
AUTHOR C
OPY

Web Intelligence 16 (2018) 15–35 15
DOI 10.3233/WEB-180371
IOS Press

A graph-based approach for resolving
incoherent ontology mappings

Weizhuo Li a,b,*, Songmao Zhang a and Guilin Qi c

a MADIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
E-mail: liweizhuo@amss.ac.cn
b University of Chinese Academy of Sciences, Beijing, China
E-mail: smzhang@math.ac.cn
c School of Computer Science and Engineering, Southeast University, Nanjing, China
E-mail: gqi@seu.edu.cn

Abstract. Ontology mappings are regarded as the semantic bridges that link entities from different yet overlapping ontologies
in order to support knowledge sharing and reuse on the Semantic Web. However, mappings can be wrong and result in logical
conflicts among ontologies. Such kind of mappings are called incoherent mappings. As an important part of ontology matching,
mapping validation aims at detecting the conflicts and restoring the coherence of mappings. In this paper, we propose a graph-
based approach which is complete for detecting incoherent mappings among DL-Lite ontologies. The lightweight DL-Lite family
of description logics stand out for tractable reasoning and efficient query answering capabilities. Our approach consists of a set
of graph construction rules, a graph-based incoherence detection algorithm, and a graph-based incoherence repair algorithm.
We propose and formalize three repair principles in an attempt to measure the wrong mappings, where the notion of common
closures w.r.t. a mapping arc in the constructed graph is introduced. These principles feature a global removal strategy that is
independent of individual ontology matchers. In order to relieve the loss of information among ontologies in the repair process,
we further define a mapping revision operator so that common closures related to the removed mappings can be preserved in the
graph. We implement the graph-based algorithms and evaluate their performance in a comparison with state-of-the-art systems
on real-world ontologies. Experimental results show that our approach can remove more wrong mappings and achieve better
repairing results in most of the cases.

Keywords: Semantic Web, ontology alignment, mapping validation, alignment repairing, incoherence

1. Introduction

In order to share and reuse knowledge on the Se-
mantic Web, more and more domain knowledge is en-
coded in the form of ontology [1]. Mappings are re-
garded as the semantic bridges that link entities from
different yet overlapping ontologies so as to support
the communication of applications built upon these
ontologies. Many promising matchers have been de-
veloped to generate mappings across ontologies in
(semi-)automatic ways [2]. One of the challenges in
managing such interlinked dynamic knowledge is to

*Corresponding author. E-mail: liweizhuo@amss.ac.cn.

handle the potential incoherences caused by introduc-
ing mappings [3]. Incoherent mappings can derive
unsatisfiable concepts and properties and have nega-
tive impacts on applications on the Semantic Web in-
cluding terminological reasoning, data transformation,
P2P collaboration and query answering [4,5]. Map-
ping validation or alignment repairing, which plays an
important role in ontology matching, aims at detect-
ing the conflicts and restoring the coherence of map-
pings [6].

Up to now, the mainstream methods of mapping val-
idation interpret mappings as sets of axioms in de-
scription logics (DL) or restricted logic programs, and
use logical reasoners to detect the incoherence. For in-

2405-6456/18/$35.00 © 2018 – IOS Press and the authors. All rights reserved

mailto:liweizhuo@amss.ac.cn
mailto:smzhang@math.ac.cn
mailto:gqi@seu.edu.cn
mailto:liweizhuo@amss.ac.cn

AUTHOR C
OPY

16 W. Li et al. / A graph-based approach for resolving incoherent ontology mappings

stance, such technique has been used in Alcomo [5],
LogMap [7], etc. In the repair stage, they adopt some
local or global strategies to remove mappings so as to
regain the coherence. Alternatively, there exist some
works that consider the uncertainty of mappings and
model mapping validation as an optimization prob-
lem and employ probabilistic reasoning techniques to
solve the conflicts such as ContraBovemRufum [8] and
ELog [9].

Although can regain the coherence, the state-of-the-
art methods often suffer from two limitations. First,
most methods rely on the weights of mappings as a
measure of correctness of the mappings in conflict sets.
Such weights are assigned or computed by individ-
ual ontology matchers, thus they can be unreliable and
have negative impacts on the quality of mapping re-
pairing. Moreover, when mappings are removed to re-
gain coherence, the knowledge implied in these map-
pings are discarded at the same time, which could be
potentially exploited for indicating entailments across
ontologies [10]. In the domain of ontology revision,
there are works that employ revision operators to pre-
serve the knowledge implied by the deleted axioms
as long as it is consistent with the repaired ontology
[3,11–14]. Inspired by these works, we attempt to ex-
plore a finer-grained approach to resolve incoherent
mappings by applying revision operators.

More specifically, we focus on repairing the inco-
herent mappings among DL-Lite ontologies. The fam-
ily of DL-Lite ontologies stands out for their tractable
reasoning and efficient query answering capabilities
[15], where the problem of TBox classification can be
reduced to computing the transitive closure of a graph
[16]. Accordingly, we propose a graph-based approach
for mapping validation. First, ontologies and mappings
are encoded into a directed graph by the construction
rules we designed, where subsumption relations be-
tween concepts or roles can be derived from reacha-
bility of nodes. To detect incoherent mappings, we de-
fine minimal incoherent path pairs (MIPPs) in the con-
structed graph, which correspond to the minimal inco-
herence preserving subsets (MIPSs) [5] in the state-of-
the-art mapping validation methods, and MIPPs can be
computed by backtracking the pairs of disjoint nodes
in the graph. In the repair stage, in order to remove
the mappings that are actually wrong, we introduce the
notion of common closures w.r.t. a mapping arc in the
constructed graph, as a measure of how many the map-
ping has in common with other mappings on support-
ing the same linkages across ontologies. We propose
three elaborated repair principles, and define functions

that fulfill these principles. To relieve the loss of infor-
mation, a mapping revision operator is designed based
on these functions, so that the implied knowledge of
the removed mappings can be restored when no inco-
herence is caused.

