ensure that there is no missing occurrence of the pattern

y increasing the number of wildcards between two words (i.e.,

opic-awar and model). Note that the replacements of the upper

imit for free intervals are only valid in the current step. The ap-

earing position 37 of model also meets Range [27, 52] (represented

s a blue solid line). Although Range [27, 52] has been allocated

o the appearing position 34, KCSP finds a free interval Range [4,

0] of topic-awar in front of Range [27, 52] and allocates it to the

ppearing position 37 of model (represented as a blue dashed line).

fter this reallocation, Range [4, 70] is no longer a free interval

ccording to Definition 3.5 . The appearing position 48 of model

eets Range [27, 52] too (represented as a red solid line), but there

s no free interval of topic-awar in front of Range [27, 52], so that

CSP treats the appearing position 48 of model as a redundancy

Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176 171

p

p

s

i

N

d

c

c

fi

t

p

o

b

p

6

f

s

f

t

i

F

a

fi

s

o

d

p

“

fi

p

K

p

i

c

w

s

3

e

t

i

l

d

t

i

S

W

v

v

t

a

o

S

H

t

W

p

W

Fig. 6. Updated Part 2 of KCSP.

T

i

m

n

fi

l

n

i

s

S

o

s

2

3

3

n

t

n

t

W

e

f

o

r

i

t

P

c

a
osition (represented as a red solid line). Finally, KCSP outputs

attern “topic-awar model ” since its frequency is three (two black

olid lines and one blue dashed line), which equals min_sup .

After the above four steps, KCSP finishes Round 2 since model

s the last word in WordArray , and calls RRO to start Round 3.

ote that all appearing positions and intervals deleted by SRO

uring the current round need to be recruited back before KCSP

alls RRO, since deletion operations of SRO are only valid in the

urrent round. RRO first finds all the appearing positions of the

rst word in WordArray (i.e., topic-awar) that are smaller than

he first appearing position of the second word in WordArray (i.e.,

ropag) and deletes them. Then RRO checks whether the frequency

f topic-awar is smaller than min_sup . If it is, topic-awar would

e deleted from WordArray . Shown in Fig. 2 (a), the appearing

osition 4 of topic-awar is smaller than the appearing position

 of propag , so RRO deletes it. Furthermore, RRO finds that the

requency of topic-awar goes down from three to two, which is

maller than min_sup (which is set as 3), RRO deletes topic-awar

rom WordArray . Since deletion operations of RRO are valid during

he whole running process of KCSP, topic-awar is not shown again

n Round 3 and Round 4 (see figures (e), (f), (g) and (h) in Fig. 2).

inally, RRO sorts words in WordArray again according to their first

ppearing positions from low to high.

Round 3. Similar to Round 2, KCSP starts the first step after

nishing RRO (see Fig. 2 (e)), and then starts the second and third

teps after finishing SRO respectively (see Fig. 2 (f) and (g)). KCSP

utputs qualified patterns “propag model ”, “propag model propos ”

uring the first step, qualified patterns “propag propos ”, “propag

ropos model ” during the second step, and a qualified pattern

propag model ” during the third step.

Round 4. Similar to Round 2, KCSP starts the first step after

nishing RRO (see Fig. 2 (h)), and outputs qualified pattern “model

ropos ” at last.

After finishing running the above four rounds, we find that

CSP produces duplication patterns during the pattern search

rocess. Although duplication patterns can be filtered out, it

s obvious that duplication production and elimination waste

omputation time and memory space. In the next subsection, we

ill analyze the reason of duplication production and look for a

uitable solution to completely eradicate duplication production.

.4. Eradicating duplication production

Note that both SRO and RRO are run several times in the above

xplanation in Section 3.3 because they are used to ensure that

he array WordArray is valid and ordered. However, if two words

n WordArray have lots of appearing positions respectively, which

et them be able to withstand after more than two SROs or RROs,

uplication patterns may be produced. For example, v and w are

wo words with many appearing positions in WordArray , and w

s in front of v . A pattern wv may be generated before the first

RO/RRO. After finishing the first SRO/RRO, v and w are still in

ordArray and v has been moved to the front of w . Then, a pattern

w may be generated. After finishing the second SRO/RRO, if both

 and w are still in WordArray , it is obvious that w will be moved

o the front of v again and the pattern wv would be generated

gain. Therefore, duplication appears. If both w and v have lots

f appearing positions that let them be able to withstand with

ROs/RROs many times, more duplication patterns are produced.

ere we completely eradicate duplication production by updating

he Part 2 and the Part 3 of KCSP.

First, a boolean variable usedflag is added for each word w in

ordArray to record whether w has been treated as a word of a

attern P during the P ’s extension step, which is initialized as 0.

hen w is treated as a word of a pattern P , its usedflag is set to 1.
his modification is shown in the updated Parts 2 and 3 of KCSP,

llustrated in Fig. 6 and Fig. 7 respectively.

