Expert Systems With Applications 97 (2018) 163-176

Expert Systems With Applications

Contents lists available at ScienceDirect T

Systems
with
Applications 4

Ealor-n-Chiet
Binsnon U

journal homepage: www.elsevier.com/locate/eswa

Document-specific keyphrase candidate search and ranking )

Qingren Wang®*, Victor S. Sheng”* Xindong Wu*¢

Check for
updates

3 Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province 230009 China
b University of Central Arkansas, 201 Donaghey Ave., Conway, AR 72035 USA
¢School of Computing and Informatics, University of Louisiana at Lafayette, 222 James R. Oliver Hall, Lafayette, LA 70504-3694, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 30 June 2017

Revised 14 December 2017
Accepted 16 December 2017
Available online 16 December 2017

Keywords:

Keyphrase candidate search
Sequential pattern mining
Keyphrase candidate ranking
Entropy

This paper proposes an approach KeyRank to extract proper keyphrases from a document in English.
It first searches all keyphrase candidates from the document, and then ranks them for selecting top-N
ones as final keyphrases. Existing studies show that extracting a complete keyphrase candidate set that
includes semantic relations in context, and evaluating the effectiveness of each candidate are crucial to
extract high quality keyphrases from documents. Based on that words do not repeatedly appear in an
effective keyphrase in English, a novel keyphrase candidate search algorithm using sequential pattern
mining with gap constraints (called KCSP) is proposed to extract keyphrase candidates for KeyRank. And
then an effectiveness evaluation measure pattern frequency with entropy (called PF-H) is proposed for
KeyRank to rank these keyphrase candidates. Our experimental results show that KeyRank has better
performance. Its first component KCSP is much more efficient than a closely related approach SPMW, and

its second component PF-H is an effective evaluation mechanism for ranking keyphrase candidates.’

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A keyphrase (Liu, Song, Liu, & Wang, 2012) is an ordered list
of words that captures the main points discussed in a natural lan-
guage document. Keyphrases in a document can help understand
the main points of this document. Keyphrases have been success-
fully used in many text mining tasks, such as automatic indexing,
topic extraction, document summarization and text categorization,
and so on. Due to the importance of keyphrase, many studies
have been conducted to extract high quality keyphrases from
documents. This is called keyphrase extraction. Existing keyphrase
extraction approaches are based on unsupervised learning and su-
pervised learning (Xie, Wu, & Zhu, 2014). They usually contain two
components, keyphrase candidate search and keyphrase selection.
Keyphrase candidate search is to extract a keyphrase candidate
set from a document. After a keyphrase candidate set is extracted,
all these approaches conduct keyphrase selection to select proper
keyphrases from the keyphrase candidate set using different
technologies. For supervised learning based approaches, keyphrase
selection is formulated as a classification task, where each can-
didate is classified as either a keyphrase or a non-keyphrase. For
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unsupervised learning based approaches, keyphrase selection is
to rank keyphrase candidates in terms of a specific measure, and
then the top-N (N is the number of proper keyphrases, specified
by users for a document) keyphrase candidates are selected as
keyphrases. Studies (Ercan & Cicekli, 2007; Xu, Yang, & Lau, 2010;
Haddoudand & Abdeddaim, 2014) showed that semantic rela-
tions in context can help improve the performance for keyphrase
extraction. Thus, extracting a complete keyphrase candidate set
that includes semantic relations in context, and selecting proper
keyphrases from the keyphrase candidate set are crucial to extract
high quality keyphrases from documents. In this paper, we focus
on the two crucial components of keyphrase extraction, keyphrase
candidate search and keyphrase selection, and propose an efficient
approach for keyphrase extraction (Wang, Sheng, & Wu, 2017).
The original work on keyphrase extraction simply treats single
words with high frequency as keyphrase candidates. However,
single words do not capture semantic relations in context. Ap-
proaches based on single words with high frequency cannot
extract a complete keyphrase candidate set that includes se-
mantic relations in context. Some studies considered contiguous
frequently-occurring words as keyphrase candidates, such as Kea
(Witten, Paynter, Frank, Gutwin, & Nevill-Manning, 1999). Nev-
ertheless, no matter how many contiguous frequently-occurring
words that a keyphrase candidate has, it still ignores some se-
mantic relations in context (Fu, Huang, Sun, Vasilakos, & Yang,
2016; Fu, Ren, Shu, Sun, & Huang, 2016; Li, Li, Yang, & Sun,
2015). Intuitively, single words in a document are the minimum
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The Original Text

The Stemmed Form

Topic aware social influence propagation models

The study of influence-driven propagations in social networks and its
exploitation for viral marketing purposes has recently received a large
deal of attention. However, regardless of the fact that users
authoritativeness, expertise, trust and influence are evidently topic-
dependent, the research on social influence has surprisingly largely
overlooked this aspect. In this article, we study social influence from
a topic modeling perspective. We introduce novel topic-aware
influence-driven propagation models that, as we show in our
experiments, are more accurate in describing real-world cascades than
the standard (i.e., topic-blind) propagation models studied in the
literature. In particular, we first propose simple topic-aware extensions
of the well-known Independent Cascade and Linear Threshold models.
However, these propagation models have a very large number of
parameters which could lead to overfitting. Therefore, we propose a
different approach explicitly modeling authoritativeness, influence
and relevance under a topic-aware perspective. Instead of considering
user-to-user influence, the proposed model focuses on user
authoritativeness and interests in a topic, leading to a drastic reduction
in the number of parameters of the model. We devise methods to learn
the parameters of the models from a data set of past propagations. Our
experimentation confirms the high accuracy of the proposed models

and leaming schemes.

topic-awar social influenc propag model

the studi influenc driven propag social network
exploit viral market purpos recent receiv larg deal
attent howev fact user authorit expertis trust influenc
evid topic depend research social influenc
surprisingli larg overlook aspect in articl studi social
influenc topic model perspect we introduc novel
topic-awar influenc driven propag model show
experi accur describ real world cascad than standard
(ie_topic blind) propag model studi literatur in
propos simpl topic-awar extens well known
independ cascad linear threshold model howev
propag model larg number paramet lead overfit
therefor propos differ approach explicitli model
authorit influenc relev topic-awar perspect instead
consid user-to-user influenc propos model focus
user authorit interest topic lead drastic reduct
number paramet model we devis method learn
paramet model data set propag our experiment
confirm high accuraci propos model learn scheme

Top Frequent Words

model; topic; propag; influenc; social;

Top Frequent Patterns with
Gap Constraints

topic model: 4; topic-awar propag model: 4; social influenc: 3; social influenc model: 3;

Keywords labeled by authors

social influence; topic modeling; topic-aware propagation model; viral marketing;

Fig. 1. Examples of using frequent words vs. wildcard based sequential patterns for keyphrase extraction. (Xie et al., 2014).

meaningful and independent units, and meanwhile a document
is an ordered list of words. Therefore, some studies treat the
keyphrase candidate search as a task of sequential pattern mining
with gap constraints, where single words of documents are viewed
as characters of sequences and keyphrase candidates are viewed
as patterns. Xie et al. (2014) combined wildcards into sequential
pattern mining to search keyphrase candidates from a document
(called SPMW), since wildcards can provide gap constraints with a
great flexibility for mining patterns to capture semantic relations
in the document (Agrawal & Srikant, 1995). Compared with the
approaches based on single or contiguous frequently-occurring
words, approaches based on sequential pattern mining can dis-
cover a richer pattern (keyphrase candidate) set, which helps im-
prove the quality of keyphrase extraction. Note that in this paper a
pattern is actually defined as a keyphrase candidate, and keyphrase
candidates and patterns are exchangeable respectively since then.
Here we employ and adapt one of the examples provided by
Xie et al. (2014) to explain why utilizing sequential pattern mining
with gap constraints to search keyphrase candidates is better (see
Fig. 1). The example is the title and the abstract of a journal paper
published in Knowledge and Information Systems (2013). The left
part of the second row shows the original title (in italics) and
the original abstract, and the right part shows the title and the
abstract in a stemmed form. The last row shows four keyphrases
labeled by its authors. Among the four keyphrases, the entire
string “topic-aware propagation model” occurs O times in the text
(either stemmed or not stemmed). However, sequential pattern
mining with gap constraints can extract “topic-awar propag model”
four times from the text, once in title and three times in the
abstract (refer to bold-faced words in the right part of the second
row in Fig. 1). Therefore, “topic-awar propag model” is extracted as
a keyphrase candidate as shown in the fourth row in Fig. 1.
Although sequential pattern mining with gap constraints can
extract keyphrase candidates with a higher quality, existing se-

quential pattern mining based approaches are computational
expensive due to two weaknesses. On the one hand, the gap con-
straints in these approaches play a very important role, but they
require users to explicitly specify appropriate gap constraint(s)
beforehand. In reality it is often nontrivial and time-consuming for
users to provide a proper gap constraint. On the other hand, these
approaches need to scan a document multiple times for searching
patterns. Repeated document scanning can cause a lot of time
overhead, even for a short document. Many studies (Fumarola,
Lanotte, Ceci, & Malerba, 2016; Loglisci & Malerba, 2009; Xie
et al., 2014) toward closed patterns showed that they preserve
information and help keep the computational complexity under
control. However, closed patterns do not work well on keyphrase
extraction because it neglects to consider the three inherent prop-
erties of a pattern to capture a point in a document, especially
uncertainty. In this paper, we focus on documents in English
and solve the following two issues: 1) reducing the computation
time of searching keyphrase candidates, and 2) measuring the
probability of a keyphrase candidate to capture a point expressed
by its corresponding document.