The contribution of this paper is summarized as fol-
lows.

1. We develop a graph-based approach for mapping
validation, which is complete for detecting the
incoherence of mappings among DL-Lite ontolo-
gies. The approach consists of a set of graph con-
struction rules, a graph-based incoherence detec-
tion algorithm, and a graph-based incoherence
repair algorithm.

2. We propose and formalize three repair principles
in an attempt to measure the wrong mappings,
where the notion of common closures w.r.t. a
mapping arc in the constructed graph is intro-
duced. These principles feature a global removal
strategy that is independent of individual ontol-
ogy matchers. In order to relieve the loss of infor-
mation among ontologies in the repair process,
we further define a mapping revision operator
so that common closures related to the removed
mappings can be preserved in the graph.

3. We implement the graph-based algorithms and
evaluate their performance in a comparison with
state-of-the-art systems on real-world ontologies.
Experimental results show that our approach can
remove more wrong mappings and achieve better
repairing results in most of the cases.

The rest of this paper is organized as follows. Re-
lated works are introduced in Section 2. In Section 3,
we introduce the theoretical basis of DL-Lite and on-
tology mapping. Section 4 presents the graph construc-
tion method. The detection algorithm and repair algo-
rithm based on the constructed graph are proposed in
Section 5 and Section 6, respectively. The comprehen-
sive evaluation of our approach is presented in Sec-
tion 7, followed by a conclusion in Section 8.

2. Related work

In this section, we review the research efforts on
mapping validation in three aspects as follows.

2.1. Repair methods based on logical entailments

A comprehensive framework for alignment repair
based on diagnosis theory was developed in [5,17–

AUTHOR C
OPY

W. Li et al. / A graph-based approach for resolving incoherent ontology mappings 17

19]. Minimal incoherence preserving subalignments
(MIPS) and minimal unsatisfiability preserving sub-
alignments (MUPS) were defined as minimal sets of
mappings generating inconsistency or incoherence.
ALCOMO (Applying Logical Constraints On Match-
ing Ontologies) is the direct result of these works [5].
Rather than an ontology matcher, it provides a library
of tools for computing MIPS, MUPS, and diagnoses
in either a complete or constraint-based way. It thus
allows for implementing measures independent from
individual matchers [6].

Qi et al. defined a relevance-based selection func-
tion to describe the relevance among axioms within on-
tology, and provided the corresponding iterative algo-
rithm for mapping validation [3]. Three concrete on-
tology revision operators were designed to instantiate
the iterative algorithm, resulting in three different map-
ping revision algorithms. Moreover, they showed that
the algorithm given in [17] can be encoded as a special
iterative algorithm.

The ASMOV system detects inconsistency through
anti-patterns and corrects the alignment before its fi-
nal delivery [20]. Instead of using a complete solver,
the system recognizes sets of correspondences that
are proved to lead to an inconsistency. The seman-
tic verification process examines five types of patterns
e.g., disjoint-subsumption contradiction, or subsump-
tion incompleteness [6].

The LogMap system uses a logical reasoner in or-
der to pinpoint inconsistencies and incoherent classes
[7]. In order to scale to large ontologies, it uses a Horn
propositional logic representation of the extended hier-
archy of each ontology together with all existing map-
pings and employs an Dowling–Gallier algorithm [21]
to model propositional Horn satisfiability. In order to
keep mappings coherent, it removes the mappings with
the lowest confidence among the smallest sets of map-
pings that cause the inconsistency.

Santos et al. proposed a repair algorithm tailored
for large biomedical ontologies, called AMLR [22].
They introduced a modularization based technique to
extract the core fragments of the ontologies that con-
tained solely the necessary classes and relations caused
by disjoint restrictions, and utilized confidence-based
heuristics to determine near-optimal solutions for in-
coherent alignment.

The main concern of ALCOMO and Qi et al.’ works
is the scalability. Although independent of specific log-
ical systems, they sacrifice efficiency when employ DL
reasoners to detect and resolve the incoherence, thus
may not be suitable for large-scale repair tasks. The

inconsistency patterns used by ASMOV are semanti-
cally correct, but not complete, so that the mappings
after repair may still be incoherent. Moreover, it may
reject mappings involved in their patterns based on the
confidence when iterating the matching process [6].
LogMap is efficient and scalable, but its coarse-grained
strategy and approximated transformation cannot guar-
antee the complete results. AMLR is one of the best re-
pair systems tailored for large biomedical ontologies.
Nevertheless, It was an incomplete method as only un-
satisfied classes due to disjointness conflicts were con-
sidered.

2.2. Repair methods based on probabilistic reasoning

Another type of repair methods incorporates the
confidence or similarity of mappings and employs
probabilistic reasoning techniques, of which ContraBo-
vemRufum [23] and ELog [9] are two representa-
tives.

Due to the fact that standard satisfiability checking
regarding the underling DL can be reduced to proba-
bilistic reasoning problems [24], ContraBovemRufum
extended P-SHIQ(D) based on SHIQ(D) and trans-
formed mappings into conditional constraints by trans-
lation rules. Although the repair method of Contra-
BovemRufum is based on a greedy strategy, it is only
applicable to small-scaled repair tasks because of the
increase in complexity caused by probabilistic reason-
ing techniques.