Second, the RRO in Part 2 and the SRO in Part 3 of KCSP are

odified. The new SRO and RRO no longer simply find the w ’s

ext adjacent word from WordArray . Instead, it uses a for loop to

nd the first word v with usedflag = 0 after w in WordArray (from

ine 10 to 15 in Fig. 6 and from line 11 to 16 in Fig. 7). When the

ew SRO and RRO finds the first word v with usedflag = 0 after w ,

t deletes all appearing positions of words in front of v that are

maller than the first appearing position of v . After that, the new

RO/RRO uses an if statement to check whether the words in front

f v whose frequencies are smaller than min_sup . If there exists

uch a word, it would be deleted from WordArray (from line 18 to

0 in Fig. 6 and from line 19 to 21 in Fig. 7).

.5. Discussions on KCSP

.5.1. The time and space complexity of KCSP

We use L to denote the length of a paragraph, F to denote the

umber of frequent words, i.e., the length of WordArray (F ≤ L), m

o denote the average length of patterns, h to denote the average

umber of intervals that WordUsedGap stores, and l to denote

he average number of appearing positions that a word candidate

 has. Since Part 1 needs to scan the whole document once to

xtract frequent words, its time complexity is O(L) . Part 2 uses a

or loop to try the frequent words one by one as the first word

f a pattern, and uses another for loop for execution of round

efreshing operation, so the maximal time complexity of Part 2

s O(F 2) . Part 3 starts from the i th frequent word of WordArray

o get a word candidate w one by one to extend a pattern P . If

 and w could be formed as a new qualified pattern P 1 , Part 3 is

alled recursively to keep extending P 1 . In addition, Part 3 uses

nother for loop for execution of step refreshing operation. Thus,

172 Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176

Fig. 7. Updated Part 3 of KCSP.

p

a

I

3

u

h

i

2

s

s

t

k

o

e

b

d

m

t

i

h

d

e

4

K

n

a

c

T

s

k

p

a

f

P

w

o

D

m

t

t

H

n

t

m

f

i

p

i

(

t

c

P

w

g

c

a

p

f

2
the maximal time complexity of Part 3 is O(mF 2) . Since Part 4 has

a two layer embedded for loop for calculation, its time complexity

is O(lh) . Hence, the time complexity of KCSP is O(L + F 2 + mlhF 2) .

During the keyphrase candidate search process, KCSP needs O(F)

space to store frequent words, and O(m) space to maintain the

stack for each pattern. Supposed there are n patterns extracted,

the space complexity of KCSP is O(F + mn) .

3.5.2. The advantages of KCSP

Existing sequential pattern mining based approaches treat gap

constraints as external parameters that require users to explic-

itly specify them beforehand. However, manually specifying gap

constraints is a time-consuming job and meanwhile the specified

gap constraints usually are generalized and inappropriate. KCSP

turns gap constraints into the inherent property of words at

different appearing positions by utilizing a conversion operation.

That is, KCSP treats the interval Range [pos i , pos i + 1] of a word w

at the appearing position pos i , which is generated by pos i and

the next adjacent appearing position (i.e., pos i + 1) of w , as the gap

constraint between w at the appearing position pos i and w at the

appearing position pos i + 1 . Such a conversion operation leads to

four advantages. 1) It overcomes the weakness of requiring users

to explicitly specify appropriate gap constraints beforehand, since

the gap constraints of words at different appearing positions in

a document can be specified automatically and appropriately by

words’ own appearing positions. 2) Automatically specifying gap

constraint obviously reduces the setup time and human labor. 3)

For each word at each appearing position, there is a gap constraint

specified, which greatly improves the accuracy and appropriate-

ness and significantly reduces the computation time for searching

keyphrase candidates. And 4) KCSP can replace repeatedly scanning

a document (which is another weakness of existing sequential
attern mining) with a series of calculation based on words’

ppearing positions and intervals to search keyphrase candidates.

ntuitively, calculation significantly reduces computation time.

.5.3. The characteristics of the extracted patterns

The pattern set (i.e., the keyphrase candidate set) of a doc-

ment extracted by KCSP includes many sub-patterns which

ave the same supports with their parent-patterns. Many stud-

es (Fumarola et al., 2016; Loglisci & Malerba, 2009; Xie et al.,

014) pinpointed the idea that mining only the set of closed

equential patterns may help avoid the generation of unnecessary

ubsequences, leading to more compact results and saving compu-

ational time and space costs. However, it does not work well on

eyphrase extraction because they ignored the inherent properties

f a pattern to capture a point, especially uncertainty denoting the

xpression depth of the point expressed by the pattern (which will

e introduced in Section 4 later). That is, we cannot absolutely

etermine that the points expressed by the closed patterns are

ore useful than the points expressed by the other patterns for

he document. Consider the example in Fig. 1 , although “social

nfluenc ” and “social influenc model ” are two keyphrase candidates

aving the same support, they express different points in the

ocument. Therefore, we extract all available patterns and employ

ntropy for calculating and ranking them.

