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HIGHLIGHTS

We propose to use DL-LiteA techniques to reason and query the web-scale Open Data.
We provide a divide-and-conquer reasoning and query answering approach for DL-LiteA.
We build the provided approach from both theoretical and practical perspectives.

We conduct experiments on large-scale open datasets to verify the provided approach.

ARTICLE INFO ABSTRACT

Article history: We propose to use DL-Lite , techniques to reason and query the Web-scale Open Data (knowledge bases)
Received 3 April 2018 described by Semantic Web standards like RDF and OWL due to the low reasoning complexity and
Received in revised form 2 November 2018 suitable expressivity of the language. When facing the real-life scalability challenge, the actual reasoning
Accepted 29 January 2019 and query answering may become infeasible by the following two factors. Firstly, for both satisfiability
Available online 6 February 2019 . . . . L .

checking and conjunctive query answering, a polynomial size of queries may need to be answered over the

Keywords: data layers of the corresponding knowledge bases (KBs) w.r.t. the size of the schema knowledge of these
DL-lite 4 KBs. Secondly, for KBs with massive individual assertions, evaluating a single query over the data layers
Open data may be highly time-consuming. This impels us to seek for a divide-and-conquer reasoning and query
Semantic web answering approach for DL-Lite 4, with the basic idea of partitioning both KBs and queries into smaller
Knowledge base chunks and decomposing the original reasoning and query answering tasks into a group of independent

Query answering

- sub-tasks such that the overall performance can be improved by taking advantage of parallelization
Divide-and-conquer

and distribution techniques. The challenge for designing such an approach lies in how to carry out
partitioning and reasoning reduction in a sound and complete way. Motivated by hash partitioning of
RDF graphs, we expect the smaller KB chunks to have the local feature for both satisfiability checking and
simple-query answering. Here simple-queries are the conjunctive queries whose query atoms share a
common variable or individual. For query answering, we expect to partition a query into smaller simple-
queries and evaluate them over smaller KB chunks. Under these expectations, our divide-and-conquer
approach is constructed from both theoretical and practical perspectives. Theoretically, definitions of KB
partitions and query partitions are presented, and the sufficient and necessary conditions are identified to
determine whether a KB partition holds the desired features. Practically, based on the theoretical results,
the concrete ways of partitioning KBs and queries as well as evaluating query partitions over KB partitions
are described. Moreover, a strategy of optimizing the procedure of evaluating query partitions over KB
partitions is provided to improve the overall query answering performance. To verify our approach, two
Web-scale open datasets, DBpedia and BTC 2012 dataset, have been chosen. The empirical results indicate
that the provided approach opens new possibilities for realizing performance-critical applications on the
Web with both high expressivity and scalability.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

v ) Coined by Tim Berners-Lee, the Semantic Web [1] intends to
Corresponding author. bofd h R dabl dund dabl
E-mail addresses: guzhenzhen0720@163.com (Z. Gu), smzhang@math.ac.cn Createjawe o ata.w ose Comfentls l'.e%l ablé and un erSFan able

(S. Zhang), cgcao@ict.ac.cn (C. Cao). especially to machines. For this ambition, the World Wide Web

https://doi.org/10.1016/j.websem.2019.01.003
1570-8268/© 2019 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.websem.2019.01.003
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2019.01.003&domain=pdf
mailto:guzhenzhen0720@163.com
mailto:smzhang@math.ac.cn
mailto:cgcao@ict.ac.cn
https://doi.org/10.1016/j.websem.2019.01.003

Z. Gu, S. Zhang and C. Cao / Web Semantics: Science, Services and Agents on the World Wide Web 55 (2019) 122-144 123

(W3C) community directed by Tim Berners-Lee has proposed a se-
ries of standards and techniques, including the Recourse Descrip-
tion Framework (RDF) [2], the Web Ontology Language (OWL) [3]
and the Linked Data Principles [4,5], so as to describe, share and
integrate data and knowledge on the web in a structured and
semantically related way. Over the last decade, the Semantic Web
technologies have been greatly developed and successfully applied
to many domains, such as life sciences and healthcare. During the
same period of time, the Open Data, defined as the data that can
be freely used, accessed and shared for any purpose, has drawn
more and more attention from both research community and
industry [6,7]. One of the best practices of the Open Data is the
Linked Open Data (LOD) project [8,9], a blend of Linked Data and
Open Data. A large number of open datasets have been described
and published on the web based on the LOD principles, including
the well known DBpedia [ 10] and Freebase [11]. As the evolving of
the information and Al technologies, one can foresee a continual
expansion of large-scale and complex open data specified by the
Semantic Web standards.

Although the sheer size of the open data in LOD can be viewed as
a positive sign for Semantic Web initiatives, it causes performance
bottlenecks for systems and tools that provide data managing and
query answering services over the LOD datasets. Moreover, as the
growth of schema knowledge described by OWL, realizing efficient
reasoning and expressive query answering has become a challeng-
ing task for both data publishers and end users. Most of the studies
in this respect (for example, [ 12-15]) focused on dealing with the
scalability issue whereas inferring knowledge through reasoning
is often ignored. Moreover, when reasoning is considered, most of
the time only lightweight RDFS reasoning can be supported.

Description Logics (DLs) [16-19] consists of a group of knowl-
edge representation languages in first-order logic that feature the
reasoning decidability, forming the logical foundation of Semantic
Web, e.g., the DL SROZQ [20] underlies the expressive ontology
language OWL 2 DL [21]. In addition to Semantic Web, DLs have
also been studied in application domains like Data Integration [22]
and Biomedical Informatics [23]. In the DL community, one of the
main research focuses is concerned with the trade-off between ex-
pressive power and computational complexity which are two birds
that cannot be killed by one stone. Driven by the motivation of
processing large-scale individual data, the DL-Lite family [24,25] is
specifically tailored to capture basic ontology language constructs
while keeping low reasoning complexity.

In the DL-Lite family, DL-Lite 4 [26,27], especially designed for
Ontology Based Data Access [28-31], is the most expressive lan-
guage that characterizes FOL-rewritability. This means that in DL-
Lite 4, both satisfiability checking and conjunctive query answer-
ing can be eventually reduced to answering queries over the data
layer of the corresponding knowledge base (KB). Concretely, for
a DL-Lite 4 KB, by schema knowledge reasoning, a set of queries
can be constructed such that the KB is satisfiable iff each gener-
ated query has an empty answer set over the data layer of this
KB. Moreover, for a conjunctive query, again by schema knowl-
edge reasoning, this query can be ultimately rewritten into a set
of conjunctive queries such that all the certain answers of this
query can be soundly and completely captured by evaluating each
rewritten query over the data layer of this KB. Thus DL-Lite 4 has
low complexity for both satisfiability checking and conjunctive
query answering, i.e., ACy data complexity and PTime combined
complexity [32]. Furthermore, the separation between schema
knowledge and data layer reasoning makes it possible to use highly
optimized database management systems and engines in practice
for query answering. These distinguished features impel us to
propose using DL-Lite 4 techniques to reason and query the web-
scale, open datasets that are described by Semantic Web standards
and exceed the expressivity of RDF and RDFS.

To demonstrate the rationality of our proposal, we have con-
ducted a statistical analysis of the Billion Triple Challenge (BTC)
2012 dataset! consisting of 1.1 billion RDF triples (without dupli-
cates) obtained by crawling the open Web during May and June
2012. In this dataset, 99% of the triples are individual assertions,
calling for techniques with high scalability at data layers such as
DL-Lite 4. Moreover, the schema knowledge of this dataset con-
tains a total of 344,778 axioms, of which 339,519 (98%) can be
captured by DL-Lite 4. Furthermore, among the schema knowledge
captured by DL-Lite 4, there are 15,932 class inclusion axioms
in the form of A © 3R.B, 4625 class disjoint axioms, 1854 in-
verse property assertions, 614 functional property assertions, and
167 symmetric property assertions, all beyond the expressivity of
RDFS.

Unfortunately, even with low reasoning complexity, when fac-
ing the real-life scalability challenge, the actual reasoning and
query answering realized by DL-Lite 4 techniques may become
infeasible by the following two factors. Firstly, for both satisfia-
bility checking and conjunctive query answering, polynomial size
of queries may need to be answered over the data layer of the
corresponding KB, w.r.t. the size of the schema knowledge of
this KB. Secondly, for the KBs with massive individual assertions,
even aided with highly optimized database management systems,
evaluating a single query over the data layers may be very time-
consuming. The combination of these two factors makes the situa-
tion even worse, calling for new techniques for DL-Lite 4 to tackle
the scalability and efficiency challenge.

In computer science, divide-and-conquer is a classical algo-
rithm design paradigm with the idea of breaking down a problem
into independent, smaller subproblems, which actually is the basis
of efficient algorithms for all kinds of problems.? This inspires us
to design a divide-and-conquer reasoning and query answering ap-
proach for DL-Lite 4 to meet the scalability and efficiency require-
ments of real-life applications. The basic idea is to partition both
KBs and queries into smaller chunks and decompose the original
reasoning and query answering task into a group of independent
subtasks. The performance improvement that such a divide-and-
conquer approach can achieve embodies in the following three
aspects. Firstly, a smaller size of schema knowledge and queries
makes a smaller number of queries needed to be answered over
the data layer of the corresponding KB. Secondly, a smaller size
of the data layer of KB makes the eventual queries be evaluated
more efficiently. And finally, the independence among the subtasks
enables distribution and parallelization techniques to take effect so
as to improve the overall performance.

There are two main challenges for designing such a divide-and-
conquer reasoning and query answering approach for DL-Lite 4,
namely how to partition KBs and queries, and how to carry out
reasoning and query answering reduction in a sound and complete
way. These two problems are highly interconnected, as in order to
ensure soundness and completeness, different KB and query par-
titioning strategies require different ways of reasoning reduction,
and vice versa. In order to tackle the challenges, some desired prin-
ciples of partitioning or reasoning reduction must be determined
before designing the concrete divide-and-conquer approach.

Partitioning via hashing is a well known strategy for RDF graph
splitting, and has been applied to real-life large-scale RDF sys-
tems [33-35]. The purpose of hash partitioning is to split a RDF
graph into subgraphs such that star-queries (queries with only
subject-subject joins) can be evaluated over a RDF graph by an-
swering the query over each subgraph independently and then
combining the certain answers obtained. Motivated by hash parti-
tioning of RDF graphs, we require the smaller KB chunks to have the

1 https://km.aifb.kit.edu/projects/btc-2012/.

2 https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm.
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local feature for both satisfiability checking and simple-query an-
swering (abbreviated as SCSQA in this paper). Here, simple-queries
extended from star-queries refer to the conjunctive queries whose
query atoms share a common variable or individual. The motiva-
tion of requiring the local feature of simple-query answering is that
we hope “simple queries" can be answered directly without going
through query partition. For “non-simple" queries, we intend to
partition them into smaller simple-queries and replace answering
them over DL-Lite 4 KBs with evaluating the partitioned smaller
simple-queries over the KB partitions with the local feature of
SCSQA. When a conjunctive query can be evaluated in such a way
soundly and completely, we say it is simple-query reducible.

Based on these principles, we devise our divide-and-conquer
reasoning and query answering approach from both theoretical
and practical points of view, and the contributions are summarized
as follows.

1. We formalize the definition of DL-Lite , KB partitions, and
identify the sufficient and necessary conditions that enable
a KB partition to have the local feature of SCSQA. Based
on these theoretical results, we present a concrete way of
computing such KB partitions.

2. We formalize the definition of conjunctive query partitions
and evaluation, and identify the sufficient and necessary
conditions that determine whether a conjunctive query is
simple-query reducible. Based on these theoretical results,
we present concrete ways of partitioning and evaluating
simple-query reducible queries as well as non-simple query
reducible queries.

3. We design a strategy of optimizing the procedure of evalu-
ating query partitions over KB partitions, with the basic idea
of reducing the intermediate results produced by answering
sub-queries as many as possible so as to speed up the overall
query answering.

4. We conduct experiments on two large datasets, DBpedia
and BTC 2012 dataset, to demonstrate the rationality, effi-
ciency and scalability of the provided divide-and-conquer
approach. The results show that our reasoning and query
answering approach is appealing in consuming Web-scale,
real-world open data.

To the best of our knowledge, this is the first study on parti-
tioning DL-Lite 4 KBs for the purpose of reasoning and querying
large-scale datasets. The rest of the paper is organized as follows.
Section 2 presents the syntax and semantics of DL-Lite 4 and con-
junctive queries. We present the problem discussed as well as an
overview of our approach in Section 3. DL-Lite 4 KB partitioning
and conjunctive query partitioning are studied in Sections 4 and
5, respectively, followed by an optimization strategy for query
partition evaluation in Section 6. Afterwards, Section 7 presents
the experiments of applying our divide-and-conquer approach to
real-world datasets. Related work is introduced in Section 8, and
finally Section 9 concludes the paper by giving directions for our
further work.

2. Preliminaries

For self-containment, in this section, we briefly present the
syntax and semantics of DL-Lite 4, and conjunctive queries [].

Let I, C and R be countably infinite and pairwise disjoint sets
of names for DL-Lite 4 individuals, classes and roles. The syntax of
DL-Lite 4 is illustrated in the following two definitions.

Definition 1. In DL-Lite 4, basic roles S, general roles R, basic
classes B and general classes C are inductively defined as follows:
Su=P|P, B:=A|3S

R:=S|-S, C:=B|3S.B|—~C

Table 1
The interpretation of DL-Lite 4 classes and roles as well as axioms and
assertions w.r.t. an interpretation Z.

(P7)E = {(.®)l(x.y) € PT}

(=) = AT x AT —§T
(3S)F = {xFy.(x,y) € ST}
(3s.B) = {x|]3y.(x,y) € ST Ay € BT}

(_'B)I — AI _BZ
T = BC CiffBT c C*
T & SCRIiffST CcRT
T = Fun(S)iff (x,y) € ST and (x, z) € ST impliesy = z
T E Aa)iffa € AT
T = P(a, b)iff(a, b) € PZ

whereA € Cand P € R.ADL-lite 4 axiom takes one of the following
forms:

SCR, BCC, Fun(S)

A DL-Lite 4 individual assertion takes one of the forms:

A(a), P(a,b)

whereA € C,P € Rand a, b € I are called individuals.

Definition 2. A DL-Litey KB X = (7, .A) is a tuple where 7
is a finite set of DL-Lite , axioms and A a finite set of DL-Lite 4
assertions. Moreover, for each axiom Fun(S) in 7, S and S~ do not
occur in the right hands of inclusion axioms (Z) in 7. 7 and A are
respectively called the TBox and ABox of K.

Example 1. By DL-Lite 4, the knowledge “Every person has a mother
which is a woman" and the fact “Lucy is a person™ can be formally
represented by the following axiom and assertion:

Person C 3 hasMother .Woman
Person(Lucy)

where Person and Woman are classes, hasMother is a role and Lucy
an individual.

Let V be a set of variables that is disjoint with I, C and R. The
syntax of conjunctive queries is formalized in the definition below.

Definition 3. A query atom has the form A(x) or P(x, y) where
A € CP € Rand x,y € VUL A conjunctive query Q is an
expression of the form:

a A Aay = qX)

where a7, ..., ay are query atoms, X is a tuple of elements in VU I
and each variable in X occurs in some «; where 1 < i < n. We define
the body and head of query Q as bd(Q) = UL, {;} and hd(Q) = X,
respectively.

Here, we also mention the notion of conjunctive queries with in-
equalities [26], which are simply conjunctive queries where atoms
in the form of x # y may occur. For a conjunctive query Q,
variables occurring in hd(Q ) are called the distinguished variables of
Q, whereas variables solely occurring in bd(Q) are called the non-
distinguished variables of Q.

Example 2. The question asking for persons and their mothers can
be formally represented as the following conjunctive query:

Person(?x) A hasMother(?x, ?y) — q(?x, ?y)

Next, we present the semantics of DL-Lite 4 KBs and conjunctive
queries.
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Semantics of DL-Lite , KBs. An interpretation Z = (AZ,.T)is a
tuple where A7 is a non-empty set and - is a mapping that maps
each element in I, C and R to a distinct element in AZ, a subset
of AT and a subset of AT x AZ, respectively. The interpretation
of class and role constructors as well as axioms and assertions are
illustrated in Table 1. We say that Z is a model of DL-Lite 4 KB K if
T satisfies all the axioms and assertions in K. The satisfiability and
entailment (=) are defined as usual.