ELog is a reasoner for log-linear description logics
and offers complete reasoning capabilities for EL++
[9]. The debugging problem is modeled to find the
maximum a-posteriori (MAP) state of a Markov Logic
Network, which corresponds to an optimal solution.
ELog is heavily dependent on weights of mappings, so
it may not be competent for qualitative matchers such
as StringEquiv and FCA-Map.

The probabilistic reasoning based methods normally
do not have a good interpretability [25], thus difficult
for humans to comprehend the reason of incoherence
and the rational of the repair.

2.3. Uncertainty languages for mapping validation

The probabilistic extensions of various Web lan-
guages for representing ontology mappings [26,27]
can be conceivably applied to mapping validation,
for instance, Probabilistic Description Logic Programs
[28] and Possibilistic Logics [29].

AUTHOR C
OPY

18 W. Li et al. / A graph-based approach for resolving incoherent ontology mappings

In order to deal with the uncertainty and incon-
sistency in mappings, Lukasiewicz et al. proposed a
tightly integrated approach to probabilistic disjunctive
description logic programs [30], which tightly com-
bined normal logic programs under the well-founded
answers with both tractable ontology languages and
Bayesian probabilities. They showed that this language
could be used to resolve inconsistencies and merge
mappings from different matchers based on the level
of confidence assigned by various rules.

Qi et al. proposed the Possibilistic Logics as a possi-
bilistic extension of DLs [29], in which inference ser-
vices could be reduced to the task of computing the in-
consistency degree of a knowledge base in possibilistic
description logics. For the drowning problem in possi-
bilistic inference, authors adapted the linear order in-
ference to deal with the problem in possibilistic log-
ics. They also showed the application of the logics in
ontology merging with incoherent mappings.

All these works are theoretical frameworks explor-
ing novel repair strategies for solving incoherent map-
pings. No algorithms or implemented systems are pro-
vided yet.

3. Preliminaries

In this section, first we briefly recall the DL-Lite
family, and then introduce ontology mappings and
their incoherence.

3.1. The DL-Lite family

We start with the introduction of DL-Litecore, which
is the core language for the DL-Lite family [31].
DL-Litecore has pairwise disjoint sets of concepts,
roles and individuals, where concepts and roles are fur-
ther partitioned into atomic, basic, and general sets,
respectively. In our convention, A denotes an atomic
concept, P an atomic role, B a basic concept, Q a basic
role, C a general concept, and R a general role. More-
over, ⊥ denotes the bottom concept. In DL-Litecore,
a basic role is either an atomic role or the inverse of
an atomic role, and a basic concept can be an atomic
concept or a concept of the form ∃Q. Moreover, a gen-
eral concept is either a basic concept or the negation of
a basic concept, whereas a general role is a basic role
or the complement of a basic role. Syntactically, the
DL-Litecore concepts and roles are defined as follows:
(1) C := B|¬B, (2) B := A|∃Q, (3) Q := P |P −, and
(4) R := Q|¬Q.

An axiom is an expression taking one of the follow-
ing forms: (1) the concept inclusion axiom B � C,
(2) the role inclusion axiom Q � R, (3) the func-
tionality axiom funct(Q), (4) the concept membership
axiom A(a), where a is an individual, or (5) the role
membership axiom P(a, b), where a and b are indi-
viduals. In DL-Litecore, an ontology O = 〈T ,A〉 con-
sists of a TBox T and an ABox A, where T is a fi-
nite set of concept inclusion axioms and A a finite set
of membership axioms of concepts and roles. Further,
DL-LiteR extends DL-Litecore with role inclusion ax-
ioms and DL-LiteF allows for functionality axioms
based on DL-Litecore.

The semantics of the DL-Lite logics is based on the
general first-order interpretation [32]. An interpreta-
tion I = 〈�I , ·I〉 consists of a non-empty set �I ,
called the domain, and an interpretation function ·I
that associates individuals, concepts and roles to the
elements of the domain, subsets of the domain, and bi-
nary relations on the domain, respectively. The inter-
pretation function can be extended to arbitrary concept
and role descriptions and axioms in a standard way
[31].

The satisfaction of an axiom F in an interpretation
I = 〈�I , ·I〉, denoted as I |= F , is defined as fol-
lows: (1) I |= B � C iff BI ⊆ CI ; (2) I |= Q � R

iff QI ⊆ RI ; (3) I |= Funct(Q) iff QI is func-
tional; (4) I |= A(a) iff aI ∈ AI ; (5) I |= P(a, b)

iff (aI , bI) ∈ P I . An ontology O is consistent iff
there exists an interpretation I such that for every ax-
iom F ∈ O, I |= F holds; and such an interpretation
is called a model of O. If axiom F is satisfied by all
the models of ontology O, we can also write O |= F .
Satisfiability of concepts and roles are specified in the
following definition, which leads to the coherence of
ontology.

Definition 1 ([5] Unsatisfiability and Incoherence).
Let O be a DL-Lite ontology. A concept C (role R) in
O is unsatisfiable iff O |= C �⊥ (O |= R �⊥) holds.
Ontology O is incoherent iff there exists at least one
unsatisfiable concept or role in O.

Note that the consistency and coherence of an on-
tology do not coincide. An ontology can be consistent,
i.e., has a model, and incoherent at the same time, i.e.,
has unsatisfiable concepts or roles; and all concepts
and roles being satisfiable does not imply the consis-
tency of the ontology.