. Mechanism for keyphrase candidate ranking

In this section, we will introduce the second component of

eyRank—the pattern ranking evaluation PF-H. TF-IDF is recog-

ized as the most important invention in information retrieval,

nd its functionalities in information retrieval were deeply dis-

ussed by Salton and McGil (1986) . Many mechanisms based on

F-IDF have been shown to work well in practice despite of its

implicity (Liu et al., 2009; Xia et al., 2015). Since in this paper

eyphrase candidates in a document are treated as independent

atterns, we use patterns instead of terms in TF-IDF, and obtain

n intermediate mechanism pattern frequency–inverse document

requency (called PF-IDF) as follows:

 F − IDF (p) = (n p / N p) × log (D/ D p) (1)

here p denotes a pattern, n p denotes the number of times p

ccurs in a document d, N p denotes the number of patterns d has,

 is the number of document in the corpus, and D p denotes how

any documents in the corpus contain the pattern p . Note that

he pattern p in the above mechanism PF-IDF is different from

he ones discussed by Yang and Yu (2007) and Zanmatkesh and

assanpour (2011, 2012), since it can be either a contiguous or a

on-contiguous sequence without length limitation. As we know,

he purpose of IDF is to measure the probability that a given docu-

ent d contains a specific pattern (term) as the relative document

requency. IDF is not quite suitable for ranking patterns since it

gnores the three inherent properties of a pattern to capture a

oint: meaningfulness, uncertainty and uselessness (which will be

ntroduced in the next paragraph). In this paper, we use entropy

 Shannon, 1948) to measure the three inherent properties of a pat-

ern to capture a point, and propose a new evaluation mechanism

alled pattern frequency with entropy (PF-H in short) as follows:

 F − H(p) = (n p / N p) × log (H(p)) (2)

here H(p) denotes the entropy of the pattern p . Intuitively, the

reater the entropy of a pattern, the lower probability the pattern

aptures a point of the corresponding document. The entropy of

 pattern depends on its three probabilities in the corpus: 1) the

robability as an independent form; 2) the probability as a sub-

orm; and 3) the probability of other situations (i.e., neither 1) nor

)). The three probabilities of a pattern are statistically obtained

Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176 173

f

a

u

I

f

m

t

e

m

a

a

h

s

s

P

w

i

t

d

i

e

e

m

b

s

o

c

d

d

L

a

d

P

w

s

P

i

P

p

a

E

c

p

b

P

t

p

s

H

H

5

5

w

c

a

e

P

p

p

F

2

s

m

t

a

T

e

T

g

u

t

s

t

d

a

c

m

o

e

F

S

e

o

i

i

t

c

fi

e

t

o

t

t

t

a

c

l

H

s

s

o

t

a

d

t

m

K

w

b

s

l
rom the corpus, instead of a single document, for stability and

ccuracy (Cheng et al., 2014).

The meaningfulness of a pattern to capture a point denotes the

sefulness and the accuracy of the point expressed by the pattern.

t is measured by the probability of a pattern p as an independent

orm (denoted by P i), which is calculated by Eq. (3) below. The

ore times p occurs in the corpus, the more useful and accurate

he point expressed by p . Consider the example in Fig. 1 as an

xample, the maximum occurrence time of pattern “topic model ”

eans the point expressed by “topic model ” is more useful and

ccurate to the document than other patterns. A pattern with

n independent form has four kinds of situations: 1) it only

as parent pattern(s); 2) it only has sub-pattern(s); 3) it has

ub-pattern(s) and parent pattern(s); and 4) it does not have

ub-pattern(s) and parent pattern(s).

 i =

{
NIC/ # T N, 0 < # NIC < # T N

0 , # NIC = 0

(3)

here #NIC denotes the number times of a pattern p as an

ndependent form appears in the corpus, and #TN denotes the

otal number of patterns the corpus has. P i = 0 for the case that p

oes not exist in the corpus. This only exists theoretically since it

s meaningless and unrealistic to calculate P i for p that does not

xist in the corpus.