For a tuple i1, we use |ii| and u[i] to denote the length and the
ith element of 1, respectively. For a tuple i’ consisting of variables
and satisfying |1'| = |ii|, we use [1'/ii] to denote a substitution.
For a tuple or query O, we use O[i'/i] to denote the result of
replacing every occurrence of '[i] in O with u[i] for 1 < i < [i].
For convenience, for a query Q and tuple i such that |ii] = |hd(Q)],
we use Q(u) to denote Q[hd(Q)/ii]. The semantics of conjunctive
queries is illustrated as follows.

Semantics of conjunctive queries. For a query Q and interpretation
7, a binding 7 of Q over 7 is a function that maps each individual
ain Q to a” and each variable in Q to an element in AZ. We write
I,7m = Qif m(x) € AT for each A(x) € bd(Q), (w(x), (y)) € Pt
for each P(x, y) € bd(Q) and 7 (x) # m(y) for each inequality atom
X # y occurring in Q. We write Z = Q if there exists a binding =
of Q over Z such that Z, = }= Q. For a DL-Lite 4 KB K, a tuple i with
length |hd(Q)| and consisting of names occurring in K is called a
certain answer of Q over K if for each model Z of K, T }= Q(i1) holds.
We use ans(Q, K) to denote the set of all the certain answers of Q
over K.

In this paper, we only consider satisfiability checking and con-
junctive query answering, as they are two basic and core reasoning
problems.

3. Problem description and approach overview

Problem description. In DL-Lite 4, both satisfiability checking and
conjunctive query answering can eventually be reduced to answer-
ing conjunctive queries over the ABoxes of DL-Lite 4 KBs [26,27].
Concretely, for a DL-Lite4 KB X = (7, .A), by TBox reasoning, a
set Q of conjunctive queries with or without inequalities can be
constructed such that K is satisfiable iff evaluating each query in Q
over A returns an empty set, i.e., Ugegans(Q, (4, A)) = @. More-
over, if K is satisfiable then for each conjunctive query Q, again
by TBox reasoning, Q can be rewritten into a set of conjunctive
queries Q such that all the certain answers of Q over K can be
captured by evaluating each query in Q over A. To realize such
query rewriting for DL-Lite 4, one of the classical algorithms is
PerfectRef [26,27],i.e.,

ans(Q, ]C) = UQ’GPerfectRef(Q.T)anS(Q/, (Qv -A))

holds. Thus DL-Lite 4 has low complexity for both satisfiability
checking and conjunctive query answering, and the separation be-
tween TBox and ABox reasoning enables the exploration of highly
optimized database management systems to store ABox assertions
and evaluate queries over them.

Even with these efficiency features, when processing real-life,
Web-scale open datasets described by Semantic Web standards,
the following two factors may make the actual DL-Lite 4 reasoning
and query answering tasks infeasible. (1) For both satisfiability
checking and conjunctive query answering, a polynomial size of
queries may need to be answered over the ABox of the corre-
sponding KB w.r.t. the size of the TBox. Suppose a KB uses the
DBpedia ontology (with 233,227 axioms) as its TBox. For satis-
fiability checking, according to the algorithm Consistent [27],
2963,132 queries need to be answered over the ABox of this KB.
Furthermore, suppose a conjunctive query contains the classes

dbo:Person and dbo:Place® from the DBpedia ontology. By TBox rea-
soning, this query will be rewritten into more than 1144 x 1391 =
1591,304 queries, as the two classes respectively have 1144 and
1391 implied sub-classes. (2) For KBs with a Web-scale ABox, even
though taking advantage of highly optimized database manage-
ment systems, evaluating a single query can be time-consuming.
For example, in our experimental setting as will be described in
Section 7, asking for the persons labeled with “Alan Turing":

dbo : Person(?x) A rdfs:label(?x, Alan Turing@en) — q(?x)

over the 275,710,447 individual assertions in DBpedia took a total
of 52 minutes. Thus efficient techniques are needed for DL-Lite 4
to tackle the scalability and efficiency challenges in performance-
critical, Web-scale applications.

The divide-and-conquer approach. In this paper, we propose to
cater to the requirement of scalability and efficiency from a divide-
and-conquer perspective. Our basic idea is to partition both KBs
and queries into smaller chunks, and decompose the original rea-
soning tasks into a group of independent sub-tasks so that the
queries eventually needed to be evaluated can be reduced and
quickly answered and distribution and parallelization techniques
can take effect to improve the overall performance. The difficulty
in realizing such an approach lies in that the partitioning and
reasoning reduction shall be carried out in a sound and complete
way. Motivated by hash partitioning of RDF graphs, we expect
the smaller KB chunks to have the local feature for both sat-
isfiability checking and simple-query answering (SCSQA). Here,
simple queries, defined as follows, are extended from star-queries
to denote the conjunctive queries whose query atoms sharing a
common individual or variable.

Definition 4. We say that conjunctive query Q is a simple-query if
there exists a variable or individual x occurring in each query atom

of Q.

Both star-queries and simple-queries enforce the existence of a
variable or individual shared by all their query atoms, whereas for
star-queries this shared entity occurs solely at the subject position,
which is not required for simple-queries. This means that all star-
queries are simple-queries, but not vice versa.

By Definition 4, we can get that the following three queries are
all simple-queries, whereas the first is also a star-query and the
second and third are not

Person(?x) A birthDate(?x, ?y) A member(MIT, ?x) — q(?x, ?y)
subject(?x, ?y) A boarder(?y, ?z) — q(?x, ?y, ?z)
director(?x, ?y) A writer(?z, ?y) A Film(?y) — q(?x, ?y, ?z)

However, the following conjunctive query asking for persons and
the prizes they won as well as the comments of the corresponding
prizes is not a simple-query, since there does not exist a variable
or individual that is shared by all of its query atoms:

Person(?x) A prize(?x, ?y) A comment(?y, ?z) — q(?x, ?y, ?z)

The motivation of requiring the smaller KB chunks to have the
local feature of simple-query answering is to hope that “simple”
queries can be evaluated directly without going through query
partitioning. Note that, a simple-query with inequalities is a simple-
query in which inequality atoms x # y may occur. On the other
hand, for conjunctive query answering, we expect to partition a
conjunctive query into smaller simple-queries and evaluate these
simple-queries over the KB chunks with the local feature of SCSQA.
If a conjunctive query can be answered in such a way soundly and
completely, we say it is simple-query reducible.

3 dbo denotes the abbreviation of the namespace of the DBpedia ontology.
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Based on these expectations on KB and query partitions, our
divide-and-conquer reasoning and query answering approach is
built by gradually discussing the following three problems P1 — P3
from both theoretical and practical perspectives:

P1: DL-Lite 4 KB partitioning;

P2: Conjunctive query partitioning and evaluation of query par-
titions over KB partitions;

P3: Optimization of the procedure of evaluating query partitions
over KB partitions.

The first problem P1 is handled by discussing the following
three subproblems:

P11: The definition of DL-Lite_ 4, KB partitions;

P12: The sufficient and necessary conditions that enable a KB
partition to have the local feature of SCSQA;

P13: The concrete way of computing the desired DL-Lite , KB
partitions.

Note that there can be varied ways to define DL-Lite 4, KB partitions,
which will make the conditions of detecting as well as the concrete
ways of computing the KB partitions with the desired feature
totally different. Thus the subproblem P11 shall be studied firstly.
Before giving the concrete ways of computing KB partitions, we
shall identify the conditions that enable a KB partition to have the
local feature of SCSQA. Thus P12 should be discussed secondly.
Lastly, from the practical point of view, based on the theoretical
results, concrete ways of computing the desired KB partitions must
be given, i.e., the subproblem P13.

Analogously to P1, the second problem P2 is also decomposed
into the following three subproblems P21-P23:

P21: The definition of conjunctive query partitions;

P22: The sufficient and necessary conditions that determine
whether a conjunctive query is simple-query reducible;

P23: The concrete ways of partitioning and evaluating simple-
query reducible conjunctive queries and non-simple query
reducible conjunctive queries.

The subproblem P21 must be handled firstly. The reason is similar
to P11. In order to evaluate as many conjunctive queries in the
desired way as possible, we should decide whether all conjunctive
queries are simple-query reducible, and if not, the sufficient and
necessary conditions of deciding whether a conjunctive query is
simple-query reducible must be found out. Thus P22 should be
discussed secondly. Lastly, from the practical point of view, based
on the theoretical results, the concrete ways of partitioning and
evaluating simple-query reducible conjunctive queries and non-
simple query reducible conjunctive queries must be provided,
i.e., the subproblem P23.

Finally, problem P3 is discussed from the overall efficiency
perspective. In the scenario of both KB and query partitioning,
generating certain answers of the original query needs to merge
the certain answers of all the sub-queries. This goes to compute
the Cartesian product of the certain answer sets of sub-queries,
which can become extremely time-consuming when these certain
answer sets are of large size. Thus our optimization strategy en-
deavors to reduce the number of intermediate results of sub-query
evaluation.

To summary, our work in the paper does not contradict with
the fact that DL-Lite 4 features low complexity. Rather, we take
advantage of DL-Lite 4 and devise a divide-and-conquer approach
so that Web-scale, real-world datasets can be queried by taking
reasoning into account in an efficient, sound and complete way.

4. DL-Lite 4 KB partitioning

In this section, we discuss the first problem P1, i.e., the DL-Lite 4
KB partitioning, of our divide-and-conquer approach. As described
in Section 3, we subsequently present (P11) the definition of KB
partitions, (P12) the conditions of detecting KB partitions with
the desired feature, and (P13) the concrete way of computing the
desired KB partitions.

4.1. Formalization of DL-Lite 4 KB partitioning

No matter what the KB partition is, each smaller KB chunk will
contain a smaller size of ABox. For a smaller sub-ABox, obviously,
not all the axioms in the original KB are relevant in terms of the
considered reasoning tasks. For example, consider the following
KB:

(fAC B, P C S}, {Aa), P(b, c)})

For the smaller chunk just containing the assertion A(a), consider-
ing the axiom A C B s sufficient.

Undoubtedly, for a fixed ABox, the smaller the size of the
TBoxes, the smaller the number of queries needed to be answered
over the ABox for both satisfiability checking and conjunctive
query answering, w.r.t. a given TBox and a given query rewriting
algorithm. Based on this basic observation, before giving the defini-
tion of DL-Lite 4 KB partition, we first provide a way of computing
a smaller TBox for a smaller ABox in the definition below.

Definition 5. For a DL-Lite 4 KB (7, .4) and A" C A, we use 7|4
to denote a subset of 7 constructed by the following steps. Let
Tla= 0.

1. For each axiom«a € 7,add « to 7| 4 if (1) or (2) holds. (1) «
has the form y C —p or Fun(S) and each name in « occurs
in (74, A); (2) @ has the form y C 5 and the name in y
occurs in (7] 4/, A');

2. Iterate step 1, until 7| 4» do not change anymore.

The correctness of the procedure illustrated in Definition 5 in
terms of satisfiability checking and conjunctive query answering
can be guaranteed by the following lemma which indicates that
for subset A, considering axioms in 7|4 is sufficient for the
considered reasoning tasks.

Lemma 1. For a DL-Lite 4 KB (7T, A) and a subset A’ of A, we can get
that:

1. (T, A')is satisfiable iff (T, A") is satisfiable;
2. ans(Q, (T, A')) = ans(Q, (T, .A")) for each conjunctive
query Q.

Proof. By 7| 4 C T, the («<)direction of 1 and the (C) direction of
2 hold trivially. Next, we prove the other directions of 1 and 2. For
convenience, we use K; and K, to denote (7| 4, A’) and (7, A’),
respectively.

(1. =) K is satisfiable, so it has a canonical model Z [27].% Next,
we show 7 is also a model of K. K1 and K, have the same ABox, so
7 satisfies all the assertions in &C,. For each axiom A C C in Ky, if it
occurs in Ky then Z = A C C holds, otherwise, we know A is not
used as classin Ky, s0 AT = §J, thusZ = A C C holds. Other types of
axioms in K, can be proved analogously. So 7 is also a model of iC,.
Thus K, is satisfiable. (2. D) If KC; is not satisfiable, this direction
holds trivially. Next, we assume K, is satisfiable. By (1. =), K3 is

4 For each DL-Lite 4 KB K, there exists a canonical interpretation Z such that K
is satisfiable iff Z = K, and if K is satisfiable then for each conjunctive query Q,
ii € ans(Q, K)iff Z = Q(u). If K is satisfiable, Z is called a canonical model of K.
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satisfiable. According to (1. =) and 7| 4 C T, we can get that each
canonical model of 1C; is also a model of K, and vice versa. Thus
this direction holds. O

For a DL-Lite 4 KB K = (T, .A) and an assertion « in A, we say
« is a redundant assertion in K if there exists another individual
assertion «’ in K such that @ can be entailed by 7 and «’, that is, if
(T, {a'}) E a. As shown in the example below, due to redundant
individual assertions in a KB, the TBox constructed by the way
described in Definition 5 may not be the least TBox (measured by
set containment or set size) for a given sub-ABox.

Example 3. Consider the DL-Lite 4 KB X = (7, .A) where:
T={ACB,PCS}, A={A(a),B(a),P(b,c)}

In K, B(a) is a redundant assertion, since it is entailed by A C B
and A(a). For the following sub-ABox A’, a sub-TBox 7| 4/ can be
constructed by Definition 5:

A" = {A(a), B(a)}, T|a={AE B}

Obviously, (7)., A") and (@, A") coincide in terms of the consid-
ered reasoning tasks, thus 77 4 is not the least TBox for A’.

How to compute the least TBox for a given sub-ABox is beyond
the scope of this paper, and we leave it for our future work.

Based on Definition 5 and Lemma 1, the definition of DL-Lite 4
KB partitions as well as the partitions with the local feature of
satisfiability checking and simple-query answering is formally il-
lustrated in the definition below.

Definition 6. For a DL-Lite 4 KB K = (7, .A), we say that the set:
S= {(ﬂv -Al)a D) (7717 An)}

of DL-Lite 4 KBs is a partition of K if A = U, 4; and T; = T 4
for 1 < i < n. We say that S is a SCSQA-local partition of K iff the
following two conditions hold:

1. K is satisfiable iff each KB in S is satisfiable;
2. If Kis satisfiable then ans(Q, K) = Uxrcsans(Q, K') for each
simple-query Q.

For generality, we do not require the ABoxes of the KBs in a
partition to be pairwise disjoint. Moreover, in the perspective of
efficiency, T4, is used as the TBox of the sub-KB (7;, .A;) rather
than the original TBox 7.

4.2. Conditions of detecting SCSQA-local KB partitions

By analyzing the procedures of satisfiability checking and con-
junctive query rewriting [26,27], we found that in DL-Lite 4, both
satisfiability checking and simple-query answering can eventually
be reduced to evaluating simple-queries over the ABoxes of DL-
Lite 4 KBs. This conclusion is explicitly illustrated in the following
two lemmas.

Lemma 2. For each DL-Lite 4 KB K = (T, A), there exists a set Q of
simple-queries such that K is satisfiable iff Ugcgans(Q, (4, A)) = ¢.

Proof. Let Q be the set of queries corresponding to the negative
closure c1n(7) of 7 [27] and the functional role assertions Fun(P)
in 7. For example, if c1n(7) contains the axioms A = —B and
Fun(P) then Q contains the query A(?x) A B(?x) — ¢q() and
P(?x, ?y) AP(?x, ?2z) A?y # ?z — q(), where A, B and P are names.
By the constructing approach in [27], we can get that Q is a set of
simple-queries and K is satisfiable iff ans(Q, (@, A)) = @ for each
Q € Q. So this lemma holds. O

Lemma 3. For each satisfiable DL-Lite 4 KB K = (T, .A) and simple-
query Q, there exists a set Q of simple-queries such that ans(Q, K) =
Ugregans(Q’, (9, A)).

Proof. By the query rewritten procedure in [27], it is not difficult
to find out that for each simple-query Q, by applying an inclusion
axiom in 7 over a query atom in Q or unifying two query atoms in
Q, the resultant query is still a simple-query. So, we can get that
Q = PerfectRef(Q, T) is a set of simple-queries. ans(Q, K) =
Ug’egans(Q’, (9, A)) holds. So this lemma holds. O

All the query atoms in a simple-query share a common indi-
vidual or variable. Thus, by Lemmas 2-3, we can conclude that in
the scenario of KB partitioning, for the local feature of satisfiability
checking and simple-query answering, the individual assertions
occurring in the original KB and sharing a common individual
should be put in an identical sub-KB, i.e., these assertions cannot
be distributed into different sub-KBs.

Proposition 1. For a DL-Lite 4 KB K = (T, A) and a partition S of K,
if for each U C A satisfying that all the assertions in U share a same
individual, there exists (7', A’) € S such that U C A/, then Sis a
SCSQA-local partition of K.