After having consulted linguists, they confirmed that words do
not repeatedly appear in an effective keyphrase in English. Based
on their confirmation, we treat keyphrase candidate search as a
sequential pattern mining task, and propose a novel keyphrase
candidate search algorithm (called KCSP) using sequential pattern
mining with gap constraints. KCSP only scans a document once
for obtaining every word whose frequency is no less than a given
support threshold, and its corresponding appearing positions in
the document. Then KCSP generates a corresponding position
interval for each word at each appearing position, and treats it as
the gap constraint of the word at the current appearing position.
Therefore, the gap constraint of a word at an appearing position
becomes the inherent property of the word at the current appear-
ing position, rather than an external parameter specified by users.
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The gap constraints of words at different appearing positions
in a document can be specified automatically and appropriately
by words’ own appearing positions, which greatly improves the
accuracy and the appropriateness of gap constraints of words at
different appearing positions and significantly reduces the com-
putation time for searching patterns. Finally, KCSP utilizes a series
of calculations between the gap constraints of a front word and
the appearing positions of words after to search patterns, which
overcomes the weakness of repeatedly scanning a document in the
existing sequential pattern mining based approaches. In addition,
our KCSP utilizes the order of words appearing in each paragraph
to extract keyphrases from each paragraph. It intends to extract
neighbor words as keyphrases. In other words, KCSP extracts
keyphrases with considering the context of words. This is a way to
take advantage of semantics. We notice that KCSP generates dupli-
cation patterns during the pattern search process and duplication
production and elimination consume time. Therefore, we further
completely eradicate duplication production in KCSP.

We further need to determine that keyphrase selection should
be treated as a classification task or a ranking task. Jiang, Hu, and
Li (2009) claimed that keyphrase selection by nature is a rank-
ing problem rather than a classification problem. First, it is more
natural to consider the likelihood of a keyphrase candidate is a
keyphrase in a relative sense, instead of in an absolute sense. Sec-
ond, the difficulty of making hard decisions on keyphrases or non-
keyphrases could be avoided. Finally, information (features) for de-
termining whether a keyphrase candidate is a keyphrase is also
relative. Moreover, unsupervised learning based approaches do not
require training data. This is one of the most important advantages
in the big data era, because there are massive unlabeled data gen-
erated in the Internet every day. Thus, we will treat the keyphrase
selection as a ranking task in this paper. Many mechanisms based
on TF-IDF have been shown to work well in practice despite of its
simplicity (Liu, Pennell, Liu, & Liu, 2009; Xia, Wang, Sun, & Wang,
2015), such as pattern frequency-inverse document frequency
(Yang & Yu, 2007; Zanmatkesh & Hassanpour, 2011, 2012). How-
ever, they are not quite suitable for ranking patterns since they do
not consider the three inherent properties of a pattern to capture a
point: meaningfulness, uncertainty and uselessness. In this paper,
we employ entropy (Shannon, 1948) to measure the three inherent
properties of a pattern to capture a point. Intuitively, the greater
the entropy of a pattern, the lower probability the pattern captures
a point of the corresponding document. Therefore, we propose a
new evaluation mechanism pattern frequency with entropy (called
PF-H) to rank patterns in the pattern set, and then select the top-
N patterns as proper keyphrases. Our ranking measurement PF-H
takes sub-patterns and parent patterns (including closed patterns)
into consideration. This is another way to take advantage of se-
mantics. Our entire approach is denoted as KeyRank hereafter.

The remainder of the paper is organized as follows.
Section 2 introduces related work. Section 3 proposes the pattern
search algorithm KCSP. Section 4 introduces the pattern ranking
mechanism PF-H. Section 5 reports our experimental results, and
then we conclude the paper in Section 6.

2. Related work

Keyphrase extraction approaches usually contain two main
components. One performs the keyphrase candidate search. An-
other performs keyphrase selection from keyphrase candidate set.
In the following, we review related work from these two aspects.

2.1. Keyphrase candidate search

Kea (Witten et al., 1999) considered contiguous frequently-
occurring words as keyphrase candidates, which usually are
limited to three words. However, no matter how many contiguous

frequently-occurring words a keyphrase candidate has, it still
ignores some semantic relations in context (Fu, Huang et al., 2016;
Fu, Ren et al, 2016; Li et al., 2015). Chen, Luesukprasert, and
Chou (2007) used the frequency of a term plus its life cycle to
determine whether this term is a candidate, which also cannot
capture semantic relations in context. Some studies (Ercan &
Cicekli, 2007; Xu et al., 2010; Haddoudand & Abdeddaim, 2014)
showed that semantic features can improve the performance of
keyphrase candidate search and keyphrase extraction. Therefore,
many studies used co-occurrence to capture semantic features
for keyphrase candidate search. Wan and Xiao (2008) considered
that only nouns and adjectives could be used to form a keyphrase
candidate, and uses co-occurrence between two words within a
window of maximum w words to generate a keyphrase candidate.
Cheng, Yan, Lan, and Guo (2014) denoted an unordered word
pair co-occurrence as a candidate in short texts with a limited
document length, and any two distinct words in a document,
no matter contiguous or non-contiguous, can be a candidate. In
general, keyphrase candidates extracted by co-occurrence based
approaches hold semantic relations in context. However, co-
occurrence means the maximum length of a keyphrase candidate
is two, which ignores the keyphrase candidates whose lengths are
larger than two. Ceci, Appice, and Malerba (2008, 2014) ranked
sentences of a document using preference-relations modeled by
a probabilistic relational data mining method, and used these
sentences to construct the summary of the document.

Sequential pattern mining plays an important role in data
mining, and was first introduced by Agrawal and Srikant (1995).
It seeks to discover sets of frequent items sharing some tem-
poral relationships, and such patterns have been found to be
useful for many applications (Wu, Zhu, He, & Arslan, 2013):
stock market (Dorr & Denton, 2009) and sequence classification
(Exarchos, Tsipouras, Papaloukas, & Fotiadis, 2008), etc. A num-
ber of methods use gap constraints to mine patterns from DNA
sequences (Zhang, Kao, Cheung, & Yip, 2007; Zhu & Wu, 2007),
since gap constraints (wildcards) can provide a great flexibility for
patterns to capture relations. Besides, there exist methods based
on Apriori properties (Agrawal & Srikant, 1994; Pei et al., 2001) to
improve the efficiency of pattern mining.

Since single words in a document are the minimum mean-
ingful and independent units, and meanwhile a document is an
ordered list of words, keyphrase candidate search can be treated
as a sequential pattern mining task, where single words of doc-
uments are viewed as characters of sequences and keyphrase
candidates are viewed as patterns. Feng, Xie, Hu, Li, Cao, and
Wu (2011) and Xie et al. (2014) applied sequential pattern mining
with wildcards to search keyphrase candidates (called SPAM and
SPMW respectively). SPAM utilizes a depth-first traversal of the
search space with a vertical bitmap representation. SPMW uses a
depth-first pattern growth strategy based on a data structure, a
level instance graph, to represent all instances of a pattern with a
gap constraint. Although a complete keyphrase candidate set that
includes semantic relations in context can be extracted, repeated
document scanning and manually setting gap constraints are two
inevitable weaknesses. INSGrow (Ding, Lo, & Khoo, 2009) is an
efficient algorithm for repetitive gapped subsequence mining. It
combines repetitive support into sequential pattern mining to
improve the efficiency, since repetitive support captures not only
repetitions of a pattern in different sequences but also repetitions
within a sequence. PMBC (Wu, Zhu et al., 2013) can automati-
cally and efficiently discover patterns without user-specified gap
constraints, and meanwhile recommends the most common gap
constraints for users. Although INSGrow and PMBC do not need
to set gap constraints manually, they are still not quite suitable
for document-specific keyphrase candidate search since most
keyphrase candidates they discovered have duplicate words and
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many keyphrase candidate sets they extracted are not complete.
Besides, they have another common weakness that both of them
depend on repeated document scanning. By contrast, our algorithm
KCSP can automatically generate appropriate gap constraints, and
only scans a document once since it employs interval calculations
instead of repeated document scanning.

2.2. Keyphrase selection

For supervised learning based approaches, the keyphrase selec-
tion is formulated as a classification task, where each keyphrase
candidate is classified as either keyphrase or non-keyphrase.
GenEx (Turney, 1999) and Kea (Witten et al., 1999) are two typical
supervised approaches for keyphrase selection. In GenEx, a set of
feature parameters are tuned by a genetic algorithm to maximize
the performance on a training dataset. Kea uses two features, i.e.,
a TF-IDF value and the first occurrence position of a keyphrase
candidate, as input to Naive Bayes. KeyEx (Xie et al., 2014) also
uses these two features. The only difference between Kea and
KeyEx is the way of generating the keyphrase candidate set.