The limited expressivity of DL-Lite enables pow-
erful computational performance. As Lembo et al.
showed in [16], the problem of TBox classification in

AUTHOR C
OPY

W. Li et al. / A graph-based approach for resolving incoherent ontology mappings 19

a DL-Lite ontology can be solved by computing the
transitive closure of a directed graph. Given a DL-Lite
ontology O with TBox T over a signature �T contain-
ing symbols for atomic concepts and atomic roles, the
way of constructing directed graph GT = (N,E) from
T over �T is described as follows:

R1: For each atomic concept A in �T , N contains
the node A.

R2: For each atomic role P in �T , N contains the
nodes P , P −, ∃P , and ∃P −.

R3: For each concept inclusion axiom B1 � B2 ∈
T , E contains the arc 〈B1, B2〉.

R4: For each concept inclusion axiom B1 � ¬B2 ∈
T , E contains the arcs 〈B1,¬B2〉 and N con-
tains the node ¬Bi .

R5: For each role inclusion axiom P1 � P2 ∈
T , E contains the arcs 〈P1, P2〉, 〈P −

1 , P −
2 〉,

〈∃P1, ∃P2〉, and 〈∃P −
1 , ∃P −

2 〉.
R6: For each role inclusion P1 � ¬P2 ∈ T ,

E contains the arcs 〈P1,¬P2〉, 〈P −
1 ,¬P −

2 〉,
〈∃P1, ∃¬P2〉, and 〈∃P −

1 ,¬∃P −
2 〉, and N con-

tains the nodes ¬P2, ¬P −
2 , ∃¬P2, and ∃¬P −

2 .

Of note, extra nodes (e.g., P −, ∃P , ∃P −) and arcs
(e.g., 〈P −

1 , P −
2 〉, 〈∃P1, ∃P2〉, 〈∃P −

1 , ∃P −
2 〉) are added

in order to ensure that all the information of TBox can
be preserved in the graph.

Definition 2 ([16] Directed Path). In a directed graph,
a directed path is a sequence of arcs where all the arcs
are directed in the same direction, denoted as S1 →
S2 → · · · → St where S1, . . . , St are nodes.

Definition 3 ([16] Transitive Closure). The transitive
closure of a graph G = (N,E) is a graph (N,E∗) such
that there is an arc 〈s, t〉 in E∗ iff there is a path from
the node s to the node t in G.

For a DL-Lite ontology, the arcs of the transitive clo-
sure of the graph constructed by rules R1–R6 actually
represent the complete inclusion axioms, asserted and
implied in its TBox. Computing such a transitive clo-
sure can be done in polynomial time [33], demonstrat-
ing the reasoning efficiency of DL-Lite ontologies.

3.2. Ontology mappings and their incoherence

We define ontology mappings in the same way as
the ontology matching community do [6]. And we al-
ways assume that the ontologies to be matched are con-
sistent and coherent. A set of mappings, often identi-

fied by one matching system or algorithm, is called an
alignment.

Definition 4 ([6] Ontology Mapping). Let Oi and Oj

be two DL-Lite ontologies. A mapping is a 4-tuple
(ei, ej , r, n), where ei and ej are two elements, i.e.,
concepts, roles, or individuals, from Oi and Oj , re-
spectively, r ∈ {�,�,≡} is a relation holding between
ei and ej , and n is a weight in range [0, 1].

When the weights are ignored, the mappings to-
gether with their source ontologies can be seen as a
DL-Lite ontology. Such an ontology can be incoher-
ent caused by the introduction of the mappings across
source ontologies.

Definition 5 ([5] Mapping Incoherence). Given two
DL-Lite ontologies Oi and Oj and the set of their
mappings M, M is incoherent with regard to Oi and
Oj if there exists at least one concept Ck or role Rk ,
k ∈ {i, j}, such that it is satisfiable in Ok but unsatisfi-
able in Oi ∪ Oj ∪ M where the weights of mappings
are ignored; otherwise M is coherent.

In the examples in this paper, subscripts are used to
distinguish the entities from different ontologies.

Example 1. Ontologies O1 and O2 describe the do-
main of conference management systems, whose ax-
ioms are listed as follows:

Reviewer1 � ConferenceMember1

ProgramCommitee1 � ConferenceMember1

Conference1 � ¬ConferenceMember1

Review2 � Document2

Reviewer2 � Person2

Chairman2 � Person2

PC-Chair2 � Chairman2

ConferenceChair2 � Chairman2

Document2 � ¬Person2

Their alignment M consists of the following map-
pings:

(Reviewer1, Review2,≡, 0.8)

(Reviewer1, Reviewer2,≡, 0.9)

(Chair1, PC-Chair2,≡, 0.5)

(Chair1, ConferenceChair2,≡, 0.7)

AUTHOR C
OPY

20 W. Li et al. / A graph-based approach for resolving incoherent ontology mappings

Fig. 1. The integrated graph constructed by MR1–MR6 for Example 1.

(Conference1, ConferenceChair2,≡, 0.6)

(ProgramCommitee1, PC-Chair2,≡, 0.8)

According to Definition 5, concepts Reviewer1 and
Chair1 are unsatisfiable in O1 ∪ O2 ∪M because they
are subsumed by the disjoint concepts. For example,
both O1 ∪ O2 ∪ M |= Reviewer1 � ¬Person2 and
O1 ∪ O2 ∪ M |= Reviewer1 � Person2 hold, so O1 ∪
O2 ∪M |= Reviewer1 �⊥, meaning that Reviewer1 is
unsatisfiable, thus M is incoherent.

