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Abstract—Graph edge partitioning divides the edges of an
input graph into multiple balanced partitions of a given size to
minimize the sum of vertices that are cut, which is critical to the
performance of distributed graph computation platforms.
Existing graph partitioning methods can be classified into two
categories: offline graph partitioning and streaming graph
partitioning. The first category requires global information for
a graph during the partitioning, which is expensive in terms of
time and memory for large-scale graphs. The second category,
however, creates partitions solely based on the received edge
information, which may result in lower performance than the
offline methods. Therefore, in this study, the concept of local
graph partitioning is introduced from local community
detection to consider only local information, i.e., a part of the
graph, instead of the graph as a whole, during the partitioning.
The characteristic of storing only local information is important
because real-world graphs are often large in scale, or they
increase incrementally. Based on this idea, we propose a two-
stage local partitioning algorithm, where the partitioning
process is divided into two stages according to the structural
changes of the current partition, and two different strategies are
introduced to deal with the respective stages. Experimental
results with real-world graphs demonstrate that the proposed
algorithm outperforms the rival algorithms in most cases,
including the state-of-the-art algorithm METIS.
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Distributed graph

I INTRODUCTION

With the advent of the big data era, graphs are used in a
wide range of fields, such as social networks [1-3] and
knowledge graphs [4, 5]. The scale of graph data has increased
rapidly and has already exceeded the processing capabilities
of single machines [6]. To achieve better performance,
distributed graph computation systems that process large-
scale graphs on a cluster of machines, such as Pregel [7],
PowerGraph [8], GraphLab [9], and GraphX [10], have been
proposed. For such systems, graph partitioning plays a
significant role in improving their computing performance
because it determines the computational workload of each
machine and the communication between them.

In distributed graph computation systems, graph
partitioning is classified into two types: vertex partitioning,
and edge partitioning. Most of the traditional distributed graph
computation systems, such as Pregel and GraphLab, use
vertex partitioning, where vertices are evenly assigned to
different partitions by cutting the edges. However, most real-
world graphs follow the power-law distribution, i.e., most of
the vertices have few relative neighbors, while a few vertices
have many neighbors. In this case, vertex partitioning

increases workload imbalance and communication overhead
because of the high-degree vertices and the number of cross-
partition edges [11]. Different from vertex partitioning, edge
partitioning evenly assigns edges to different partitions by
cutting vertices. Researchers have demonstrated that edge
partitioning performs better than vertex partitioning on many
real-world graphs [8, 10, 11]. Therefore, edge partitioning has
been widely adopted in recent systems, including PowerGraph,
GraphX, and Chaos [12].

One traditional approach, referred to as offline graph
partitioning, is based on a global view of the graph. This
method obtains high-quality partitions by using multiple
iterations based on complete graph data and is widely used in
distributed graph computation systems. As the scale of graph
data has increased, the offline method has become unsuitable
for large-scale graph partitioning because it is difficult to
obtain global information for a graph [13]. Therefore,
streaming graph partitioning has been proposed, which treats
graph data as an online stream by reading the data serially, and
then determining the target partition of a vertex when it is
accessed [14]. With the streaming graph partitioning method,
only partial graph data is needed, which is more suitable than
the offline method for a large-scale graph. However, some
shortcomings in the streaming heuristics have appeared.
Firstly, compared with the offline method, the streaming
method results in worse partitioning quality. Secondly, to
provide maximum flexibility, the entire arrived graph data
must be accessed [15], which means streaming graph
partitioning also requires large portions of the graph.

To address the problems mentioned above, a local graph
partitioning method is designed in this study. It relies only on
the local information (i.e., a part of the graph) instead of the
global information during the partitioning. Compared with the
offline method, local graph partitioning is based on less graph
information. Compared with the streaming method, local
graph partitioning only needs to store data in memory for a
single partition at most.