For unsupervised learning based approaches, the keyphrase
selection is treated as a ranking task (Fu, Sun, Liu, Zhou, & Shu,
2015; Fu, Wu et al., 2016), where keyphrase candidates are ranked
by their scores in terms of corresponding measures, and the top-N
candidates are selected as keyphrases. TF-IDF is not only widely
used in supervised approaches, but also widely used in unsu-
pervised approaches (Grineva, Grinev, & Lizorkin, 2009; Zhang,
Zincir-Heywood, & Milios, 2005), and the ranking measurements
based on TF-IDF have been shown to work well in practice (Liu
et al, 2009; Xia et al,, 2015) despite of its simplicity. Yang and
Yu (2007) used two or three sequent words to form a key pattern
to replace the keyword as the feature, and the distributive strength
of key patterns is measured by pattern frequency-inverse docu-
ment frequency (PF-IDF in short). Hassanpour and Zanmatkesh
(2011, 2012) used n-gram, where n < 3, to form a main phrase
with frequency greater than two to replace the keyword, and the
importance of a main phrase is also calculated by PF-IDF. Note
that the types of patterns in previous works are different from
the pattern in our ranking mechanism PF-H. The pattern in the
previous works is a contiguous sequence of two or three items
extracted from a given sequence of text. However, the pattern
in this paper can be a contiguous or a non-contiguous sequence
without length limitation.

Some studies (Hasan & Ng, 2014; Liu, Huang, Zheng, & Sun,
2010; Mihalcea & Tarau, 2004) used graph-based ranking methods
for automatic keyphrase extraction, in which the importance of
a keyphrase candidate is determined by its relatedness to other
keyphrase candidates, where “relatedness” may be measured by
the frequency of co-occurrence or the semantic relatedness of
two keyphrase candidates (DeWilde, 2014). TextRank (Mihalcea &
Tarau, 2004) is one of the most famous graph-based approaches.
However, TextRank only aggregates the keyphrase candidates of a
document, so that the corresponding frequency of co-occurrence
or semantic relatedness is not stable and could not accurately re-
veal the “relatedness” between keyphrase candidates. Our ranking
mechanism PF-H is based on an entire corpus.

3. Algorithm for pattern search
3.1. Existing definitions

In this section, we review and adapt some definitions for the
problem of sequential pattern mining with gap constraints used in
(Wu, Xie, Huang, Hu, & Gao, 2013; Xie et al,, 2014).

A paragraph D=w;w,...w; is an ordered list of words. Since a
document contains a set of paragraphs, which can be viewed as a

paragraph database, defined as SeqDB={D;, D,..., Dy}. A wildcard
is a special symbol that can be matched by any word in SeqDB.
A gap is a list of wildcards, and its size refers to the number of
wildcards. g[N;, M;] (0 < N;<M; i > 1) is used to represent the
ith gap whose size is within the range [N;, M;], and is called a gap
constraint with the gap flexibility gfi=M; —N; + 1.

A pattern P=w;g[N;, M;]wyg[N>, M5]...g[Nm-1, Mpy_1Iwm is a
list of words and gaps, which begins and ends with words, where
w; (1 < i< m)isaword, and g[N;, M;] (1 < i < m) is the gap
constraint between w; and wj,;. In addition, these ranges ([Nj,
M;], [Ny, Ms],..., [Nm-1, Mp,.1]) of gap constraints (g[N;, M;], g[N>,
M;],..., &[Nm-1, Mi.1]) can be the same or different. The number
of words in P is called the length of P, denoted by |P|, without
counting wildcards inside.

Definition 3.1. (Pattern Occurrence and Instance): Given a pattern
P=pp>...pm and a paragraph D=w;ws...wy, if there exists a po-
sition sequence 1 < i; <iy <...<iym < n, such that Wi, =pj for all
1< j< m and Nj < §j—i; <= M for all 2 < j < m, then
(i, i2,..., im) is called an occurrence of P in D with gap constraints.
Given a pattern P and a paragraph database SeqDB={D;, D5,..., Dy},
if (iy, i3,..., im) is an occurrence of P in D; (D;eSeqDB), then (j, <1y,
i3,..., im>) is said to be an instance of P in D; (D;eSeqDB). Note
that if (¢, t,,..., tm) is another occurrence of P in D; (tm # im), then
(j, <t1, to,..., tm > ) is its corresponding instance of P in SeqDB, and
meanwhile (j, <i;, i,..., im > ) and (j, <ty, to,..., tm > ) are two dif-
ferent instances of P in SeqDB. If (t;, ty,..., tm) is another occurrence
of Pin D; (tm # im), then (I, <ty, ty,..., tm > ) is its corresponding in-
stance of P in SeqDB, and meanwhile (j, < iy, is,..., im > ) and (I, < t7,
ty,..., tm > ) are also different instances of P in SeqDB.

Definition 3.2. (Pattern Support): The support of a pattern P in
a paragraph database SeqDB, denoted by sup(P), is defined as the
number of different instances of P in SeqDB. If the support of P is
not less than a given support threshold, we say that P is a frequent
pattern.

Definition 3.3. (Parent Pattern & Sub-pattern): Given two patterns
P=pipy...pm and Q=4q1q5...qs, if m < t, and there exists a position
sequence 1 < j; <jp <...<jm =< ¢, such that py= gq;, for all 1 <
k < m, then P is called a sub-pattern of Q, and Q is called a parent
pattern of P.

3.2. Algorithm KCSP

In this section, we will explain our algorithm KCSP in detail
through a simple example. We will employ a stemmed text
snippet with length L=69 from Fig. 1 (see words with underline
in Fig. 1) as Example 3.1 in Section 3.3, and the given pattern
support threshold min_sup is set as 3. Before starting KCSP, some
pre-processing techniques (i.e., stop-word removing, stemming and
punctuation-mark removing) are utilized to make each paragraph
in a paragraph database as an uninterrupted sequence of words.
The problem of searching keyphrase candidates can be formalized
into four functional parts as follows.

o Part 1: KCSP uses the left-most priority strategy to scan a para-
graph database with length L once to obtain every word whose
frequency is no less than a given support threshold (min_sup)
and its corresponding positions and intervals, which are put
into an ordered array called WordArray. After that, KCSP sorts
WordArray according to words’ first appearing positions from
low to high, outputs these words as qualified patterns, and calls
Part 2 (with input WordArray).

o Part 2: KCSP tries to use the words in WordArray one by one as
the first word of a pattern. If a word w can be the first word of
a pattern P, KCSP calls Part 3 (with input P). When all words in
WordArray have been tried, KCSP stops.
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e Part 3: KCSP chooses a word v from the remaining words in
WordArray, and calls Part 4 to verify whether P and v could be
concatenated as a new pattern P;. If positive, KCSP outputs P;
as a qualified pattern and calls Part 3 (with input P;) recur-
sively; otherwise, KCSP calls Part 2.

Part 4: KCSP lists all intervals of the last word of pattern P to
calculate how many positions of v meet these intervals. If the
number of positions of v that meet intervals is no less than
min_sup, it returns positive.

The notion “qualified pattern” mentioned in Part 1 means a
frequent pattern with different words, and the notion “interval” is
defined as follows.

Definition 3.4. (Position Interval of Single Word, Interval in short):
Suppose there is a word w with m different appearing positions
pos; in a paragraph database with length L (1 < i < m<L, 1 <
pos; <pos;,; <L+1). Any two adjacent appearing positions pos;
and pos;,; of w can generate an interval, denoted by Range[pos;,
posiy 1l

Since w at its last appearing position pos, does not have a
next adjacent appearing position, the last interval is presented
as Range[posm, L+1], where L+1 is called virtual end position.
A virtual end position is a common position, which does not
exist in reality. It is obvious to determine how many appearing
positions w has, how many intervals are generated for w. Like
gIN;, M;] (0 < N;<M;, i= 1), the interval Range[pos; pos;, ;] is
used to represent the ith gap whose size is within the range
[pos;, pos;, ], and also can be called a gap constraint with the gap
flexibility gf; =pos;, ; — pos; + 1. That is, Range[pos;, pos;,;] not only
presents the gap constraint between w at the appearing position
pos; and w at the appearing position pos;, ;, but also becomes the
inherent property of w at the appearing position pos;, rather than
an external parameter specified by users. Therefore, the interval
Range[pos;, pos;,;] between w at the appearing position pos; and
w at the appearing position pos;, ; can be called the gap constraint
of w at pos;.

