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Abstract—We propose a generalized optimization framework
for detecting anomalous patterns (subgraphs that are interesting
or unexpected) in interdependent networks, such as multi-layer
networks, temporal networks, networks of networks, and many
others. We frame the problem as a non-convex optimization
that has a general nonlinear score function and a set of block-
structured and non-convex constraints. We develop an effective,
efficient, and parallelizable projection-based algorithm, namely
Graph Block-structured Gradient Projection (GBGP), to solve
the problem. It is proved that our algorithm 1) runs in nearly-
linear time on the network size, and 2) enjoys a theoretical
approximation guarantee. Moreover, we demonstrate how our
framework can be applied to two very practical applications, and
we conduct comprehensive experiments to show the effectiveness
and efficiency of our proposed algorithm.

Index Terms—subgraph detection, sparse optimization, inter-
dependent networks

I. INTRODUCTION

Anomalous pattern detection in network data has aroused
many interests in recent years because of many real-world
applications, such as disease outbreak detection [1], intrusion
detection in computer networks, event detection in social
networks [2], congestion detection in traffic networks, etc.
However, most of existing works investigate the subgraph
mining on static, isolated networks, and such a problem
involving interdependent networks has not been well studied.
Interdependent networks are comprised of multiple networks
{G1,G2, . . . ,Gk, . . . } and edges E0 interconnected among
networks, where Gk = (Vk,Ek). Vk and Ek are vertex set
and edge set of kth network Gk respectively. Some nodes in
different networks exhibit node-node dependencies that could
be captured by explicit edges or implicit correlation on node
attributes (implicit edges). For instance, a temporal network
can be viewed as multiple temporal-dependent networks, in
which each network represents a snapshot of the temporal net-
work at a specific time stamp, where current node’s attributes
depend on attributes in the previous time-stamp implicitly [3]
(Figure 1a). A web-scale social network comprised of many
communities is a network of networks (a trivial interdependent
networks) with explicit connections, where communities can
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(a) Temporal Networks (b) Network of Networks

Fig. 1: Examples of Interdependent Networks. (a) Temporal Net-
works: black dashed lines capture implicit temporal dependencies or
consistencies. (b) Network of Networks: black solid lines are bridges
across networks.

be viewed as small networks or blocks that interconnect with
each other (Figure 1b).

Anomalous pattern detection in multiple interdependent
networks can be formulated as a block-structured optimization
problem with multiple topological constraints on blocks,

min
S1⊆V1,...,SK⊆VK

F (S1, · · · , SK)

s.t. Sk satisfies a pre-defined topological constraint,
(1)

where F is a user-specified cost function regularized by block
dependencies, for example, F could be f(S1, · · · , SK) +
g(S1, · · · , SK), where f is used to capture signals in inter-
dependent networks and g models the dependencies between
networks. Sk is a subset of nodes in kth network Gk, k =
1, ...,K. Vanilla subgraph detection problem is a special case
of problem (1) when number of networks (blocks) is 1.

To the best of our knowledge, most of related studies
on anomalous pattern detection in interdependent networks
only focus on specific applications and are lack of generality.
Furthermore, they are heuristic-driven with no theoretical
guarantee. Therefore, we propose a general framework that
leverages graph structured sparsity model [4] and block coor-
dinate descent method [5] to solve this problem which can be
modeled as a block-structured optimization problem.

The contributions of our work are summarized as follows:
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• Design of an efficient and scalable approximation al-
gorithm. We propose a novel generic framework, namely,
Graph Block-structured Gradient Projection, for block struc-
tured non-convex optimization, which can be used to ap-
proximately solve a broad class of anomalous pattern de-
tection problems in interdependent networks.

• Theoretical guarantees. We present a theoretical analysis
of the proposed GBGP algorithm and show that it enjoys a
good convergence rate and a tight error bound on the quality
of the detected subgraphs.