Based on local graph partitioning, a two-stage local
partitioning (TLP) algorithm is designed. Most of existing
graph partitioning algorithms adopt a single partitioning
strategy while ignoring the influence of graph structure
changes on the partitioning quality during the partitioning
process. In this study, however, the concept of modularity is
introduced from local community detection to quantify the
structure of local partitions. We prove that the modularity of
each partition is positively correlated with the partitioning
quality. According to the structural changes of the local



partition, the partitioning process of each partition is divided
into two stages, and different graph partitioning strategies are
introduced at each stage. Experiments demonstrate that the
proposed TLP algorithm performs well for graph data of
different scales. The main contributions of this paper can be
summarized as follows.

e A local graph partitioning method is designed to
partition a graph using only local information. At the
same time, the method needs to save data for only a
single partition in memory, which is suitable for large-
scale graph partitioning.

e To quantify the structure change of a graph during the
partitioning process, the concept of modularity is
introduced. Meanwhile, the modularity of each
partition is proved to be positively correlated with the
graph partitioning quality.

e Based on local graph partitioning, a new TLP
algorithm is proposed. The partitioning process of
each partition is divided into two stages according to
modularity changes of local partitions. Each stage
adopts one corresponding partitioning strategy.

e The TLP algorithm is tested on real-world graphs of
different scales and is compared with several classic
graph partitioning algorithms. The experiments
demonstrate that TLP can achieve high-quality
partitions on graphs of different scales.

The structure of this paper is as follows. Section II states
the graph partitioning problem and introduces mainstream
graph partitioning algorithms through two classification
methods. The concept of modularity is also introduced. In
Section III, a local graph partitioning method is designed, and
a new TLP algorithm is proposed. In Section IV, the
performance of the TLP algorithm is analyzed on an extensive
set of real-world graphs and is compared with several state-of-
the-art algorithms. Finally, Section V concludes the paper.

II.  BACKGROUNDS

In this section, graph partitioning algorithms are first
introduced through two different classifications. Then the
concept of modularity is introduced.

A. Vertex Partition and Edge Partition

Graph data consists of vertices and edges; thus, graph
partitioning can be classified into vertex partitioning and edge
partitioning.

Definition 1. Cross-partition edge. The edge connecting
two vertices that are allocated to different partitions in vertex
partitioning.

Definition 2. Spanned vertex. The vertex is adjacent to
two edges that are allocated to different partitions in edge
partitioning.

Vertex partitioning refers to the allocation of all the
vertices in a graph by cutting the edges. The objective of
vertex partitioning is to minimize the number of cross-
partition edges and balance the number of vertices between
the partitions. To ensure that each partition can perform local
calculations independently in a distributed graph computation
system, each cross-partition edge generates a corresponding

ghost (a local replica) [8]. The process of vertex partitioning
is illustrated in Fig. 1(a). Edge e,» and e,. are the cross-
partition edges, and the ghosts are the shaded vertices.

Edge partitioning refers to the even allocation of all the
edges of a graph and allows vertices to span partitions. In edge
partitioning, a spanned vertex generates a mirror (a local
replica) of the vertex. The adjacent edges of vertex a in Fig.
1(b) are located in two partitions, resulting in a mirror shown
as a shadow. The objective of edge partitioning is to minimize
the number of mirrors and balance the number of edges
between partitions.

(b) Edge partition

Fig. 1. Vertex vs. edge partitioning: (a) Graph G is partitioned into two
partitions by cutting two edges, and the shaded vertices are ghosts; (b) Graph
G is partitioned into two partitions by cutting one vertex, and the shaded
vertex is a mirror.

In existing distributed graph processing systems, the
computational load of machines is usually determined by the
number of edges and the communication between the
machines, which is related to the number of edges shared
across machines. Therefore, the vertex partitioning algorithm
usually leads to an uneven computing load, and a large number
of edges shared across machines also blocks system
communication [11]. Therefore, more and more distributed
graph processing systems have begun to use edge partitioning
to improve system efficiency.

Furthermore, the problem statement for graph edge
partitioning is presented below.

Denote G=(V, E) as an undirected graph with n=|V]
vertices and m=|E| edges. For a subgraph S, denote V(S) and
E(S) as the vertex set and edge set of S, respectively.

Definition 3. Balanced p-edge graph partitioning. Graph
G is partitioned into p partitions. Each partition is denoted as
Pr(kE {1, 2, ..., p}). There are no duplicate edges between
partitions, i.e., E(P)NEWP)=0 (i, j€{1, 2, ..., p}, i#), and
|E(Pr)|<C, where C is the maximum capacity for edges in each
partition.

Definition 4. Replication factor (RF) [13, 16]. To quantify
the number of mirror vertices, the RF is defined as
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The graph edge partitioning problem consists of two
aspects, such that 1) each partition load is within a given
bound, and 2) the number of mirror vertices is minimized.
Hence, graph edge partitioning can be defined with Definition
5. In Table I, we give an overview of the notation used in this
paper, in order of presentation.