The Round 1 in Example 3.1 (discussed in Section 3.3) com-
pletes the work of Part 1. During Round 1, KCSP scans the given
paragraph once to obtain every word whose frequency is no less
than min_sup. Meanwhile, KCSP records the appearing positions
of these words, and generates intervals for words at different
appearing positions according to their appearing positions and
the virtual end position. Note that each interval denotes a gap
constraint for a word at an appearing position. For example,
word topic-awar has three appearing positions 4, 27 and 52 (see
Fig. 2(a)). The adjacent appearing positions 4 and 27 generate
an interval Range[4, 27], which presents the gap constraint of
topic-awar at the appearing position 4. It means that topic-awar at
the appearing position 4 can be extended with words at appearing
positions from 5 to 26. Similarly, the adjacent appearing positions
27 and 52 generates an interval Range[27, 52], which presents
the gap constraint of topic-awar at the appearing position 27. The
gap constraint of topic-awar at its last appearing position 52 is
presented as Range[52, 70], since the appearing position 52 does
not have the next adjacent appearing position and the position 70
is the virtual end position of the corresponding paragraph. Words
and their appearing positions and intervals are put into WordArray
according to their first appearing positions from low to high (listed
in blue dashed rectangles in Fig. 2(a)). After Round 1, KCSP outputs
“topic-awar”, “propag”, “model” and “propos” four qualified patterns
since their frequencies are no less than min_sup (which is set as 3).

Part 2 first uses a for loop to try words (except the last one)
in WordArray one by one as the first word w of a pattern P. Note
that every such a for loop corresponds to a round (except Round
1) in Example 3.1. Then Part 2 calls Part 3 to extend P (from line

2 to 8 in Fig. 3). For example, words topic-awar, propag and model
are treated as the first word of a pattern in Round 2 (see figures
(a)-(d) in Fig. 2), Round 3 (see figures (e)-(g) in Fig. 2) and Round
4 (see Fig. 2(h)) respectively in Example 3.1 before starting the ex-
tension jobs. The pseudo-codes from line 9 to 14 in Fig. 3 are called
Round Refreshing Operation (denoted as RRO), which updates Wor-
dArray to let the for loop start over. That is, RRO is called to start
a new round after finishing the current round. Specifically, RRO
first finds w's next adjacent word v in WordArray (line 9 in Fig. 3).
Then, it deletes all appearing positions of w that are smaller than
the first appearing position of v. After that, it uses an if statement
to check whether the frequency of w is less than min_sup. If it is,
w would be deleted from WordArray (from line 11 to 13 in Fig. 3).
Here what needs to be illustrated is that all deletion operations
of RRO are valid during the whole running process of KCSP. For
example, after finishing Round 2 in Example 3.1, shown in Fig. 2(a),
RRO finds that the appearing position 4 of the first word in Wor-
dArray (i.e., topic-awar) is smaller than the appearing position 6
of the second word in WordArray (i.e., the first appearing position
of propag), so RRO deletes it. After that, because the frequency of
topic-awar goes down from three to two, which is smaller than
min_sup, RRO deletes topic-awar from WordArray. Since all deletion
operations of RRO are valid during the whole running process,
topic-awar does not appear again in Round 3 and Round 4 (see fig-
ures (e)-(h) in Fig. 2). Finally, RRO sorts WordArray again according
to the first appearing positions of words in WordArray (line 14 in
Fig. 3). The last word in WordArray is always viewed as a qualified
pattern (line 16 in Fig. 3), since it is no longer necessary to call
Step 3 for extension when WordArray only has one word left.

Part 3 is called by Part 2 or itself, and starts from the ith
(i>1) word w in WordArray to search word candidates to extend
a pattern P that is initially formed in Part 2 or Part 3 before. If
P and w could be concatenated as a new qualified pattern Py,
Part 3 outputs P; and calls itself to keep extending P; recursively.
Note that every such a recursion process corresponds to a step
of a round (except Round 1) in Example 3.1. After the recursion
process is done, Step Refreshing Operation (denoted as SRO) starts
(from line 8 to 14 in Fig. 4). SRO first finds w’s next adjacent
word v in WordArray. Then, it deletes all appearing positions of
w that are smaller than the first appearing position of v, and
uses an if statement to check whether the frequency of w is less
than min_sup. If it is, w would be deleted from WordArray. Here
what needs to be said is that all deletion operations of SRO are
only valid in the current round. That is, all appearing positions
and intervals deleted by SRO during the current round need to
be recruited back before starting a new round. For example, in
Example 3.1, the appearing positions 7 and 21 of model are deleted
before starting the third step of Round 2, so that they are not
shown in the third and the fourth step of Round 2 (see figures (c)
and (d) in Fig. 2). But they appear again in Round 3 (see Fig. 2(e))
and Round 4 (see Fig. 2(h)). Finally, SRO sorts WordArray again
according to the first appearing position of words in WordArray.

Before introducing Part 4, there are some new notions that
need to be defined as follows.

Definition 3.5. (Free Interval): Suppose there is a word w with
intervals Range[pos;, posj,;] and Range[pos; pos;.;] in a para-
graph database with length L (1 < posj<pos;<L+1). Note
that Range[pos;, pos;,;] is behind of Range[pos;, pos; ;]. During
the keyphrase candidate extension step, when interval Range[pos;,
posj1] is not allocated to an appearing position of any other
words, but interval Range[pos;, pos; ;] has been allocated to an
appearing position of any other words, then interval Range[pos;,
pos;,1] is called free interval. When an interval Range[pos;, pos;, ]
becomes a free interval, its original upper limit pos;,; is replaced
by the virtual end position, which means a free interval can
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Fig. 2. Running KCSP with an example.

be allocated to appearing position from pos; to L. If an interval
Range[pos;, pos;j. ;] has been allocated to an appearing position of
any other words, it is no longer a free interval.

Consider Example 3.1 as an example, shown in Fig. 2(h),
Range[7, 21] and Range[21, 34] are two of intervals of word model
and Range[21, 34] is behind of Range[7, 21]. During the pattern
extension step, Range[21, 34] has been allocated to the appearing
position 25 of word propos, but Range[7, 21] is not allocated to
any appearing position of propos. Therefore, Range[7, 21] is a free
interval during this pattern extension step and its upper limit 21
is replaced by the virtual end position 70 (see left blue rectangle
in Fig. 2(h)). Similarly, Range[34, 37] is also a free interval and its
upper limit 37 is replaced by the virtual end position 70 when
Range[37, 48] has been allocated to appearing position 44 of propos
(see right blue rectangle in Fig. 2(h)). However, Range[59, 70] is
not a free interval because there is no allocated interval behind.

Definition 3.6. (Qualified Position & Qualified Interval and Redun-
dancy Position & Redundancy Interval): Suppose there is a word
w; with intervals Range[pos;;, posyiiq)] (1 < posy;<L+1), and a
word w, with n different appearing positions posy (1 < j < n<[L,
1 < posj <L+1) in a paragraph database with length L. w, has in-
tervals like Range[posy;, posyg,1)]. During the keyphrase candidate
extension step, 1) if an appearing position posy; of w, has an allo-
cated interval Range[posy;, posyi;1)] of wy, then the appearing posi-
tion pos,; of w is called a qualified position of interval Range[posy;,
posyiy1)] and its corresponding interval Range[posy;, posy;.q)| is
called a qualified interval; and 2) if any two (or more) adjacent ap-
pearing positions posy; and posy;, ;) of w, have the same allocated
interval Range[posy;, posyi.1)] of wy, meanwhile there is no free in-
terval in front of interval Range[posy;, posyi 1)), then the appearing
position posy; of w; is also called an qualified position of interval
Range[posy;, posjiiq)] and its corresponding interval Range[posy;
Posyr1)] is called a qualified interval too. However, the appearing
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Part 2 FirstWordDetermination(WordArray)

Part 4 IntervalCalculation(, sup(P), WordUsedGap)

Input: an ordered array WordArray assigned by Part 1.
Output: The set of frequent sequential patterns FrequencyList.
1: for i<=0 to WordArray.length-1 do

2 anode W<~—WordArray[i];

3 WordUsedGap.gapMaxList~—W.gapMaxList,

4:  WordUsedGap.gapMinList<—W.gapMinList;

S5: P<W

6:  sup(P)<—W. frequence

7. FrequencyList.add(P);

8:  patternRecursion(WordArray, P,i+1, sup(P), WordUsedGap);
9: anode V=WordArray[i+1],

10: delete all positions of W that is smaller than first position of V'
11: it W frequence< min_sup then

12: delete 7,

13: endif

14:  WordArray.sort;
15: end for

16: FrequencyList.add(WordArray.lastword);

Fig. 3. Part 2 of KCSP.

