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Abstract—To address the data sparsity problem in short text
understanding, various alternative topic models leveraging word
embeddings as background knowledge have been developed
recently. However, existing models combine auxiliary information
and topic modeling in a straightforward way without consider-
ing human reading habits. In contrast, extensive studies have
proven that it is full of potential in textual analysis by taking
into account human attention. Therefore, we propose a novel
model, Attentional Segmentation based Topic Model (ASTM), to
integrate both word embeddings as supplementary information
and an attention mechanism that segments short text documents
into fragments of adjacent words receiving similar attention.
Each segment is assigned to a topic and each document can
have multiple topics. We evaluate the performance of our model
on three real-world short text datasets. The experimental results
demonstrate that our model outperforms the state-of-the-art in
terms of both topic coherence and text classification.

Index Terms—topic model, word embedding, topic embedding,
short texts , human attention

I. INTRODUCTION

Topic modeling as an unsupervised learning approach rep-
resents documents via latent topics. It has become a prevalent
technique for various tasks on unstructured texts, such as doc-
ument classification, information retrieval and content-based
recommendation. However, conventional topic models, such
as LDA [1], are not competent enough in handling short texts
because of the data sparsity in terms of word co-occurrences.
Inspired by the observation that human beings understand
short texts well by bringing background knowledge, a number
of models using distributed representation technologies (i.e.,
[2]-[8] ) have been proposed recently.

Existing topic models of distributed representations can be
generally grouped into two categories: those with background
knowledge learned internally [7], [8] and those using ex-
ternally trained background information [2]-[6]. The former
jointly learns topics and word embeddings in a collaborative
manner. Joint learning allows to acquire word embeddings that
are strongly related with latent topics. However, methods of
this category attempt to extract more information from the
given data through different angles (e.g., topics representing
the global context and word vectors representing the local
context). No external or new knowledge is introduced to facil-
itate topic modelling from sparse short texts. The latter uses
the pre-trained word embeddings as background knowledge to
enrich semantics in topic modeling. The obvious advantage is

that the supplementary information comes from a big extra
corpus so that the knowledge could be more comprehensive.
Nevertheless, the prevalent word embedding methods, like
Word2vec [9] and GloVe [10], use only one vector to represent
each word. The resulted embeddings cannot address the issues
of homonymy and polysemy. Therefore, the mechanism that
combines topic modeling and word embedding is particularly
important because the word embeddings trained on external
corpus may not represent the exact semantics of the words in
the given data. The straightforward combination mechanisms
of existing models fail to enrich information without including
noises.

Recently, motivated by the observation that people usually
assemble text into segments assigned with different attention
levels while reading documents, approaches introducing at-
tention mechanisms into text analysis have been proposed
and demonstrated to be promising. For example, Recurrent
Attentional Topic Model (RATM) [11] studies the influence of
reading order at sentence level, and employs a sentence-based
attention mechanism to acquire the influence from successive
sentences in topic modeling. Wang et al. [12] take reading
time as the attention weights, where the reading time is
measured by POS (part of speech) and the carried information.
However, existing models cannot be applied directly to short
texts. A document in short text datasets may have only one
sentence, which renders RATM incapable because RATM
models sentence level attention. The model [12] is also not
applicable because it is designed for sentence representation,
rather than topic modeling.

Considering the limitations of existing topic models using
distributed representation technologies and models integrating
attention mechanisms, we propose in this paper an Attentional
Segmentation based Topic Model (ASTM) for short texts by
taking into account human reading habits. When people read
documents, especially short texts, they usually unconsciously
do two things: one is to attach background knowledge and
the other is to segment a document into relatively coherent
fragments based on semantics and positions. For example,
the short text “japan radiation fear sparks south korea di-
aper rash” may be segmented into the following fragments
when people try to comprehend the meaning, japan radiation
fear, south korea, and diaper rash. Clearly, different parts
have different importance in expressing different topics of



the document. Because of the different importance, the parts
will receive different human attention. We thus develop an
attention mechanism to segment a document into different
parts according to attentional signals received by individual
words. Since the attentional signals represent the importance
of words in respective topics, we obtain them from word
embeddings and topic embeddings. Generally, ASTM models
topics from short texts through the following two steps. Firstly,
we use an attentional LDA to learn initial topic embeddings
to avoid cold start, where pre-trained word embeddings are
integrated. Secondly, ASTM puts words receiving similar
attentional signals into same segmentations and assigns a topic
to all words in each segmentation in order to obtain more
coherent topics.

The main contributions of our work are summarized as
follows.

o To the best of our knowledge, ASTM is the first effort
that aims to integrate both human reading habits, adding
background knowledge and paying different attention to
segmentations, to discover topics from short texts.