Definition 5. Graph edge partitioning. The graph edge
partitioning problem seeks to find a balanced p-edge graph
partitioning to minimize the RF.

TABLE L NOTATION OVERVIEW
G=(V, E) Graph with a set of vertices V" and edges E.
Py The kth partition of G.
Cab An edge connecting vertices a and b.
n=|V] The number of vertices in V.
m=lE| The number of edges in E.
(S) The vertices set of a subgraph S.
E(S) The edges set of a subgraph S.
P The number of partitions.
C The maximum capacity for edges in each partition.
RF The replication factor of a graph edge partitioning.
M(Py) The modularity of Py.
Eoul(Pr) The set of external edges in P;.
NW) The set of vertices that are adjacent to vertex v;.
N(Py) The set of vertices that are adjacent to any vertices in Py.
1 (vi) The criterion for selecting vertex v in Stage L.
2(vi) The criterion for selecting vertex v in Stage II.
d The average degree of the vertices in G.
L The maximum number of vertices in each partition.
R The ratio parameter of two stages.

B. Offline Partition and Streaming Partition

From another classification perspective, graph partitioning
algorithms are classified into offline graph partitioning
algorithms and streaming graph partitioning algorithms.

Offline graph partitioning algorithms are based on global
information and are usually adopted in early distributed graph
computation systems. As shown in Fig. 2(a), offline graph
partitioning requires complete graph data before the
partitioning process. For example, the classic algorithm
Kernighan-Lin (KL) [17] partitions the graph into two parts
initially, and exchanges arbitrary pairs of vertices between the
two parts to find the optimal solution. Based on the global
view of the graph, the KL algorithm can obtain a good result
if there is good initialization. METIS [18] adopts a multi-level
partitioning scheme, which includes the following three steps:
coarsening to reduce the size of the graph; partitioning the
reduced graph; decoarsening to map partitions back to the
original graph. This leads to state-of-the-art quality partitions
on a great number of graphs [19].

Different from offline graph partitioning, streaming graph
partitioning assumes that the graph data arrives in a stream,
and the target partition is determined as the data arrives. As
shown in Fig. 2(b), the edges arrive in the order of ey, e2, €3, .. ..

When an edge arrives, it can be allocated to the target partition.

For example, eis allocated to P, and e; is allocated to P, etc.

The classic streaming graph partitioning algorithms such as
LDG [15] and FENNEL [20] have greedy policies using
different heuristics to deal with the received graph data.
However, their precision is lower than that of METIS. Almost
all streaming graph partitioning algorithms have the following
characteristics: 1) When the data arrives, it is immediately
allocated to the target partition, and it is not moved after it is
placed. 2) Only the received data is accessed for partitioning.
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(b) Streaming partition
Fig. 2. Processes of offline graph partitioning and streaming graph
partitioning: (a) After the graph G is obtained, it is partitioned into three

partitions; (b) The graph data arrives in an edge stream, and the target
partition is determined after each edge arrives.

In general, offline graph partitioning algorithms with high
partitioning accuracy cannot deal with large-scale graphs
because they require complete graph information. Instead,
large graphs can be partitioned quickly using streaming graph
partitioning algorithms based on partial graph information.
However, the performance of streaming partitioning is poor,
and all the received data must be saved. As the amount of
received data gradually increases, the data that must be saved
gradually increases, which means large portions of the graph
are required.

C. Modularity

The concept of modularity was commonly used in the
community detection area. For example, Luo et al. introduced
the concept of modularity M to measure the quality of the
detected communities for local community detection [21]. The
greater the value of M, the better the detected communities.
Luo et al. use modularity to analyze the characteristic of the
local community in the process of community detection [22].
Jie et al. use weighted modularity to find crisp and fuzzy
communities in undirected and unweighted networks [23]. In
this study, we introduce the concept of modularity to graph
partitioning problems. Related concepts are defined as follows.

Definition 6. Internal edge. The edge in one partition
connecting two vertices that both belong to this partition.

Definition 7. External edge. The edge in one partition
connecting two vertices where one of the vertices is in the
same partition, and one is not.

Definition 8. Modularity [22]. The modularity of one
partition is the ratio of the internal edges to the external edges,
which is denoted as Eq. (2).
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where E(Py) is denoted as the set of internal edges in Py. Eoud Pr)
is denoted as the set of external edges in Pr. |E(Pr)land
|Eoud Pr)| represents the number of edges in E(Px) and EoudPr),
respectively. With the graph partitioning, the number of
internal edges and external edges in one partition is
continually changing. When the M(P;) is small, the partition
structure is loose. As the number of edges allocated to Py
gradually increases and the value of M(P)) gets larger, P
becomes tighter.