Part 3 PatternExtension(WordArray, P, i, sup(P), WordUsedGap)
Input: ordered array WordArray assigned by Part 1;
pattern P;
the i word in WordArray that need to be calculated i;
pattern’s frequency sup(P);
the array WordUsedGap includes
allocated positions of the (i-1)" word.
Output: qualified patterns.
1: forj <ito WordArray.length do
2 anode W<WordArray|j];
3 W-IntervalCalculation(W, sup(P), WordUsedGap);
4 if /7 is not null then
5: PP+ W,
6.
7
8

FrequencyList.add(P);
patternRecursion(WordArray, P, j+1, sup(P), WordUsedGap);
: anode V< WordArray[j+1];
9: delete all positions of /¥ that is smaller than first position of V'

10: if W frequence< min_sup th
11: delete W;

12: end if

13: end if

14: WordArray.sort,

15: end for

Fig. 4. Part 3 of KCSP.

position posy, 1) of w, is called a redundancy position of interval
Range[posy;, posy(i,1)] and its corresponding interval Range[posy 1),
posyj42)] is called a redundancy interval. The redundancy posi-
tion needs to be deleted, and intervals Range[posy;, posyj.1)| and
Range[posyj, 1), P0syj;2)] need to be merged into a new interval,
i.e,, Range[pos,;, posy,z)]- The new interval is still a qualified in-
terval.

For example, during the pattern extension step in Example 3.1
(see Fig. 2(e)), the appearing position 7 of word model has an al-
located interval Range[6, 20] of propag, so it is a qualified position,
and its corresponding interval Range[7, 21] is a qualified interval.
The appearing positions 21 and 34 have the same allocated inter-
val Range[20, 36] of propag, since there is no free interval before
Range[20, 36], the appearing position 21 is a qualified position

Input: the word candidate that need to be calculated W7;
pattern’s frequency sup(P);
the array includes allocated positions of the (i-1)" node.

Output: null or W.

1: i Tail<0,i Frequency<0;

2: for i<0to W.frequence do

3 a position pos<—W.gapMinList[i];

4: for j<i Tail to WordUsedGap.length do

S: i Min<—WordUsedGap.gapMinList[j];

6: i Max<—WordUsedGap.gapMaxList[}];

7 if pos>i_Min && pos<i_Max then

8: if this interval has not be allocated then

9: i Frequency++;

10: records the pos of W;

11: else if there is free interval before this interval then
12: i Frequency++;

13: records the pos of W;

14: end If

15: break;

16: end if

17: end for

18: end for

19: ifi Frequency > min_sup then

20:  WordUsedGap is revised as intervals of allocated positions of W
21: ifi Frequency < sup(P) then Sup(P)<—i_Frequency;

22: return W;

23: else

24 return null;

Fig. 5. Part 4 of KCSP.

and its corresponding interval Range[21, 34] is a qualified interval.
However, the appearing position 34 is a redundancy position
and its corresponding interval Range[34, 37] is a redundancy
interval. The redundancy position 34 needs to be deleted and the
intervals Range[21, 34] and Range[34, 37] need to be merged into
a new qualified interval Range[21, 37]. Analogously, the appearing
position 37 of word model is a qualified position, and its corre-
sponding interval Range[37, 48] is a qualified interval. But the
appearing positions 48 and 59 are redundancy positions that need
to be deleted, and their corresponding intervals Range[48, 59] and
Range[59, 70] are redundancy intervals that need to be merged
with Range[37, 48] to generate a new qualified Range[37, 70].

Part 4 has a two-layer embedded for loop, which plays a key
role in KCSP. The input parameter WordUsedGap stores all qualified
intervals (gap constraints) of the last word p in a pattern P, which
are used to verify the input word candidate w if P and w could be
concatenated as a new qualified pattern. The outside for loop (line
2 in Fig. 5) is used to choose w’s appearing positions one by one
(line 3 in Fig. 5). When a position pos of w is chosen, the inner for
loop (line 4 in Fig. 5) tries to find an interval Range[i_Min, i_Max]
in WordUsedGap to calculates whether pos could be an qualified
position of Range|i_Min, i_Max]. If it could be, Part 4 records pos
(from line 5 to 16 in Fig. 5). There are four situations between the
pos and Range[i_Min, i_Max]: 1) pos is not a qualified position of
Range[i_Min, i_Max]; 2) pos is a qualified position of Range[i_Min,
i_Max], and this interval has not been allocated to another posi-
tion; 3) pos is a qualified position of Range[i_Min, i_Max], although
this interval has been allocated to another position, there is a free
interval before it; and 4) pos is a qualified position of Range[i_Min,
i_Max], but this interval has been allocated to another position
and meanwhile there is no free interval before it. The situations
2) and 3) are what we expect. In other words, Part 4 is used
to calculate how many appearing positions of a word candidate
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w could meet intervals of the last word p in P. For example,
during the calculation process in Example 3.1 (see Fig. 2(b)), Part
4 calculates how many appearing positions of model could meet
intervals of topic-awar. The appearing positions 7 and 21 of model
meet Range[4, 27] of topic-awar respectively. However, there is
no free interval of topic-awar in front of Range[4, 27]. According
to Definition 3.6, the appearing position 21 needs to be deleted
and the intervals Range[7, 21] and Range[21, 34] of model need to
be merged into a new interval, i.e., Range[7, 34] (see the left red
rectangle in Fig. 2(b)). Similarly, the appearing positions 34, 37
and 48 of model meet Range[27, 52] of topic-awar respectively. Part
4 performs the same operations for the appearing positions 34,
37 and 48 of model (see the right red rectangle in Fig. 2(b)). The
appearing position 59 of model meets Range[52, 70] of topic-awar
(presented as a black solid line in Fig. 2(b)). After that, model has
three qualified positions 7, 34 and 59 and three qualified intervals
Range|7, 34], Range[34, 59] and Range[59, 70]. At the end, Part 4
revises WordUsedGap using w’s qualified intervals, and returns w if
its frequency is no less than min_sup. Besides, sup(P) needs to be
revised as w's frequency if its frequency is less than P’s frequency
(from line 19 to 22 in Fig. 5). Otherwise, Part 4 returns null.

3.3. Full rounds and steps of Example 3.1

In this section, we will introduce the full rounds and steps oc-
curred in Example 3.1. KCSP altogether takes four rounds to finish
extracting and outputting qualified patterns as follows (see Fig. 2).

Round 1. KCSP scans the given paragraph once to obtain every
word whose frequency is no less than min_sup. Meanwhile, KCSP
records the appearing positions of these words, and generates
intervals for words at different appearing positions according to
their appearing positions and the virtual end position. Words
and their appearing positions and intervals are put into WordArray
according to their first appearing positions from low to high (listed
in blue dashed rectangles in Fig. 2(a)). Each interval denotes a gap
constraint for a word at an appearing position. For example, the
interval Range[4, 27] of topic-awar is the gap constraint of topic-
awar at the appearing position 4, which means topic-awar at the
appearing position 4 can be extended with a word at appearing
positions from 5 to 26. After Round 1, KCSP outputs “topic-awar”,
“propag”, “model” and “propos” four qualified patterns since their
frequencies are no less than min_sup (which is set as 3).

Round 2. KCSP treats topic-awar (the first word in WordArray) as
the first word of a pattern. KCSP first calculates how many appear-
ing positions of propag (the next word of topic-awar) could meet
intervals of topic-awar. Shown in Fig. 2(a), the appearing positions
6 and 36 of propag meet intervals Range[4, 27] and Range[27, 52]
of topic-awar respectively (represented as black solid lines). Al-
though the appearing position 20 of propag also meets the interval
Range[4, 27] (represented as a red solid line), unfortunately this
interval has been allocated to the appearing position 6 of propag,
and meanwhile there is no free interval of topic-awar in front of
Range[4, 27]. Therefore, the appearing position 20 of propag is a
redundancy position and its corresponding interval Range[20, 36]
is a redundancy interval. However, propag only has two qualified
positions 6 and 36, which means the pattern “topic-awar propag” is
not a qualified pattern since its frequency is smaller than min_sup
(which is set as 3). Therefore, KCSP stops extending “topic-awar
propag”, and calls SRO to start the second step of Round 2. Because
of this, it is no longer necessary to delete and merge the redun-
dancy position and the redundancy interval of propag respectively.

SRO first finds all appearing positions of the second word in
WordArray (i.e., propag) that are smaller than the first appearing
position of the third word in WordArray (i.e., model) and deletes
them. Then SRO checks whether the frequency of propag is smaller
than min_sup (which is set as 3). If it is, propag would be deleted

from WordArray. Shown in Fig. 2(a), the appearing position 6 of
propag is smaller than the first appearing position 7 of model,
so SRO deletes it. Since SRO finds that the frequency of propag
goes down from three to two, which is smaller than min_sup, SRO
deletes propag from WordArray. That is why propag is not shown
again during Round 2 (see figures (b)-(d) in Fig. 2). Finally, SRO
sorts words in WordArray again according to their first appearing
positions from low to high.