• Comprehensive empirical anlaysis. We demonstrate how
our framework can be applied to two practical applica-
tions: 1) anomalous evolving subgraph detection in temporal
networks; 2) anomalous subgraph detection in network of
networks. We conduct comprehensive experiments on both
synthetic and real networks to validate the effectiveness and
efficiency of our proposed algorithm.

II. METHODOLOGY

A. Problem Formulation

First, we reformulate the combinatorial problem (1) in dis-
crete space as a non-convex optimization problem in continu-
ous space. Interdependent networks can be viewed as one large
network G = (V,E), where V = {1, · · · , N} could be cut into
{V1, · · · ,VK} and E could be split into {E0,E1, · · · ,EK}.
Each pair of (Vk,Ek) forms a small network Gk for k =
1, · · · ,K, and E0 are edges interconnected among different
small networks. Edges in E0 should be treated differently with
the edges in each Ek, since they models the dependencies
among different networks. W = [w1, · · · ,wN ] ∈ RP×N is
the feature matrix, and wi ∈ RP is the feature vector of vertex
i, i ∈ V. Nk = |Vk| is the size of the subset of vertices Vk.

The general subgraph detection problem in interdependent
networks can be formulated as following general block-
structured optimization problem with topological constraints:

min
x=(x1,...,xK)

F (x1, . . . ,xK)

s.t. supp(xk) ∈M(Gk, s), k = 1, · · · ,K
(2)

where the vector x ∈ RN is partitioned into multiple disjoint
blocks x1 ∈ RN1 , · · · ,xK ∈ RNK , and xk are variables
associated with nodes of network Gk. The objective function
F (·) is a continuous, differentiable and convex function, which
will be defined based on the feature matrix W. In addition,
F (·) could be decomposed as f(x) + g(x), where f is used
to capture signals on nodes in interdependent networks and g
models the dependencies between networks. supp(xk) denotes
the support set of vector xk, M(Gk, s) denotes all possible
subsets of vertices in Gk that satisfy a certain predefined
topological constraint. One example of topological constraint
for defining M(Gk, s) is connected subgraph, and we can
formally define it as follows:

M(Gk, s) := {S|S ⊆ Vk; |S| ≤ s;GkS is connected.} (3)

where s is a predefined upperbound size of S, S ⊆ Vk ,
and GkS refers to the induced subgraph by a set of vertices

S. The topological constraints can be any graph structured
sparsity constraints on GkS , such as connected subgraphs,
dense subgraphs, compact subgraphs [6]. Moreover, we do not
restrict all supp(x1), · · · , supp(xK) satisfying an identical
topological constraint.

Algorithm 1 Graph Block-structured Gradient Projection
Input: {G1, . . . ,GK}
Output: x1,t, · · · ,xK,t
Initialization, i = 0, xk,i = initial vectors, k=1,. . . , K

1: repeat
2: for k = 1, · · · ,K do
3: Γxk = H(∇xkF (x1,i, . . . ,xK,i))
4: Ωxk = Γxk ∪ supp(xk,i)
5: end for
6: Get (bi

x1 , . . . ,b
i
xK ) by solving problem (6)

7: for k = 1, · · · ,K do
8: Ψi+1

xk = T (bi
xk)

9: xk,i+1 = [bi
xk ]

Ψi+1

xk

10: end for
11: i = i+ 1
12: until

∑K
k=1

∥∥xk,i+1 − xk,i
∥∥ ≤ ε

13: C = (Ψi
x1 , . . . ,Ψ

i
xk)

14: return (x1,i, · · · ,xK,i), C

B. Head and Tail Projections on M(G, s)
• Tail Projection (T (x)): is to find a subset of nodes S ⊆ V

such that

‖x− xS‖2 ≤ cT · min
S′∈M(G,s)

‖x− xS′‖2, (4)

where cT ≥ 1, and xS is a restriction of x on S such that:
(xS)i = (x)i if i ∈ S, and (xS)i = 0 otherwise. When
cT = 1, T (x) returns an optimal solution to the problem:
minS′∈M(G,s) ‖x − xS′‖2. When cT > 1, T (x) returns an
approximate solution to this problem with the approximation
factor cT .