The uncertainty of a pattern to capture a point denotes the

xpression depth of the point expressed by the pattern. It is

easured by the probability of a pattern p as a sub-form (denoted

y P s), which is calculated by Eq. (4) below. A pattern with

ub-form means it can be extended into another pattern(s) with

ther word(s). The more times p as a sub-form occurs in the

orpus, the more unsteady the point expressed by p , because 1)

ifferent patterns express a same point with a different expression

epth; and 2) different patterns express totally different points.

ooking at the example in Fig. 1 again, pattern “social influenc ” is

 sub-pattern of pattern “social influenc model ”, but they express

ifferent points in the document.

 s =

{
NSC/ # T N, 0 < # NSC < # T N

0 , # NSC = 0

(4)

here #NSC denotes the number times of the pattern p as a

ub-form appears in the corpus. In contrast to the situation where

 i = 0 in Eq. (3) , the situation P s = 0 in Eq. (4) does exist not only

n theory but also in reality. There are two kinds of forms where

 s = 0 occurs: 1) p is a super-pattern (a pattern that does not have

arent patterns); and 2) p does not have sub-pattern(s).

The probability of other situations (denoted by P o) is defined

s the uselessness of p capturing a point, which is calculated by

q. (5) below. For example, since the patterns appearing in the

orpus are extracted from many documents, a point expressed by

 being useful to document D a but not to document D b needs to

e taken into account.

 o = 1 − P i − P s (5)

In summary, the entropy of a pattern completely evaluates

he meaningfulness, the uncertainty, and the uselessness of the

attern in the corpus, which is defined by Eq. (6) , when the

ituation P s = 0 occurs, H(p) can be calculated by Eq. (7) .

(p) = P i log (1 / P i) + P s log (1 / P s) + P o log (1 / P o) (6)
(p) = P i log (1 / P i) + P o log (1 / P o) (7)
. Experiments

.1. Experiments for pattern search

In order to investigate the computational efficiency of KCSP,

e conduct experiments on a dataset INSPEC (Hulth, 2013), which

ontains 20 0 0 abstracts (10 0 0 for training, 50 0 for development

nd 500 for testing). In order to investigate the effectiveness of

radicating duplication production (i.e., the modified Part 2 and

art3 in Figs. 6 and 7 respectively), we compare KCSP with its

revious version KCSP0, which does not eradicate duplication

roduction and uses the previous Part2 and Part3 shown in

igs. 3 and 4 instead. As we mentioned before, SPMW (Xie et al.,

014) is an effective keyphrase candidate search algorithm using

equential pattern mining with gap constraints. In the experi-

ents, we compare KCSP and KCSP0 with SPMW only in terms of

he computation time of patterns extracted, because these three

lgorithms always extract the same pattern set for each document.

he performance of these three algorithms is evaluated on the

ntire 20 0 0 abstracts of the dataset INSPEC.

Note that SPMW needs to set up gap constraint before running.

o make a fair and comprehensive comparison, we follow the

ap constraint and the support threshold settings that SPMW

sed. That is, the minimal gap size is 0, the maximal gap size is

he length of a paragraph, and the minimal support threshold is

et to 3. Besides, during the pattern search process we run the

hree algorithms (SPMW, KCSP, and KCSP0) respectively on each

ocument nine times, and the average computation time of each

lgorithm on each document is reported. In order to present the

omputation time comparisons clearly, we divided 20 0 0 docu-

ents into different categories in terms of the computation time

f SPMW, i.e., category 0–2, category 2–99, category 100–999, cat-

gory 10 0 0–9999, category 10,0 0 0–99,999, and category 10 0,0 0 0-.

or example, the category 0–2 contains all documents on which

PMW uses 0 to 2 milliseconds to extract their pattern sets. Our

xperimental results are shown in Fig. 8 . The computation time

f the three algorithms (SPWM, KCSP, and KCSP0) in category 0–2

s very close, and the computation time of the three algorithms

n category 10 0,0 0 0- varies widely, so the time comparisons of

hese two categories are not shown in Fig. 8 . In order to show the

omputation time comparisons well for other four categories, we

rst sort the computation time of SPMW on documents within

ach category in an incremental order. That is why we can see that

he computation time of SPMW increases smoothly in Fig. 8 . Based

n the sorting of SPMW, we show the corresponding computation

ime of KCSP and KCSP0 on each document in each category.

Shown in Fig. 8 , both KCSP0 and KCSP are much more efficient

han SPMW. The reasons are: 1) SPMW scans a document multiple

imes for searching patterns, which causes a lot of time overhead;

nd 2) SPMW requires users to explicitly specify appropriate gap

onstraint(s) beforehand. In reality it is time-consuming, which

eads to users usually to provide a general gap constraint instead.

owever, this kind of operation further increases the time for

canning the document. By contrast, both KCSP0 and KCSP only

can a document once, and employ a series of calculations instead

f repeatedly scanning a document to reduce the computation

ime for searching patterns. In addition, both KCSP0 and KCSP

utomatically generate appropriate gap constraints for words at

ifferent appearing positions, which further reduces the compu-

ation time. There are a few documents where KCSP0 uses a little

ore time than SPMW does (see Fig. 8 (a) and (b)). This is because

CSP0 produces duplication patterns during pattern search, which

e have analyzed in Section 3 . KCSP is more efficient than KCSP0

ecause KCSP0 produces duplication patterns during the pattern

earch process. There are also a few documents where KCSP uses a

ittle more time than KCSP0 does (see the left corner in Fig. 8 (a)).