Furthermore, to affirm the relationship between
modularity and the structure of each partition, we prove the
modularity of each partition is positively correlated with the
graph partitioning quality in section III.

III.  PROPOSED ALGORITHMS

In this section, a TLP algorithm is proposed. Section 4
introduces the motivation for the algorithm. In Section B, the
frame of the TLP algorithm is presented. Sections C and D
illustrate respective partitioning strategies for the two stages.
Section E presents the complexity analysis of the TLP
algorithm.

A. Motivation

Local Graph Partitioning. As mentioned in Section 2.3,
the current graph partitioning algorithms can be classified into
offline graph partitioning algorithms and streaming graph
partitioning algorithms. The former algorithms have higher
partitioning precision, but they need complete graph data
before partitioning begins. The latter algorithms can partition
graphs according to partial graph data, but they need to save
all the received data, and the partitioning quality is worse than
with offline heuristics.
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Fig. 3. Processes of local graph partitioning. Graph G is partitioned into
several parts sequentially. In each partition, a single vertex constitutes the
initial local partition at first. Then, one vertex is added into the local partition
at each step until the local partition is full. Only the current local partition
and neighbors are accessed in each round.

Considering the limits of the above two methods, a local
graph partitioning method is proposed in this paper. As shown
in Fig. 3, a graph is partitioned into three partitions
sequentially. In round 1, the initially empty local partition is
expanded in steps when |E(P;)|<C. In each step, one optimal
vertex is selected from the neighbor vertex set of P by a

heuristic method, and then the edges between the optimal
vertex and P; are allocated to P;. After round 1 is over, round
2 will start with a new vertex to obtain partition P,. The graph
partitioning is complete when all three rounds have been
completed.

Through the above analysis, the characteristics of the local
graph partitioning method can be summarized as follows.

e Local graph partitioning relies only on information
about the local partition, which is suitable for large
graphs.

e  Only one partition is obtained per round. P, will not
change once round £ is over, which means that only
data for one partition needs to be saved in memory.
Therefore, this method can effectively reduce stored
data.

Two stages. Most of existing graph partitioning
algorithms adopt a single partitioning strategy during the
whole partitioning process. However, the change in graph
structure caused by each partition can influence the
partitioning quality. For example, in the initial partitioning
process, the graph structure of a partition can be loose because
the number of edges is relatively small. With the graph
partitioning, the partition can gradually be more compact.

To quantify the structure of the partition, we introduce the
concept of modularity from the field of local community
detection [21, 22]. Modularity was originally proposed to
detect the local community. In this study, however,
modularity is used to measure the structure of each partition.
To improve the accuracy of local graph partitioning, the
partitioning process is divided into two stages according to its
modularity. In Stage I, a graph partitioning strategy is
proposed to choose the closest and the local maximal-degree
vertex. In Stage II, the vertex that makes the local partition
tightest is selected based on the other partitioning strategy.

(a) Stage 1

(b) Stage II

Fig. 4. The local partition in two stages: (a) The modularity of the local
partition Py is small in the initial stage, and the vertexes with larger degrees
are selected as the core vertexes of the partition Py; (b) The structure of Py is
tight in stage II, and the vertexes close to P are chosen.

As shown in Fig. 4(a), the modularity of the local partition
P, is small in the initial stage. In this case, the core vertexes
with the large degrees in the graph are regarded as more proper
to be selected. In Figure 4(b), as the local partition structure in
stage II is tighter than in stage I, the vertexes close to P, are
chosen. The quality of graph partitioning can be effectively
improved with this two-stage graph partitioning method, as
shown by the experiments.

B. TLP Algorithm

In this subsection, a two-stage local partitioning (TLP)
algorithm is proposed. In order to quantify the structure



change of each partition with the modularity, we first prove
the correlation between the modularity of each partition and
the quality of graph partitioning, which is given as follows.

Claim 1. For any graph G and any positive integer p, the
modularity of P; is negatively correlated with the replication
factor of the balanced p-edge graph partitioning.