• Head Projection (H(x)): is to find a subset of nodes S
such that

‖xS‖2 ≥ cH · max
S′∈M(G,s)

‖xS′‖2, (5)

where cH ≤ 1. When cH = 1, H(x) returns an optimal
solution to the problem: maxS′∈M(G,s) ‖xS′‖2. When cH <
1, H(x) returns an approximate solution to this problem
with the approximation factor cH .
Although the head and tail projections are NP-hard when

we restrict cT = 1 and cH = 1, these two projections can
still be implemented in nearly-linear time when approximated
solutions with cT > 1 and cH < 1 are allowed.

C. Algorithm Details

We propose a novel Graph Block-structured Gradient Pro-
jection, namely GBGP, to approximately solve the problem
(2) in nearly-linear time on the network size. The key idea
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is to alternatively search for a close-to-optimal solution by
solving easier sub-problems for graph Gk in each iteration i
until converged. The pseudo-code of our proposed algorithm is
described in Algorithm 1. Our algorithm can be decomposed
into three main steps, including:

• Step 1: alternatively identify a subset of nodes in each
block Ωxk , in which pursuing the minimization will be most
effective (Line 2 ∼ 5).

• Step 2: identify the intermediate solution (bi
x1 , . . . ,b

i
xK )

that minimizes the objective function in intermediate space
∪Kk=1Ωxk (Line 6);(

bix1 , . . . ,b
i
xK

)
= argmin

x1,...,xK

F (x1, . . . ,xK)

s.t. supp(xk) ⊆ Ωxk

(6)

• Step 3: alternatively apply tail projections on the interme-
diate solution (bi

x1 , . . . ,b
i
xK ) to the feasible space defined

by constraints: “supp(xk) ∈M(Gk, s)” (Line 7 ∼ 10).

We utilize the block-coordinate descent method with proxi-
mal linear update [7], [8] to solve the problem (6) (Algorithm
2). In addition, proximal linear update is used to ensure the
convergence of the algorithm on convex problems with convex
constraints “supp(xk) ⊆ Ωxk”. The proximal linear update in
our scenario is defined by:

xk,t+1 = argmin
xk

F (x̂t) + 〈∇xkF (x̂k,t, x̂ 6=k,t),xk − x̂k,t〉

+
1

2αk,t
‖xk − x̂k,t‖22 s.t. supp(xk) ⊆ Ωxk

(7)

where αk,t serves as a step size and can be set as the reciprocal
of the Lipschitz constant of∇xkF (x̂k,t, x̂ 6=k,t), and x̂k,t (Line
4) is an extrapolated point that helps accelerate the conver-
gence of the proximal point update scheme. The overall block
coordinated gradient projection method on convex function
with convex constraint (i.e. Algorithm 2) has a sublinear rate
of convergence [8].

Algorithm 2 Block-Coordinate Descent Method with Proxi-
mal Linear Update to Solve Problem (6)

Input: {G1, . . . ,GK}
Output: x1,t, · · · ,xK,t
Initialization: t = 0, ε = 10−3, ρ0 = 1.

1: repeat
2: Choose index k ∈ {1, · · · ,K}
3: ωt = (ρt − 1)/ρt,
4: x̂k,t = xk,t + ωt(x

k,t − xk,t−1)
5: Update xk,t+1 ← x̂k,t − 1

αk,t∇xkF (x̂k,t, x̂ 6=k,t)
6: Project xk,t+1 to feasible space by setting entries of

xk,t+1 to zero if index of entry not in set Ωxk .
7: Keep xj,t+1 = xj,t, for all j 6= k
8: ρt+1 = (1 +

√
1 + 4ρ2

t )/2,
9: Let t = t+ 1

10: until
∑K
k=1 ‖xk,t − xk,t−1‖ ≤ ε

11: return {x1,t, · · · ,xK,t}

III. THEORETICAL ANALYSIS

In order to demonstrate the accuracy and efficiency of
GBGP, we require that the objective function F (x) satisfies the
Weak Restricted Strong Convexity (WRSC) condition, which
is a variant of the Restricted Strong Convexity/Smoothness
(RSC/RSS) [9]:

Definition 1 (Weak Restricted Strong Convexity (WRSC)). A
function F (x) has condition (ξ, δ,M)-WRSC, if ∀x,y ∈ RN
and ∀S ∈ M with supp(x) ∪ supp(y) ⊆ S, the following
inequality holds for some ξ > 0 and 0 < δ < 1:

‖x− y − ξ∇SF (x) + ξ∇SF (y)‖2 ≤ δ‖x− y‖2 (8)

where x = (x1, . . . ,xK),y = (y1, . . . ,yK),xk,yk ∈
RNk , k = 1, . . . ,K, topological constraint M can be ex-
pressed as M(G, s) =

⋃K
k=1 M(Gk, sk), s =

∑K
k=1 sk, and

the subgraph in kth block (i.e., Gk) is Sk, which satisfies
|Sk| ≤ sk, Sk ⊆ Vk, S =

⋃K
k=1 Sk, |S| ≤ s. Here, since

constraints on blocks are independent, we use union sign “
⋃

”
to denote combined model M, in which x ∈ M = {x|xk ∈
M(Gk, sk), k = 1, . . . ,K}.

Theorem 1. Consider the graph block-structured constraint
with K blocks M(G, s) =

⋃K
k=1 M(Gk, sk) and a cost

function F : RN → R that satisfies condition (ξ, δ,M(G, 8s))-
WRSC. If η = cH(1− δ)− δ > 0, then for any true x∗ ∈ RN
with supp(x∗) ∈M((G, s), the iteration of algorithm obeys

‖xi+1 − x∗‖2 ≤ α‖xi − x∗‖2 + β‖∇IF (x∗)‖2 (9)

where cH = mink=1,...,K{cHk
}, cT = maxk=1,...,K{cTk},

I = argmaxS∈M ‖∇SF (x)‖2, α = 1+cT
1−δ

√
1− η2, and

β = ξ(1+cT )
1−δ

[
1+cH
η + η(1+cH)√

1−η2
+ 1

]
. cHk

and cTk denote

head and tail projection approximation factors on kth block.

Theorem 2. Let x∗ ∈ RN be a true optimum such that
supp(x∗) ∈ M(G, s), and F : RN → R be a cost function
that satisfies condition (ξ, δ,M(G, 8s))-WRSC. Assuming that
α < 1, GBGP returns an x̂ such that, supp(x̂) ∈ M(G, 5s)
and ‖x∗ − x̂‖2 ≤ c‖∇IF (x∗)‖2, where c = (1 + β

1−α ) is a
fixed constant. Moreover, GBGP runs in time

O

((
T +

K∑
k=1

|Ek| log3Nk

)
log

(
‖x∗‖2

‖∇IF (x∗)‖2

))
(10)

where |Ek|, Nk denote edge and node size of kth block and
T is the time complexity of one execution of the subproblem
in line 6 of Algorithm 1. In particularly, if T scales linearly
with N and |E|, then GBGP scales nearly linearly with N
and |E|.

Note that the proofs of Theorem 1 and Theorem 2 are
omitted due to space limitation.

IV. EXAMPLE APPLICATIONS

In this section, we show how to formulate two subgraph de-
tection applications: 1) anomalous evolving subgraph detection
and 2) subgraph detection in network of networks as problem



(2) with specific objective function F and topological con-
straints. For these two applications, we leverage the Elevated
Mean Scan (EMS) statistics, which is defined as: c>x/

√
x>1,

where x ∈ {0, 1}N , c denotes the feature vector of all
nodes, and ci ∈ R denotes the uni-variate feature for node i.
Assuming S is some unknown anomalous cluster which forms
a connected component, S ⊆ V. Empirically, maximizing
the score of EMS leads to discovering significant nodes in
the network precisely. Instead of maximizing the EMS in
the domain {0, 1}N , we relax EMS to continuous space and
minimize the relaxed negative EMS in our applications, which
can be defined as:

− (c>x)2

x>1
+

1

2
‖x‖22 where x ∈ [0, 1]N (11)

Most importantly, the relaxed negative EMS satisfies the
RSC/RSS condition when c is normalized, which implies the
WRSC condition [6], [9].