« By deriving topic embeddings and also word attentional
signals using both externally pre-trained word embed-
dings and internally modelled word topic distributions,
ASTM is able to enjoy the benefits brought by the
auxiliary information and capture the exact semantics of
the words in the given dataset at the same time.

o By assuming each segmentation belongs to only one
topic, the data sparsity of short texts can be relieved.
Meanwhile, each document can have multiple topics,
determined by its segmentations.

e Our extensive experiments on real world data sets show
that ASTM outperforms the state-of-the-art in terms of
both topic coherence and document classification accu-
racy.

The remainder of this paper is organized as follows. We dis-
cuss related works in Section II to provide background of this
research. Section III presents the technical details of ASTM.
Section IV shows the results of comparative experiments that
we have done to evaluate the performance of ASTM. Finally,
we summarize our work in SectionV.

ITI. RELATED WORK
A. Topic Models for Short Texts

Topic modeling from short texts is handicapped by a poverty
of co-occurrence information. Hence, early works on short
texts focus on making full use of word co-occurrences to
solve the problem of data sparsity. For instance, the Dirichlet
Multinomial Mixture model (DMM) [13] assumes that a short
text is related to only one topic. That is, all words in each
document are generated from the same topic distribution.
The Biterm Topic Model (BTM) [14] aggregates document-
level co-occurrences and extracts topics by modeling the word
pairs in the whole corpus. The Self-Aggregation based Topic
Model (SATM) [15] clusters short texts into long pseudo-texts
based on semantic similarity before applying the topic model.

Hesam et al. [16] focus on topical coherence and propose
a LDA-based topic model by introducing segmentation. In
their model, the topic assigned to a word in a segmentation
is extracted from document specific topic distributions or
segmentation specific topic distributions.

B. Topic Models with Word Embeddings

The technology of word representation [9], [10], [17] has
become increasingly mature. It gives rise to an emerging
demand to improve the quality of topic detection with word
embeddings. As discussed in the previous section, existing
approaches can be divided into two categories: 1) those based
on externally pre-trained embeddings, and 2) those based on
jointly learned embeddings.

Models in the first category adopt a two-step setting, where
word embeddings are pre-trained from external corpora, and
a combination mechanism is used to integrate the topic model
with word embeddings. For example, LFTM [2] combines the
two techniques by generating words from a two-component
mixture of a topic-word component and a latent feature com-
ponent. GPUDMM [3] promotes the co-occurrence of words
with related semantics under the same topic based on the
generalized Pdlya urn (GPU) model, where semantic relevance
between words is obtained by computing similarity of word
embeddings. Xun et al. [6] treat each document as a Gaussian
topic over word embeddings, where the topic is expressed as
a multivariate Gaussian distribution instead of a multinomial
distribution. Embedding-based Topic Model (ETM) [5] uses
word embeddings to aggregate short texts into long pseudo-
texts, and then discovers topics from pseudo-texts by a Markov
Random Field regularized model.

Methods in the second category simultaneously learn topics
and word embeddings to achieve mutual reinforcement. For
example, Collaborative Language Model (CLM) [8] assumes
that the weight of a word under a topic is proportional to the
inner product of the word embedding and the topic embedding,
and learns topics and word embeddings by matrix factorization
at the same time. Skip-gram Topical word Embedding (STE)
[7] predicts surrounding words for a given word by taking
into account the topic distribution in order to learn topic-
specific word embeddings, and learns topics based on the topic
assignments of surrounding words.

We have discussed the strengths and weaknesses for models
of the two categories respectively in the previous section.
Basically, models using externally pre-trained word embed-
dings are able to enrich semantics of short texts by adding
supplementary information. However, noise may be introduced
at the same time if the combination mechanism is designed
carefully. Models relying on internally and jointly learned
word embeddings may acquire more relevant embeddings.
Nevertheless, the potential of the models exerting to extract
more knowledge from the given dataset may be limited.

C. Attention-based Topic Models

A wide range of applications have engaged attention mecha-
nisms in textual analysis, including machine translation [18]-



TABLE I: A list of variable notations

Notation Meaning

K the number topics

\% the number of words

D the total number of documents in a dataset

S the total number of segmentations in a dataset

Seg all segmentations in a dataset

N the number of words in segmentation s

a, B the two hyperparameters for ¢, 6

Pk the topic-word distribution of topic k

04 the document-topic distribution of document d

ak the attention weight of word w under topic k

W the pre-trained word embedding of word w

T the kth topic embedding

Sout,w a binary indicator that determines whether a word w
is similar to a word woqt

Vi the K'-length attentional signal vector of the th word

n, the number of segmentations assigned to topic k

Tk the number of word w assigned to topic k

Tk the total number of words assigned to topic k

ns, nd document d or segmentation s is excluded

[20], document summarization [21]-[23], textual entailment
[24], where tremendous gains have been achieved. However,
very limited research has been done to introduce attention
mechanisms to topic modeling. Recurrent Attentional Topic
Model (RATM) [11] uses the attention mechanism to capture
the relevance among successive sentences during Bayesian
process. Wang al et. [12] derive attentional signals from human
reading time and the amount of information delivered by words
and POS tags. The two models are not applicable to topic
modeling from short texts.