Proof. We first prove the local feature of satisfiability checking. If
K is satisfiable then each KB in S is satisfiable. Suppose all the KBs
in S are satisfiable. Next, we show K is satisfiable. Assume (A1) K is
not satisfiable. By Lemma 2, we can get that there exists a simple-
query Q such that ans(Q, (4, .A)) # @. So there exists U C A
satisfying that all the assertions in U share a common individual
and ans(Q, (@, U)) # @. By the condition in this proposition, we
can get that there exists (77, A’) € S such that U € A’. Obviously,
(7, A) is not satisfiable. Then by Lemma 1, we can conclude that
(77, A')is not satisfiable. This contradicts with the supposition that
all the KBs in S are satisfiable. So (A1) does not hold. Thus K is
satisfiable.

Suppose K is satisfiable. Next, we prove the local feature of
simple-query answering. Let Q be an arbitrary simple-query.
Ukresans(Q, K') € ans(Q, K) holds trivially. Assume (A2) there
exists i € ans(Q, K) — Ugresans(Q, K'). Then there exists Q' €
PerfectRef(Q, T) so that i € ans(Q’, (4, A)). By the proof of
Lemma 3, we know Q' is a simple-query. So there exists U C A
satisfying that all the assertions in U share a common individual
and i € ans(Q/, (@, U)). By the condition in this lemma, we can
get that there exists (7', 4) € Ssuchthat U € A.Soi €
ans(Q, (7, A’)) holds. Then by Lemma 1, we can further obtain
that i € ans(Q, (77, .4")). This contradicts with (A2). So (A2)
does not hold. Thus ans(Q, ) € Uxresans(Q, ') holds. Hence
ans(Q, K) = Uxresans(Q, K') holds. Therefore, S is a SCSQA-local
partition of . O

Example 4. Consider the following DL-Lite 4, KB K and its two
partitions S; and S:

K = ({A C B}, {A(a), P(a, b), B(c)})
S1={({A C B}, {A(a), P(a, b)}), ({}, {B(c)})}
S» ={({AC B}, {Aa)}), ({}, {P(a, b), B(c)})}

All the assertions in K sharing the same individual are contained
in the same sub-KB in S;. Thus, by Proposition 1, we can conclude
that Sy is a SCSQA-local partition of K. On the other hand, S, is not
a SCSQA-local partition of K, since it does not have the local feature
of the following simple-query Q:

A(?x) A P(?x, ?y) — q(?x, ?y)

from the fact that ans(Q, K) = {(a, b)} but Uyrcs,ans(Q, K') = 0.
Even though S, doe not satisfy the condition in Proposition 1, the
conclusion that S, is not a SCSQA-local partition of K cannot be
obtained, since Proposition 1 is just a sufficient condition.
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Note that the condition presented in Proposition 1 cannot be
used as a necessary condition due to the redundant individual
assertions in DL-Lite 4 KBs, as illustrated by the following example.

Example 5. Let K’ be the KB obtained by adding the assertion B(a)
to the KB in Example 4. In X', B(a) is a redundant assertion since it
is entailed by A C B and A(a). Consider the following partition S of
K

S = {({A C B}, {A(a), P(a, b)}), ({}. {B(a), B(c)})}

It is not difficult to validate that S is a SCSQA-local partition of K.
However, S does not satisfy the condition in Proposition 1, since
the assertions containing a are distributed in different sub-KBs in S.
Actually, if a partition S is a SCSQA-local partition of K’, no matter
where to put B(a) among the sub-KBs in S, the resultant partition
is still a SCSQA-local partition. This means that the positioning of
redundant assertions does not affect the result of KB partitioning.

Before showing the situations that make the condition in Propo-
sition 1 to become sufficient and necessary, we first provide a suf-
ficient and necessary condition for individual assertion entailment
checking.

Lemma 4. For a satisfiable DL-Lite 4 KB K = (T, A) and individual
assertion «, then K = « iff there exists o' € A such that o and o’
share a same individual and (T, {¢'}) = a.

Proof. Let Q be the query « — q(). Then it holds trivially that
K E «aiff ans(Q, K) # @. It is not difficult to obtain that each
query in PerfectRef(Q, 7) has only one query atom and this
atom contains all the individuals occurring in «. Thus, we can get
that K = « iff there exists «’ € A that shares an individual with «
and Ug/epertectres(Q,7)aNs(Q’, (9, {«'})) # . Then we can further
obtain that K = « iff there exists &’ € A such that « and o’ share
an individual and (7, {¢’}) = «@. So this lemma holds. O

As illustrated in the theorem below, if a DL-Lite 4, KB does
not contain redundant individual assertions, then the condition in
Proposition 1 can be used as a sufficient and necessary condition.

Theorem 1. For a satisfiable DL-Lite 4, KB K = (T, .A) without
redundant individual assertions, then a partition S is a SCSQA-local
partition of K iff for each subset U C A such that all the assertions
in U share a common individual, there exists (7', A’) € S such that
UCA.

Proof. By Proposition 1, the (<) direction holds. Next, we show
the (=) direction. K is satisfiable then all the KBs in S are satisfi-
able. Assume (A) there exists U C 4 such that all the assertions in
U share a common individual and there does not exist (77, A') € S
such that U € A'. Let Q be the query A,y — q(). Obviously Q
is a simple-query, and ans(Q, K) = {()}, i.e.,Q is true over K. K is a
KB without redundant individual assertions. Then by Lemma 4, we
can further obtain thatforeacha € U, (7, A—{a}) ¥ «.Thus by the
assumption (A), we can get that there does not exist K’ € S such
that X' = « for each o € U. So for each K’ € S, ans(Q, K') = @,
i.e., Q' is false over K'. This contradicts with the fact that S is a
SCSQA-local partition of K. Thus the assumption (A) does not hold.
So the (=) direction of this theorem holds. Therefore this theorem
holds. O

The KB in Example 4 is satisfiable and does not contain redun-
dant individual assertions. Thus by Theorem 1, we can directly
obtain that the partition S, in Example 4 is not a SCSQA-local
partition of this KB.

Redundant individual assertions in a KB do not affect entail-
ment. Based on this, we can obtain a more general sufficient and

necessary condition for detecting SCSQA-local partitions, shown in
the theorem below which indicates that a partition is a SCSQA-local
partition of a DL-Lite 4 KB iff all the assertions sharing a common
individual and entailed by the original KB can be entailed by a same
sub-KB.

Theorem 2. A partition S of a DL-Lite 4 KB K = (T, A) is a SCSQA-
local partition of K iff for each individual assertion set U satisfying that
all the assertions in U share a common individual and K = « for each
a € U, there exists K' € S such that K' = o for each o € U.

Proof. (=) If K is not satisfiable then some KBs in S are not
satisfiable. Then this direction holds trivially. Next, we assume K
is satisfiable. So all the KBs in S are satisfiable. Suppose (S) there
exists an individual assertion set U satisfying that all the assertions
in U share a common individual and are entailed by K, but there
does not exist K’ € S such that X' = « for each @ € U. Let
Q be the query A, .y« — q(). Then Q is a simple-query and
ans(Q, K) = {()}. By (S), we can get that Uxscsans(Q, K') = @.
This contradicts with the fact that S is a SCSQA-local partition of
K. So (S) does not hold. Thus this direction holds.

(«) If K is satisfiable then all the KBs in S are satisfiable.
Suppose all the KBs in S are satisfiable. Assume (A1) K is not
satisfiable. Let a € I and A € C be two names not occurring in k.
Then K = A(a) holds. All the KBs in S are satisfiable. So K’ ¥ A(a)
holds for each K’ € S. This contradicts with the condition in the
theorem. So (A1) does not hold. Thus K is satisfiable. Hence S has
the local feature of satisfiability checking.

Assume K is satisfiable. Next, we prove the local feature of
simple-query answering. Let R be a subset of A satisfying that for
each o € R there exists o’ € A — R such that (7, {¢'}) E «, and
for each &’ € A — R there does not exist «” € A — R — {a'}
such that (7, {&"}) & o«'. Thus K, = (T, A — R) is a KB without
redundant individual assertions. Let S’ be the partition obtained
by dropping all the assertions in R from the KBs in S. Next, we
show S’ is a SCSQA-local partition of C,. Assume (A2) there exists
U C A — R satisfying that all the assertions in U share a common
individual and there does not exist (77, A’) € S such that U C A'.
From U C A — R and Lemma 4, we can get that there does not
exist K’ € S such that X’ =« for each « € U. This contradicts with
the condition in the theorem. So (A2) does not hold. This means
that all the assertions in .4 — R sharing a common individual are
contained in the same sub-KB in S. &’ is obtained by dropping all
the assertions in U from the KBs in S. So all the assertions in A — R
sharing a common individual are contained in the same sub-KB in
S’. Thus by Theorem 1, S’ is a SCSQA-local partition of K,. Let Q
be an arbitrary simple-query. Then ans(Q, K,)=Uxesrans(Q, ')
holds. Obviously, ans(Q, K,) = ans(Q, K) and Uxrcsrans(Q, K') C
Ukresans(Q, K') hold. Thus ans(Q, K) € Uxresans(Q, K') holds.
The relation Ugrcsans(Q, K') C ans(Q, K) holds trivially. So S has
the local feature of simple-query answering.

Therefore S is a SCSQA-local partition of . O

Example 6. Consider the KB K and its partitions S; and S, in
Example 4 again. By Theorem 2, we can directly obtain that Sy is
a SCSQA-local partition of K, while S, is not.

4.3. A concrete way of computing SCSQA-local KB partitions

Based on the theoretical results in Section 4.2, a SCSQA-local
partition S of a DL-Lite 4, KB K = (7, .A) can be obtained by first
computing a partition of the ABox then generating a TBox for each
sub-ABox. Concretely:

1. Compute a partition Ay, ..
steps:

., Ap of A by the following two
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a. For each individual a of K, compute the set Uy con-
sisting of all the assertions occurring in .4 and contain-
ing a;

b. Let U be the set consisting of all the assertion sets
computed in step 1.a. Compute a partition Uy, ..., U,
of U. For each U;, let 4; = UU(a,euiU{a}'

2. Foreach 1 <i < n, compute the sub-TBox T 4, for A;. Let
8 = UL {(T 4, AD}-

For the local feature of satisfiability checking and simple-query
answering, the assertions sharing a common individual should be
put in the same sub-KB. Thus, in step 1, we first group the asser-
tions in A based on the individuals they share (step 1.a). In order
to avoid the KB partitions containing too many sub-KBs, we choose
to merge some assertion groups to generate the ABox of a sub-
KB (step 1.b). Note that, the different ways of merging assertion
groups, i.e., the different ways of partitioning U in step 1.b, lead
to different SCSQA-local partitions of . Undoubtedly, in the terms
of distribution and parallelization, the partitions generating more
balanced and smaller sized sub-ABoxes are more likely to achieve
the efficiency improvement.

For a desired size asize of ABoxes in a KB partition, in the above
step 1.b, a partition of U that generates sub-ABoxes sized no more
than asize can be realized by the following two steps:

b1. Compute a tuple (order) O = Uy, ..., Uy, of the elements in
U such that |U;| < |Ujpq|for1 <i<m-—1.

b2. Continue the following procedure P, until |O] = 0, i.e.,, O
does not contain any element.

P. Generate a sub-ABox A'. Let A’ = (. For i from |O|
to 1, if [A" U O[i]| < asize then let A’ = A" U O[i];
otherwise for j from 1toi — 1, if | A" U O[j]| < asize
thenlet A" = A’UOQ[j]; otherwise break the first loop.
Remove all the elements used to generate A’ from O.

Theoretical studies on computing balanced and smaller-sized
sub-KBs will be discussed in our future work.

Example 7. Consider the KB K in Example 4 again. K totally
contains three different individuals a, b and c. Thus three individual
assertions Uygy, Uypy and Uy which respectively consist of all the
assertions sharing a, b and ¢ can be computed:

Ug: {A(a), P(a, b)}, Upy: {P(a, b)}, Ujy: {B(c)}

Different ways of partition {Uq, Uppy, Uiy} will lead to different
SCSQA-local partitions of K. For example, for these two partitions
{U{C}}, {U[a}, U(b]} and {U[b}, U{c}}, {U(a)}, the following two SCSQA-
local partitions S; and S, can be obtained:

St = {({}. {B(c)}), ({A E B}, {A(a), P(a, b)})}
Sa = {({}, {B(c), P(a, b)}), ({A E B}, {A(a, P(a, b))})}

Example 7 indicates that putting the assertions sharing a com-
mon individual into the same sub-KB may cause a role individ-
ual assertion occurring in two different sub-KBs in a SCSQA-local
partition, such as the role assertion P(a, b) in the partition S,
in Example 7. This is because a role individual assertion usually
contains two different individuals. Anyhow, the sum of the sizes
of the ABoxes of the sub-KBs in a partition will not exceed twice
the size of the ABox of the original KB.

Moreover, based on the above two steps 1-2, we can further
obtain the complexity of computing SCSQA-local partitions of DL-
Lite 4 KBs, shown in the following theorem.

Theorem 3. For a DL-Lite 4 KB K = (T, .A), a SCSQA-local partition
of K can be computed in O(|71?) w.r.t. |T| and in O(|A|) w.r.t. | A|.

Proof. This theorem holds by the following two factors. (1) All
the assertion sets whose elements share a common individual of
K can be computed in time O(|.A]). (2) For each A’ C A, T4 can
be computed in O(|7%). O

Low computational complexity makes the proposed approach
appealing for partitioning a large-scale DL-Lite 4 KB into smaller
independent sub-KBs which have the local feature of satisfiability
checking and simple-query answering.

5. Conjunctive query partitioning and evaluation

In this section, we discuss the second problem P2, i.e., conjunc-
tive query partitioning and evaluation, of the divide-and-conquer
approach. As discussed in Section 3, this problem is decomposed
into these three sub-problems: (P21) the definition of conjunctive
query partitions; (P22) the conditions of detecting simple-query
reducible queries; and (P23) the concrete ways of partitioning and
evaluating simple-query reducible queries and non-simple query
reducible queries. Here, we only consider satisfiable DL-Lite 4 KBs.

5.1. Formalization of conjunctive query partitioning

The definition of conjunctive query partitions as well as simple-
query partitions of conjunctive queries is illustrated in the defini-
tion below.

Definition 7. For a conjunctive query Q, we say that the set 9 =
UL, {qi} of conjunctive queries is a partition of Q if:

1. bd(Q) = UL ;bd(g;), and bd(q;) Nbd(q;) =@ for 1 <i,j <n
andi # j;

2. Foreach 1 < i < n, hd(q;) consists of all the variables
occurring in bd(q;) that also occur either in hd(Q) or in
Uk=1.kiPd(k)-

We say that Q is a simple-query partition of Q iff all the queries in
Q are simple-queries.

For the sake of efficiency, we hope that each query atom in
the original query is evaluated only once. Therefore, in the first
condition of Definition 7, we require the bodies of sub-queries
are pairwise disjoint. The second condition of Definition 7 implies
that the head of each sub-query consists of two variable parts. The
first part are the variables occurring both in the body of this sub-
query and the head of the original query, while the second part are
those shared by the body of this sub-query and the bodies of some
other sub-queries. This means that the heads of some sub-queries
may contain variables solely occurring in the body of the original
query. The motivation of such a design is to guarantee that the
same variables present in different sub-queries are bound to the
same values. As shown in the example below, without the second
variable part, we cannot use the certain answers of the sub-queries
to generate the certain answers of the original query.

Example 8. Consider the following conjunctive query Q, conjunc-
tive query set Q and DL-Lite 4 KB K:

Q : P(?x,?y) AS(?x,?y) — q(?x)
Q = {q1: P(?x,?y) — q(?x), q2:S(?x,?y) — q(?x)}
K =({}, {P(a, b),S(a, c)})

Obviously, (a) is both a certain answer of q; and g, over K. How-
ever, (a) is not a certain answer of Q over K. Thus the certain an-
swers of q; and g, cannot be used to generate the certain answers
of Q. This is because ?y may be bound to different values to obtain
the certain answers of q; and g, respectively.
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The sub-queries in a query partition will be evaluated inde-
pendently. Thus the unique way of deciding whether the variables
shared by different sub-queries are bound to the same values is
to put the shared variables to the heads of the corresponding sub-
queries.

The concrete way of merging the certain answers of the sub-
queries to generate the certain answers of the original query is
presented in the definition below.

Definition 8. For a partition © = U_,{q;} of a conjunctive query

Q and partition S of a DL-Lite_ 4 KB, we define:

ans(Q, Q,S) =
{X[x1/uq, ..., % /up]|(Uq, ..., Uy) € Aq X --- X Ap}

where X = hd(Q), foreach 1 < i < n, X = hd(q;) and A; =
Uxresans(q;, K'), and for each 1 < i,j < n,1 < k < |y and
1<lI< |ﬁj|, 1f?<,[k] = ;(1[1] then ﬁl[k] = ﬁj[l]

The correctness of this way of merging the certain answers of
sub-queries can be guaranteed by the lemma below.