The second step of Round 2 starts after finishing SRO (see
Fig. 2(b)). Similar to the first step, KCSP first calculates how many
appearing positions of model (the next word of topic-awar) could
meet intervals of topic-awar. Shown in Fig. 2(b), the appearing
positions 7 and 21 of model meet Range[4, 27] of topic-awar re-
spectively. However, there is no free interval of topic-awar in front
of Range[4, 27]. According to Definition 3.6, the appearing position
21 needs to be deleted and the intervals Range[7, 21] and Range[21,
34] of model need to be merged into a new interval, i.e., Range[7,
34] (see the left red rectangle in Fig. 2(b)). Similarly, the appearing
positions 34, 37 and 48 of model meet Range[27, 52] of topic-awar
respectively. KCSP performs the same operations for the appearing
positions 34, 37 and 48 of model (see the right red rectangle in
Fig. 2(b)). The appearing position 59 of model meets Range[52, 70]
of topic-awar (represented as a black solid line). After that, model
has three qualified positions 7, 34 and 59 and three qualified in-
tervals Range[7, 34], Range[34, 59] and Range[59, 70]. KCSP outputs
pattern “topic-awar model” and continues extending it with word
propos (the next word of model in WordArray). However, propos
only has two qualified positions 25 and 44 (two black solid lines)
after finishing the pattern extension, which means pattern “topic-
awar model propos” is not a qualified pattern since its frequency is
smaller than min_sup (which is set as 3). Therefore, KCSP calls SRO
to start the third step of Round 2. Since the deletion and merging
operations for redundant positions and intervals are only valid in
the current step, all redundant positions deleted and redundant
intervals merged during the current step need to be recruited back
before KCSP calls SRO. That is why the appearing positions 37 and
48 of model are shown again during the third and fourth step of
Round 2 (see Fig. 2(c) and (d)). However, the appearing positions
7 and 21 of model are not shown again because of SRO.

Similar to the second step, the third step starts after finishing
SRO (see Fig. 2(c)). After this step, KCSP outputs patterns “topic-
awar propos” and “topic-awar propos model” since their frequencies
equal to min_sup.

Similar to the second step, the fourth step starts after finishing
SRO (see Fig. 2(d)). The appearing position 34 of model meets
the interval Range[27, 52] of topic-awar (represented as a black
solid line). Note that the interval Range[4, 27] of topic-awar is
not allocated to an appearing position of model while the interval
Range[27, 52] of topic-awar has been allocated to the appearing
position 34 of model. Therefore, the interval Range[4, 27] becomes
a free interval and its upper limit 27 is replaced by the virtual end
position 70 (represented as a blue solid rectangle). This operation
is used to ensure that there is no missing occurrence of the pattern
by increasing the number of wildcards between two words (i.e.,
topic-awar and model). Note that the replacements of the upper
limit for free intervals are only valid in the current step. The ap-
pearing position 37 of model also meets Range[27, 52] (represented
as a blue solid line). Although Range[27, 52] has been allocated
to the appearing position 34, KCSP finds a free interval Range[4,
70] of topic-awar in front of Range[27, 52] and allocates it to the
appearing position 37 of model (represented as a blue dashed line).
After this reallocation, Range[4, 70] is no longer a free interval
according to Definition 3.5. The appearing position 48 of model
meets Range[27, 52] too (represented as a red solid line), but there
is no free interval of topic-awar in front of Range[27, 52], so that
KCSP treats the appearing position 48 of model as a redundancy
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position (represented as a red solid line). Finally, KCSP outputs
pattern “topic-awar model” since its frequency is three (two black
solid lines and one blue dashed line), which equals min_sup.

After the above four steps, KCSP finishes Round 2 since model
is the last word in WordArray, and calls RRO to start Round 3.
Note that all appearing positions and intervals deleted by SRO
during the current round need to be recruited back before KCSP
calls RRO, since deletion operations of SRO are only valid in the
current round. RRO first finds all the appearing positions of the
first word in WordArray (i.e., topic-awar) that are smaller than
the first appearing position of the second word in WordArray (i.e.,
propag) and deletes them. Then RRO checks whether the frequency
of topic-awar is smaller than min_sup. If it is, topic-awar would
be deleted from WordArray. Shown in Fig. 2(a), the appearing
position 4 of topic-awar is smaller than the appearing position
6 of propag, so RRO deletes it. Furthermore, RRO finds that the
frequency of topic-awar goes down from three to two, which is
smaller than min_sup (which is set as 3), RRO deletes topic-awar
from WordArray. Since deletion operations of RRO are valid during
the whole running process of KCSP, topic-awar is not shown again
in Round 3 and Round 4 (see figures (e), (f), (g) and (h) in Fig. 2).
Finally, RRO sorts words in WordArray again according to their first
appearing positions from low to high.

Round 3. Similar to Round 2, KCSP starts the first step after
finishing RRO (see Fig. 2(e)), and then starts the second and third
steps after finishing SRO respectively (see Fig. 2(f) and (g)). KCSP
outputs qualified patterns “propag model”, “propag model propos”
during the first step, qualified patterns “propag propos”, “propag
propos model” during the second step, and a qualified pattern
“propag model” during the third step.

Round 4. Similar to Round 2, KCSP starts the first step after
finishing RRO (see Fig. 2(h)), and outputs qualified pattern “model
propos” at last.

After finishing running the above four rounds, we find that
KCSP produces duplication patterns during the pattern search
process. Although duplication patterns can be filtered out, it
is obvious that duplication production and elimination waste
computation time and memory space. In the next subsection, we
will analyze the reason of duplication production and look for a
suitable solution to completely eradicate duplication production.

3.4. Eradicating duplication production

Note that both SRO and RRO are run several times in the above
explanation in Section 3.3 because they are used to ensure that
the array WordArray is valid and ordered. However, if two words
in WordArray have lots of appearing positions respectively, which
let them be able to withstand after more than two SROs or RROs,
duplication patterns may be produced. For example, v and w are
two words with many appearing positions in WordArray, and w
is in front of v. A pattern wv may be generated before the first
SRO/RRO. After finishing the first SRO/RRO, v and w are still in
WordArray and v has been moved to the front of w. Then, a pattern
vw may be generated. After finishing the second SRO/RRO, if both
v and w are still in WordArray, it is obvious that w will be moved
to the front of v again and the pattern wv would be generated
again. Therefore, duplication appears. If both w and v have lots
of appearing positions that let them be able to withstand with
SROs/RROs many times, more duplication patterns are produced.
Here we completely eradicate duplication production by updating
the Part 2 and the Part 3 of KCSP.

First, a boolean variable usedflag is added for each word w in
WordArray to record whether w has been treated as a word of a
pattern P during the P’s extension step, which is initialized as 0.
When w is treated as a word of a pattern P, its usedflag is set to 1.

Updated Part 2 FirstWordDetermination(WordArray)
Input: ordered array WordArray assigned by Part 1.

Output: The set of frequent sequential patterns FrequencyList.
1: for i<—0 to WordArray.length-1 do

2 anode W=WordArray[il,

3 WordUsedGap.gapMaxList—W.gapMaxList;
4: WordUsedGap.gapMinList<—W.gapMinList,
5. P<W
6.
7
8

sup(P)<—W. frequence
FrequencyList.add(P),
: WordArrayli].usedflag=1;
9: patternRecursion(WordArray, P,i+1, sup(P), WordUsedGap);
10:  for j<it1 to WordArray.length-1do
11: if WordArray[j].Usedflag==0 then

12: anode V=WordArrayl[j];
13: break;

14: end if

15:  end for

16: if Vis null then break;
17:  delete positions of words in front of V'
that are smaller than first position of V'
18: if (any word in front of V).frequence< min_sup then
19: delete this word;

20:  endif
21:  WordArray.sort;
22: end for

23: FrequencylList.add(WordArray.lastword);

Fig. 6. Updated Part 2 of KCSP.

This modification is shown in the updated Parts 2 and 3 of KCSP,
illustrated in Fig. 6 and Fig. 7 respectively.

Second, the RRO in Part 2 and the SRO in Part 3 of KCSP are
modified. The new SRO and RRO no longer simply find the w’s
next adjacent word from WordArray. Instead, it uses a for loop to
find the first word v with usedflag=0 after w in WordArray (from
line 10 to 15 in Fig. 6 and from line 11 to 16 in Fig. 7). When the
new SRO and RRO finds the first word v with usedflag=0 after w,
it deletes all appearing positions of words in front of v that are
smaller than the first appearing position of v. After that, the new
SRO/RRO uses an if statement to check whether the words in front
of v whose frequencies are smaller than min_sup. If there exists
such a word, it would be deleted from WordArray (from line 18 to
20 in Fig. 6 and from line 19 to 21 in Fig. 7).

3.5. Discussions on KCSP

3.5.1. The time and space complexity of KCSP

We use L to denote the length of a paragraph, F to denote the
number of frequent words, i.e., the length of WordArray (F < L), m
to denote the average length of patterns, h to denote the average
number of intervals that WordUsedGap stores, and | to denote
the average number of appearing positions that a word candidate
W has. Since Part 1 needs to scan the whole document once to
extract frequent words, its time complexity is O(L). Part 2 uses a
for loop to try the frequent words one by one as the first word
of a pattern, and uses another for loop for execution of round
refreshing operation, so the maximal time complexity of Part 2
is O(F?). Part 3 starts from the ith frequent word of WordArray
to get a word candidate w one by one to extend a pattern P. If
P and w could be formed as a new qualified pattern P;, Part 3 is
called recursively to keep extending P;. In addition, Part 3 uses
another for loop for execution of step refreshing operation. Thus,
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Updated Part 3 PatternExtension(WordArray, P, i, sup(P), Word Us ed Gap)
Input: ordered array WordArray assigned by Part 1;

pattem P;

the " word in WordArray that need to be calculated i;

pattemn’s frequency sup(P);

the array including allocated positions of the (i-1)
Output: qualified patterns.