III. ATTENTIONAL SEGMENTATION TOPIC MODEL

In this section, we present the technical details of ASTM,
from model description to estimation and parameter inference.
Notations used in this paper are listed in Table I.

A. Model Description & Generative Process

There are two phases in our method. In the first phase, an
attentional LDA is used to learn initial topic embeddings 7 to
avoid cold start. In the second phase, we compute attentional
signals received by individual words using both topic embed-
dings and word embeddings. The derived attentional signals
of each word thus represent the importance of the word in the
corresponding topic. Next, we group words receiving similar
attentional signals into same segmentations. Finally, topics are
assigned to segmentations.

Phase 1: Fig. 1 shows the attentional LDA used to learn
initial topic embeddings 7. The generative process is as
follows:

1. For each topic k € {1,2,--- , K}, draw ¢y, ~ Dir(8);

2. For each document d € {1,2,---,D}:

a) Draw a topic distribution 64 ~ Dir(«);
b) For each word w in document d:
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Fig. 1: Phase 1: Attentional LDA.
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Fig. 2: Phase 2: Attentional Segmentation based Topic Model.

i) Draw a topic z, ~ Multi(04);
ii) Calculate the attentional signal a, ;
iii) Draw a word w,, ~ Multi(a., - ¢, ).

The algorithmic details of Phase 1 will be discussed in the
next subsection. Basically, when sampling a topic for a word,
the attentional signals representing the importance of the word
in corresponding topics will be taken into account. The output
of the phase is the initialized topic embeddings.

Phase 2: Fig. 2 shows the graphical model of ASTM.

1. Draw a topic distribution § ~ Dir(«) for the whole
document collection;

2. For each topic k € {1,2,--- , K}, draw ¢y ~ Dir(f5);

3. For each document d € {1,2,--- , D}:

a) Calculate segmentations Seg according to attentional
signals a;
b) For each segmentation s € Seg:
i) Draw a topic z, ~ Multi(f) for all words in the
segmentation s;
ii) For each position n in s: draw a word w ~
Multi(p.,,);

Phase 2 models topics for segmentations, which are itera-
tively refined based on updated attentional signals received by
words.

B. Algorithms

The pseudo codes of ASTM are presented in Algorithm 1.
At first, a vanilla LDA is used to initialize the topic
assignments (Line 1). In Lines 2-3, we design a simple strategy
to deal with words without word embeddings. Existing models
directly remove those words. However, it may deteriorate per-
formance on a dataset with a lot number of such words (e.g.,



a social media data set). For instance, we have found there are
105 words without word embeddings in the Oscars dataset !,
which are mainly hashtags and neologisms (e.g.,“oscarsfail”
and “envelopgate”). Such words are invented all the time,
leaving the pre-trained word embeddings easily outdated. To
address this issue, given a word without pre-trained word
embedding w,,:, we take the average word embeddings of
words similar to w,,; in the topic space as an approximate
embedding of wy,¢. A nonparametric probabilistic sampling
strategy is proposed as follows:

Sout,w ~ Bernoulli (C’osSim(pu,,pout)) (1)
wlz=k)p(z =k
p(z = klw) = I];( | )p( ) )
g=1P(W[z = q)p(z = q)
1%
— So’u, w W
ot = L= ot 3)

Zw:l Sout,w

In Eq. 1, a binary variable S,y is sampled from a
Bernoulli distribution to indicate whether the embedding of a
word w will be used to compute the word embedding of w,¢,
where C'0sSim(py, Pout) is the cosine similarity between two
words in terms of a K-length vector (i.e. p,, and p,,:). Each
element of the vector p,, is the conditional topic probability z
for w, which is defined in Eq. 2. Therefore, according to Eq. 1
and 2, if a word w is highly relevant to the word w,; in terms
of the topic distribution similarity, its word embedding w,, is
more likely to participate the composition of word embedding
Woyt as in Eq. 3.