Lemma 5. Given a conjunctive query Q and satisfiable DL-Lite 4 KB
IC, then for each partition Q of Q and partition S of K, ans(Q, Q, S) C
ans(Q, K) holds.

Proof. Let i € ans(Q, Q, S). Suppose @ = U {g;}. Then there
exists U; € Ugesans(qi, K') for each q; € Q such that i =
hd(Q)[hd(q;)/ty, ..., hd(gs)/ii,] holds. For each q; € O, i; €
ans(g;, K) holds trivially. Next, we show i € ans(Q, K). Let T be
a canonical model of K. Then there exists a binding 7; of g;(1i;) over
K such that Z, 7r; = q;(ii;). From 71 — 7, a binding 7 of Q (1) over Z
can be constructed by the following settings. For each individual q,
let w(a) = a. For each variable x in Q (1), there exists g; containing
x. If x occurs in the Ith position of hd(g;) then let 7r(x) = i;[k] else
let 7(x) = m;(x). By the construction of 7 and i, it holds trivially
that Z, w = Q(i1). So ii € ans(Q, K). So this lemma holds. O

Finally, we formalize the notion of simple-query reducible con-
junctive queries. By the semantics of conjunctive queries, we know
that distinguished variables and non-distinguished variables of
conjunctive queries are interpreted in different ways. Concretely,
distinguished variables can solely be bound to names, whereas
non-distinguished variables can be bound to not only names but
also anonymous individuals implied to exist. Based on this, we
say that a conjunctive query is simple-query reducible iff it has a
simple-query partition in which each sub-query does not contain
any non-distinguished variables of the original query as distin-
guished variables, i.e., the semantics of the variables of the original
query are preserved.

Definition 9. We say that a conjunctive query Q is simple-query
reducible iff Q has a simple-query partition Q such that hd(q) C
hd(Q) holds for each q € Q.

The lemma below indicates that if a query is simple-query
reducible then answering this query over a satisfiable DL-Lite 4 KB
can be soundly and completely realized by evaluating a simple-
query partition of this query over a SCSQA-local partition of this
KB.

Lemma 6. For a conjunctive query Q, if Q is simple-query reducible
then Q has a simple-query partition Q such that for each satisfiable
DL-Lite 4 KB K and each SCSQA-local partition S of K, ans(Q, K) =
ans(Q, Q, S) holds.

Proof. If Q is simple-query reducible then by Definition 9, Q has
a simple-query partition @ = U[" . {q;} such that hd(q;) € hd(Q)

for each q; € Q. Next, we show the equation (E) ans(Q, KX) =
ans(Q, Q, S)holds. Leti € ans(Q, k), and letii; = hd(g;)[hd(Q)/u]
for each g; € 9. hd(g;) € hd(Q) holds for each g; € 9. So we can
get that ii; — I, are tuples of names and il = hd(Q)[hd(q;)/i, ...,
hd(qy)/1im] holds. For each q; € Q, 1i; € ans(g;, K) holds trivially. S
is a SCSQA-local partition of K. So 1l; € Uyrcsans(g;, K') holds. Thus
il € ans(Q, Q, S) holds. Hence ans(Q, K) C ans(Q, Q, S). Then by
Lemma 5, equation (E) holds. Therefore this lemma holds. O

5.2. Conditions of detecting simple-query reducible queries

Not all conjunctive queries are simple-query reducible, as
shown in the following example. This indicates that there exist
queries and satisfiable DL-Lite , KBs such that evaluating any
simple-query partitions of these queries over any SCSQA-local
partitions of these KBs cannot obtain all the certain answers of the
original queries over the original KBs.

Example 9. Consider the following conjunctive query Q:
Q: A(?x) A P(?x,?y) A B(?y) — q()
Q has a total of three simple-query partitions as follows:

Q1 = {A(?x) A P(?x, 2y) — q(?y), B(?y) — q(?y)}
Qp = {A(?x) — q(?x), P(?x,?y) A B(?y) — q(?x)}
Q3 = {A(?x) — q(?x), P(?x,?y) — q(?x,?y), B(?y) — q(?y)}

By Definition 9, Q is not simple-query reducible, since each Q;
contains sub-queries using non-distinguished variables of Q, for
instance ?y, as distinguished variables. Consider the following DL-
Lite 4 KB K:

K=({CE3s, 35" CA AT 3P, 3P~ C B}, {C(a)})

Obviously, S = {K} is a SCSQA-local partition of K, and
ans(Q, Q;, S) = W foreach 1 < i < 3. However, ans(Q, K) = {()},
i.e,, Q is true over K. This means that if a conjunctive query Q is
not simple-query reducible then there may exist a KB such that
evaluating any simple-query partition of Q cannot obtain all the
certain answers of Q over the KB.

Next, we provide a sufficient and necessary condition to decide
whether a conjunctive query is simple-query reducible. By the
definition of query partitions (Definition 5), we can get that for
a conjunctive query Q and a simple-query partition Q of Q, if all
the atoms sharing a common non-distinguished variable of Q are
put into the same sub-query in Q, then all the queries in Q will
not contain any non-distinguished variables of Q as distinguished
variables, i.e., the heads of the queries in Q will not contain the vari-
ables solely occurring in the body of Q. Based on this, we can obtain
amore intuitive condition of deciding whether a conjunctive query
is simple-query reducible without computing and checking any
simple-query partition of this query.

Theorem 4. A conjunctive query Q is simple-query reducible iff there
do not exist three query atoms P(?x, ?y), « and o’ of Q such that ?x
and ?y are non-distinguished variables of Q, « contains ?x but not ?y
and o’ contains ?y but not ?x.

Proof. (=) Assume (A) Q contains three atoms P(?x, ?y), « and
a’ of Q such that ?x and ?y are non-distinguished variables of Q,
« contains ?x but not ?y and o’ contains ?y but not ?x. Let Q be
an arbitrary simple-query partition of Q. Then by the definition of
simple-queries, these three query atoms cannot occur in a same
sub-query in Q. This means ?x or ?y is contained in the head of
some sub-queries in Q. Then by Definition 9, we can get that Q is
not simple-query reducible. This contradicts with the fact that Q
is simple-query reducible. So the assumption (A) does not hold. So
this direction hold.
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(«=) For each non-distinguished variable ?x of Q, let Uy, be
the set consisting of all the query atoms of Q that contains ?x.
By the condition, we can get that for every two different non-
distinguished variables ?x and ?y of Q, Upyy S Uy or Upy N
Upyy = @ holds. If Uppyy € Upyy holds then merge Up,y and
Upyyy into one atom set Uppyy U Uppyy. Then for each query atom
set U, generate a sub-query q such that bd(q) = U and hd(q)
consists of all the variables occurring in U that also occur in hd(Q)
or bd(Q)— U. For each query atom « of Q that does not contain any
non-distinguished variable of Q, generate a sub-query q such that
bd(q) = {«} and hd(q) consists of all the variables occurring in o
that also occur in hd(Q) or bd(Q ) — {«}. Let Q be the set consisting
of all the generated sub-queries. Then Q is a simple-query partition
of Q and each non-distinguished variable of Q does not occur in the
heads of the queries in Q. So Q is simple-query reducible. O

By Theorem 4, we can directly conclude that the conjunctive
queries with no more than one non-distinguished variable are all
simple-query reducible. Moreover, based on Theorem 4, we can
further obtain the complexity of detecting whether a conjunctive
query is simple-query reducible.

Theorem 5. For a conjunctive query Q, the complexity of deciding
whether Q is simple-query reducible is O(|Q|).

Proof. Based on Theorem 4, this theorem holds trivially. O
5.3. Concrete ways of partitioning and evaluating conjunctive queries

After presenting the conditions of determining simple-query
reducible conjunctive queries, here, we present the concrete ways
of partitioning and evaluating simple-query reducible queries and
non-simple query reducible queries.

5.3.1. Partitioning and evaluating simple-query reducible queries

There may exist multiple simple-query partitions of a simple-
query reducible conjunctive query, and those that can capture
all the certain answers of the original query should be identified
first before we can provide a concrete way for computing such
partitions.

For a simple-query reducible conjunctive query, Lemma 6
proves the existence of simple-query partitions that can capture
all the certain answers of the original query. The theorem below
further illustrates which partitions can fulfill this task.

Theorem 6. For a simple-query reducible conjunctive query Q, let
Q be any simple-query partition of Q such that hd(q) € hd(Q) for
eachq € Q.Thenans(Q, K) = ans(Q, Q, S) holds, for any satisfiable
DL-Lite 4 KB K and any SCSQA-local partition S of K.

Proof. For Q and Q, ans(Q, K) = ans(Q, Q, S) can be proved
analogously to the proof of Lemma 6. O

Example 10. Consider the following conjunctive query Q and its
partition Q:

Q : A(?x) A P(?x, ?y) A B(?y) — q(?x)
Q = {A(?x) — q(?x), P(?x, ?y) A B(?y) — q(?x)}

By Theorem 4, Q is simple-query reducible. Moreover Q is a
simple-query partition of Q satisfying that all the queries in Q
do not use any non-distinguished variable of Q as distinguished
variable. So, evaluating Q over any satisfiable DL-Lite , KB can be
realized by answering Q over any SCSQA-local partition of this KB.

For a simple-query reducible conjunctive query Q, a simple-
query partition Q of Q satisfying that hd(q) € hd(Q)foreachq € Q
can be obtained by the following two steps.

1. Compute a partition U of the query atom set bd(Q) by the
following two steps. Let A = bd(Q) and U = #.

a. For each non-distinguished variable x of Q, compute
the atom set Uy consisting of all the query atoms in
A containing x, and let U = UU {Ujy} and A = A —
Uiy Then for every two different non-distinguished
variables x and y of Q occurring in the same atom in
Q, merge Uy, and Uy, into one set Ugyy U Uy, in U,
i.e,, replacing Uy and Uy, with Uy U Uy,

b. For each distinguished variable or individual x of Q,
compute the atom set Uy, consisting of all the query
atoms in A containing x, and let U = U U {U;y} and
A=A—-Upy.

2. For each query atom set U € U satisfying that |[U| > 0,
generate a sub-query g such that bd(q) = U and hd(q)
consisting of all the variables not only occurring in U but also
occurring either in hd(Q) or in bd(Q) — U, and add q to Q.

As shown in the example below, the order of steps 1.a and 1.b
is crucial in guaranteeing that generated sub-queries do not use
some non-distinguished variables of Q as distinguished variables.

Example 11. Consider the simple-query reducible conjunctive
query Q in Example 10 again. Q has solely one non-distinguished
variable ?y and distinguished variable ?x. Then by the above step
1, two query atom sets Uy, and Uy, can be successively obtained
after step 1:

Upy = {P(?x, ?y), B(?y)}, Upy = {A(?X)}

Then two sub-queries can be generated and the simple-query
partition @ of Q in Example 10 can be obtained. However, if we
reverse the order of steps 1.a and 1.b, the following two query atom
sets will be generated by step 2:

Upy = {A(?x), P(?x, ?y)}, Ugpy = (B(?y)}

Then the following simple-query partition Q" of Q can be gener-
ated:

Q' = {A(?x) A P(2x,?y) — q(?x, ?y), B(?y) — q(?y)}

The non-distinguished variable ?y of Q is used as distinguished
variable of the queries in Q'. Thus, Q' cannot be used to evaluate
over SCSQA-local partitions of DL-Lite_ 4 KBs.

Moreover, based on the above two steps, we can further obtain
the complexity of computing the desired simple-query partitions
of simple-query reducible conjunctive queries.

Theorem 7. For a simple-query reducible conjunctive query Q, a
simple-query partition Q of Q satisfying that hd(q) € hd(Q) for each
q € Q can be obtained in time O(|Q |).

Proof. By the above two steps, this theorem holds trivially. O

5.3.2. Partitioning and evaluating non-simple query reducible queries

As shown in Example 9, if a conjunctive query is not simple-
query reducible, then some certain answers of this query over
a satisfiable DL-Lite , KB cannot be obtained by evaluating any
simple-query partition of this query over any SCSQA-local partition
of this KB. Thus, for completeness, non-simple query partitions
need to be evaluated.

By the semantics of conjunctive queries, one can observe that
if a certain answer of a conjunctive query over a DL-Lite 4, KB is
obtained by binding some non-distinguished variables to anony-
mous elements, then in the scenario of KB and query partitioning,
this certain answer can solely be obtained by evaluating a partition
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of this query in which the sub-queries do not contain those non-
distinguished variables as distinguished variables. Based on this
observation, for a given set of non-distinguished variables of a
conjunctive query, the following definition illustrates a way of
computing a partition of this query which can capture all the
certain answers of this query obtained by binding these non-
distinguished variables to anonymous elements.

Definition 10. For a conjunctive query Q and set NV consisting of
some non-distinguished variables of Q, we use le‘/ to denote a
partition of Q satisfying the following two conditlons

1. Each variable in NV solely occurs in one query in Q|’5"g;

2. For each non- 51mp1e query q € Q| and for every two dif-
ferent atoms « and o’ in g, there ex1sts asequence 1, ..., B
of atoms in g such that 8; = «, 8, = «’ and B; and B;, 1 share
avariableinNV for1 <i<n-—1.

The first restriction in Definition 10 indicates that all the vari-
ables in NV are still used as non-distinguished variables in the
sub-queries in Q|’SW, and the second condition illustrates that if
a sub-query in Q|§"Q is not a simple-query then its query atoms
must be connected by the variables in NV. In the scenario of KB
partitioning, the second condition is crucial in guaranteeing that

can capture all the certain answers of Q obtained by binding
all Qhe variables in NV to anonymous elements.

The correctness of Definition 10 can be guaranteed by the theo-
rem below which indicates that the certain answers of Q obtained
by binding all the variables in NV to anonymous element can be
captured by ng’é’ and by enumerating the situations of binding
different non-distinguished variables to anonymous elements, all
the certain answers of Q can be obtained.

Theorem 8. Given a non-simple query reducible conjunctive query Q,
then for any satisfiable DL-Lite 4 KB KC and any SCSQA-local partition
S of KC, we can get that:

anS(Q7 ’C) LJNV/ ZNVanS(Q QlSQ s )

where NV is the set consisting of all the non-distinguished variables of

Q.

Proof. By Lemma 5, the (D) direction of the equation in this
theorem holds trivially. Next, we show the (C) direction. Let ii €
ans(Q, K). Suppose § = U ,{K;}. K is satisfiable. So all the KBs
in S are satisfiable. For each K;, let Z; be a canonical model of
Ki. Assume (A) Z; and Z; do not share any anonymous element,
ie, (AT —I)N (A% —I) = @, fori # j. Based on Il — T,
a model Z of K can be constructed by setting AT = 1A%,
af = aforeacha € Iand 1 = U r%i foreachr € CUR
Then there exists a binding 7 of Q(i1) over Z such that 7 = Q(u)
holds. Let NV = {x|x € NV A m(x) ¢ I}, ie, NV’ is the set of
all the non-distinguished variables that are bound to anonymous
elements. Next, we show (C) 1 € ans(Q, Q|§’é’ . 8).Suppose Q|55

UM {qk}. Let i be a tuple such that |ix| = |hd(qy)| and for each
1 < 1 < ||, if hd(qy)[1] occurs in the jth position of hd(Q) then
u[ll = u[j] otherwise i [l] = m(hd(qi)[I]). By the construction
of these tuples, we can get that ii; — 1, are tuples of names and
(E) i = hd(Q)[hd(q1)/t1, ..., hd(gm)/Un] holds. For each i, next
we show (C1) iy € UL ans(qy, ;) holds. iy € ans(qk, K) holds
trivially. If g is a simple-query then (C1) holds, since S is a SCSQA-
local partition of K. Otherwise, let 7ty be a function that maps each
individual a in q(il;) to a and each variable x in q(iix) to m(x).
Then by the second condition of Definition 10 and the assumption
(A), we can get that there exists Z; such that Z;, m, = qi(ii)
holds. So 1, € ans(qy, K;) holds. Thus (C1) holds. Then by (E),
i € ans(Q, Q%’/, S) holds. Hence the (C) direction of the equation
in this theorem holds. Therefore this theorem holds. O

For a non-simple query reducible conjunctive query Q and set
NV of some non-distinguished variables of Q, a partition Q of Q
satisfying the two conditions in Definition 10, i.e., the partition
Ql§y , can be obtained by the following two steps:

1. Compute a partition U of bd(Q ) by the following two steps.
Let A = bd(Q):

a. Compute an undirected graph G with node set A. For
every two atoms « and «’ in A, there exists an edge
between « and «' iff they share a variable in NV.

b. For each connected component [ of G, generate an
atom set U consisting of all the nodes in [ and set
U=UU{U}andA=A—-U.

c. For each variable or individual x occurring in A, gen-
erate an atom set U consisting of all the atoms in A
containing xand setU = UU {U}and A = A — U.