In DL-Lite, the concept and role membership ax-
ioms asserted in ABox can solely take the form of
A(a) and P(a, b) where A is an atomic concept and P

an atomic role. This can not cause any unsatisfiability,
thus in the remainder of the paper, we only consider
the TBox of DL-Lite ontology.

4. Constructing graphs to represent ontology
mappings

Inspired by the works in [13,14], we extend graph
construction rules R1–R6 and encode ontology map-
pings into a graph. Concretely, suppose we have graphs
GTi

= (Ni, Ei) and GTj
= (Nj ,Ej) from DL-Lite

ontologies Oi and Oj , respectively. The mapping con-
struction rules MR1–MR6 tailored for mappings be-

tween Oi and Oj are presented as follows where the
weights of mappings are ignored:

MR1: For each concept mapping (Ci, Cj ,�), add
an arc 〈Ci, Cj 〉.

MR2: For each concept mapping (Cj , Ci,�), add
an arc 〈Cj ,Ci〉.

MR3: For each concept mapping (Ci, Cj ,≡), add
two arcs 〈Ci, Cj 〉 and 〈Cj ,Ci〉.

MR4: For each property mapping (Ri, Rj ,�), add
four arcs 〈Ri, Rj 〉, 〈R−

i , R−
j 〉, 〈∃Ri, ∃Rj 〉

and 〈∃R−
i , ∃R−

j 〉.
MR5: For each property mapping (Rj , Ri,�), add

four arcs 〈Rj ,Ri〉, 〈R−
j , R−

i 〉, 〈∃Rj , ∃Ri〉
and 〈∃R−

j , ∃R−
i 〉.

MR6: For each property mapping (Ri, Rj ,≡), add
eight arcs 〈Ri, Rj 〉, 〈Rj ,Ri〉, 〈R−

i , R−
j 〉,

〈R−
j , R−

i 〉, 〈∃Ri, ∃Rj 〉, 〈∃Rj , ∃Ri〉, 〈∃R−
i ,

∃R−
j 〉 and 〈∃R−

j , ∃R−
i 〉.

The constructed graph, called the integrated graph,
is denoted as G = (N,E ∪ EM), where N = Ni ∪ Nj

and E = Ei ∪ Ej are the union of nodes and arcs in
subgraphs GTi

and GTj
, respectively, and EM repre-

sents a set of mapping arcs which act as bridges linking
nodes across GTi

and GTj
.

Applying MR1–MR6, the integrated graph con-
structed for Example 1 is shown in Fig. 1. It is a di-
rected graph, where solid arrows represent the inclu-

AUTHOR C
OPY

W. Li et al. / A graph-based approach for resolving incoherent ontology mappings 21

sion axioms within the source DL-Lite ontologies and
dashed arrows represent the mappings between ontolo-
gies.

Given ontologies Oi and Oj and their mappings
M, the integrated graph becomes a graph for ontology
Oi ∪ Oj ∪M constructed by R1–R6 and MR1–MR6.
We can thus similarly prove that computing the transi-
tive closure of the integrated graph can obtain the com-
plete inclusion axioms in Oi ∪ Oj ∪ M, as shown in
the following theorem.

In DL-Lite, the assertions in the form B1 � B2 or
R1 � R2 are called positive inclusions (PIs) and those
like B1 � ¬B2 or R1 � ¬R2 are negative inclusions
(NIs).

Theorem 1. Let G = (N,E ∪ EM) be the integrated
graph constructed from DL-Lite ontologies Oi , Oj and
their mappings M, and G∗ = (N, (E ∪ EM)∗) be the
transitive closure of G. Let Si be a basic concept (or
role) in Oi and Sj a general concept (or role) in Oj .
Oi ∪Oj ∪M |= Si � Sj iff arc 〈Si, Sj 〉 ∈ (E∪EM)∗.

Proof. (Sketch) We follow the proof in [14] (Theo-
rem 5).

(⇒) If arc 〈Si, Sj 〉 ∈ (E ∪ EM)∗, according to the
definition of transitive closure of graph, there exists at
least one path starting from node Si to node Sj in G,
which corresponds to a set of inclusions and mappings
in Oi ∪Oj ∪M according to construction rules R1–R6
and MR1–MR6. Therefore, Oi ∪ Oj ∪ M |= Si � Sj

holds.
(⇐) If Oi ∪ Oj ∪ M |= Si � Sj , we consider the

following two cases.

Case 1 If the negation constructor ‘¬’ does not ex-
ist in Sj , we can easily infer arc 〈Si, Sj 〉 ∈
(E ∪ EM)∗ according to [16] (Theorem 1)

Case 2 If the negation constructor ‘¬’ exists in Sj ,
according to [14] (Theorem 4), there exists a
minimal set including some PIs, one NI and
some mappings, denoted by K , such that
K |= Si � Sj and K ⊆ Oi ∪ Oj ∪ M.
Without loss of generality, we assume that
the one NI is S′ � Sj . According to Case
1, we can infer arc 〈Si, S

′〉 ∈ (E ∪ EM)∗.
Therefore, arc 〈Si, Sj 〉 ∈ (E ∪EM)∗ holds.

Theorem 1 indicates that the entailments between
concepts (roles) can be reduced to the graph reacha-
bility problem. Based on this, we define notions for

detecting unsatisfiable concepts and roles in the inte-
grated graph.