Topic embeddings are then learned via the attentional LDA
(Lines 4-9). In Lines 5-6, we update the topic embedding of
Ti, using the negative log likelihood as the cost function. The
objective function with Lo regularization is defined as:

exp(Wy - Tk)
1%
> ie1 exp(Wu, * )

The partial derivative of the objective function Lj; with
respect to the jth dimension of topic embedding 7y is:

Vv
== erai(l-
=1

The design of the objective function will be discussed in
next subsection.

Lines 7-9 sample topics for words. As discussed before, at-
tentional LDA samples topics for words by taking into account
the attention signals of words, which represent the importance
of the words in respective topics. Thus, we compute the
attention weight a¥ of word w under topic k as follows.

14
Ly ==Y ¢k -log( )tellmlz @
1=1

oLy,
87’k7j

exp(wuw - Tk)

> exp(ww, - k)

)+ 2er,; (5)

K exp(we - Tk)
ak = — (©6)
> i1 €xp(Wu, - Tk)
Then, we assign a topic k to the ¢th word in document d
from:

Uhttps://www.kaggle.com/madhurinani/oscars-2017-tweets

Algorithm 1: attentional segmentation topic model.

Input: corpus D, word embeddings w, Threshold ¢
Output: Segmentations and posterior topic-word
distribution
1 Initialize topic assignments using vanilla LDA ;
2 for words wyy; without word embeddings do
3 L sample the word embeddings ;

4 for initial iteration initlter do
5 for ropic k=1,2,..., K do
6 L compute 73 ; /* Eq. 4 & 5 */
7 for document d € {1,2,...,D} do
8 for i =11t0o Ny do
9 sample topic z4, from
L P(zq, = k|24, T, w);
10 Seg = SampleSegmentations(D, T, w, t);
11 Initialize topic assignments for segmentations Seg;
12 for iteration iter do

13 for s € Seg do
14 L sample topic zs from P(zs = k|z.s, T,w);
15 if iter%100==0 then
16 for topic k=1,2,..., K do
17 | compute 7 ; /* Eq. 4 & 5 */
18 Seg = SampleSegmentations(D, T, w, t);
k -d; nwci kTt B
P(zaq, = k|z.a,, T, w) < ay, (nj; +a)( ) (D

n;ué + V3

After phase 1, the learned topic embeddings will be used
to obtain the initial set of segmentations Seg using Sample-
Segmentation (Line 10). Algorithm 2 illustrates the main idea
of SampleSegmentation. Basically, we cut a document into
segmentations of consecutive words. Hence, we calculate the
similarity for adjacent words only, based on their attention
weights V; = {a, , a2, ,...,al }, where af, is the attention
weight received by w; under topic k using the word embedding
of w; and the topic embedding of 7 as in Eq. 6. Therefore, V;
models the human attention when reading this word, combin-
ing with background knowledge (word embedding w,,,) and
the semantic information contained in the current dataset (topic
embedding 7). We group neighbouring words into the same
segmentation if they receive similar attention.

Next, we initialize topic assignments for segmentations by
adopting the topic of the first word in each segmentation (Line
11). During the iterative process of sampling topics for Seg
(Lines 12-18), we sample topics for segmentations instead
of words as follows. We extra a topic zs to all words in a
segmentation s:

P(zs = k|z.s, T w) (8)
(n;* + ) [Twes(ny)y, +8)- ay,
5] =1+ Ka H;V:Sl(n;fk +VB+p-—1)




Algorithm 2: SampleSegmentations(D, T, w, t)

TABLE II: F(w;,w;, ;) satisfies the following conditions

Input: Documents D, word embeddings w, topic
embeddings 7, and Threshold ¢
Output: segmentations
1 for document d € {1,2,...,D} do

2 segment.add(w1);

3 fori=11t Ng—1do

4 Vi ={ay,, a2 ,....a% };

5 Vier = {a}m+1 N ,aqﬁﬂ ;
6 if CosSim(V;,Vi41) > t then

7 L segment.add(wit1);

8 else

9 segmentations.add(segment);
10 segment = null;

u segment.add(w;41);

12 segmentations.add(segment);

13 return segmentations;

Rl

Here, n,° is the number of segmentations assigned to topic
k, nzuslk is the number of word w assigned to topic k, and n;rk
is the total number of words assigned to topic k. The symbol
- indicates that document d or segmentation s is excluded.

Moreover, the frequency of topic sampling is different to
that of updating topic embeddings 7 and segmentations Seg.
For more efficient learning, we update 7 and Seg every 100

iterations (Lines 15-18).