2. For each atom set U € U, generate a sub-query g such that
bd(q) = U and hd(q) consisting of all the variables in U that
also occur either in hd(Q) or in bd(Q) — U, and add q to Q.

Based on the above two steps, we can further obtain the com-
plexity of computing the partition Q |§;

Lemma 7. For a conjunctive query Q and set NV of some non-
distinguished variables of Q, Ql’sv(‘l’ can be computed in time 0(|Q|?).

Proof. According to the concrete way of computing Ql’sv(‘z’ , this
lemma holds trivially. O

Example 12. Consider the conjunctive query Q in Example 9 again.
Q has two non-distinguished variables ?x and ?y. By enumerating
the subsets of {?x, ?y}, four partitions of Q can be computed:

Q|{7Xi = {A(?x) A P(?x,?y) — q(?y), B(?y) — q(?y)}
Q|{7y} = {A(?x) — q(?x), P(?x, ?y) A B(?y) — q(?x)}
Q|{7x 2y} = {A(?x) A P(?x, ?y) A B(?y) — q()}

? {?
Qly, =Qlg orQll, =qly

By Theorem 8, all the certain answers of Q over any satisfiable DL-
Lite 4 KB can be obtained by evaluating the above four partitions of
Q over any SCSQA-local partition of this KB.

Finally, note that for a non-simple query reducible query with
n non-distinguished variables, Theorem 8 indicates that as many
as 2" query partitions need to be answered over a SCSQA-local
partition of a DL-Lite 4 KB to obtain all the certain answers of
this query over the KB. Therefore, compared with simple-query
reducible queries, more time may be spent in evaluating non-
simple query reducible queries.

6. Optimizing the procedure of evaluating query partitions

In this section, we present the last problem P3, i.e., optimizing
the procedure of evaluating query partitions over KB partitions.

Although query partitioning can reduce the final number of
queries needed to be evaluated over the ABox of a DL-Lite 4 KB
significantly,” a large amount of intermediate results generated by

5 For a DL-Lite4 KB X = (7,.4) and a conjunctive query Q, the classical
way of answering Q over K is by rewriting, i.e., first rewrites Q into a group of
conjunctive queries according to the axioms in 7" and then evaluates the rewritten
conjunctive queries over .A directly where reasoning is no longer needed. Suppose
that we partition Q into sub-queries g1, . .., ¢, and g; has n; rewritten queries for
1 < i < m. The number of conjunctive queries eventually needed to be evaluated
over A isn; + - - - + npy; whereas without query partitioning, answering Q over £
needs to evaluate no less than ny; x --- x np queries over .A. This says that query
partitioning can reduce the final number of conjunctive queries answered over the
ABoxes of KBs.
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evaluating partitioned sub-queries may also slow down the overall
query answering procedure. According to the work of Sideway
Information Passing [36-38], we realize an optimization strat-
egy specific for DL-Lite 4 to reduce the intermediate results as
many and as early as possible by transferring values between sub-
queries. As illustrated in the example below, when answering a
sub-query in a partition of a conjunctive query, we will transfer
the corresponding values obtained from the certain answers of the
sub-queries that have already been evaluated to this sub-query
before it is evaluated, i.e., materializing some variables of this sub-
query when their values are known. By this way, we can avoid
computing the certain answers of this sub-query which do not
coincide with the previous sub-queries.

Example 13. Consider the following conjunctive query Q and its
partition Q:

Q : R(a, ?x) AP(?x,?y) AS(?y, ?2z) — q(?x,?y, ?z)

Q = {q1:R(a, ?x) A P(?x, ?7y) = q(?x, ?y),
q2:S(?y, ?z) — q(?y, ?2)}

Let S be a partition of a DL-Lite 4 KB. After evaluating q; over
the KBs in S, suppose we obtain the certain answer set A =
U?=1 {(a;, b;)}. If we transfer the bindings of ?y to g, before it is eval-
uated, i.e., replacing evaluating g, with answering the following
three conjunctive queries:

q,' : S(bi1,?z) — q(by, ?z)
q,° : S(by,?z) — q(by, ?z)
qg3 : S(bs, ?z) — q(bs, ?2)

then we can avoid to computing the certain answers of g, which
do not bind ?y to by, b, or bs.

For a function &, we use dm(&) and rg(&) to denote the domain
and range of £, respectively. For a substitution [X/u1] and tuple ¥,
we use [X/1] |; to denote a function £ such that dm(&) consists of all
the elements occurring both in X and y and for each x € dm(&), if x
occurs in the ith position of x then £(x) = u[i]. The formalization as
well as the correctness of the sub-query value transfer procedure
in the situation of DL-Lite 4 and conjunctive query partitioning is
illustrated in the proposition below.

Proposition 2. For a partition Q = U_,{q;} of a conjunctive query Q
and a partition S of a satisfiable DL-Lite 4 KB, the following equation
holds:

ans(Q, Q,S8) =
X[x1/uy, ..., X /ugll(Uy, ..., uy) € Al X --- X Anlp,}
where X = hd(Q), X; = hd(q;) for 1 <i < n, and
Y ifk=1;
B = X1 /U1, o X1 /U]y | ifk>1.
(U, ooy Up1) € Adqlpy X -+ X Aptly_y}
Adlp = Ukesans(q1, K) ifk=1;
KIB™ | Ukes Ugen, ans(qié, ) ifk > 1.

Proof. For a conjunctive query q and satisfiable DL-Lite 4 KB i, the
following two conclusions (C1) and (C2) can be trivially proved.
(C1)Foreachil € ans(q, K)and function & such that dm(&) consists
of some variables in hd(q) and for each x € dm(&) if x occurs in
the ith position of hd(q) then £(x) = u[i], then i € ans(g&, K)
holds. (C2) for each function & such that dm(&) consists of some
variables in hd(q) and rg(§) C I, then ans(qgé, K) C ans(q, K)
holds. Let i € ans(Q, Q, S). Then there exists tl; € Uxcsans(q;, K)

for ; € Q such that i = X[X;/i,...,X,/Uy,] holds. Let & =
[X1/t1, ..., Xi—1/Ui—1]|z for 1 < i < n.Then by (C1) and mathe-
matical induction, it can be proved that & € B;and ii; € A;] ; hold.
So i is an element of the set of the right hand of the equation in this
proposition. So the (C) direction of the equation in this proposition
holds. By (C2), Ak|p, S Ukesans(qk, K) holds for each 1 < k < n.
Thus the (D) direction of the equation in this proposition holds.
Therefore this proposition holds. O

In Proposition 2, By denotes the set of bindings of some vari-
ables of g, obtained from the certain answers of the sub-queries
evaluated before g.

By observing the conjunctive query rewriting procedure in DL-
Lite 4, we found that the transferred variable bindings do not affect
the query rewriting procedure. This means that when evaluating
a sub-query q over a sub-KB K with a set B of variable bindings,
the conjunctive queries obtained by first transferring the bindings
in B to q then rewriting the resultant queries over the TBox of K
are equivalent to the conjunctive queries obtained by first rewrit-
ing q over the TBox of K then transferring the bindings in B to
the rewritten queries. Thus, we actually need one time of query
rewriting rather than |B| times. So, the procedure of evaluating q
over K with the variable binding set B can be further optimized.
The formalization and correctness are illustrated in the following
lemma and proposition.

Lemma 8. For a conjunctive query q, DL-Lite , TBox T and set B of
functions & such that dm(¢) C hd(q) and rg(§) C I, the following
equation holds:

UgepPerfectRef(qs, 7) =
Usen{q'&lq’ € PerfectRef(q, 7)}

Proof. Let & be an arbitrary function in B. This lemma can be
proved by showing the following equation holds:

PerfectRef(qé, T) = {q'€|q € PerfectRef(q, T)}

Suppose the rewriting procedure of q over 7 by PerfectRef is
Pro1:

I, a I, a In, an
Prol:  (S1,q1) ——>1, (S2, ©2) ——>1, -+ ——>1, (Snt1)
a1, B1 oy, B2 an, Pn

where S; = {q},q1 = ¢, q; € S;, ; and B; are query atoms of g;, I; is
ainclusion axiomin 7, I; € {0, 1}, and

{ Si U {qilai/gr(ai, 1)1} ifl; = 0
Siy1 =

Si U {t(reduce(q;, o, B;))} ifli = 1.

Here, gi[«i/gr (e, I;)] denotes the query obtained by applying the
inclusion axiom I; over g; based on the atom «;, and t(reduce(q;,
a;, Bi)) denotes the query obtained by unifying the two query
atoms «; and B; into one query atom. Next, we show the following
procedure Pro2 is a rewriting procedure of g&:

I, Dté In, ap

, I, Ota
Pro2 : (S]v q/]) B /5 I (Sé7 q’z) , f h ,\7 I (S;H.])
ay, /31 oy, /32 an, By

where S| = {qg1q € Si}, q; = qi€, o] = o€ and B; = B;&. This can
be proved by showing the following relation (R) holds:

s = S Udgilai/gr(ey, 1)1} ifl; = 0;
17 ) ST U {z(reduce(q;, o, B))} ifl; = 1.

R can be trivially validated by mathematical induction. Thus this
lemma holds. O

Based on Lemma 8, we can get that evaluating a sub-query over
a sub-KB with a set of variable bindings can be realized by first
rewriting this sub-query over the TBox of this sub-KB, transferring
the variable bindings to the rewritten queries and evaluating the
finally obtained queries over the ABox of this sub-KB.
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Proposition 3. For a conjunctive query Q, satisfiable DL-Lite , KB
K = (T, A) and set B of functions & such that dm(§) C hd(q) and
rm(&) C I, the following equation holds:

UEGBans(qg’ K) =
Uq/ePerfectRef(q,T) Ugen anS(q/%ﬁ (9, A))

Proof. By the query rewriting feature of DL-Lite 4, we can get:

Ugesans(qé, K) =
UEEB Uq’ePerfectRef(qE,T) ans(q’, (((), A))

Then by Lemma 8, this proposition holds directly. O

Example 14. Consider the queries and KBs in Example 13 again.
Let £ = (T,.A) be a KB in the partition S. Then evaluating the
sub-query g, over K with the three variable bindings &;: ?y — by,
£:?y — by and &3: ?y — bs can be realized by the following three

steps. Firstly, rewrite g, over 7. After this step, suppose we obtain
the following two queries:

qy: S1(2y,?2) = q(?y, ?2)
q: $(?22,?y) = q(?y, ?2)

Secondly, transfer the bindings &; — &3 to q; and q%. After this step,
the following queries can be computed:

@' Si(by,?2) by, ?22)
qéz i Si(by, 2z
q; : Si(bs, 2z
qgl o Sy(?z, by by, 72z
qu i S$(?z, by by, 72z

07 S22z, b3) — q(bs, 72)

~J

- q(

) = q(b1, ?2)
) = q(b1, ?2)
)= q( )
)= q( )

Finally, evaluating the above six conjunctive queries over A can
obtain all the certain answers of evaluating these three queries
42§61, 4262 and qp§3 over K.

The result presented in Proposition 3 can be used to opti-
mize the procedure of computing the components Uxcs Uges,,
ans(gi+1&, K) in Proposition 2.

Finally, note that for the value transferring strategy to work, the
order of evaluating the sub-queries in a partition of a conjunctive
query is crucial. In Example 13, evaluating Q in the order of q1, q;
would be much more efficient than in the order of g,, g1, since
evaluating g, is more time costly with a large number of certain
answers obtained. For two sub-queries q and ¢’ in a partition
of a conjunctive query, if g and q’ share some variables and ¢
contains more individuals or has more query atoms, then q should
be evaluated before ¢, as evaluating g may return fewer certain
answers. The experiments presented in the subsequent section
demonstrate that this value transferring strategy can significantly
improve the query answering performance. Nevertheless, there
are side-effects as transferring values between sub-queries in a
partition destroys their independence. Moreover, as illustrated
by the results of evaluating NQ‘fb’[J in the experiments, if all the
sub-queries in a partition can be evaluated efficiently and have
less number of certain answers, this strategy may slow down the
procedure of evaluating this query partition.

7. Experiments

In this section, we conduct experiments to demonstrate the
efficiency of the provided approach as well as the rationality of

our proposal of using DL-Lite 4 techniques to consume the Web-
scale Open Data. For this purpose, we have implemented a pro-
totype system® in Java, where classical algorithms Consistent
and PerfectRef in [24] are adopted for checking the satisfiability
of DL-Lite 4, KBs and rewriting conjunctive queries over DL-Lite 4
TBoxes, respectively. Moreover, MySQL version 5.5 is used for
storing the ABoxes of DL-Lite 4 KBs. Concretely, for each ABox 4, a
database D23 is automatically created consisting of an unary table
for every class in A and a binary table for every role in A to store
their individual assertions. Furthermore, we adopt multithread
techniques to check the satisfiability of and answer a single query
over the sub-KBs in a KB partition in a parallel way. Note that the
concrete choices of the specific reasoning and query answering
algorithms and database engines as well as the concrete ways of
managing the ABoxes of DL-Lite , KBs in relational databases can
affect the actual performance of both satisfiability checking and
conjunctive query answering. Neverthless, running a comparison
between different choices is unnecessary for the purpose of this
paper, as our main goal is to detect the performance difference
between reasoning and query answering with and without KB and
query partitioning, as well as to reveal the benefit of KB and query
partitioning for large-scale, performance-critical applications.

We ran the prototype system on two Web-scale, real-world
open datasets described by Semantic Web standards, DBpedia_200
dataset’ extended with DBpedia ontology® (totally contains 0.278
billion RDF triples) and BTC 2012 dataset (totally contains 1.1
billion RDF triples). The machine used was a server with 64-bit
Windows 2010 operating system, Intel (R) Xeon (R) CPU E5-2640
v4 2.40 GHz, 64 RAM, 20 kernels and 40 logical processors. The
Java VM used was 1.6.0.22 where the main memory was limited to
50G.

7.1. The DL-Lite 4 KB construction and SCSQA-local partition compu-
tation

In this subsection we report the results of constructing DL-Lite 4
KBs from the two datasets and computing SCSQA-local partitions
of the obtained DL-Lite 4 KBs.

DL-Lite 4 adopts unique name assumption, i.e., every two dif-
ferent individuals are unequal. Therefore, we materialize the name
equivalence relations (the assertions of the OWL vocabulary
owl: sameAs) in the two datasets by first grouping the names
based on their equivalence relationship and then for each group,
choosing one surrogate and replacing all the equivalent names
with the surrogate. The schema knowledge described in the DB-
pedia_200 dataset does not exceed the expressivity of DL-Lite 4.
After materializing the name equivalence relations, a DL-Lite 4 KB
Kapp with 233,227 axioms and 275,710,447 individual assertions
is constructed from the DBpedia_200 dataset. For the BTC 2012
dataset, by dropping 5,259 axioms that cannot be captured by DL-
Lite 4, a DL-Lite 4 KB Ky with 339,519 axioms and 1040,455,793
individual assertions is constructed. We randomly choose two
numbers, 28,571,044 and 52,022,789, to respectively limit the size
of the ABoxes of the sub-KBs for K5y and Kp. As a result, as listed
in Table 2, a SCSQA-local partition Sgp, of Kap, With 14 sub-KBs
and a SCSQA-local partition Sy of KCpec With 30 sub-KBs have been
computed using the concrete ways described in Section 4.3, within
1.7 and 4.5 hours, respectively. One can see that the provided
approach for computing SCSQA-local partitions of DL-Lite 4 KBs
has generated balanced-sized sub-KBs.