" word.

1: for i < 0to WordArray.length do
2:  anode W<—WordArrayli];
3 W<IntervalCalculation(W, sup(P), Word Us ed Gap);
4. if Wis not null then
S: if W.usedflag==0 then
6 P<P+ W,
7 FrequencyList.add(P);
8: Word Arrayli).usedflag=1;
9: patternRecursion(WordArray, P, i, sup(P), Word Us ed Gap);
10: end if
11: for j<—i+1 to WordArray.length-1do
12: if Word Array[j).usedflag==0 then
13: anode V=WordArray[j];
14: break;
15: end if
16: end for
17: if V' is null then break;
18: delete positions of words in front of V'
that are smaller than first position of V'
19: if (any word in front of V).frequence< min_sup then
20: delete this word;
21: end if
22: endif
23:  WordArray.sort;
24: end for

Fig. 7. Updated Part 3 of KCSP.

the maximal time complexity of Part 3 is O(mF2). Since Part 4 has
a two layer embedded for loop for calculation, its time complexity
is O(lh). Hence, the time complexity of KCSP is O(L+ F2 + mlhF?).
During the keyphrase candidate search process, KCSP needs O(F)
space to store frequent words, and O(m) space to maintain the
stack for each pattern. Supposed there are n patterns extracted,
the space complexity of KCSP is O(F+ mn).

3.5.2. The advantages of KCSP

Existing sequential pattern mining based approaches treat gap
constraints as external parameters that require users to explic-
itly specify them beforehand. However, manually specifying gap
constraints is a time-consuming job and meanwhile the specified
gap constraints usually are generalized and inappropriate. KCSP
turns gap constraints into the inherent property of words at
different appearing positions by utilizing a conversion operation.
That is, KCSP treats the interval Range[pos;, pos; ;] of a word w
at the appearing position pos;, which is generated by pos; and
the next adjacent appearing position (i.e., pos;, ;) of w, as the gap
constraint between w at the appearing position pos; and w at the
appearing position pos;,;. Such a conversion operation leads to
four advantages. 1) It overcomes the weakness of requiring users
to explicitly specify appropriate gap constraints beforehand, since
the gap constraints of words at different appearing positions in
a document can be specified automatically and appropriately by
words’ own appearing positions. 2) Automatically specifying gap
constraint obviously reduces the setup time and human labor. 3)
For each word at each appearing position, there is a gap constraint
specified, which greatly improves the accuracy and appropriate-
ness and significantly reduces the computation time for searching
keyphrase candidates. And 4) KCSP can replace repeatedly scanning
a document (which is another weakness of existing sequential

pattern mining) with a series of calculation based on words’
appearing positions and intervals to search keyphrase candidates.
Intuitively, calculation significantly reduces computation time.

3.5.3. The characteristics of the extracted patterns

The pattern set (i.e., the keyphrase candidate set) of a doc-
ument extracted by KCSP includes many sub-patterns which
have the same supports with their parent-patterns. Many stud-
ies (Fumarola et al., 2016; Loglisci & Malerba, 2009; Xie et al.,
2014) pinpointed the idea that mining only the set of closed
sequential patterns may help avoid the generation of unnecessary
subsequences, leading to more compact results and saving compu-
tational time and space costs. However, it does not work well on
keyphrase extraction because they ignored the inherent properties
of a pattern to capture a point, especially uncertainty denoting the
expression depth of the point expressed by the pattern (which will
be introduced in Section 4 later). That is, we cannot absolutely
determine that the points expressed by the closed patterns are
more useful than the points expressed by the other patterns for
the document. Consider the example in Fig. 1, although “social
influenc” and “social influenc model” are two keyphrase candidates
having the same support, they express different points in the
document. Therefore, we extract all available patterns and employ
entropy for calculating and ranking them.

4. Mechanism for keyphrase candidate ranking

In this section, we will introduce the second component of
KeyRank—the pattern ranking evaluation PF-H. TF-IDF is recog-
nized as the most important invention in information retrieval,
and its functionalities in information retrieval were deeply dis-
cussed by Salton and McGil (1986). Many mechanisms based on
TF-IDF have been shown to work well in practice despite of its
simplicity (Liu et al., 2009; Xia et al., 2015). Since in this paper
keyphrase candidates in a document are treated as independent
patterns, we use patterns instead of terms in TF-IDF, and obtain
an intermediate mechanism pattern frequency-inverse document
frequency (called PF-IDF) as follows:

PF — IDF (p) = (11p/Np) x log(D/Dp) (1)

where p denotes a pattern, n, denotes the number of times p
occurs in a document d, N, denotes the number of patterns d has,
D is the number of document in the corpus, and D, denotes how
many documents in the corpus contain the pattern p. Note that
the pattern p in the above mechanism PF-IDF is different from
the ones discussed by Yang and Yu (2007) and Zanmatkesh and
Hassanpour (2011, 2012), since it can be either a contiguous or a
non-contiguous sequence without length limitation. As we know,
the purpose of IDF is to measure the probability that a given docu-
ment d contains a specific pattern (term) as the relative document
frequency. IDF is not quite suitable for ranking patterns since it
ignores the three inherent properties of a pattern to capture a
point: meaningfulness, uncertainty and uselessness (which will be
introduced in the next paragraph). In this paper, we use entropy
(Shannon, 1948) to measure the three inherent properties of a pat-
tern to capture a point, and propose a new evaluation mechanism
called pattern frequency with entropy (PF-H in short) as follows:

PF —H(p) = (ny/Np) x log (H(p)) (2)

where H(p) denotes the entropy of the pattern p. Intuitively, the
greater the entropy of a pattern, the lower probability the pattern
captures a point of the corresponding document. The entropy of
a pattern depends on its three probabilities in the corpus: 1) the
probability as an independent form; 2) the probability as a sub-
form; and 3) the probability of other situations (i.e., neither 1) nor
2)). The three probabilities of a pattern are statistically obtained
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from the corpus, instead of a single document, for stability and
accuracy (Cheng et al., 2014).

The meaningfulness of a pattern to capture a point denotes the
usefulness and the accuracy of the point expressed by the pattern.
It is measured by the probability of a pattern p as an independent
form (denoted by P;), which is calculated by Eq. (3) below. The
more times p occurs in the corpus, the more useful and accurate
the point expressed by p. Consider the example in Fig. 1 as an
example, the maximum occurrence time of pattern “topic model”
means the point expressed by “topic model” is more useful and
accurate to the document than other patterns. A pattern with
an independent form has four kinds of situations: 1) it only
has parent pattern(s); 2) it only has sub-pattern(s); 3) it has
sub-pattern(s) and parent pattern(s); and 4) it does not have
sub-pattern(s) and parent pattern(s).

#NIC/#TN, 0 < #NIC < #TN a)
"o, #NIC =0

where #NIC denotes the number times of a pattern p as an
independent form appears in the corpus, and #TN denotes the
total number of patterns the corpus has. P;=0 for the case that p
does not exist in the corpus. This only exists theoretically since it
is meaningless and unrealistic to calculate P; for p that does not
exist in the corpus.

The uncertainty of a pattern to capture a point denotes the
expression depth of the point expressed by the pattern. It is
measured by the probability of a pattern p as a sub-form (denoted
by Ps), which is calculated by Eq. (4) below. A pattern with
sub-form means it can be extended into another pattern(s) with
other word(s). The more times p as a sub-form occurs in the
corpus, the more unsteady the point expressed by p, because 1)
different patterns express a same point with a different expression
depth; and 2) different patterns express totally different points.
Looking at the example in Fig. 1 again, pattern “social influenc” is
a sub-pattern of pattern “social influenc model”, but they express
different points in the document.

#NSC/#TN, 0 < #NSC < #TN ”
*7 o, #NSC =0

where #NSC denotes the number times of the pattern p as a
sub-form appears in the corpus. In contrast to the situation where
P;=0 in Eq. (3), the situation Ps=0 in Eq. (4) does exist not only
in theory but also in reality. There are two kinds of forms where
Ps=0 occurs: 1) p is a super-pattern (a pattern that does not have
parent patterns); and 2) p does not have sub-pattern(s).

The probability of other situations (denoted by P,) is defined
as the uselessness of p capturing a point, which is calculated by
Eq. (5) below. For example, since the patterns appearing in the
corpus are extracted from many documents, a point expressed by
p being useful to document D, but not to document D, needs to
be taken into account.

Po=1-P P (5)
In summary, the entropy of a pattern completely evaluates
the meaningfulness, the uncertainty, and the uselessness of the

pattern in the corpus, which is defined by Eq. (6), when the
situation Ps=0 occurs, H(p) can be calculated by Eq. (7).