Proof. An averaging argument is used. Given a graph
G=(V, E) with average degree d, the number of partitions is p.
We have

[V|xd =2|E|. (3)

Assume that the number of edges in each partition is equal
in balanced p-edge graph partitioning. Then,

V|xd =2px|E(P,). )]
As for Py, we also have

V(B)|xd =2(E(B)|+

E, (B . O]
Combining Eq. (4) and Eq. (5), we obtain
LA
V]

2 (E@)+
|£]

Eom(E{)‘) (6)

1 P 1
=1+—x
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p

From Eq. (6), we can deduce that the larger the modularity
of each partition, the smaller the RF, which completes the
proof.

(a) Stage I (b) Stage I

Fig. 5. Two stages of local graph edge partitioning: (a) In stage I, the
modularity of Py is smaller than 1, which means the partition structure is
loose; (b) In stage II, the modularity of Py is not less than 1, which means the
partition structure is compact.

At the initial partitioning of P, the number of allocated
edges in Py is small, and the number of external edges in Py is
large. At this time, the partition structure is loose, thus M(Py)
is small. As the number of edges allocated to P gradually
increases and the value of M(Py) gets larger, Px becomes
tighter. In the TLP algorithm, the partitioning process of P, is
divided into two stages according to M(Px). The criteria for the
two-stage division is shown in Table II.

TABLE II. DIVISION INTO TWO STAGES BASED ON MODULARITY
Stage Criteria
Stage I 0<M(Pp<1
Stage 11 1<M(Py)

When 0<M(Pr)<1, the process of graph partitioning is in
Stage 1 where there are more internal edges than external

edges in Pj. The process of graph partitioning is in Stage II
when M(Pr)>1, where the partition becomes tighter. Figure 5
displays an example of both stages. In Fig. 5(a), |E(Pr)|=2,
|Eoud Pr)|=3, and M(P)=0.67, so the partitioning is in Stage I.
In Fig. 5(b), M(Px)=5, thus the partitioning is in Stage II.

Different graph partitioning strategies for Stage 1 and
Stage 11 are proposed in subsection C and D, respectively. The
TLP algorithm for one partition is shown in Algorithm 1.

Algorithm 1 TLP for one partition

Select vertex x from G randomly;
Pr—@;
N(Pr)<—N(x);
while |E(Px)|<C do
if M(Pr)<1 do //Stage I
Choose vertex v from N(Px) according to Section 3.3;
else do //Stage 11
Choose vertex v from N(Px) according to Section 3.4;
9. endif
10. Allocate edges between v and vertices in Px;
11. if N(Px) is empty do

P NN R LD

12. break
13. endif
14.end

C. Graph Partitioning Strategy in Stage 1

The graph partitioning strategy in Stage I selects the
optimal vertex v from N(Px) that is close to P and has a high
degree. The definition of N(Px) is as follows.

The criterion p,1(v;) [22] for selecting vertex v from N(Px)
is as shown in Eq. (3).

VO AN
|N (Vj)|

where |N(Py)| is the number of neighbor vertices of v;. The
closeness between v; and partition Px is measured by the
closeness between v; and the vertices in partition P; according
to Eq. (1). At the same time, when the degree of v; is large, the
greater the number of neighbors of v;, the larger the value
IN(vi)NN(vy)| may be. By calculating x1(v;) of each vertex in
neighbor vertex set N(Py), the selection strategy of the optimal
vertex v is defined as follows.

Hy (V) =

v;eN(v)NE

(M

v=arg max u,(v,) (3

That is, the vertex with the largest value of u(v;) in
neighbor vertex set N(Py) is selected as the optimal vertex v.
Then, the edges between v and the vertices in partition Py are
allocated to P. To give an example, the graph partitioning
strategy in Stage I is explained. From Fig. 6(a), it can be
observed that vertices a, e, and g are in the neighbor vertex set
N(Px). According to Eq. (3), we can calculate that p1(a)=0.4,
Us1(b)=0.6, and p,1(2)=0.5.

Then, vertex e is selected as the optimal vertex according
to Eq. (4). As can be seen, the degree of vertex e and g are the
same, while there are more edges between e and the vertices
in P; than between g and the vertices in Pr. The number of
edges between e and the vertices in Py is equal to that between
a and the vertices in P, while the degree of e is higher than



that of a. Therefore, the graph partitioning strategy in Stage I
achieves the selection of a vertex close to P with a high degree.

(@) (b)

Fig. 6. Graph partitioning strategy in Stage I: (a) There exist vertices a, g, e
in the neighbor vertex set N(P;). The optimal vertex is selected from the
neighbor vertex set N(Py) based on the value of z,(v;) which is calculated by
Eq. (7); (b) Allocate the edges between vertex e and partition Py, because the
vertex e is selected.