A. Anomalous Evolving Subgraphs Detection

We can leverage the relaxed EMS and mathematically for-
mulate the anomalous evolving subgraphs detection problem
as non-convex optimization with convex objective function and
block-structured constraints:

min
x1,··· ,xK

K∑
k=1

(
−
(ck
>
xk)2

xk>1
+

1

2
‖xk‖22

)
+ λ ·

K∑
k=2

‖xk − xk−1‖22

s.t. supp(xk) ∈ M(Gk, s)

(12)

where the first term is the summation of relaxed negative EMS,
and the second term is soft constraints on xk and xk−1 to
ensure temporal consistency on detected subgraphs, and λ > 0
is a trade-off parameter. The connected subset of nodes at time
stamp k can be found as Sk = supp(xk), i.e., the support set
of the estimated xk that minimizes the objective function.

B. Subgraph Detection in Network of Networks

Our proposed framework is also applicable to subgraph
detection in network of networks. For subgraph detection
in network of networks, we can also leverage the relaxed
negative EMS and formulate the detection problem in large-
scale networks as follows:

min
x1,··· ,xK

K∑
k=1

(
−
(ck
>
xk)2

xk>1
+

1

2
‖xk‖22

)
+ λ ·

∑
i,j

eij · (xi − xj)2

s.t. supp(xk) ∈ M(Gk, s)

(13)

where the first term is the summation of relaxed negative
EMS, the second term is soft constraints on bridge nodes
of two partitions to ensure dependencies; eij = 1 if node i
and node j are connected but in two different partitions (in
other words, edge (i, j) is a graph cut), otherwise eij = 0,
xi and xj are ith and jth entries of x, and λ > 0 is a trade-
off parameter. In addition, we propose a parallel version of
our algorithm to speed up the computation by integrating the
APPROX algorithm, a randomized coordinate descent method
proposed in [5].

V. EXPERIMENTS

A. Anomalous Evolving Subgraph Detection

a) Synthetic Dataset: We generate networks using
Barabási-Albert preferential attachment model [10]. The
evolving true subgraphs spanning within 7 time stamps are
simulated from node size 100 to 300, and the true subgraphs
in two consecutive time stamps have 50% of node overlap. The
univariate feature values of background nodes and true nodes
are randomly generated in N(0, 1) and N(µ, 1) distributions,
respectively. We generate 50 temporal networks for each
setting of µ = [3, 4, 5].

b) Real-world Datasets: 1) Water Pollution Dataset: a
real world sensor network [11]. For each hour, each vertex has
a sensor that reports 1 if it is polluted; otherwise, reports 0.
2) Washington D.C. Road Traffic Dataset: a traffic dataset
of Washington D.C from INRIX 1. 3) Beijing Road Traffic
Dataset: the dataset contains the real-time traffic conditions of
Beijing city. [12]. For both traffic datasets, the node attribute is
the difference between reference speed and current speed, and
the true congested roads are provided. Statistics of all datasets
are provided in Table II.

c) Performance Metrics: Precision, Recall, and F-
measure are deployed to evaluate the quality of detected
subgraphs by different methods. Higher F-measure reveals
better overall performance. For synthetic data, we use the
averaged precision, recall, and f-measure over 50 simulated
examples.

d) Comparison Methods and Results: We compare our
algorithm with two state of the art baseline methods: Meden
[13] and NetSpot [14], which were designed specifically for
detecting significant anomalous region in dynamic networks
and provide implementations. The comparison of results are
reported in Table I and Table III. As you can see, our method
outperforms these two baseline methods on both synthetic data
and real-world data. Both of baselines are heuristic, which
can not guarantee the quality of results and cause worse
performance than ours.