6 Source code can be found at https://github.com/Lucy321456/DLLitePartition.
7 http://benchmark.dbpedia.org/.
8 http://wiki.dbpedia.org/downloads-2016-04.
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Table 2
Statistics of the sub-KBs in Sgpy, (a) and in Sy (b), where || denotes the size of set and M denotes million.
(a)
db) db) db) db) db) dby dby
KB K{P Ky K3” Ky’ Ks? Kg" K3"
|TBox| 7440 41,408 54,806 62,625 65,486 67,937 68,853
|ABox| 28.57M 28.57M 28.57M 28.57M 2.85M 28.57M 28.57M
db) db) db) db) db) db) db)
KB Kg” Ky” Ko Ky K5 K55 Kid
|TBox| 79,946 95,469 77,925 30,061 57,637 49,523 59,622
|ABox| 28.57M 28.57M 28.57M 28.57M 28.57M 28.57M 24.69M
(b)
KB Kl])fc Kftzm ’Cgtc KZtc K:tsatc ’Clﬁztc Kl77tc ’Cgtc Klgm K:%C
|TBox| 1573 5587 5137 3248 64 6143 6728 6585 6864 7894
|ABox| 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M
= i % < o <% i E i i %
|TBox| 6346 7354 526 526 456 240 173 17 17 4893
|ABox]| 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M
= o &5 5 o % i <% o o o
|TBox| 513 5101 4922 5474 4794 749 140 108 7291 2662
|ABox| 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 52.02M 5.58M
Table 3
Results of satisfiability checking, where Time denotes minutes used to check satisfiability, False and True respectively denote non-
satisfiable and satisfiable, ++ denotes out of memory error, and Query denotes the number of queries needed to be answered over the
ABox of the corresponding KB for satisfiability checking. @
a
Kavp Savp Kore Shic
Time 6.44 0.07 Time ++ 0.15
Result False False Result ++ False
(b)
KB Ky SubkB | K K K K K K K
Query 2,963,132 Query 219 683 402 145 398 597 | 384,536 | 374,923 378 539 340 026
KB K SubKB K K K K K K K
Query ++ Query 318,287 | 305,123 | 230,454 110 242 191 799 121 188 117,887
SubKB (](‘btc (](‘btv 17(‘btc r](‘bt( 7(1710 7(bxv r](‘btc (](‘btc (}(brc (ch
1 5 6 7
Query 10,247 159, 466 120 526 28, 194 96 190,437 | 246,762 220 563 257 384 | 253, 381
seks | Ky | KE | Ky | Ky | KE | Ke | Kp | Ky | Ky | K
Query 197,857 | 253,784 2,298 2,276 1,833 853 455 0 0 127,928
SubKB (](é)il (K'Im q(‘btc 7(%}41; 7(}7& (](hn (](;I;L (K'%L q(‘é;gu 7(%(
Query 4,050 129, 035 132, 648 154,402 167 010 5, 819 124 122 309,665 25,976

7.2. The performance of satisfiability checking

In this subsection we report the effect of KB partitioning on the
performance of satisfiability checking. The results of checking the
satisfiability of the KBs in the partition Sgp, (Spe) with paralleliza-
tion are compared with the KB Kgpp (Kpe ) without partitioning in
Table 3.

As shown by Table 3(a), without KB partitioning, checking the
satisfiability of Cgqpp totally cost 6 minutes, and for Kp, after
6 hours an out-of-memory error was reported. That K, contains
a large number of disjoint axioms and inclusion axioms causes the
failure in completing generating the queries needed to be evalu-
ated over its ABox. Conversely, facilitated by KB partitioning which
eventually enables parallelization, satisfiability checking of Kgpp
and Kpe has been successfully completed in 0.07 and 0.15 minutes,
respectively. Whenever one sub-KB in a SCSQA-local partition is
identified to be unsatisfiable, one can conclude that the original KB
is unsatisfiable, thus the procedure can be terminated. For these
two KBs, the performance improvement owes much to the smaller
size of the sub-KBs in the KB partitions. For satisfiability checking,
smaller TBoxes make less number of conjunctive queries needed to
be answered over the ABoxes and thus less time is used to compute
these queries. This can be clearly seen from Table 3(b). Without

KB partitioning, checking the satisfiability of Kap, may need to
evaluate 2963,132 queries over its ABox. On the other hand, for the
sub-KBs in Sgyp, N0 more than 402,145 of these 2963,132 queries
need to be evaluated over their ABoxes.

Note that Table 3(b) also indicates that if K4y, and Ky are
satisfiable, the performance improved by KB partitioning equipped
with parallelization will be much more remarkable. If kg, is satis-
fiable then all the 2963,132 queries need to be evaluated over the
ABox of Kgpp. However, for each sub-KB in Sypp, there are still no
more than 402,145 of the 2963,132 queries needed to be answered
over the ABox of this sub-KB. Moreover, the big difference between
the numbers of queries needed to be answered over the ABoxes
implies that even using other database engines, similar results
should be obtained.

Overall, the results in Table 3 indicate that KB partitioning
equipped with parallelization can significantly improve the per-
formance of checking the satisfiability of Web-scale DL-Lite 4 KBs.
When considering the two datasets as RDF/RDFS graphs, the results
we obtained about their satisfiability cannot be discovered, show-
ing the power of using DL-Lite 4 techniques to consume large-scale
open data.
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Table 4

Tested simple-queries and non simple-queries over DBpedia_200 dataset and BTC 2012 dataset. Prefixes for the abbreviated names used in these queries are available in the

Appendix of this paper.

sQi» dbo : Person(?x) — q(?x)
Sngp rdfs : label(?x,’ Alan Turing@en’) — q(?x)
Sng" dbo : Person(?x) A rdfs : label(?x,’ Alan Turing@en’) — q(?x)
SQpr skos : subject(dbr : Alan_Turing, ?x) A skos : broader(?x, ?y) A
rdfs : label(?x, ?z) — q(?x, ?y, ?z)
Sngp dbp : workinstitutions(dbr : Alan_Turing, ?x) A
dbo : Organisation(?x) A rdfs : comment(?x, 2y) — q(?x, ?y)
Sngp skos : subject(?x, dbr : Category : Computer_pioneers) A
foaf : name(?x, ?y) A rdfs : comment(?x, ?z) — q(?x, ?y, ?z)
Sngp dbo : Person(?x) A dbp : birthPlace(?x, dbr : China) A

dbo : birthDate(?x, ?y) A foaf : name(?x, ?z) A
dbo : deathDate(?x, ?d) — q(?x, ?y, ?z, ?d)

Sngp dbo : Film(?x) A dbo : writer(?x, dbr : Robert_Thoeren) A
dbo : director(?x, ?y) A rdfs : comment(?x, ?z) A
foaf : primaryTopic(?d, ?x) — q(?x, ?y, ?z, ?d)

sQbte foaf : Person(?x) — q(?x)
Nols rdfs : label(?x,’ Tim Berners — Lee') — q(?x)
SQ’;“ foaf : Person(?x) A rdfs : label(?x,’ Tim Berners — Lee’) — q(?x)
SQZ“ skos#subject(fb : 01z0hl, ?x) A skos#broader(?x, ?y) A
rdfs : comment(?x, ?z) — q(?x, ?y, ?z)
SQ‘gfC swrc : affiliation(sc : tim — berners — lee, ?x) A
dbo : Organisation(?x) A rdfs : label(?x, ?y) — q(?x, ?y)
SQg’C skos : subject(?x, dbr : Love) A dbp : name(?x, ?y) A
rdfs : label(?x, ?z) — q(?x, ?y, ?z)
SQS” foaf : Person(?x) A dbp : prizes(?x, bdr : Nobel_Prize_in_Physics) A

dbo : field(?x, ?y) A dbo : knownFor(?x, ?z) A
dbo : almaMater(?x, 2d) — q(?x, ?y, ?z, ?d)

SQ_g" dbo : Film(?x) A dbo : writer(?x, dbr : Robert_Thoeren) A
dbo : director(?x, ?y) A rdfs : label(?x, ?z) A
foaf : primaryTopic(?d, ?x) — q(?x, ?y, ?z, ?d)

NQ;”’" skos : subject(dbr : Alan_Turing, ?x) A skos : subject(?y, ?x) A
dbp : knownFor(?y, ?z) A dbp : prizes(?y, ?d) — q(?x, ?y, ?z, ?d)

N gb" dbo : writer(?x, dbr : Robert_Thoeren) A dbo : director(?x, ?y) A
rdfs : label(?y, ?z) — q(?x, ?y, ?z)

Nng" rdfs : label(?x, ‘Alan Turing@en’) A dbo : influencedBy(?y, ?x) A
rdfs : label(?y, ?z) — q(?x, ?y, ?z)

NQibp dbo : Work(?x) A dbo : writer(?x, dbr : Robert_Thoeren) A

dbo : director(?x, ?y) A foaf : primaryTopic(?z, ?x) A
dbo : birthDate(?y, ?d) — q(?x, ?y, ?z, ?d)

NQeP dbo : Person(?x) A
skos : subject(?x, dbr : Category : Computer_pioneers) A
rdfs : comment(?x, ?y) A dbo : doctoralAdvisor(?x, ?z) A
dbo : Scientist(?z, ?2d) — q(?x, ?y, ?z, ?2d)

Nngp dbo : Organisation(?x) A dbo : employer(?y, ?2x) A
dbo : Scientist(?y) A dbp : knownFor(?y, dbr : Turing_Award) A
odp : hasLocation(?x, ?z) A dbo : PopulatedPlace(?z) —
q(?x,?y, ?z)

NQ’{“ dbp : prizes(fb : 01w7np, ?x) A dbp : prizes(?y, ?x) A
rdfs : label(?y, ?z) — q(?x, ?y, ?z)

NQ’;‘C dbo : director(?x, dbr : George_Lucas) A dbo : writer(?x, ?y) A
rdfs : label(?y, ?z) — q(?x, ?y, ?z)

NQ’;“ rdfs : label(?x, ‘Alan Turing@en’) A dbo : influencedBy(?y, ?x) A
rdfs : label(?y, ?z) — q(?x, ?y, ?z)

NQ’fC dbo : Work(?x) A dbo : writer(?x, dbr : Robert_Thoeren) A

dbo : director(?x, ?y) A rdfs : comment(?x, ?z) A
foaf : primaryTopic(?d, ?x) A rdfs : comment(?y, ?e) —
q(?x,?y,?z,2d, ?e)

NQ’S’“ foaf : Person(?x) A dbp : prizes(?x, fb : 0dt39) A
rdfs : comment(?x, ?y) A dbo : doctoralAdvisor(?x, ?z) A
rdfs : label(?z, ?e) — q(?x, ?y, ?z, ?e)

NQg” dbo : Educationallnstitution(?x) A dbo : almaMater(?y, ?x) A
foaf : Person(?y) A dbp : prizes(?y, fb : 0dt39) A
dbo : field(?y, ?z) Adbo : knownFor(?y, ?d) Ardfs : label(?d, ?e) —
q(?x,?y,?z,7d, ?e)

7.3. The performance of query answering

In this subsection we present the effect of KB partitioning, query
partitioning and sub-query value transfer on the performance of
conjunctive query answering. For this task, we respectively design
8 simple-queries SQ!"’-SQ§” and 6 non-simple queries NQ}”-
NQZ for Kgpp, and 8 simple-queries SQ2°-SQ2 and 6 non-simple
queries NQI}“—NQ(’;“ for KCpec. These queries, as listed in Table 4, are
designed by taking into account all the following three aspects, (1)
whether they contain a small or large number of query atoms, (2)
whether there will be a small or large number of rewritten queries
over the original KBs, and (3) whether they can be evaluated effi-
ciently or inefficiently over the original KBs. The query answering
results are measured by Time, Ans and RCQ, where Time and
Ans respectively denote the total seconds used for answering a
query and the total number of certain answers finally obtained, and
RCQ denotes the total number of rewritten queries. The concrete
formulas of computing RCQ in different situations are listed in
Table 5. For example, in the situation of query answering solely
with query partitioning, RCQ denotes the sum of the number of the
rewritten queries of each sub-query. Theoretically, if a KB K is not
satisfiable, then for each query Q, ans(Q, K) is the set of all the
tuples with length |hd(Q)| and consisting of the individuals in .
Thus, we assume that all the KBs in Sgp, and in Spe and KBs Kgpp
and K are satisfiable, with the motivation of answering queries
through rewriting.

We first show the effect of KB partitioning on the performance
of simple-query answering. Evaluating a simple-query over a satis-
fiable DL-Lite 4 KB can be soundly and completely realized by first

Table 5
Formulas for computing RCQ w.r.t. a DL-Lite4, KB £ = (T,.4), a partition
UL, {(Ti, A;)} of K, a conjunctive query Q and a partition U, {q;} of Q.

RCQ Strategy

|PerfectRef(7, Q)|

> i IPerfectRef( T, q;)|

max]_, {|PerfectRef(7;, Q)|}
max?, {1, [PerfectRef(77, i)}

Without KB partition and query partition
Solely with query partition

Solely with KB partition

With both KB partition and query partition

answering this query over each sub-KB in a SCSQA-local partition
of this KB independently and then merging the certain answers
obtained. The results of evaluating the tested simple-queries over
the KBs in Sypp, (Spec ) with parallelization and over the KB Kapp (Kpic )
without KB partitioning are shown in Table 6.

In general, the values of Time listed in Table 6(a) and (b)
indicate that no matter a simple-query has a large or small number
of rewritten queries over the original KB, such as SngP , SngP , SQpre
and S ’2’“, or it can be evaluated efficiently or inefficiently over the
original KB, such as Sngp , Sngp , SQ¥¢ and SQ5%, in the situation
of KB partitioning equipped with parallelization, this simple-query
can be answered in an extremely efficient way. Analogously to sat-
isfiability checking, such performance improvement owes much
to the smaller size of the sub-KBs and parallelization enabled by
partitioning. Firstly, smaller TBoxes generate smaller number of
rewritten conjunctive queries and less time is thus used to com-
pute these rewritten queries, w.r.t. a query rewriting algorithm and
a conjunctive query. This can be seen by comparing the 1st row
with the 2nd row of Table 6(a) and (b), respectively. Take Sngp as
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Table 6

Results of evaluating the tested simple-queries over the corresponding KBs with and without KB partitioning, where the better values of
RCQ and Time are given in bold and where — denotes a query cannot be evaluated in 30 minutes.

(a)

S chibp S chibp S Q;Ibp S ijbp S Q;lbp S Qcéibp S Q;Ibp S ngp
RCQ Kanp 1,145 1 1,145 1 503 1 18,289 124
Sarp 378 1 378 1 253 1 377 12
Time Kanp 54.66 16.02 - 14.30 101.34 - - -
Savp 29.97 4.08 201.86 1.40 45.74 824.03 30.51 49.44
Ans Kanp 846,391 5 - 728 25 - - -
Savp 846,391 5 1 728 25 162 70 7

(b)

SQIIJt(' SQgt(' SQQ?IL' SQZ}‘L‘ SQ;)M SQZtc SQ};I(‘ SQgTL'
RCQ Kore 491 91 44,591 1,933 100,829 1,093 491 11,649
Shre 133 28 4,126 239 577 197 166 1,317
Time Kore 224.98 114.87 - 12.87 4.45 4.11 55.01 -
Shre 57.35 11.07 492.49 3.27 2.21 2.44 26.49 191.53
Ans Kie | 13,586,245 98 - 15 3 72 162 -
Shrc 13,586,245 98 96 15 3 72 162 26

an example. Without KB partitioning, evaluating Sng” over Kgpp
needs to answer 18,289 conjunctive queries over the ABox of KCgpp,
whereas in the situation of KB partitioning, the largest number of
conjunctive queries needed to be answered becomes 377. This is
similar for SQ{™, SngP ,SQbt, sQbte, sQbte, QB and SQL. Secondly,
smaller ABoxes enable the finally rewritten queries to be evaluated
much faster. Take Sngp for example. Although answering Sngp
over Kgqpp solely needs to answer 1 conjunctive query, due to the
massive size of the ABox of Kgpp, this query cannot be answered
within 30 minutes. In the situation of KB partitioning, however,
evaluating Sngp can be completed over the ABox of each sub-KB in
less than 13 minutes. This is similar for SQ3”, SQ}”, SQ&”, SQ”,
SQbte, sQbt and SQb. Overall, the simple-query answering results
indicate that KB partitioning equipped with parallelization can
significantly improve the performance of simple-query answering
over large-scale DL-Lite 4 KBs.

Next, we show the effect of query partitioning combined with
KB partitioning as well as sub-query value transfer on the perfor-
mance of query answering. The results of evaluatind% the tested
non-simple queries and the simple-queries Sng’J, SQg P'S g“ and
SngC over the corresponding KBs and KB partitions are shown in
Table 7. The motivation of testing the simple-queries SQ5”, SQ2™,
SQg“ and SQ§’C again is to demonstrate how query partitioning
can function when KB partitioning fails to largely improve the
performance of simple-query answering. The evaluated partitions
of the corresponding tested queries are presented in the Appendix
of this paper.