D. Graph Partitioning Strategy in Stage Il

In Stage II, the local partition becomes tighter with the
expansion by adding the optimal vertex v from N(Py). The
selection criterion u>(v;) is based on the change in modularity.
The representation of us(vy) is:

1

)=1- , 9
() 1+ AM ( )
where AM is defined as in Eq. (6).
AM =M'(F)—-M(R) (10)

where M(Py) is the modularity before selection is performed.
M'(Py) is the modularity of the partition if there is a vertex v;
allocated to Px. The partition will be tighter if the optimal
vertex is added with the largest value of up(v;). Thus, the
selection strategy of the optimal vertex v in Stage II is defined
as follows.

)

Vv =arg max A
gv,eN(PA)ILlSZ( /)

D Py <P, — E,
L) ‘;V(Pk) - Eom @ NY(P/() - Eaul
(a) (b)

Fig. 7. Graph partitioning strategy in Stage II: (a) There exist vertices g, e
in the neighbor vertex set N(Py). The optimal vertex is selected from the
neighbor vertex set N(Py) based on the value of y,(v;) which is calculated by
Eq. (9); (b) Allocate the edges between vertex e and partition Py, because the
vertex e is selected.

The edges between v and the vertices in P are then
allocated to Px. The graph partitioning strategy in Stage II will
be explained through an example shown in Fig. 7. Before the
allocation, |Eu|=5, |Eou[=4, and the modularity of Py is
M(Pr)=1.25. At this time, M(Pr)={g, e}. Assume that vertex g
is added to P, |E'W=6, |E'ou=4, M'(Pr)=1.5, and
AM(g)=M"(Pr)-M(Px)=0.25; vertex e is added to Py, |E"in|=8,
|E" =2, M"(Pr)=4, and AM(e)=M"(Pr)-M(Px)=2.75. Vertex e
can make Py tighter because u2(e)> p2(g). Therefore, e is the

optimal vertex in N(Px). The edges connecting e and the
vertices in Py are then allocated to Py. The partition result after
allocation is shown in Fig. 7(b).

E. Analysis of TLP

Two characteristics of the TLP proposed are summarized
as follows.

e The graph partitioning process relies only on local
information using a local graph partitioning method.

e  Only one partition must be saved in memory.

However, there also exist some limitations in the proposed
algorithm.

e The graph must be traversed in BFS (Breadth First
Search) order when the partition P; expands.

e The selection of the optimal vertex in N(Py) requires
traversing all the vertices in N(P;), which may
degrade time performance when N(P) is very large.

Time and space complexity. Denote d as the average
degree of the vertices in the graph G, and L as the maximum
number of vertices in each partition. At first, there is only one
vertex in partition Py, and the algorithm traverses d vertices to
determine which vertex to select into Pj. There are now two
vertices in Py, and the algorithm should traverse at most 2d
vertices, and so on. In general, when there are L vertices in Py,
Ld vertices at most should be traversed. Furthermore, we need
O(d) for each vertex computation in N(P;). Because
Shiixd*d =d’L(L+1)/2 , the time complexity of our
algorithm is O(L>d?). The space complexity is O(Ld) because
we need to store only P and N(Px).

For the state-of-the-art graph partitioning algorithm
METIS [18], the time complexity is O(n+m+klog(k)), and the
space complexity is O(n). Although the time complexity of
TLP is slightly higher than that of METIS, the space
complexity of TLP is much lower than that of METIS. In
Section IV, the partitioning quality of two algorithms will also
be compared.

IV. EXPERIMENTS

In this section, the performance of our algorithm, analyzed
through experiments, is discussed. First, the evaluation value,
experimental platform, and real-world datasets are introduced.
In Section 4.2, the proposed TLP algorithm is compared with
four other algorithms. In Section 4.3, the two-stage method is
compared with the one-stage method by redefining the
division criterion of the two stages.

A. Setup

Evaluation. The RF' [13] is illustrated in Eq. (1) as a
measurement of the quality of graph partitioning. The greater
the number of spanned vertices in each partition, the larger the
RF will be. The minimum RF is RF=1, which means there is
no spanned vertex in any partition.

Experimental Environment. The TLP algorithm
proposed in this paper was implemented in Python. We
evaluate all graph partitioning algorithms on a machine with
an Intel 17-8700k 3.70 GHz Core processor and 48 GB RAM.