C. Learning Topic Embeddings

We now discuss the design of the objective function (Eq. 4)
which is used to update topic embeddings. In our work, topics
can be represented in two ways: 1) as a distribution over
words (e.g., ¢y,;) and 2) as the real valued vectors in the
same space as word embeddings (e.g., 7). Therefore, in Eq.
4, the cross-entropy loss function captures the relationship
between topics and words in the two spaces to learn topic
embeddings. The relationship in the topic-word distribution
space is straightforward. Therefore, we focus on explaining
capturing the relationship between topics and words in the

. exp(Wy Tk )
embedd.lng space, SV cap(on. )’ as follows. .
Consider two words w;, w; and a topic k. Let

relevance(w, k) be the variable representing the relationship
between a word w and a topic k, so that relevance(w, k) — 1
if w and k are related, and relevance(w, k) — 0 if otherwise.
We now consider how to capture the same relationship through
their embeddings. Let w; and w; be the word embeddings
of w; and w; respectively, and 7 be the topic embedding
of the topic k. If there is a function F(w;,w;,7s) defined
on the three arguments, it would be preferable to have
F(wi,wj, ) = %W so that the F(w;,wj,Ty)
encodes the relationship between the two words and a topic
by having the properties summarized in Table II.

We further analyze the structure of F'(w;, w;, 7x) as follows.

F(wi,wj, k) relevance(w;, k) = 1 | relevance(w;, k) — 0

relevance(wj, k) — 1 F(wi,wj, k) = 1 F(w;,wj, ) =0

relevance(wj, k) — 0 F(wi,wj, 7)) > 1 F(wi,wj, ) = 1

TABLE III: Data Statistics. #label: number of categories,
#docs: number of documents, V: size of the vocabulary,
Avglength: average number of words in a document

Dataset #label  #docs A% AvgLength
Oscars - 5,966 609 7.609
Snippets | 8 1,707 2,904  7.607
Title 10,193 5352  6.543

1. As word embeddings are inherently linear structures, it
is natural to use the difference between w; and w; to represent
their relationship. Therefore, F'(w;,w;,T;) can be simplified
as F(w; — wj, Tg).

2. Given the equation F'(w;,wj, ) = %, the
right hand side is a scalar. Therefore, we can use inner product
to convert the argument on the left hand side into a scalar for

consistency. Then, F'(w; —wj, 7%) can be replaced by F((wz —
w]')TTk).
Based on the analysis, it is ideal to have

F((wZ — on)T’Tk) =

Suppose that F'(X') = exp(X). Then, it can be derived from
Eq. 9 to have :

relevance(w;, k)

€))

relevance(w;, k)

F((wl B wj)TTk) _ exp(w; - Tk) _ relevance(w;, k) (10)
exp(wj - 1)  relevance(w;, k)
Thus, we have exp(w; - ) = relevance(w;, k). Since

Softmax(X) « exp(X), we capture the relationship be-
tween topics and words in the word embedding space using
% in the objective function (Eq. 4) because it is
easy to obtain derivative for So ftmax(X). We use L-BFGS?
[25] to learn topic embeddings T.

IV. EXPERIMENTAL RESULTS
A. Datasets Description and Setup

Data sets. We study the empirical performance of ASTM
on three publicly available short text datasets, including tweets
about the 2017 Academy Awards (Oscars for short)?, Web
Snippets (Snippets for short) [26] 3, and TagMyNewsTitle
(Title for short) [27] 3. Statistics of the three datasets after
preprocessing are summarized in Table III.

Word Embeddings. In this paper, we use the word embed-
dings pre-trained by Stanford GloVe as the auxiliary informa-
tion. According to [2], Word2vec # and GloVe produce similar
results.

Zhttps://www.kaggle.com/madhurinani/oscars-2017-tweets
3http://acube.di.unipi.it/tmn-dataset/
“https://code.google.com/p/word2vec/
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Fig. 4: NPMI scores on three datasets, with K ranging from 30 to 70

Baselines. We compare the performance of ASTM > with
the following methods. The DMM and SATM are classi-
cal topic models designed for short texts. The LFTM and
GPUDMM are methods integrating word embeddings into
topic models.

« DMM [13] is a classical short text topic model adopting a
straightforward assumption that each document is related
to only one topic.

e SATM [15] learns topics from long pseudo-documents
consisting of short texts. In this model, the number of
pseudo-documents need to be set in advance, which
affects topic qualities. We set it to 100, 250 and 700,
respectively, on the three datasets to obtain the best
classification results, as denoted in Fig 3 and Fig 4.

o LFTM [2] generates words from a two-component mix-
ture of a topic-word component and a latent feature com-
ponent. We select glove-DMM from the four variations of
LFTM since it is the closest to our model. In particular,
glove-DMM integrates into DMM the word embeddings
pre-trained by GloVe.