Generally speaking, by comparing the values of Time in differ-
ent situations listed in Table 7(a) and (b), we can conclude that
when a conjunctive query cannot be evaluated over the original KB
efficiently, query partitioning combined with KB partitioning and
sub-query value transfer can make this query to be evaluated in a
very efficient way. For example, evaluating SQ';"’P over Kgpp cannot
be done in 30 minutes, whereas the combination of the partitioning
and optimization has completed the task in 10.8 seconds. This
is similar for SQ3”, NQ}”, NQ”-NQZ™, sQb, sQbre, NQJ-NQLe.
Such performance improvement mainly embodies in the following
two aspects. On the one hand, no matter with or without KB parti-
tioning, query partitioning can reduce the number of the rewritten
conjunctive queries significantly. This can be seen from the values
of RCQ listed in Table 7(a) and (b). For example, without query
partitioning, evaluating NQg“ over KCpc needs to answer 3299,661
rewritten queries over the ABox of Kp., whereas evaluating a
partition of NQgtC over Ky decreases the number to 656, which
is further downsized to 197 in the situation of KB partitioning (the

maximum number of rewritten queries over one sub-KB). Similar
cases can be seen for SQY, SQL, NQU*-NQL, SQ3, and NQ}”-
Nngp . On the other hand, even though query partitioning cannot
reduce the number of rewritten queries significantly, such as for
SQE” and NQ{™, evaluating query partitions over KB partitions
with parallelization and sub-query value transfer can speed up
the procedure, as exemplified by Nngp . Solely using query parti-
tioning, Nngp cannot be evaluated over Ky, successfully, whereas
combined with KB partitioning and sub-query value transfer, eval-
uating NngP has completed in 14.78 seconds.

We analyze the results in Table 7 in more details. Firstly, com-
paring the 7th with the 8th rows of Table 7(a) and (b), one can see
that solely with query partitioning, queries that cannot be evalu-
ateddb succ%gsfull% bstill suffer from low efficiency, as exemplified by
SQg ¥, NQ,P-NQg”, SQ5', SQ5 and NQ5*-NQL. What is worse is
that query partitioning may lead to poor performance for queries
that can be originally answered quickly, such as NQ3”, NQ3”, NQ&t
and NQ5. In addition, as shown by the 11th rows of Table 7(a)
and (b), it is clear that even combined with KB partitioning, such
poor performance caused by query partitioning is not improved.
Fortunately, this can be changed by sub-query value transfer, es-
pecially in the situation of KB partitioning, as seen from the 9th
and 12th rows of Table 7(a) and (b). Secondly, it is undeniable that
sub-query value transfer will increase the number of conjunctive
queries eventually needed to be answered. This can be seen from
Table 8, where for example, without sub-query value transfer,
evaluating Sngp just needs to answer 1 conjunctive query, but sub-
query value transfer has caused the number to become 1 x 238 =
238. Nevertheless, in the end sub-query value transfer has made
evaluating Sngp from impossible to possible. Similar cases can be
seenin N gbp —Nngp and the queries designed for BTC 2012 dataset.
Note that the results of evaluating NQ‘fbp indicate that if all the
sub-queries in a query partition can be answered efficiently, then
sub-query value transfer may not further speed up the procedure.
Thirdly, in the situation of query partitioning, no matter with or
without sub-query value transfer, KB partitioning can accelerate
the overall query evaluation procedure, as evaluating queries over
smaller KBs tends to be faster. This can be seen by respectively
comparing the 8th row with the 11th row and the 9th row with
the 12th row of Table 7(a) and (b), respectively. Finally, we notice
that for queries already efficiently answerable over the original KB,
our approach may not further improve the performance, as seen in
NQJ”-NQ3” and NQJ-NQJ«.
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Table 7

Results of evaluating the tested queries over the corresponding KBs through query partitioning, where — denotes a query cannot be
evaluated in 30 minutes, % denotes inapplicability, pp and npp respectively denote query answering with and without query partitioning,
and vt and nvt respectively denote evaluating query partitions with and without sub-query value transfer. The best values of RCQ and
Time are marked in bold.

()
S Q;pr S QL()lhp N Q(]H)p N szlbp N Q;hﬁ N Qzlbp N lebp N Q;lbp
7(;5;’ 1,145 1 1 4 1 4,237 29,732 -
R 1,146 2 2 5 2 1,065 2,302 -
req | K 1,146 2 2 5 2 1065 | 2302 -
S 378 1 % % % % % %
S 379 2 2 2 2 126 385 | 12,958
S 379 2 2 2 2 126 385 | 12,958
KT = = . o7 | 6075 - - -
e 75.40 —- | 10602 - - - - -
Time | Ky 51.99 122.81 103.79 1.16 61.21 - - -
S;’b’ﬁ 201.86 824.03 % %o % %o % %
sy 38.80 - 22.82 - —| 686.11 | 208.89 -
SZ‘Z; v 10.80 63.33 31.61 0.49 18.75 679.53 14.78 188.96
K - - - 20 40 - - -
K 1 ~ | s.164 - - - - -
ans | KO 1 162 8,164 20 40 - ~ ~
S 1 162 % % % % % %
E I - - - - 3 138 -
S 1 162 8,164 20 40 3 138 40
(b)
S Q?tv S ng NQllm‘ NQSIC Nng‘ NQitc NQ[j)!r NQgtv

K 44,591 11,649 91 91 8,281 123,873 312,131 | 3,299,661
7(}’;":"‘” 189 120 92 92 182 17,704 3,522 656
L 189 120 92 92 182 | 17,704 3,522 656
i 4,126 1317 % % % % % %
Spremt 191 70 29 29 56 1,318 305 197
S 191 70 29 29 56 1,318 305 197
KPP - - 11.91 3.03 - - - -

+nvt
e, - - - - - - - -
Time Ko - 91.03 4.54 1.93 37.95 - 117.63 112.86
Sztpcp 492.49 191.53 % % % % % %

nvt
S - - 9.88 - - - - -
S v 361.65 12.08 2.38 0.61 6.03 213.71 43.23 39.68
i - - 843 36 - - - -

pp+nvt
btc - - - - . - - _
Ans 7(}1}7tpc+vr — 26 843 36 38 25 2,092 1,685
2 96 26 % % % % % %

+nvt
. - - 843 - - - - -
S 96 26 843 36 38 25 2,092 1,685

Table 8
Details of sub-query value transfer, where B; denotes the number of variable bindings transferred from the previous (i — 1) evaluated sub-queries to the
ith evaluated sub-query and R; denotes the RCQ value of the ith evaluated sub-query.

S Q;lbp S sz/) N Qzllbp N Qazlbp N Qgibp N ijp N Qtslbp N Qtéb‘u
B, R, B, | Ry B, R, [ B, | R, | B, | R, | B | R, | B, | R, | B, R, B; | R;
Kavp 5 | 1,145 | 238 1 | 2,3225 1 4 1 4 1 - - - - - - - -
Sanp 5 378 | 238 1 | 2,3225 1 4 1 4 1 4 1| 20 7 1 | 12,802 3 | 149
Sng' SQZ:‘L‘ NQ[]}tc NQZZm' NQQJI( NQZ:‘L‘ NQ?C NQgrc
B, R, B, | Ry B, Ry | B [Ry [ B [ Ry | B | Ry | B | Ry | By Ry B; | R;
Kpie | 98 491 51 91 1] 91 6 | 91 4 | 91 5 7|25 91 | 61 74 | 78 7
Spie 98 166 5| 28 1| 28 6 | 28 4 | 91 5 2 | 25 | 28 | 61 65 | 78 2
7.4. The comparison with related systems For a DL-Lite 4 KB K = (T, .A), the classical way of checking

the satisfiability of K is realized by the following two steps. Firstly,

In this subsection we present the results of comparing our ap- . T .
compute the negative closure cIn(7") of 7 which is a set of axioms

proach respectively with one related work on satisfiability check-
ing and two state-of-the-art RDF triple stores for query answering. in the form y C —¢ or Fun(P), and generate a query for each
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Table 9
The results of checking the satisfiability of the tested KBs and KB partitions by the
classical approach (ClaA) and [39], where ++ denotes out of memory error.

dep Sdbp (I(btc S btc
Time ClaA 6.44 0.07 ++ 0.15
[56] 2.14 0.82 10.57 4.03
Result ClaA False False ++ False
[56] False False False False

axiom in cl(7). Secondly, evaluate the generated queries over .A
to check whether there exist assertions in A that conflict with
cIn(7). Alternatively, the work of [39] provides a bottom-up way
of satisfiability checking where the step of precomputing negative
closure is discarded. Concretely, for every two assertions sharing
an individual, the approach in [39] checks whether 7 entails the
corresponding negative axiom. For example, if the two assertions
are A(a) and P(a, b) then check whether 7 entails A T —3P; and
if the two assertions are A(a), check whether 7 entails A C —A.
If the result is true then K is unsatisfiable; otherwise continue
checking other pairs. The results of checking the satisfiability of the
KBs in Sgpp (Spec) with parallelization and the KB Kgpp (Kpec) by the
classical approach and the approach illustrated in [39] are shown
in Table 9. Note that, for the approach in [39], due to the large size
of the ABoxes of the tested KBs, we pre-compute the groups of
the assertions in an ABox that share individuals and then gradually
load each group into main memory.

The results in Table 9 indicate the following three aspects.
Firstly, from the results of Kgp, and Ky in Table 9, we can get
that for the KBs with large-scale TBoxes, the approach in [39]
may perform better then the classical approach for satisfiability
checking, since the classic approach may spend much time to
compute all the queries needed to be checked over the ABoxes of
KBs. Secondly, from the results of Sy, and Sy in Table 9, we can
obtain that if the queries needed to be evaluated over the ABoxes
can be computed quickly, blindly trying pairs of assertions sharing
individuals may slow down the satisfiability checking procedure.
Thirdly, from the results in the 2nd row of Table 9, we can conclude
that even for [39], KB partitioning equipped with parallelization
still has the potential to improve the performance of satisfiability
checking. Note that, for the approach in [39], if Kapp and Ky are
satisfiable, the performance improved by KB partitioning will be
much more remarkable, since checking the satisfiability of KCapp
and Kp need to check 99 billions and 53,242 billions of individual
assertion pairs, respectively. However, for the KBs in Sgpp (Spec ), the
numbers of assertion pairs needed to be checked are no more than
7 (226) billions.

On the other hand, in order to capture the abundant schema
knowledge described in the open datasets, we propose to use DL-
Lite 4 techniques to reason with and query these datasets, i.e., con-
sidering these datasets as DL-Lite 4 KBs rather than RDF graphs. The
advantages lie in the availability of checking the satisfiability of the
datasets as well as more certain answers being identified by replac-
ing evaluating one query with evaluating many rewritten queries.
Correspondingly, the disadvantage is that more time will be used
to answer a query. In order to improve the overall performance,
we provide a divide-and-conquer reasoning and query answering
approach. Next, we present the performance difference between
our divide-and-conquer strategy and the approach of evaluating
queries directly without reasoning, and show the importance of
reasoning as well as the rationality of partitioning for large-scale
open datasets. For comparison, we selected two state-of-the-art,
centralized triple stores, Jena-TDB (version 2.10.1)° and Virtuoso

9 https://jena.apache.org/index.html.

(version 7.2.4.2).10 They both adopt triple table model to manage
RDF graphs and support lightweight RDFS reasoning. The BTC 2012
dataset and the extended DBpedia_200 dataset (after dropping
duplicates and materializing owl:sameAs assertions) were first
loaded into the two triple stores, which respectively took about
30.55 and 9.71 hours for Virtuoso and 57.31 and 10.42 hours for
Jena-TDB. The results of evaluating the tested queries over the
corresponding datasets by our approach and Virtuoso and Jena-
TDB without and with RDFS reasoning are shown in Table 10. These
results indicate the following three aspects.

Firstly, by comparing the 1st with the 2nd and 3rd rows of
Table 10(a) and (b), one can clearly see that even with KB and
query partitioning, our approach is not as efficient as the two RDF
stores which evaluate queries directly without taking reasoning
into consideration. For example, it took our prototype system
4.08 seconds to answer Sng” , Whereas in Virtuoso and Jena-TDB
the query was evaluated within 0.21 seconds. This is the same case
for the queries SQ5', SQ5*, Sngp and many more.

Secondly, by comparing the 2nd with the 4th, and the 3rd
with the 5th rows of Table 10(a) and (b), respectively, one can
see that when reasoning is considered, the performance of the
two triple stores drops significantly, and they do not perform as
better as our approach. For instance, without reasoning, NQIS”C can
be evaluated by Virtuoso and Jena-TDB in 2.41 and 0.21 seconds,
respectively, whereas under RDFS reasoning, the two triple stores
failed to evaluate the query within 15 minutes, due to the large size
of the two tested datasets. On the other hand, taking advantage
of KB and query partitioning, our prototype system succeeded in
completing the task in 43.23 seconds, even though what being
performed is reasoning in DL-Lite 4 which is more expressive than
RDFS. This is the same case for the queries NQ} 7, SQ*¢, SQ&, QU
and NQ@“, as shown by comparing the 1st with the 4th and 5th
rows of Table 10(a) and (b). Moreover, when (one of) the two triple
stores can answer the query under reasoning within given time,
for 16 out of 21 such cases, our approach spent less time, as ex-
emplified by SQ‘fbp where Virtuoso and Jena-TDB respectively took
235.97 and 281.11 while ours 29.97 seconds. This indicates that
when reasoning is taken into account, KB and query partitioning
has the potential to improve the performance of query answering
significantly.

Thirdly, by comparing the 6th with the 7th and 8th rows of
Table 10(a) and (b), one can see that query answering without con-
sidering reasoning can miss many certain answers. Take NQQ“ as
an example. Under DL-Lite 4 semantics, i.e., considering the tested
datasets as DL-Lite 4 KBs, there are a total of 2092 certain answers
in the BTC 2012 dataset for Nng‘; whereas without reasoning,
none of these answers can be obtained. This is the same case for
the queries NQZ”, NQZ™, NQYr¢, sQ¥*?, $Q¥*¢, and so on.

Note that for query answering with reasoning, an alternative
strategy is materialization [40-42], i.e., to compute the entailed in-
dividual assertions and add the entailments to the original datasets
so that queries can be directly evaluated over the materialized
datasets without reasoning. However, such materialization is in-
complete for query answering in DL-Lite 4. Take the KB K consist-
ing of the following axiom and assertion described in the BTC 2012
dataset as an example.

Event T Ifactor_of .Event
Event(a)

Consider the following query Q asking for the events that are
factors of other events:

Event(?x) A factor_of (?x, ?y) A Event(?y) — q(?x)

10 http://vos.openlinksw.com/owiki/wiki/VOS/VOSMakeWindows.
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Results of answering the tested queries by Virtuoso and Jena-TDB, where Vir and TDB respectively denote query answering by Virtuoso and Jena-TDB
without reasoning, ViR and TDR respectively denote query answering by Virtuoso and Jena-TDB with RDFS reasoning, Our denotes our divide-and-conquer
query answering approach, - denotes a query cannot be evaluated within 15 minutes, and M denotes million. The best values of Time and Ans are marked

in bold. When reasoning is considered, the best values of Time are marked in italic.

(@)

S Qiib,; S Q;ib,; S Q;/bp s ijp ‘ S szp S ng,; S Q;lbp s Q;bp N Qél/b[) N ngp N lebp N Qzlbp N Q(S/bp N ng,;
[ T| our 29.97 4.08 10.80 1.40 45.74 | 60.33 30.51 49.44 22.82 0.49 | 18775 | 679.53 14.78 | 188.96
i| Vir 7.20 0.21 5.27 9.84 4.68 4.67 2.81 6.17 2.52 0.29 0.59 0.24 0.89 0.45
m| TDB 103.78 0.21 0.30 1.54 0.21 5.51 3.64 0.65 | 148.25 0.25 | 36.23 0.20 0.31 23.49
e| ViR 23597 | 25.02 - | 16.15 18.88 | 19.88 | 447.19 62.17 36.64 15.83 | 15.61 — | 510.72 | 251.48
TDR 281.11 4.05 — | 438 589.46 | 33.86 | 569.66 | 155.97 | 199.56 4.17 | 49.96 — | 105.19 -
Our | 846,391 5 1 728 25 162 70 7 8,164 20 40 3 138 40
A| Vir | 463,820 5 1 728 25 162 70 7 8,164 20 40 3 0 0
n| TDB | 463,820 5 1 728 25 162 70 7 8,164 20 40 3 0 0
s| ViR | 846,391 5 728 25 162 70 7 8,164 20 40 - 138 40
TDR | 846,391 5 - 728 25 162 70 7 8,164 20 40 - 138 -
(b)

SQllm' S QZ/(' S Qg/t' S Qgtc S lem Snglr SQ?I(' S lec NQ?/(' Nlec NQg/r NQ?(- Nlec NQ:“I
T| Our 57.35 | 11.07 | 361.65 3.27 2.21 2.44 26.49 12.08 2.38 0.61 6.03 | 213.71 43.23 39.68
i| Vir 127.41 1.27 1.46 2.65 0.22 1.35 0.42 1.46 0.21 0.28 0.25 0.41 2.41 2.33
m| TDB 305.74 0.37 0.37 4.63 0.30 5.54 44.32 3.82 - 13.01 0.42 1.50 0.21 5.90
e| ViR — | 30.46 28.87 29.99 | 30.77 - 45.29 29.87 29.44 | 29.81 72.99 - -
TDR - | 2591 - | 19.52 21.42 | 24.28 - 65.80 — | 105.31 | 18.60 | 157.94 - -
| our 13M 98 96 15 3 72 162 26 843 36 38 25 2,092 1,685
A| Vir 12M 7 5 0 3 51 138 26 1 4 34 25 0 1,187
n| TDB 12M 7 5 0 3 51 138 26 1 4 34 25 0 1,187
s| ViR - 98 15 3 72 - 26 843 36 38 25 - -
TDR - 98 - 15 3 72 - 26 - 36 38 25 - -

Evaluating Q over K by materialization obtains an empty answer
set, as none extra assertions are added to K. On the other hand, by
our approach which adopts the semantics of conjunctive queries
and DL-Lite 4 KBs, asking Q over K obtains a certain answer (a).