e) Robustness Validation: Except for measuring the ac-
curacy of subgraph detection, we also test the robustness
of subgraph detection method on water pollution dataset as
[15], [16]. P percent of nodes are selected randomly, and
their sensor binary values are flipped in order to test the
robustness of methods to noises, where P ∈ {2, 4, 6, 8, 10}.
Figure 2 shows the precision, recall, and f-measure of all the
comparison methods on the detection of polluted nodes in the
water pollution dataset with respect to different noise ratios.
The results indicate that our proposed method GBGP has the
best overall performance for all of the settings, which verifies
the robustness of our method.

B. Subgraph Dectection in Network of Networks

a) Synthetic Datasets: We generate several networks
with different network sizes using Barabási-Albert model, and
then apply random walk algorithm to simulate the ground-truth

1http://inrix.com/publicsector.asp.



TABLE I: Results on synthetic datasets with different µ. It shows that GBGP is more robust than Meden and Netspot.

Methods µ = 3 µ = 4 µ = 5
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Meden 0.7588 0.7342 0.7453 0.8836 0.8591 0.8709 0.9646 0.9145 0.9388
NetSpot 0.6658 0.7267 0.6947 0.7615 0.7922 0.7763 0.7956 0.8185 0.8068
GBGP 0.6468 0.8899 0.7489 0.8487 0.9674 0.9041 0.9553 0.9914 0.9730
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Fig. 2: Precision, Recall, and F-measure curves on Water Pollution dataset with respect to different noise ratios.

TABLE II: Statistics of Datasets for the 1st Application.

Datasets Statistics
Node Edge Timestamp Resolution

Synthetic 3,000 11,984 7 NA
Water Pollution 12,527 14,831 8 60 min.

Washington D.C. 1,188 1,323 17 60 min.
Beijing 59,000 70,317 12 10 min.

TABLE III: Results on Washingtong D.C. and Beijing datasets.

Methods Washington D.C. Beijing
Precision Recall F-measure Precision Recall F-measure

Meden 0.7076 0.7662 0.7342 0.6424 0.7509 0.6882
NetSpot 0.5823 0.7098 0.6367 0.6789 0.7351 0.6973
GBGP 0.7049 0.9192 0.7853 0.6627 0.9634 0.7788

subgraph with size as 10% of network size. The nodes in true
subgraph have features following normal distribution N(5, 1),
and the features of background nodes follow distribution
N(0, 1). The synthetic datasets are used for scalability analysis
in terms of size of nodes and size of edges, which we denote
them as SynNode and SynEdge respectively.

b) Real-world Datasets: 1) Beijing Road Traffic
Dataset: we use static network data per time stamp from
5PM. to 7PM. in previous application. 2) Wikivote Dataset2:
the network contains all the Wikipedia voting data from
the inception of Wikipedia till January 2008. 3) CondMat
Dataset2: the collaboration network is from the e-print arXiv
and covers scientific collaborations between authors of papers
submitted to Condense Matter category. For Wikivote and
CondMat datasets, we simulate the true subgraphs of size
1, 000 using random walk, and the node attribute in true
subgraphs follows distribution N(5, 1), otherwise N(0, 1). 4)
DBLP3: the collaboration graph of authors of scientific papers
from DBLP computer science bibliography. An edge between
two authors represents a common publication, and node at-
tribute is the number of publications. We extract a subset
of the dataset ranging from year 1995 to 2005. We apply
random walk to get subgraphs with size 20,000 and inject the
anomalies as our true subgraph as suggested by [14]. Statistics
of all datasets are provided in Table IV.

2https://snap.stanford.edu/data/
3http://konect.uni-koblenz.de/networks/dblp coauthor
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Fig. 3: Comparison of run time on synthetic datasets. Figure (a) shows
our method runs in nearly-linear time w.r.t to the network size, where
|E| = 3|V|. Figure (b) shows that our algorithm can be easily scaled
up to 1, 000, 000 edges with node size |V| = 100, 000, by contrast,
the AdditiveGraphScan runs over 10, 000 seconds on all cases.