« GPUDMM [3] uses the generalized Pdlya urn (GPU)
model to promote the co-occurrence of similar words
under the same topic, where the similarity is computed
by word embeddings.

Parameter Settings. For ASTM, we set the default parameter
values as o = 0.1, 8 = 0.01,¢ = 0.5. For baseline approaches,
we follow the parameter settings in their respective papers.

3Our implementation is available at https:/github.com/wjmzjx/ASTM

B. Topic Coherence Evaluation

NPMI score. We use the Normalized Pointwise Mutual In-
formation (NPMI) [2] score to measure the semantic coherence
of discovered topic distributions. For each topic, we consider
the top 15 most probable words and use the English Wikipedia
of 20837 articles ® and 30607 news’ as the external corpora
to calculate the following,

NPMI(k) = (11)

>

1<i<j<N

where P(w;,w;) is the probability that two words w; and w;
co-occur in a 5-word sliding window. A higher NPMI score
indicates better topic coherence.

We compute the average NPMI score over all topics, dis-
covered by the five comparative models, on the three datasets
with the number of topics K ranging from 5 to 70. The results
have been plotted in Fig. 3 and Fig. 4. We observe that,
firstly, ASTM achieves the best performance in all settings
on the Oscars dataset. ASTM achieves the best performance
on the other two datasets except for one setting (i.e. K = 50
on Title and K = 5 on Snippets). The reason why ASTM
clearly outperforms the other models on the Oscars dataset
is probably because the data set has more words without
word embeddings compared to the other two datasets. While
the other models simply ignore such words, ASTM uses a

Ohttps://einstein.ai/research/the-wikitext-long-term-dependency-language-
modeling-dataset
"http://acube.di.unipi.it/datasets/
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Fig. 5: Classification accuracy on Title dataset.

sampling strategy to approximate their word embeddings to
retrieve more background information.

Secondly, comparing the four baseline models, we find that
the two models integrating word embeddings (i.e. LFTM and
GPUDMM) do not always perform better than the two models
without introducing background information (i.e. DMM and
SATM). It indicates that the simple combination mechanisms
used by existing topic models to integrate word embeddings
may introduce noises instead of useful information. Take the
Oscars dataset as an example. The data set contains tweets
about the 2017 Academy Awards. The word embeddings of
some words may be too over-generalized to capture the right
semantic meaning of the word in the data sets. For instance,
the word “moonlight” refers to a movie in the dataset, while
its embedding is too general — the five words closest to
it in the embedding space are: “moon”, “blue”, “velvet”,
“night”, “sunny”, none of which can help to realize the word
refers to a movie. In such cases, the over-generalized word
embeddings bring noise which makes the word embedding
integrated models worse than the vanilla DMM.

C. Short Text Classification Evaluation

We evaluate the performance of the five topic models in
terms of short text classification. We employ Naive Bayes
classifier ® in this paper because it has a strong probabilistic
foundation for Expectation-Maximization [13], [28], [29]. Fig.
5 and Fig. 6 show the average classification accuracy of
the five models on the two labeled datasets (i.e. Title and
Snippets), with respect to different numbers of topics. The
following observations are made.

Firstly, ASTM remarkably outperforms all the other models
on both datasets. The significant improvement achieved by
ASTM compared to the DMM-based models (i.e. DMM,
GPUDMM, LFTM (glove-DMM)) validates that it is effective
to assign a topic to a segmentation induced from human
attention instead of assigning a topic to a short text document.
In other words, the assumption that a short text document
having only one topic may enhance the topic coherence but
negatively affects the accuracy of document classification.

8Java-ML is employed with its parameters chosen by five-fold cross-
validation on the training set, which can be download from http:/java-
ml.sourceforge.net/.
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Fig. 6: Classification accuracy on Snippets dataset.

Secondly, comparing the three DMM-based models (i.e.
DMM, GPUDMM, LFTM (glove-DMM)), we find that the
DMM model is slightly better than the other two models on the
Title data set and clearly better on the Snippets data set, even
though DMM does not incorporate word embeddings. It again
suggests that the combination mechanism should be carefully
designed to integrate word embeddings into topic models to
avoid detrimental effects. For example, in the Title dataset, the
group of two words, “white” and “sox”, denotes an American
baseball team. Intuitively, there should be a high possibility
for the two words to co-occur in the same topic so that we
can correctly classify the documents containing the group
into the category of “sports”. However, the word embeddings
of the two words are not close at all since the distributed
representation is trained on an external large corpus. The ways
used by existing models to incorporate word embeddings are
not sophisticated enough to address this issue. For example,
GPUDMM directly calculates the vector similarity between
word embeddings. In contrast, our ASTM model learns at-
tention signals, corresponding to the importance of words
under respective topics, using both word embeddings trained
from external corpora and topic embeddings learned from the
given data set. The resulted performance ascertain that the
combination mechanism is critical to better performance.