174 Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176

Fig. 8. The time comparisons between SPMW, KCSP, and KCSP0 in (a) category 2–99, (b) category 100–999, (c) category 10 0 0–9999, and (d) category 10,0 0 0–99,999.

R

F

w

k

k

k

o

i

u

a

m

T

fi

t

s

o

f

o

d

p

f

i

(

e

t

i

g

t

t
This is because KCSP uses additional if statement and for loop,

which needs additional consumption time to eradicate duplication

production. This phenomenon only appears when 1) there is no

duplication produced; or 2) too little duplication leads to KCSP

consuming more additional time than duplication eradication does.

5.2. Experiments for pattern ranking

To investigate the performance of KeyRank, we conduct exper-

iments on two datasets SemEval-2010 (Kumar & Srinathan, 2008)

and INSPEC (Hulth, 2013). The dataset SemEval-2010 contains

244 articles (144 for training and 100 for testing), and the

dataset INSPEC contains 20 0 0 abstracts (10 0 0 for training, 50 0 for

development and 500 for testing).

In order to evaluate the performance of our approach KeyRank,

we compare it with a popular approach TextRank (Mihalcea &

Tarau, 2004), since they both are unsupervised approaches and

treat the keyphrase selection as a ranking task. In addition, to

investigate the performance of our evaluation mechanism PF-H,

we compare KeyRank with a supervised approach KeyEx (Xie et al.,

2014) which formulates the keyphrase selection as a classification

task, since they both treat keyphrase candidate search as a se-

quential pattern mining task, and always extract the same pattern

set for each document. Furthermore, we replace the ranking

mechanism of TextRank with our PF-H to investigate whether

PF-H can improve the performance of TextRank, and we will say

TextRank-A as a way to refer to TextRank. Note that TextRank-A

always extracts the same pattern set as TextRank does for each

document. Besides, precision (P in short), recall (R in short), and

the F 1 score are used as the performance metrics of keyphrase

extraction, which are defined as follows.

P = # correct / # ext racted (8)
 = # correct/ # l abel ed (9)

 1 = 2 × P × R/ (P + R) (10)

here #correct denotes the number of correctly extracted

eyphrases, #extracted denotes the number of extracted

eyphrases, and #labeled denotes the number of labeled

eyphrases.

The experimental results on the dataset SemEval-2010 in terms

f P, R , and F 1 scores are shown in Fig. 9 (a)–(c). Note that KeyEx

s a supervised learning based approach. Its performance is eval-

ated on the 100 test documents. However, KeyRank, TextRank

nd TextRank-A are unsupervised learning based approaches. To

ake fair comparisons, the performance of KeyRank, TextRank and

extRank-A is also evaluated on the 100 test documents. The three

gures show that TextRank-A always performs better than Tex-

Rank, which shows the effectiveness of PF-H. KeyRank performs

ignificantly better than TextRank-A and KeyEx. When the number

f extracted keyphrases is small (from 3 to 15), TextRank-A per-

orms significantly better than KeyEx. However, when the number

f extracted keyphrases increases, the advantage of TextRank-A

iminishes.

In addition, we also notice that the precisions of the four ap-

roaches decrease when the number of extracted keyphrases varies

rom 3 to 25 (see Fig. 9 (a)), and the recalls of the four approaches

ncrease as the number of extracted keyphrases varies from 3 to 25

see Fig. 9 (b)). This is because with the increment of the number of

xtracted keyphrases, more correct keyphrases are extracted, since

he number of labeled keyphrases is fixed, recall increases with the

ncrement of the number of extracted keyphrases. However, the

rowth rate of the number of correctly extracted keyphrases is less

han the growth rate of the number of extracted keyphrases, so

hat precision drops. Because of the opposite performance in terms

Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176 175

Fig. 9. The (a) precisions, (b) recalls, and (c) F 1 scores of KeyRank, KeyEx, TextRank, and TextRank-A on SemEval-2010; The (d) precisions, (e) recalls, and (f) F 1 scores of

KeyRank, KeyEx, TextRank, and TextRank-A on INSPEC.

o

c

F

c

p

K

e

t

e

o

s

t

t

T

t

t

e

6

k

a

a

P

c

f

t

p

p

t

i

e

f

f precisions and recalls, the F 1 scores of the four approaches in-

rease when the number of extracted keyphrases is small (see

ig. 9 (c)). After the number of extracted keyphrases increases to a

ertain number, their F 1 scores start to drop gradually.