TABLE IV: Statistics of Datasets for the 2nd Application.

Datasets Statistics
Node Edge Blocks Processors

SynNode 1,000∼10,000 3,000∼30,000 10 10
SynEdge 100,000 300,000∼1,000,000 100 50
Beijing 59,000 70,317 100 50

Wikivote 7,115 103,689 10 10
CondMat 23,133 93,497 100 50

DBLP 329,404 1,082,106 100 50

c) Performance Metrics: Except for metrics (precision,
recall and f-measure) used for evaluating the detection per-
formance, we also compare and report the run time among
different methods in this application to evaluate the scalability.

d) Comparison Methods and Results: We compare our
method with three baselines: 1) EventTree [2], 2) Additive-
GraphScan [17], and 3) LTSS [18], which were designed
specifically for event detection on static networks. The average
precision, recall, f-measure, as well as run time on all methods
are reported in Table V. Our method outperforms the baselines
in terms of f-measure by the compromise on a small amount
of run time. All of baselines have their own shortcomings.
Despite AdditiveGraphScan can get comparable performance
as our method on some datasets, it is a heuristic algorithm
without theoretical guarantees and not scalable for large scale
networks. We do not report the result of AdditiveGraphScan
on DBLP dataset, since it takes over one day to run and is
infeasible to tune the parameters. EventTree and LTSS are
scalable, but their performances are not as good as our method.

https://snap.stanford.edu/data/
http://konect.uni-koblenz.de/networks/dblp_coauthor


TABLE V: Results on Beijing, Wikivote, CondMat and DBLP datasets. The run time is measured in seconds.

Method Beijing Wikivote CondMat DBLP
Precision Recall F-measure Run Time Precision Recall F-measure Run Time Precision Recall F-measure Run Time Precision Recall F-measure Run Time

AddtivegGraphScan 0.4295 0.6884 0.5192 10846.94 0.9543 0.9959 0.9747 249.97 0.9753 0.9900 0.9826 1188.33 / / / /
EventTree 0.5547 0.5577 0.5369 90.68 0.9088 0.9654 0.9360 80.99 0.8623 0.9204 0.8902 100.23 0.8213 0.1922 0.3113 1961.58

LTSS 0.5144 0.8333 0.6320 7.56 0.9543 0.9959 0.9747 1.72 0.5174 1.0000 0.6819 3.85 0.3910 1.0000 0.5622 533.13
GBGP(Serial) 0.9166 0.7286 0.8057 843.37 0.8287 0.9908 0.90254 610.54 0.9132 0.9859 0.9479 1243.71 0.4701 0.9672 0.6354 13497.50

GBGP(Parallel) 0.9105 0.7283 0.8028 154.12 0.9637 0.9888 0.9761 171.98 0.9423 0.9835 0.9624 113.08 0.4683 0.9672 0.6311 567.20

e) Scalability Analysis: We evaluate the scalability of
different methods in terms of the sizes of nodes and edges.
Figure 3 reports the run time of our methods compared with
the baseline methods. In order to run our algorithm, we
partition the static network into multiple blocks with METIS
[19], and run the parallel algorithm with multiple processors.
Our method is able to get comparable performance as those
customized algorithms of this specific problem, and it is more
scalable if we properly utilize the computing resource based
on network properties.

VI. RELATED WORK

a) Subgraph Detection. Subgraph detection methods mainly
find subgraphs that satisfy some topological constraints, such
as connected subgraphs, dense subgraphs and compact sub-
graphs, including EventTree [2], NPHGS[1] for static graphs,
Meden [13], NetSpot[14], and AdditiveGraphScan [17] for
dynamic graphs, which are all heuristic. b) Structured Sparse
Optimization. The seminal work on general approximate
graph-structured sparsity model is [4]. General structured
optimization methods on single graph was proposed to do
subgraph [6], [16] or subspace [20] detection.