Definition 6 (Path-Unsatisfiability). Let G = (N,E ∪
EM) be the integrated graph constructed from two
DL-Lite ontologies Oi and Oj and their mappings M.
A node S ∈ N is path-unsatisfiable if there exist two
paths in G starting from S to node S′ and to node
¬S′, respectively. S is called aligned path-unsatisfiable
if the two paths contain at least one mapping arc.
Graph G is incoherent iff there exists at least one path-
unsatisfiable node in G.

One can easily see that path-unsatisfiable nodes cor-
respond to unsatisfiable concepts and roles in Oi ∪
Oj ∪ M, and aligned path-unsatisfiable nodes reveal
the unsatisfiability caused by mappings. The following
lemma holds obviously.

Lemma 1. If node S is aligned path-unsatisfiable with
regard to an integrated graph G, then for any arc
〈S′, S〉 in the transitive closure of G, node S′ is also
aligned path-unsatisfiable.

As stated previously, we always assume that the
source ontologies to be mapped are coherent and con-
sistent, so the incoherence can only be derived from
the mappings. This means that we solely need to focus
on the nodes that are aligned path-unsatisfiable in the
integrated graph.

Theorem 2. Let G = (N,E ∪ EM) be the integrated
graph constructed from two DL-Lite ontologies Oi and
Oj and their mappings M. When both Oi and Oj are
coherent and consistent, M is incoherent iff there ex-
ists at least one aligned path-unsatisfiable node in G.

Proof. (⇒) If there exists an aligned path-unsatisfiable
node S in G, according to Definition 6, we assume
there exist two paths, one is S → S′ and the other one
is S → ¬S′. By Theorem 1, we can infer both S � S′
and S � ¬S′. Therefore, Oi ∪Oj ∪M contains at least
one unsatisfiable concept or role, and M is incoherent.

(⇐) If M is incoherent, then there will be at least
one unsatisfiable concept or role in Oi ∪ Oj ∪ M.
Without loss of generality, suppose C is an unsatisfi-
able concept and Oi ∪ Oj ∪M |= C � D, Oi ∪ Oj ∪
M |= C � ¬D, According to Theorem 1, we have
〈C,D〉 ∈ (E∪EM)∗ and 〈C,¬D〉 ∈ (E∪EM)∗. It is
easy to see that exist two paths starting from C to node
D and to node ¬D, respectively. As stated previously
assumption that the source ontologies to be mapped are
coherent and consistent. Therefore, this node is aligned
path-unsatisfiable.

AUTHOR C
OPY

22 W. Li et al. / A graph-based approach for resolving incoherent ontology mappings

5. Detecting incoherent mappings

In this section, we present a graph-based algorithm
for detecting incoherent mappings. Before that, we
first introduce the notion of minimal incoherent path
pair (MIPP) which is the core for incoherence detec-
tion in the integrated graph.

5.1. Minimal incoherent path pairs

To resolve the incoherent alignment, normally the
so-called Minimal Incoherence Preserving Subsets
(MIPSs) [5] are identified with regard to ontologies
and mappings. We give the definition of MIPS as fol-
lows, where the equivalent mapping between ei and
ej cross ontologies is treated as two inclusion axioms
(ei, ej ,�) and (ej , ei,�) (also called mapping ax-
ioms), slightly different from the MIPS defined in [5]
which represents the equivalent mapping as an equiv-
alent axiom.

Definition 7 (Minimal Incoherence Preserving Sub-
set). Let Oi and Oj be two DL-Lite ontologies and M
a set of their mappings. A subset S ⊆ Oi ∪ Oj ∪ M
is a incoherence preserving subset of Oi ∪ Oj ∪ M if
S is incoherent. S is minimal if every subset S ′ ⊂ S is
coherent.

Since the incoherence is always caused by the map-
pings, in every MIPS, removing one mapping axiom
can solve the incoherence, and solving all MIPSs can
regain the satisfiability of all concepts and roles.

Example 2 (Example 1 continued). There exist eight
MIPSs for O1 ∪ O2 ∪ M in Example 1, two of which
are listed as follows, which respectively cause con-
cepts Reviewer1 and Chair1 to become unsatisfiable.
{(Reviewer1, Reviewer2,�), (Reviewer1, Review2,

�), (Reviewer2 � Person2), (Review2 �
Document2), (Document2 � ¬Person2)}, {(Chair1,

ConferenceChair2,�), (ConferenceChair2,

Conference1,�), (Chair1, PC-Chair2,�),

(PC-Chair2, ProgramCommitee1,�),

(ProgramCommitee1 � ConferenceMember1),

(Conference1 � ¬ConferenceMember1)}.
Parallel in the integrated graph, there exist sets of

paths corresponding to MIPSs that give rise to the in-
coherence of mappings, and we encode them as mini-
mal incoherent path pairs, defined as follows.

Definition 8 (Minimal Incoherent Path Pair). In the in-
tegrated graph constructed from two DL-Lite ontolo-

gies and their mappings, the pair of paths of an aligned
path-unsatisfiable node that reach to a node and its
negation is called incoherent path pair. The pair of
paths is minimal incoherent path pair (MIPP) if the two
paths have no common arcs and each of them has no
cycles.

Example 3 (Example 1 continued). As shown in
Fig. 2, the bold ellipses denote the aligned path-
unsatisfiable nodes, and the bold arcs, either dotted or
not, show the MIPPs for the aligned path-unsatisfiable
nodes Reviewer1 and Chair1, i.e., mippa = [path1,

path2] and mippb = [path3, path4], where
path1 = Reviewer1 → Reviewer2 → Person2,
path2 = Reviewer1 → Review2 → Document2 →
¬Person2,
path3 = Chair1 → PC-Chair2 →
ProgramCommitee1 → ConferenceMember1,

path4 = Chair1 → ConferenceChair2 →
Conference1 → ¬ConferenceMember1.