The experimental results on the dataset INSPEC in terms of

recision, recall and F 1 score are shown in Fig. 9 (d)–(f). Since

eyEx is a supervised learning based approach, its performance is

valuated on the 500 test documents. To make fair comparisons,

he performance of KeyRank, TextRank and TextRank-A is also

valuated on the same 500 test documents. Besides, the number

f extracted keyphrases in this experiment varies from 2 to 10

ince the average length of these documents is short. Shown in

hese three figures, KeyRank always performs significantly better

han KeyEx and TextRank, and TextRank-A performs better than

extRank when the number of extracted keyphrases is smaller

han 8, which also shows the effectiveness of PF-H, although

he advantage of TextRank-A diminishes when the number of

xtracted keyphrases is greater than 8.
. Conclusion

In this paper, we proposed a new approach KeyRank for

eyphrases extraction. It contains two main components: KCSP

nd PF-H. KCSP is a document-specific keyphrase candidate search

lgorithm using sequential pattern mining with gap constraints.

F-H is an evaluation mechanism using entropy to rank keyphrase

andidates. The experimental results show that KeyRank per-

orms best. Its first component KCSP is much more efficient

han a closely related approach SPMW, and its second com-

onent PF-H is an effective evaluation mechanism for ranking

atterns.

After having consulted linguists again, they also confirmed

hat words do not repeatedly appear in an effective keyphrase

n Chinese. In the future work we will conduct corresponding

xperiments to evaluate the performance of our approach KeyRank

or extracting proper keyphrases from documents in Chinese.

176 Q. Wang et al. / Expert Systems With Applications 97 (2018) 163–176

H
J

L

L

L

L

L

M

P

S

T

W

W

W

W

W

X

X

X

Y

Z

Z

Z

Acknowledgments

This research has been supported by the National Key Research

and Development Program of China 2016YFB10 0 0901, the Program

for Changjiang Scholars and Innovative Research Team in Univer-

sity (PCSIRT) of the Ministry of Education, China IRT17R32, the Na-

tional Natural Science Foundation of China 61728205, 91746209,

61673152 and 61503116, and the US National Science Foundation

IIS-1115417 and IIS-1613950.

References

Agrawal, R. , & Srikant, R. (1994). Fast algorithms for mining association rules in
large databases. In Proceedings of the 20th international conference on very large

data bases (pp. 4 87–4 99) .
Agrawal, R. , & Srikant, R. (1995). Mining sequential patterns. In Proceedings of the

eleventh international conference on data engineering (pp. 3–14) .

Ceci, M., Appice, A., & Malerba, D. (2008). Emerging pattern based classification
in relational data mining. In Proceedings of the19th international conference on

database and expert systems applications . doi: 10.1007/978- 3- 540- 85654- 2 _ 28 .
Ceci, M., Loglisci, C., & Macchia, L. (2014). Ranking sentences for keyphrase extrac-

tion: A relational data mining approach. In Proceedings of the 10th Italian re-
search conference on digital libraries (pp. 52–59). doi: 10.1016/j.procs.2014.10.011 .

Chen, K., Luesukprasert, L., & Chou, S. T. (2007). Hot topic extraction based on

timeline analysis and multi-dimensional sentence modeling. IEEE Transactions
on Knowledge and Data Engineering, 19 (8), 1016–1025. http://dx.doi.org/10.1109/

TKDE.2007.1040 .
Cheng, X., Yan, X., Lan, Y., & Guo, J. (2014). BTM: Topic modeling over short texts.

IEEE Transactions on Knowledge and Data Engineering, 26 (12), 2928–2941. http:
//dx.doi.org/10.1109/TKDE.2014.2313872 .

DeWilde, B. (2014). Intro to automatic keyphrase extraction http://bdewilde.github.io/

blog/2014/09/23/intro-to-automatic-keyphrase-extraction .
Ding, B., Lo, D., & Khoo, S. (2009). Efficient mining of closed repetitive gapped sub-

sequences from a sequence database. In Proceedings of IEEE 25th international
conference on data engineering http://dx.doi.org/10.1109/ICDE.2009.104 .

Dorr, D. H., & Denton, A. M. (2009). Establishing relationships among patterns in
stock market data. Data Knowledge Engineering, 68 (3), 318–337. http://dx.doi.org/

10.1016/j.datak.2008.10.001 .

Ercan, G., & Cicekli, I. (2007). Using lexical chains for keyword extraction. Infor-
mation Processing and Management, 43 (6), 1705–1714. doi: 10.1016/j.ipm.2007.01.

015 .
Exarchos, T., Tsipouras, M., Papaloukas, C., & Fotiadis, D. (2008). A two-stage

methodology for sequence classification based on sequential pattern mining and
optimization. Data Knowledge Engineering, 66 (3), 467–487. http://dx.doi.org/10.