D. Examples of Segmentations

We further examine whether the segmentations generated
by ASTM are consistent with human reading habits. Four
examples, two from the Oscars dataset and two from the Title
dataset, are shown in Table IV and Table V with annotations
illustrating ASTM results. In particular, a bracket denotes
a segmentation of words. All words in a segmentation are
assigned to the same topic. Topics are marked in different
colors. We reserve stop words in the examples to facilitate
understanding and mark them gray. We analyze the results on
the four examples in details as follows.

Two tweets from the Oscars dataset shown in Table IV.
Firstly, ASTM accurately groups the full names of the
three persons (i.e., Demi Lovato, Meryl Streep and Justin
Timberlake) into same segmentations. Secondly, the three
names/segmentations are assigned to different topics mapping
the characteristics of the corresponding persons. For example,



TABLE IV: The topics in Oscars dataset

TABLE V: The topics in Title dataset

(demi lovato) was (stunning) at the (vanity fair #oscars party)
) at the 89th

(meryl streep) and (justin timberlake) (

(annual academy awards) #oscars

(twins 1), (
( )

(japan radiation fear) (

0): (twins’ liriano) ( ) (no-hitter) against

) (south korea) diaper (rush)

emma stone backstage brie larson crying congratulates
heytheredaiiiah starts accountants worked final center fiasco
song dream mintmovie adele ryan gosling

Topic5 ryan gosling years incredible lin manuel moana auli cravalho
princess voice taking vaiieta united states american stage

enews gt performance

Topic7 party fair vanity wore thefashioncourt gown andrew garfield
fall back couture seriesbrasil evans nina chris gold demi blue

dress lovato

Topicl8  year start mix city movie resist funder trumprussia russiagate
york streep political election ratings low london hit california

movies day

Topic28  academy awards red carpet dakota matt damon interview
ben video stars jamie looked hq star stunning added dallas

jamiedornan fashion

Demi Lovato is more relevant to the Vanity Fair Party (Topic7)
instead of the Academy Awards Ceremony because she does
not have an award nomination. The topic of Meryl Streep
(Topicl8) is related to politics because of her speech at
the Golden Globe Awards. As for the opening guest Justin
Timberlake (Topic5), Twitter users are keen to discuss the
reunion between him and Ryan Gosling since they were both
child stars from the Mickey Mouse Club.

Two news titles from the Title dataset shown in TableV.
The first one is labeled as “sports”. As we can see from the
title, two baseball teams (i.e., Minesota Twins and Chicago
White Sox) are successfully identified by ASTM. One notable
thing is that the two teams are assigned to different topics (i.e.,
topic23 and topicl respectively). By taking a closer look at the
content of the two topics, we realize that while they are both
related to baseball teams, the two topics are generated because
of externally trained word embeddings. More specifically, the
teams involved in the Topicl have the same characteristic that
their team names contain words describing colors, such as
Boston Red Sox, Chicago White Sox and Toronto Blue Jays.
Meanwhile, the characteristic shared by teams involved in the
Topic23 is that their team names contain words of animals,
such as Detroit Tigers, Chicago Cubs and Florida Marlins.
This observation proves again that externally trained word
embeddings need to be used cautiously.

The second title is labeled as “health”, and it summarizes
a buying frenzy from South Korean mothers since the food
bans sparked by the risk of radiation contamination from
Japan’s damaged nuclear power stations. ASTM segments this
title into four segmentations and assigns four different topics.
Firstly, we notice that the segmenting is in line with human
reading habits and correctly determines the subject (“japan
radiation fear”), predicate (“sparks”), and object (“south ko-
rea”). Secondly, we observe that the title does relate to
multiple topics, such as health (Topic6), and world (Topic24),
which justifies our assumption to assign multiple topics rather
than one topic to a short text document. Moreover, we find

red sox white baseball blue san puts wings moves rays sweep
indians boston force bay black angels grand hot closer

Topic6 japan nuclear crisis quake plant power plans energy safety
workers fears wal mart panel radiation recovery japanese

water tsunami control

Topicll  back video makes pay start school offer lede alabama free

tech good lose money vows private cash schools give leave

Topic23  mets yankees home hits phillies giants jays dodgers twins
braves road injury tigers marlins cubs pitch straight reds

pirates miss

Topic24  south libya north war talks forces nato libyan rebels govern-
ment army africa town korea military troops sudan carolina

held gaddafi

that ASTM is able to group “japan radiation fear” together,
although the word embedding of “japan” may suggest a low
similarity with “radiation”. By modelling attentional signals of
words from externally trained word embeddings and internally
learned topic embeddings, ASTM addresses the noise issue
confronted by existing distributed representation based topic
models to some degree.