8. Related work

Our study in this paper aims at providing powerful and ef-
ficient approaches to reason and query Web-scale and complex
open datasets described by Semantic Web standards based on DL-
Lite 4 techniques. Related work is presented as follows in four as-
pects, query answering over Linked Open Data, KB modularity and
partitioning, query rewriting optimization, and fast satisfiability
checking.

8.1. Linked open data query answering

The significant growth of the Linked Open Data has motivated
a considerable amount of works on Linked Open Data query an-
swering. We divide them into centralized, distributed, and hybrid
methods for comparison and discussion.

Centralized methods. Centralized methods replicate the content of
remote dataresources into a local store over which SPARQL queries
can be evaluated locally, as for instance [12,43]. Merits of central-
ization include high reliability and efficiency, as demonstrated by
Google and its alikes in dealing with text-based Web documents.
Drawbacks, on the other hand, include inflexibility especially when
the underlying data resources exhibit high update rates.

Distributed methods. Distributed methods, focusing on the dis-
tributed feature of Linked Data, mainly consist of federated and
link-based query processing. The core idea of federated query
processing, as in [ 13,44-49], is to execute queries over a federation
of endpoints independently through these three steps: (1) split the
input query into sub-queries; (2) send the relevant sub-queries
to individual endpoints in situ; and (3) subsequently merge and
process the results. Link-based query processing, as in [ 14,50-54],
aims at dynamically selecting, retrieving and building a dataset
for each SPARQL query at runtime. Moreover, works like [15,54-
56] combine federated and link-based query processing. Compared

with centralized ways, distributed methods adapt to the updates of
data, whereas spend more time in detecting relevant resources and
following links when evaluating queries.

Hybrid methods. Hybrid methods focus on combining centralized
query processing with distributed query processing. An interesting
issue is how to take advantage of the local and remote querying
techniques, respectively, while complementing each other on both
theoretical and engineering level. A number of works have tackled
this issue, including [55-58].

In terms of Linked Open Data query answering, our approach
falls in the centralized category. Most of the works on query-
ing Linked Open Data mentioned above, no matter centralized
or distributed, concentrate on efficiency and scalability whereas
reasoning is often ignored or only lightweight RDFS or OWL 2
RL/RDF reasoning is performed [14]. Our approach pursues both
expressivity and scalability, capturing more schema knowledge
and handling more expressive queries with the support of DL-Lite 4
query answering techniques. Moreover, for scalability, we pro-
vide a way of partitioning DL-Lite 4 KBs into independent smaller
chunks so that the massive knowledge in Linked Open Data can
be managed by parallel techniques. Expressive reasoning under
distributed situations is harder than centralized ones, and shall be
explored in our future work.

8.2. KB Modularity and partitioning

Modularization of DLKBs has been addressed by [59-61], where
the theoretical modularity model has been generated. Roughly
speaking, for a DL KB K and a name set X, the motivation of
modularity is to extract a subset K’ of L such that K = «a iff K’ = «
for each axiom (assertion) « solely containing the names in X.
In the following, we discuss this kind of works in terms of TBox
modularity and ABox modularity.

TBox modularity. Many works in this branch focus on TBox modu-
larity [62-66]. For the DL-Lite family, work [67] discusses conser-
vation extension and work [68] presents minimal module extrac-
tion. In Definition 5 of this paper, we provide a way of computing
a sub-TBox 7~ for a given sub-ABox A’ of the ABox of a DL-Lite 4
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KB (T, .A). We share with the TBox modularity works in extracting
subsets from TBox, while the condition and goal are different. Our
extraction is under a given sub-ABox A’, whereas the modularity
works is based on a given name set X For the goal, we concentrate
on satisfiability checking and conjunctive query answering rather
then axiom or assertion entailment checking. More precisely, we
require that (77, .A) and (7, .A) coincide in terms of the considered
reasoning tasks, whereas modularity works enforce that same
axioms or assertions composed of names in X' can be inferred by
both the module and its original KB.

ABox modularity. The work of [69] provides a formal definition of
ABox modularity over SHZQ and gives concrete ways of extracting
ABox modules for a given name set. Concretely, for a SHZQ [70]
KB K = (T, A) and individual set S, M C A is called a module of
A iff for any individual assertion « that contains individuals in M,
(T,M) E «aiff K & «. Unlike [69], works in [71], [72] and [73]
study ABox modularity in terms of ABox partitioning over SHZF,
SHIQ, and SHZ, respectively. Concretely, for a corresponding KB
K = (T, A),amodule M of A is a set of ABoxes such that £ = « iff
there exists A’ € Mand (7, A’) = « for every individual assertion
«. The difference is that work [71] requires that the ABoxes in M
are subsets of A, work [72] requires that the ABoxes in M not only
are subsets of A4 but also are pairwise disjoint, and work [73] does
not require the ABoxes to be subsets of A.

Compared with these works, we study a tractable language DL-
Lite 4, and concentrate on satisfiability checking and conjunctive
query answering rather than entailment checking of individual
assertions. Moreover, we provide a way of ABox partitioning with
linear data complexity where reasoning is not necessary.

Another direction of research related to us is RDF graph par-
titioning with the motivation of processing the grand scale of
RDF data on the Web. The state-of-the-art approaches in this
topic include hash partitioning [33-35,74-77] and graph partition-
ing [78-82]. In these works, only the graph structure of RDF data
is considered whereas the semantics of RDFS and OWL vocabulary
terms, i.e., axioms in the data, are usually ignored. Conversely, we
consider RDF graphs as DL-Lite 4 KBs such that constraints in these
graphs can be captured. Moreover, for high efficiency and scala-
bility, motivated by hash partitioning of RDF graphs, we provide a
divide-and-conquer reasoning and query answering approach for
DL-Lite 4.

8.3. Query rewriting optimization

First-order rewritability (FOR) of conjunctive queries is a highly
desirable property, as it allows to take advantage of the optimized
database management systems to store and query the ABoxes of
KBs. However, the bottleneck of FOR is that for KBs with a large
number of axioms, the rewriting may result in an expensive eval-
uation of an exponential size of queries. This constitutes a serious
limitation for practical applications. Due to this, many works have
been proposed on optimizing the procedure of conjunctive query
rewriting [83-90]. Most of these works focus on reducing the
rewritten queries as many as possible. Concretely, the work in [83]
presents an optimized query rewriting algorithm for DL-Lite family
by rewriting a user query into a Datalog program whose rules
encode only necessary steps to prevent the generation of queries.
Work [84] presents a resolution-based rewriting algorithm for
DL-Litex (a sub-language of DL-Lite o), where the issue of the
useless factorizations is addressed by directly handling existential
quantification through proper functional terms. The work of [85]
presents a more efficient algorithm for DL-Liter based on the
selective and stratified application of resolution rules. It makes
use of the query structure and applies a restricted sequence of
resolutions that may lead to useful and redundant-free rewritings.
An alternative query rewriting technique for DL-Litey, is presented

in [86], where in most practical cases the rewritings are correct and
of polynomial size, although in general the obtained rewritings can
be of exponential size. In [87], the problem of computing query
rewritings for DL-Liter in an incremental way is investigated.
Also a technique that computes an extended query by extending
a previously computed rewriting of the initial query is proposed.
The works [88-93] discuss query rewriting optimization in the
Datalog® category [94]. From a different point of view, the work
of [95] concentrates on query rewriting optimization in DL-Litex
by searching within a set of alternative equivalent first-order logic
queries and choosing one with the minimal evaluation cost over a
relational database management system.

Compared with these works, our approach features query
rewriting optimization in DL-Lite 4 from the perspective of query
partitioning, and the experiments on real-world datasets show that
the number of rewritten queries can be significantly reduced.

8.4. Fast satisfiability checking

To improve the performance of satisfiability checking in OWL
ontology has been a research focus of DL community. Among them,
in [96] the authors propose to use the summary of ontology to
reduce satisfiability checking to a small subset of Abox, and proves
that the technique is sound and complete in SHZN. The work
of [97] presents a fast approximate ABox consistency checking
approach based on machine learning, and applies the provided
approach to the problem of consistency checking of a large number
of ABoxes adhering to the same TBox. The work in [39] proposes
an extension of incomplete reasoning methods for checking the
consistency of alarge number of ABoxes against a given TBox based
on DL-Lite 4 techniques, which is sound and incomplete for the
ontologies exceeding the expressivity of DL-Lite 4.

Different with these works, in this paper we propose to improve
the performance of satisfiability checking in DL-Lite , from the
perspective of KB partitioning, i.e., by checking the satisfiability
of smaller sub-KBs to obtain the satisfiability of the original KB.
Experiments on real-world, Web-scale datasets demonstrate the
efficiency of our approach. To the best of our knowledge, this is the
first study on optimizing the procedure of satisfiability checking in
DL-Lite 4.

9. Conclusions

With the motivation of consuming Web-scale and complex
open datasets described by Semantic Web standards efficiently,
in this paper, we propose a divide-and-conquer reasoning and
query answering approach for DL-Lite 4 to cater for the real-world
scalability. The basic idea is to partition both KBs and queries into
smaller chunks and decompose the original considered reasoning
tasks into a group of independent subtasks. Motivated by hash
partitioning of RDF graphs, our divide-and-conquer approach is de-
veloped by subsequently discussing the following three problems
from both theoretical and practical perspectives: (1) partition DL-
Lite 4 KBs into small chunks with the local feature of both satisfia-
bility checking and simple-query answering; (2) based on simple-
queries, partition conjunctive queries into smaller sub-queries and
evaluate them over KB partitions with the desired local feature;
and (3) optimize the procedure of evaluating query partitions
over KB partitions. Experiments on two Web-scale open datasets,
i.e., DBpedia and BTC 2012 dataset, demonstrate the rationality and
efficiency of the overall proposed divide-and-conquer approach.

Future work will mainly contain the following aspects. Firstly,
in terms of KB partitioning, we intend to design a mathematical
model to analyze the impact of the number and size of the sub-KBs
in a SCSQA-local partition of a DL-Lite 4 KB on the performance of
satisfiability checking and query answering. Obviously, a DL-Lite 4
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Table 11
Mappings for all the prefixes used.

dbo: http://dbpedia.org/ontology/ skos: http://[www.w3.0rg/2004/02/skos/core#
dbp: http://dbpedia.org/property/ foaf: http://xmlns.com/foaf/0.1/
dbr: http://dbpedia.org/resource/ rdfs: http://www.w3.0rg/2000/01/rdf-schema#
SWIC: http://swrc.ontoware.org/ontology# fb: http://rdf.freebase.com/ns/m/
odp: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl# sc: http://data.semanticweb.org/person/
Table 12
Evaluated query partitions of the tested queries. Note that in the scenario of query partitioning equipped with sub-query value transfer, the order of evaluating the sub-queries
in a query partitionis qy, ..., qn.
Sngp { qq : rdfs : label(?x,’ Alan Turing@en’) — q(?x), q, : dbo : Person(?x) — SQg“ { q1 : rdfs : label(?x,’ Tim Berners — Lee’) — q(?x), q :
q(?x) } foaf : Person(?x) — q(?x) }
Sng" { q1 : skos : subject(?x, dbr : Category : Computer_pioneers) — SQ’é“ {q1 : dbo : Film(?x) A dbo : writer(?x, dbr : Robert_Thoeren) A
q(?x), q2 : foaf : name(?x, ?y) A rdfs : comment(?x, ?z) — q(?x,?y, ?z) } dbo : director(?x, ?y) A foaf : primaryTopic(?d, ?x) —
q(?x,?y, ?z,2d), q : rdfs : label(?x, ?z) — q(?x, ?z) }
NQ’ljb" { q1 : skos : subject(dbr : Alan_Turing, ?x) A skos : subject(?y, ?x) — NQ’{“ {q : dbp : prizes(14 : 01w7np, ?x) — q(?x), q2 :
q(?x, ?y), qz : dbp : knownFor(?y, ?z) A dbp : prizes(?y, ?d) — dbp : prizes(?y, ?x) A rdfs : label(?y, ?z) — q(?x, ?y, ?z) }
q(?y,?z,2d)}
NQI  { gy : dbo : writer(?x, dbr : Robert_Thoeren) A dbo : director(?x, ?y) — NQS®  {qi : dbo : director(?x, dbr : George_Lucas) A dbo : writer(?x, 2y) —
q(?x,?y), qo : rdfs : label(?y, ?z) — q(?y, ?z) } q(?x,?y), qa : rdfs : label(?y, ?z) — q(?y, ?z) }
Nng" { q1 : rdfs : label(?x, ‘Alan Turing@en’) A dbo : influencedBy(?y, ?x) — NQ‘;[C {qq : rdfs : label(?x, ‘Alan Turing@en’) A dbo : influencedBy(?y, ?x) —
q(?x,?y), qa : rdfs : label(?y, ?z) — q(?y, ?z) } q(?x,?y), qa : rdfs : label(?y, ?z) — q(?y, ?z) }
NQibp { q1 : dbo : Work(?x) A dbo : writer(?x, dbr : Robert_Thoeren) A NQZ‘“ { q1 : dbo : Work(?x) A dbo : writer(?x, dbr : Robert_Thoeren) A
dbo : director(?x, ?y) A foaf : primaryTopic(?z, ?x) — q(?x, ?y, ?z), q2 : dbo : director(?x, ?y) A rdfs : comment(?x, ?z) A
dbo : birthDate(?y, ?d) — q(?y, ?d)} foaf : primaryTopic(?d, ?x) — q(?x, ?y, ?z,2d), q> :
rdfs : comment(?y, ?e) — q(?y, ?e) }
Nng” { g1 : dbo : Person(?x) A NQLe { q1 : foaf : Person(?x) A dbp : prizes(?x, fb : 0dt39) A
skos : subject(?x, dbr : Category : Computer_pioneers) A rdfs : comment(?x, ?y) A dbo : doctoralAdvisor(?x, ?z) —
rdfs : comment(?x, ?y) A dbo : doctoralAdvisor(?x, ?z) — q(?x,?y, ?z), q, : rdfs : label(?z, ?e) — q(?z, ?e) }
q(?x,?y, ?z), qo : dbo : Scientist(?z) — q(?z) }
Nngp { q1 : dbo : Scientist(?y) A dbp : knownFor(?y, dbr : Turing_Award) — NQg‘f {q1 : foaf : Person(?y) A prizes(?y, fb : 0dt39) A dbo : field(?y, ?z) A
q(?y), qx : dbo : Organisation(?x) A dbo : employer(?y, ?x) A dbo : knownFor(?y, ?d) — q(?y, ?z,?d), q2 :
Aodp : hasLocation(?x, ?z), q3 : dbo : PopulatedPlace(?z) — q(?z) } dbo : Educationallnstitution(?x) A dbo : almaMater(?y, ?x), qs :
rdfs : label(?d, ?e) — q(?d, ?e) }
KB may have many SCSQA-partitions and each performs differ- References

ently for the considered reasoning tasks. To identify KB partitions
with the optimal performance is crucial for real-life applications.
Secondly, in terms of query partitioning, if a conjunctive query is
not simple-query reducible then for completeness multiple query
partitions have to be answered, thus strategies shall be developed
to reduce the number of query partitions needed to be evaluated.
Moreover, when two query partitions have the same certain an-
swer set over a partition of a DL-Lite 4 KB, deciding which one
can be evaluated faster is also important for improving the overall
query answering performance. Thirdly, we plan to discuss parti-
tioning DL-Lite 4 KBs and conjunctive queries based on other types
of queries rather than simple-queries. Lastly, applying the main
idea of our divide-and-conquer approach to other DL languages to
improve the performance of satisfiability checking and conjunctive
query answering is definitely worth exploring.
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