1016/j.datak.20 08.05.0 07 .
Feng, J. , Xie, F. , Hu, X. , Li, P. , Cao, J. , & Wu, X. (2011). Keyword extraction based on

sequential pattern mining. In Proceedings of the 3rd international conference on

internet multimedia computing and service (pp. 34–38) .
Fu, Z., Huang, F., Sun, X., Vasilakos, A. V., & Yang, C. (2016). Enabling semantic search

based on conceptual graphs over encrypted outsourced data. IEEE Transactions
on Services Computing, pp (99) 1-1. doi: 10.1109/TSC.2016.2622697 .

Fu, Z. , Ren, K. , Shu, J. , Sun, X. , & Huang, F. (2016). Enabling personalized search over
encrypted outsourced data with efficiency improvement. IEEE Transactions on

Parallel and Distributed Systems, 27 (9), 2546–2559 .

Fu, Z. , Sun, X. , Liu, Q. , Zhou, L. , & Shu, J. (2015). Achieving efficient cloud search
services: Multi-keyword ranked search over encrypted cloud data supporting

parallel computing. IEICE Transactions on Communications, E98 (B(1)), 190–200 .
Fu, Z. , Wu, X. , Guan, C. , Sun, X. , & Ren, K. (2016). Toward efficient multi-keyword

fuzzy search over encrypted outsourced data with accuracy improvement. IEEE
Transactions on Information Forensics and Security, 11 (12), 270602716 .

Fumarola, F. , Lanotte, P. F. , Ceci, M. , & Malerba, D. (2016). CloFAST: Closed sequen-

tial pattern mining using sparse and vertical id-lists. Knowledge & Information
Systems, 48 (2), 429–463 .

Grineva, M. , Grinev, M. , & Lizorkin, D. (2009). Extracting key terms from noisy and
multi-theme documents. In Proceedings of the 18th international conference on

World Wide Web (pp. 661–670) .
Haddoudand, M., & Abdeddaim, S. (2014). Accurate keyphrase extraction by discrim-

inating overlapping phrases. Journal of Information Science, 40 (4), 1–13. http:

//dx.doi.org/10.1177/0165551514530210 .
Hasan, K. S. , & Ng, V. (2014). Automatic keyphrase extraction: A survey of the state

of the art. In Proceedings of the 52nd annual meeting of the association for com-
putational linguistics (pp. 1262–1273) .

Hassanpour, H. , & Zahmatkesh, F. (2012). An adaptive meta-search engine consid-
ering the user’s field of interest. Journal of King Saud University-Computer and

Information Sciences, 24 (1), 71–81 .
ulth, A. https://github.com/snkim/AutomaticKeyphraseExtraction .
iang, X. , Hu, Y. , & Li, H. (2009). A ranking approach to keyphrase extraction. In

Proceedings of the 32nd international ACM SIGIR conference on research and devel-
opment in information retrieval (pp. 756–757) .

Kumar, N. , & Srinathan, K. (2008). Automatic keyphrase extraction from scientific
documents using N -gram filtration technique. In Proceedings of the 8th ACM sym-

posium on document engineering (pp. 199–208) .
i, J. , Li, X. , Yang, B. , & Sun, X. (2015). Segmentation-based image copy-move forgery

detection scheme. IEEE Transactions on Information Forensics and Security, 10 (3),

507–518 .
iu, F. , Pennell, D. , Liu, F. , & Liu, Y. (2009). Unsupervised approaches for automatic

keyword extraction using meeting transcripts. In Proceedings of human language
technologies: The 2009 annual conference of the North American chapter of the

association for computational linguistics (pp. 620–628) .
iu, X. , Song, Y. , Liu, S. , & Wang, H. (2012). Automatic taxonomy construction from

keywords. In Proceedings of the 18th ACM SIGKDD international conference on

knowledge discovery and data mining (pp. 1433–1441) .
iu, Z. , Huang, W. , Zheng, Y. , & Sun, M. (2010). Automatic keyphrase extraction via

topic decomposition. In Proceedings of the 2010 conference on empirical methods
in natural language processing (pp. 366–376) .

oglisci, C. , & Malerba, D. (2009). Mining multiple level non-redundant association
rules through two-fold pruning of redundancies. In Proceedings of the 2009 in-

ternational conference on machine learning and data mining in pattern recognition

(pp. 251–265). Springer-Verlag .
ihalcea, R. , & Tarau, P. (2004). TextRank: Bringing order into texts. In Proceedings

of the 2004 EMNLP (pp. 404–411) .
ei, J. , Han, J. , Mortazavi-Asl, B. , Chen, Q. , Dayal, U. , & Hsu, M. C. (2001). PrefixS-

pan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In Proceedings of the 17th international conference on data engineering .

alton, G. , & McGil, M. J. (1986). Introduction to modern information retrieval . New

York: McGraw-Hill .
Shannon, C. (1948). A mathematical theory of communication. The Bell System Tech-

nical Journal, 27 (379-423), 623–656 .
urney, P. D. (1999). Learning to extract keyphrases from text. In NRC TR ERB-1057