H(p) = Rlog (1/R) + Pslog (1/Fs) + Py log (1/F,) (6)

H(p) = Flog (1/P) + Fylog (1/F,) (7)

5. Experiments
5.1. Experiments for pattern search

In order to investigate the computational efficiency of KCSP,
we conduct experiments on a dataset INSPEC (Hulth, 2013), which
contains 2000 abstracts (1000 for training, 500 for development
and 500 for testing). In order to investigate the effectiveness of
eradicating duplication production (i.e., the modified Part 2 and
Part3 in Figs. 6 and 7 respectively), we compare KCSP with its
previous version KCSPO, which does not eradicate duplication
production and uses the previous Part2 and Part3 shown in
Figs. 3 and 4 instead. As we mentioned before, SPMW (Xie et al.,
2014) is an effective keyphrase candidate search algorithm using
sequential pattern mining with gap constraints. In the experi-
ments, we compare KCSP and KCSPO with SPMW only in terms of
the computation time of patterns extracted, because these three
algorithms always extract the same pattern set for each document.
The performance of these three algorithms is evaluated on the
entire 2000 abstracts of the dataset INSPEC.

Note that SPMW needs to set up gap constraint before running.
To make a fair and comprehensive comparison, we follow the
gap constraint and the support threshold settings that SPMW
used. That is, the minimal gap size is 0, the maximal gap size is
the length of a paragraph, and the minimal support threshold is
set to 3. Besides, during the pattern search process we run the
three algorithms (SPMW, KCSP, and KCSPO) respectively on each
document nine times, and the average computation time of each
algorithm on each document is reported. In order to present the
computation time comparisons clearly, we divided 2000 docu-
ments into different categories in terms of the computation time
of SPMW, i.e., category 0-2, category 2-99, category 100-999, cat-
egory 1000-9999, category 10,000-99,999, and category 100,000-.
For example, the category 0-2 contains all documents on which
SPMW uses 0 to 2 milliseconds to extract their pattern sets. Our
experimental results are shown in Fig. 8. The computation time
of the three algorithms (SPWM, KCSP, and KCSPO) in category 0-2
is very close, and the computation time of the three algorithms
in category 100,000- varies widely, so the time comparisons of
these two categories are not shown in Fig. 8. In order to show the
computation time comparisons well for other four categories, we
first sort the computation time of SPMW on documents within
each category in an incremental order. That is why we can see that
the computation time of SPMW increases smoothly in Fig. 8. Based
on the sorting of SPMW, we show the corresponding computation
time of KCSP and KCSPO on each document in each category.

Shown in Fig. 8, both KCSPO and KCSP are much more efficient
than SPMW. The reasons are: 1) SPMW scans a document multiple
times for searching patterns, which causes a lot of time overhead;
and 2) SPMW requires users to explicitly specify appropriate gap
constraint(s) beforehand. In reality it is time-consuming, which
leads to users usually to provide a general gap constraint instead.
However, this kind of operation further increases the time for
scanning the document. By contrast, both KCSPO and KCSP only
scan a document once, and employ a series of calculations instead
of repeatedly scanning a document to reduce the computation
time for searching patterns. In addition, both KCSPO and KCSP
automatically generate appropriate gap constraints for words at
different appearing positions, which further reduces the compu-
tation time. There are a few documents where KCSPO uses a little
more time than SPMW does (see Fig. 8(a) and (b)). This is because
KCSPO produces duplication patterns during pattern search, which
we have analyzed in Section 3. KCSP is more efficient than KCSPO
because KCSPO produces duplication patterns during the pattern
search process. There are also a few documents where KCSP uses a
little more time than KCSPO does (see the left corner in Fig. 8(a)).
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Fig. 8. The time comparisons between SPMW, KCSP, and KCSPO in (a) category 2-99, (b) category 100-999, (c) category 1000-9999, and (d) category 10,000-99,999.

This is because KCSP uses additional if statement and for loop,
which needs additional consumption time to eradicate duplication
production. This phenomenon only appears when 1) there is no
duplication produced; or 2) too little duplication leads to KCSP
consuming more additional time than duplication eradication does.

5.2. Experiments for pattern ranking

To investigate the performance of KeyRank, we conduct exper-
iments on two datasets SemEval-2010 (Kumar & Srinathan, 2008)
and INSPEC (Hulth, 2013). The dataset SemEval-2010 contains
244 articles (144 for training and 100 for testing), and the
dataset INSPEC contains 2000 abstracts (1000 for training, 500 for
development and 500 for testing).

In order to evaluate the performance of our approach KeyRank,
we compare it with a popular approach TextRank (Mihalcea &
Tarau, 2004), since they both are unsupervised approaches and
treat the keyphrase selection as a ranking task. In addition, to
investigate the performance of our evaluation mechanism PF-H,
we compare KeyRank with a supervised approach KeyEx (Xie et al.,
2014) which formulates the keyphrase selection as a classification
task, since they both treat keyphrase candidate search as a se-
quential pattern mining task, and always extract the same pattern
set for each document. Furthermore, we replace the ranking
mechanism of TextRank with our PF-H to investigate whether
PF-H can improve the performance of TextRank, and we will say
TextRank-A as a way to refer to TextRank. Note that TextRank-A
always extracts the same pattern set as TextRank does for each
document. Besides, precision (P in short), recall (R in short), and
the F; score are used as the performance metrics of keyphrase
extraction, which are defined as follows.

P = #correct /#extracted

(8)

R = #correct /#labeled (9)

FF=2 xPxR/(P+R) (10)

where #correct denotes the number of correctly extracted

keyphrases, #extracted denotes the number of extracted
keyphrases, and #labeled denotes the number of labeled
keyphrases.

The experimental results on the dataset SemEval-2010 in terms
of P, R, and F; scores are shown in Fig. 9(a)-(c). Note that KeyEx
is a supervised learning based approach. Its performance is eval-
uated on the 100 test documents. However, KeyRank, TextRank
and TextRank-A are unsupervised learning based approaches. To
make fair comparisons, the performance of KeyRank, TextRank and
TextRank-A is also evaluated on the 100 test documents. The three
figures show that TextRank-A always performs better than Tex-
tRank, which shows the effectiveness of PF-H. KeyRank performs
significantly better than TextRank-A and KeyEx. When the number
of extracted keyphrases is small (from 3 to 15), TextRank-A per-
forms significantly better than KeyEx. However, when the number
of extracted keyphrases increases, the advantage of TextRank-A
diminishes.

In addition, we also notice that the precisions of the four ap-
proaches decrease when the number of extracted keyphrases varies
from 3 to 25 (see Fig. 9(a)), and the recalls of the four approaches
increase as the number of extracted keyphrases varies from 3 to 25
(see Fig. 9(b)). This is because with the increment of the number of
extracted keyphrases, more correct keyphrases are extracted, since
the number of labeled keyphrases is fixed, recall increases with the
increment of the number of extracted keyphrases. However, the
growth rate of the number of correctly extracted keyphrases is less
than the growth rate of the number of extracted keyphrases, so
that precision drops. Because of the opposite performance in terms
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Fig. 9. The (a) precisions, (b) recalls, and (c) F; scores of KeyRank, KeyEx, TextRank,

KeyRank, KeyEx, TextRank, and TextRank-A on INSPEC.

of precisions and recalls, the F; scores of the four approaches in-
crease when the number of extracted keyphrases is small (see
Fig. 9(c)). After the number of extracted keyphrases increases to a
certain number, their F; scores start to drop gradually.

The experimental results on the dataset INSPEC in terms of
precision, recall and F; score are shown in Fig. 9(d)-(f). Since
KeyEx is a supervised learning based approach, its performance is
evaluated on the 500 test documents. To make fair comparisons,
the performance of KeyRank, TextRank and TextRank-A is also
evaluated on the same 500 test documents. Besides, the number
of extracted keyphrases in this experiment varies from 2 to 10
since the average length of these documents is short. Shown in
these three figures, KeyRank always performs significantly better
than KeyEx and TextRank, and TextRank-A performs better than
TextRank when the number of extracted keyphrases is smaller
than 8, which also shows the effectiveness of PF-H, although
the advantage of TextRank-A diminishes when the number of
extracted keyphrases is greater than 8.

The number of keyphrase extracted

(o)

and TextRank-A on SemEval-2010; The (d) precisions, (e) recalls, and (f) F; scores of

6. Conclusion

In this paper, we proposed a new approach KeyRank for
keyphrases extraction. It contains two main components: KCSP
and PF-H. KCSP is a document-specific keyphrase candidate search
algorithm using sequential pattern mining with gap constraints.
PF-H is an evaluation mechanism using entropy to rank keyphrase
candidates. The experimental results show that KeyRank per-
forms best. Its first component KCSP is much more efficient
than a closely related approach SPMW, and its second com-
ponent PF-H is an effective evaluation mechanism for ranking
patterns.

After having consulted linguists again, they also confirmed
that words do not repeatedly appear in an effective keyphrase
in Chinese. In the future work we will conduct corresponding
experiments to evaluate the performance of our approach KeyRank
for extracting proper keyphrases from documents in Chinese.
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