Datasets. We used nine real-world graph datasets for our
experiments. The statistics for the graphs are listed in Table



III. Graphs G1-Gg can be found in SNAP [24], and Gy comes
from the huapu system [25].

TABLE IIL REAL-WORLD GRAPH DATASETS

Graph Name |Notations| [W(G)) |E(G)| |G+ E(G)|
email-Eu-core Gy 1,005 25,571 26,576
Wiki-Vote G, 7,115 103,689 110,804
CA-HepPh Gs 12,008 118,521 130,529
Email-Enron Gy 36,692 183,831 220,523
Slashdot081106 Gs 77,357 516,575 593,932
soc_Epinions1 Gs 75,879 508,837 584,716
Slashdot090221 Gy 82,144 549,202 631,346
Slashdot0811 Gy 77,36] 905,468 905,468
huapu Gy 4,309,321( 7,030,787, 11,340,108

B. Performance Comparison

In this subsection, we discuss the testing of the TLP
algorithm on different graphs and compare it with several
state-of-the-art graph partitioning algorithms. The comparison
algorithms used in this study include METIS [18], LDG [15],
DBH [11], and Random [8].

e METIS is one of the graph partitioning algorithms
with the highest precision and is widely used in
distributed graph computing systems. However, it is
difficult for METIS to manage large graphs because
it is an offline graph partitioning algorithm [14].

e LDG is a classic streaming graph partitioning
algorithm that is characterized by the ability to
quickly perform graph partitioning operations based
on partial graph data information. Compared with
METIS, LDG is less accurate.

e DBH mainly focuses on the skewed degree
distribution of power-law graphs. Experiments have
proved that DBH has better precision when dividing
graph data that obey the power-law distribution.

e Random is a simple random graph partitioning
algorithm. It can quickly divide a graph into different
partitions in scenarios where accuracy is not required.
To intuitively compare the accuracy of each algorithm,
the result for Random is regarded as the worst
partitioning quality in this study.

Our proposed TLP algorithm and the above four
algorithms were run on nine different graph datasets with
partition number p=10, 15, 20. The results are shown in Fig.
8.

Fig. 8(a), Fig. 8(b), and Fig. 8(c) show the graph
partitioning results when p=10, 15, 20, respectively. The x-
axis represents RF, which is a measurement of graph
partitioning performance. The smaller the RF, the better the
graph partitioning performance. From comparing the
experimental results, we obtain the following conclusions.

e The qualities of graph partitioning with TLP and
METIS are better than other algorithms in all cases.

e In most cases, TLP performs better than METIS,
while some performances of TLP are slightly worse

than those of METIS.

To compare TLP with METIS in more detail, the
differences in RF between the two algorithms, ARF’, is defined

as follows.
ARF = RF(METIS) — RF(TLP) (12)

Where ARF >0, the performance of TLP is better than
METIS. The ARF in all cases is shown in Table IV.

TABLEIV.  VALUE OF ARF BASED ON NINE GRAPH DATASETS WHEN
P=10, 15,20
Gl Gz G3 G4 G5
p=10 1.19 0.32 0.23 —0.09 0.14
p=15 1.29 0.64 0.18 —0.07 0.08
p=20 1.56 0.85 0.20 —0.09 0.12
Gs G, Gs Gy Average
p=10 0.04 0.10 0.37 0.02 0.26
p=15 0.03 0.07 0.47 0.03 0.30
p=20 0.05 0.09 0.48 0.03 0.36

As shown in Table IV, ARF >0 in eight graphs when p=10,
15, 20, respectively, which means that the partitioning
qualities of TLP are better than those of METIS in most
situations. The averages of ARF are also larger than 0 for
different values of p, thus TLP performs better than METIS
overall.

C. Comparison of Different Divisions of Two Stages

To prove the superiority of the TLP algorithm that divides
the two stages based on modularity, we set the division
between the two stages according to the number of edges in
each partition and compare it with the TLP algorithm through
experiments. The change in the division between the two
stages is shown in Table V.

TABLE V. THE DIVISION BETWEEN TWO STAGES BASED ON THE

NUMBER OF EDGES

Criteria
0<|E(P)I<R-C
R-C<|E(P)I<C

Stage

Stage [
Stage 11

where R is the ratio parameter of the two stages.
|E(Pr)|SR-C and R-C<|E(Py)| refer to Stage I and Stage II of
the graph partitioning, respectively. Particularly, there is only
Stage 11 in the graph partitioning process when R=0, and there
is only Stage [ when R=1. For ease of recollection, we call this
algorithm TLP_R.