E. Discussion of Threshold

Recall that ASTM generates segmentations by computing
the cosine similarity between pairs of consecutive words in
terms of their attentional weights. Two words will be grouped
into the same fragment if their cosine similarity is greater
than some pre-specified threshold ¢. We conduct experiments
to evaluate the influence of the threshold ¢ on the performance
of ASTM. In particular, we vary ¢ from O to 1 with an interval
of 0.25. Note that, although the cosine similarity between two
vectors of attentional weights varies from —1 to 1, negative
values indicate the attentional signals received by two words
are dissimilar, which is contrary to our assumption that only
neighboring words receiving similar attention will be grouped.
Therefore, it is meaningful only to consider positive values for
t.

Fig. 7 shows the NPMI scores with respect to the different
settings of ¢ on the three datasets respectively. It can be
observed that the topic coherence is sensitive to the value ¢,
especially on the Snippets data set. We take a closer look
at the data set and discover that Snippets is different from
the other two datasets in the way that consecutive words are
not necessarily semantically related. According to [26], the
Snippets data set consists of a set of search snippets which
are “noisy and less topic-focused”. We notice a situation
in Snippets where there are many synonyms in the same
document such as “wikipedia” and “wiki”, and they are
separated from each other with some less relevant words in
between. Since ASTM considers only the similarity between
neighboring words, whether such synonyms can be grouped
into the same segmentations depends on the selection of the
threshold ¢ as well as the relevance of the words between such
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Fig. 8: Classification accuracy on two datasets, with K ranging from 5 to 100 and threshold ¢ from 0 to 1

synonyms. Incorrectly putting synonyms into different seg-
mentations is equivalent to deleting their relevance, which has
a great impact on topic coherence. On the other two datasets
where documents are more topic-focused, the influence of ¢ on
topic coherence is much smaller, especially when the number
of topics is large. We observe that when the number of topics
is sufficient, similar words tend to have high similarity values
(e.g., CosSim>0.9). Consequently, varying the threshold from
0 to 0.75 does not affect the grouping of such words. That
explains why topic coherence becomes less sensitive to the
threshold ¢ when the number of topic K increases on Title
and Oscars.

The influence of threshold on classification accuracy is
shown in Fig. 8. It can be observed that the influence of the
threshold decreases on the two labeled datasets as the number
of topics K increases. When K is greater than 30, different
thresholds hardly affect the classification accuracy any more.
As discussed before, this is because the similarity value of
words receiving similar attention tend to be high when the
number of topics is great, so that lower threshold values do not
cause much changes to the topic-word distributions, which are
used to train Naive Bayes classifier. Interestingly, although the
topic coherence fluctuates with respect to the variation of the
threshold ¢ on the Snippets data set, the classification accuracy
on the same dataset is less sensitive to the threshold.

By noticing that ¢ = 0.5 gives the best NPMI score at most
K, and considering the impact of threshold on classification

performance, we set ¢ as 0.5 in other experiments to ensure
that both tasks achieve satisfactory performance.

V. CONCLUSION

Inspired by human reading habits, we proposed a topic
model named ASTM for short texts in this paper. In this
model, we take word embeddings as background knowledge
to relieve the sparsity of short texts and use attentional signals
to segment individual documents into segmentations, where
a segmentation is a coherent sequence of neighboring words.
Unlike the simple combination mechanisms of existing models
that improve the topic sampling by directly using word em-
beddings, we consider word embeddings and topic embeddings
jointly to compute attention signals. On one hand, our strategy
ensures the information brought by word embeddings will be
used only if they are consistent with the given dataset. On
the other hand, the strategy models the attention received by
words as the importance of the words under respective topics,
which conforms with human habits in understanding texts.
The experiments on three publicly available short text datasets
demonstrate the effectiveness of ASTM in terms of both
topic coherence and document classification performance. The
experimental results, coupled with conclusions from existing
studies [3], [11], [12], reveal that taking into account of human
attention and extra background knowledge can be useful for
enhancing textual analysis.

As an ongoing work, we consider improving our model by
using some self-adaptive sliding window based nonparametric



sampling strategy to generate segmentations to avoid the influ-
ence of the similarity threshold. We are also interested in ap-
plying ASTM on review datasets to analyze the characteristics
of user attention to build personality-based recommendation
systems.
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