Two MIPPs mippa and mippb actually correspond
to the two MIPSs shown in Example 2.

Note that not every aligned path-unsatisfiable node
has a corresponding MIPP, whereas for each MIPP
there is a unique aligned path-unsatisfiable node.

Corollary 1. Let G = (N,E ∪ EM) be the integrated
graph constructed from two DL-Lite ontologies and
their mappings M. M is incoherent iff there exists at
least one MIPP in G.

The following theorem shows that the problem of
computing the MIPSs of Oi ∪Oj ∪M can be reduced
to finding all the MIPPs in the integrated graph G.

Theorem 3. Let G = (N,E ∪ EM) be the integrated
graph constructed from two DL-Lite ontologies Oi , Oj

and their mappings M. There exists a one-to-one cor-
respondence between the set of MIPPs in G and the set
of MIPSs of Oi ∪Oj ∪M, in the way that every arc in
MIPP corresponds to an inclusion or mapping axiom
in MIPS and vice versa.

Proof. (⇒) For every MIPP, let Mmipp be the set of in-
clusion and mapping axioms corresponding to its arcs.
For any subset M′ ⊂ Mmipp, we can construct a graph
GM′ applying the construction rules R1–R6 and MR1–
MR6. Based on Definition 8, there does not exist any
MIPPs in GM′ , thus M′ is coherent. Therefore, Mmipp
is a MIPS.

(⇐) For every MIPS, we can get the set of arcs cor-
responding to its mappings and inclusions through ap-
plying the construction rules R1—R6 and MR1–MR6,

AUTHOR C
OPY

W. Li et al. / A graph-based approach for resolving incoherent ontology mappings 23

Fig. 2. Two MIPPs in the integrated graph according to Example 3.

denoted as Smips. According to Corollary 1, for any
subset S ′ ⊂ Smips, there exists a MIPP in GSmips that
does not occur in GS ′ . Therefore, Smips is a MIPP.

5.2. The graph-based algorithm for detecting
incoherent mappings

Our graph-based algorithm for detecting incoher-
ence mappings is shown in Algorithm 1, which
presents a general workflow for finding all the MIPSs
based on the integrated graph. Concretely, rules R1–
R6 and MR1–MR6 are applied to constructing an in-
tegrated graph first, and then Algorithm 2 is called to
calculate the minimal incoherent path pairs (MIPPs),
followed by Algorithm 3 designed to transform MIPPs
into the format of inclusion axioms.

Although the workflow seems straightforward, Al-
gorithm 2 is of high complexity because the task of ob-
taining minimal incoherent path pairs (MIPPs) in Step
6 is unfortunately in exponential time [14]. Neverthe-
less, Algorithm 2 only processes the pairs of disjoint
nodes rather than all the nodes, which may alleviate the
performance deficiency in practice. Moreover, MIPPs
keep resourceful information about the incoherence in-
cluding aligned path-unsatisfiable nodes and the rele-
vant paths, which can be used to provide explanations
to human about the provenance of incoherence.

Algorithm 1: A graph-based algorithm for detect-
ing incoherent mappings.
Input: Two DL-Lite ontologies Oi and Oj , and

mappings M;
Output: The collection of MIPSs M;

1 MIPPs ←− ∅, M ←− ∅;
2 Construct G = (N,E ∪ EM) according to

construction rules R1–R6 and MR1–MR6;
3 MIPPs ←− CalculateMIPP(G);
4 for each MIPP ∈ MIPPs do
5 M ←− M ∪

TransformSoucreMappings(G,MIPP);

6 return M;

Theorem 4. Given two DL-Lite ontologies Oi and Oj

and their mappings M, Algorithm 1 returns the set of
all the MIPSs of Oi ∪ Oj ∪ M.

Proof. According to Theorem 1, axioms of Oi ∪ Oj ∪
M are encoded completely in the integrated graph,
thus all unsatisfiable concepts and roles related to
MIPSs can be detected by traversing pairs of disjoint
nodes. By Theorem 3, the output of Algorithm 1 cor-
responds to all MIPSs of Oi ∪ Oj ∪ M.

Example 4. (Example 1 continued). As shown in
Fig. 2, for one pair of the disjoint nodes such as

AUTHOR C
OPY

24 W. Li et al. / A graph-based approach for resolving incoherent ontology mappings

Algorithm 2: CalculateMIPP(G).
Input: The constructed graph G;
Output: The set of MIPPs in G;

1 MIPPs ←− ∅;
2 for each pair of nodes S and ¬S ∈ G do
3 In G, get the set of nodes on the paths to S, get

the set of nodes on the paths to ¬S, and assign
their intersection to set Nunsat;

4 if Nunsat is non-empty then
5 for each aligned path-unsatisfied node

Su ∈ Nunsat do
6 MIPP ←− [pathSu→¬S , pathSu→S];
7 MIPPs ←− MIPP ∪ MIPPs;

8 return MIPPs;

Algorithm 3: TransformSoucreMappings.
Input: A set of mapping arcs Arcs in G;
Output: A set of inclusions Axioms;

1 Axioms ←− ∅;
2 for each arc 〈B1, B2〉 ∈ Arcs do
3 if B1 is in the form of ∃R1 and B2 the form of

∃R2 then
4 Axioms ←− Axioms ∪{(R1, R2,�)};
5 else
6 Axioms ←− Axioms ∪{(B1, B2,�)};
7 return Axioms;