VII. CONCLUSION AND FUTURE WORK

This paper presents a general framework, GBGP, to solve
a non-convex optimization problem subject to graph block-
structured constraints in nearly-linear time with a theoretical
approximation guarantee. We evaluate our model on two
applications, and results of both experiments show that the
algorithm enjoys better effectiveness and efficiency than state
of the art methods while our work is a general framework
and can be used in more scenarios. For future work, we will
extend the work on network data with high-dimensional node
attributes and different graph topological constraints.
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[5] O. Fercoq and P. Richtárik, “Accelerated, parallel, and proximal co-
ordinate descent,” SIAM Journal on Optimization, vol. 25, no. 4, pp.
1997–2023, 2015.

[6] F. Chen and B. Zhou, “A generalized matching pursuit approach for
graph-structured sparsity,” in Proceedings of the 25th International Joint
Conference on Artificial Intelligence, ser. IJCAI’16. AAAI Press, 2016,
pp. 1389–1395.

[7] P. Tseng and S. Yun, “A coordinate gradient descent method for
nonsmooth separable minimization,” Mathematical Programming, vol.
117, no. 1-2, pp. 387–423, 2009.

[8] H.-J. M. Shi, S. Tu, Y. Xu, and W. Yin, “A primer on coordinate descent
algorithms,” arXiv preprint arXiv:1610.00040, 2016.

[9] X. Yuan, P. Li, and T. Zhang, “Gradient hard thresholding pursuit
for sparsity-constrained optimization,” in International Conference on
Machine Learning, 2014, pp. 127–135.

[10] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[11] A. Ostfeld, J. G. Uber, E. Salomons, J. W. Berry, W. E. Hart, C. A.
Phillips, J.-P. Watson, G. Dorini, P. Jonkergouw, Z. Kapelan et al., “The
battle of the water sensor networks (bwsn): A design challenge for
engineers and algorithms,” Journal of Water Resources Planning and
Management, vol. 134, no. 6, pp. 556–568, 2008.

[12] J. Shang, Y. Zheng, W. Tong, E. Chang, and Y. Yu, “Inferring gas
consumption and pollution emission of vehicles throughout a city,” in
Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2014, pp. 1027–1036.

[13] P. Bogdanov, M. Mongiovı̀, and A. K. Singh, “Mining heavy subgraphs
in time-evolving networks,” in 2011 IEEE International Conference on
Data Mining (ICDM). IEEE, 2011, pp. 81–90.

[14] M. Mongiovi, P. Bogdanov, R. Ranca, E. E. Papalexakis, C. Faloutsos,
and A. K. Singh, “Netspot: Spotting significant anomalous regions on
dynamic networks,” in Proceedings of the 2013 SIAM International
Conference on Data Mining. SIAM, 2013, pp. 28–36.

[15] M. Shao, J. Li, F. Chen, H. Huang, S. Zhang, and X. Chen, “An efficient
approach to event detection and forecasting in dynamic multivariate
social media networks,” in Proceedings of the 26th International Con-
ference on World Wide Web, ser. WWW ’17, 2017, pp. 1631–1639.

[16] B. Zhou and F. Chen, “Graph-structured sparse optimization for con-
nected subgraph detection,” in 2016 IEEE International Conference on
Data Mining (ICDM). IEEE, 2016, pp. 709–718.

[17] S. Speakman, Y. Zhang, and D. B. Neill, “Dynamic pattern detection
with temporal consistency and connectivity constraints,” in 2013 IEEE
International Conference on Data Mining (ICDM). IEEE, 2013, pp.
697–706.

[18] D. B. Neill, “Fast subset scan for spatial pattern detection,” Journal of
the Royal Statistical Society: Series B (Statistical Methodology), vol. 74,
no. 2, pp. 337–360, 2012.

[19] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[20] F. Chen, B. Zhou, A. Alim, and L. Zhao, “A generic framework for
interesting subspace cluster detection in multi-attributed networks,” in
2017 IEEE International Conference on Data Mining (ICDM). IEEE,
2017, pp. 41–50.