To evaluate the influence of R on graph partitioning
performance in detail, 11 different values of R are taken from
[0, 1] with an even step length of 0.1. The experimental results
with different values of R on 9 graphs are shown in Fig. 9, Fig.
10, and Fig. 11, where p=10, 15, 20.

The above insets represent the performances of TLP and
TLP_R based on different real-world graphs where p=10, 15,
20. The horizontal ordinate and vertical coordinate of each
inset represent different values of R and RF, respectively.
Therefore, the following conclusions can be drawn from the
above experimental results:

(1) In TLP R, all the values of R satisfy R € (0, 1),
corresponding to the optimal partitioning results.

(2) In TLP R, the values of R satisfy R € {0, 1},



corresponding to the worst partitioning results.

(3) In TLP R, the optimal partitioning result
corresponds to different R values in different cases.

(4) Compared with TLP R, TLP can obtain near-
optimal partitioning results in most cases.

Combining conclusions (1) and (2), we deduce that graph
partitioning with the two-stage heuristic method results in
better quality than with the one-stage heuristic. Conclusions
(3) and (4) mean TLP can obtain better partitioning results
than TLP_R without adjusting parameters.

T =

I TLP

6F I METIS 4
I LDG
I DBH

ar _ _ [ ] Random
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Fig. 8. Replication factors for different algorithms run on real-world graphs.

The number of partitions in (a), (b), and (c) are 10, 15, and 20, respectively.

D. Analysis of Average Degree in Two-Stage Method

In this subsection, we will analyze the differences between
these two stages using the average degree. As described in
Section III, TLP divides the process of graph partitioning into
two stages, in which different partitioning strategies are
adopted. In Stage I, the core vertexes with the large degrees in
the graph are more likely to be chosen. In Stage II, based on

these center nodes, the local partition expands by selecting the
vertices which are close to the existing partition.

To analyze the above two strategies, the average degree of
all vertices in these two stages are counted. As shown in Table
VI. The average degrees of all vertices in stage I are much
greater than that in stage II, which means the core vertices with
the large degrees are chosen in stage I indeed. In stage I, the
local partition expands with these core vertices as the center,
so the average degrees in stage II are smaller than that stage I.

TABLE VL THE AVERAGE DEGREE OF ALL VERTICES IN TWO STAGES
BASED ON NINE GRAPHS WHERE P=10, 15, 20
p=10 p=15 =20
Stage I | Stage Il | Stagel | StagelIl | Stagel | Stage Il
G, 45.85 13.16 32.44 11.15 39.20 9.29
G, 57.13 7.67 46.90 6.25 63.34 7.19
G; | 236.86 12.72 | 196.17 12.78 | 123.01 12.48
Gy 31.46 7.63 41.08 6.22 29.21 5.79
Gs 33.25 8.92 34.55 8.36 30.37 8.00
G 65.62 5.09 78.16 5.80 46.46 5.52
G, 48.60 9.23 26.27 8.82 32.49 8.10
Gy 13.93 10.95 45.42 9.17 53.56 8.24
Gy 30.91 4.15 | 166.99 4.11 58.66 4.02

V. CONCLUSIONS

In distributed graph computation systems, graph data
partitioning impacts the communication overhead and the
workload balance between computing resources. In this paper,
a local graph partitioning method that relies on local graph
information and needs to save data for only one single
partition was proposed. Our proposed algorithm was tested on
several real-world datasets and the results were compared with
several state-of-the-art graph partitioning algorithms. The
experiments demonstrated the superiority of our algorithm.

Our algorithm can be further improved in several aspects.
Firstly, although the TLP algorithm can achieve good
partitioning quality relying on local graph information, the
time complexity of TLP is higher than some state-of-the-art
graph partitioning algorithms. We expect the partitioning
efficiency of TLP will be improved in the future.

Secondly, the graph data must be traversed in BFS
(Breadth First Search) order when each partition expands,
which means the unpartitioned graph data need to be sorted in
BFS order after one vertex is partitioned. In future work, a
sliding window mechanism will be introduced to sort and
partition the graph data in parallel, which will be more suitable
for large-scale graph partitioning.
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Fig. 11. Replication factors for TLP and TLP_R on real-world graphs where p=20. The values of R in TLP_R are taken from [0,1] with an even step length of
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