(pp. 1–43). National Research Council, Institute for Information Technology .
an, X. , & Xiao, J. (2008). Single document keyphrase extraction using neighbor-

hood knowledge. In Proceedings of the 23rd national conference on artificial intel-

ligence (pp. 855–860). AAAI .
ang, Q. , Sheng, V. S. , & Wu, X. (2017, February). Keyphrase extraction with se-

quential pattern mining. In Proceedings of the 31st national conference on artifi-
cial intelligence (AAAI) (extended abstract and poster), February 4-9 San Francisco,

California (pp. 50 03–50 04) .
itten, I. H. , Paynter, G. W. , Frank, E. , Gutwin, C. , & Nevill-Manning, C. G. (1999).

KEA: Practical automatic keyphrase extraction. In Proceedings of the 4th ACM

conference on digital libraries (pp. 1–23) .
u, X. , Xie, F. , Huang, Y. , Hu, X. , & Gao, J. (2013). Mining sequential patterns with

wildcards and the One-Off condition. Journal of Software, 24 (8), 1804–1815 .
u, X. , Zhu, X. , He, Y. , & Arslan, N. A. (2013). PMBC: Pattern mining from biological

sequences with wildcard constraints. Computers in Biology and Medicine, 43 (5),
4 81–4 92 .

ia, Z. , Wang, X. , Sun, X. , & Wang, Q. (2015). A secure and dynamic multi-keyword
ranked search scheme over encrypted cloud data. IEEE Transactions on Parallel

and Distributed Systems, 27 (2), 340–352 .

ie, F. , Wu, X. , & Zhu, X. (2014). Document-specific keyphrase extraction using se-
quential patterns with wildcards. In Proceedings of the 2014 IEEE international

conference on data mining (pp. 1055–1060) .
u, S. , Yang, S. , & Lau, F. (2010). Keyword extraction and headline generation us-

ing novel word features. In Proceedings of the 24th AAAI conference on artificial
intelligence (pp. 1461–1466) .

ang, Y. , & Yu, S. (2007). Chinese text clustering for topic detection based on

word pattern relation. In Research and development in intelligent systems XXIII
(pp. 408–412). Springer .

anmatkesh, F. , & Hassanpour, H. (2011). Designing a meta-search engine consider-
ing the user’s field of interest. In Proceedings of the5th symposium on advances

in science and technology (pp. 1–8) .
hang, M., Kao, B., Cheung, D. W., & Yip, K. Y. (2007). Mining periodic patterns with

gap requirement from sequences. ACM Transactions on Knowledge Discovery from

Data, 1 (2), 1–39. http://dx.doi.org/10.1145/1267066.1267068 .
hang, Y. , Zincir-Heywood, N. , & Milios, E. (2005). Narrative text classification for

automatic key phrase extraction in web document corpora. In Proceedings of the
7th annual ACM international workshop on web information and data management

(pp. 51–58) .
Zhu, X. , & Wu, X. (2007). Mining complex patterns across sequences with gap re-

quirements. In Proceedings of the 20th international joint conference on artificial

intelligence (pp. 2934–2940) .

http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0002
https://doi.org/10.1007/978-3-540-85654-2_28
https://doi.org/10.1016/j.procs.2014.10.011
http://dx.doi.org/10.1109/TKDE.2007.1040
http://dx.doi.org/10.1109/TKDE.2014.2313872
http://bdewilde.github.io/blog/2014/09/23/intro-to-automatic-keyphrase-extraction
http://dx.doi.org/10.1109/ICDE.2009.104
http://dx.doi.org/10.1016/j.datak.2008.10.001
https://doi.org/10.1016/j.ipm.2007.01.015
http://dx.doi.org/10.1016/j.datak.2008.05.007
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0012
https://doi.org/10.1109/TSC.2016.2622697
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0018
http://dx.doi.org/10.1177/0165551514530210
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0021
https://github.com/snkim/AutomaticKeyphraseExtraction
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0044
http://dx.doi.org/10.1145/1267066.1267068
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30852-7/sbref0047

	Document-specific keyphrase candidate search and ranking
	1 Introduction
	2 Related work
	 2.1. Keyphrase candidate search
	 2.2. Keyphrase selection

	3 Algorithm for pattern search
	3.1 Existing definitions
	3.2 Algorithm KCSP
	3.3 Full rounds and steps of Example 3.1
	3.4 Eradicating duplication production
	3.5 Discussions on KCSP
	3.5.1 The time and space complexity of KCSP
	3.5.2 The advantages of KCSP
	3.5.3 The characteristics of the extracted patterns

	4 Mechanism for keyphrase candidate ranking
	5 Experiments
	5.1 Experiments for pattern search
	5.2 Experiments for pattern ranking

	6 Conclusion
	 Acknowledgments
	 References