Person2, ¬Person2, we first get the sets of nodes on
the paths to Person2 and ¬Person2 and obtain the
intersection of these two sets {Reviewer1, Review2,

Reviewer2}. Then, we identify the paths from the node
in intersection to the nodes Person2 and ¬Person2
without cycle. Finally, three MIPPs of disjoint nodes
Person2 and ¬Person2 are calculated. By Algorithm 2,
eight MIPPs are identified as follows:
mippa = [Reviewer1 → Reviewer2 → Person2,

Reviewer1 → Review2 → Document2 → ¬Person2],
mippb = [Review2 → Reviewer1 → Reviewer2 →
Person2, Review2 → Document2 → ¬Person2],
mippc = [Reviewer2 → Person2, Reviewer2 →
Reviewer1 → Review2 → Document2 → ¬Person2],
mippd = [Chair1 → PC-Chair2 →
ProgramCommitee1 → ConferenceMember1,

Chair1 → ConferenceChair2
→ Conference1 → ¬ConferenceMember1],
mippe = [PC-Chair2 → ProgramCommittee1 →

ConferenceMember1, PC-Chair2 → Chair1 →
ConferenceChair2 → Conference1 →
¬ConferenceMember1],
mippf = [ConferenceChair2 → Chair1 → PC-Chair2

→ ProgramCommittee1 → ConferenceMember1,

ConferenceChair2 → Conference1 →
¬ConferenceMember1],
mippg = [ProgramCommitee1 →
ConferenceMember1,

ProgramCommittee1 → PC-Chair2 → Chair1 →
ConferenceChair2 → Conference1 →
¬ConferenceMember1],
mipph = [Conference1 → ConferenceChair2 →
Chair1 → PC-Chair2 → ProgramCommittee1 →
ConferenceMember1, Conference1 →
¬ConferenceMember1].

6. Repairing incoherent mappings

To repair incoherent mappings, normally mappings
with lower weights are removed. Such repairing strat-
egy heavily relies on the weights assigned by individ-
ual ontology matchers and does not necessarily remove
the wrong mappings. We propose three principles in
this section as an attempt to identify and measure the
wrong mappings, which features the notion of com-
mon closures of the integrated graph w.r.t. mapping
arcs. First, the notion is introduced, followed by the
three principles and their formalizing functions. To re-
lieve the loss of information, we further define a map-
ping revision operator based on three functions. Lastly,
we present the graph-based algorithm for repairing
mappings.

6.1. The common closures with regard to mapping
arcs

With Algorithms 1–3, we can obtain the collection
of MIPSs with regard to ontologies and their map-
pings. Although removing any one mapping from each
MIPS can solve the incoherence, wrong mappings may
still remain in the alignment, as shown by the follow-
ing example.

Example 5 (Example 4 continued). In order to solve
the conflicts in MIPSs, we need to remove one map-
ping from each MIPS. Assume that the removed map-

AUTHOR C
OPY

W. Li et al. / A graph-based approach for resolving incoherent ontology mappings 25

pings MR and the left mappings ML are as follows:

MR = {
(Reviewer1, Review2,�),

(Chair1, PC-Chair2,�),

(Review2, Reviewer1,�),

(PC-Chair2, Chair1,�)
}

ML = {
(Reviewer1, Reviewer2,�),

(Reviewer2, Reviewer1,�),

(Chair1, ConferenceChair2,�),

(ConferenceChair2, Conference1,�),

(ConferenceChair2, Chair1,�),

(Conference1, ConferenceChair2,�),

(PC-Chair2, ProgramCommittee1,�),

(ProgramCommittee1, PC-Chair2,�)
}

Although the coherence is regained after removing
MR , wrong mappings like (Conference1, Conference-
Chair2, �) and (ConferenceChair2, Conference1, �)
are still contained in the alignment.

In the integrated graph, mapping arcs build link-
ages between nodes across ontologies. We observe that
such a linkage can be supported by multiple mapping
arcs, or a singular mapping arc. We speculate that in
terms of mappings in one MIPS, correct mappings are
more likely to support the same linkages with other
mappings across ontologies. This says that the link-
ages caused by singular mappings are less reliable,
thus more probably being wrong. Next, we introduce
the notion of common closures of the integrated graph
w.r.t. mapping arcs to formalize such a speculation.

Definition 9 (Common Closures with regard to Map-
ping Arc). In an integrated graph G = (N,E), the clo-
sures of G w.r.t. a mapping arc and a node S1 are the
arcs {〈S1, St 〉} in (N,E∗) satisfying that the path from
S1 to St passes this mapping arc. The common closures
of G w.r.t. two mapping arcs from different paths in
a MIPP is the intersection of closures w.r.t. these two
mappings and the aligned path-unsatisfiable node cor-
responding to this MIPP, and the common closures of
G w.r.t. one mapping arc are the union of such inter-
sections w.r.t. it and other mapping arcs in all MIPPs.

We denote the common closures w.r.t. a mapping
arc marc in a MIPP as CC(marc, mipp), and the com-

mon closures w.r.t. marc in all the MIPPs can be cal-
culated by

⋃
mipp∈MIPPs CC(marc, mipp), denoted as

CC(marc).

Example 6 (Example 4 continued). Consider mapping
arcs 〈Chair1, PC-Chair2〉, 〈Chair1, ConferenceChair2〉,
〈PC-Chair2, ProgramCommittee1〉, and
〈ConferenceChair2, Conference1〉 in mippd . As shown
in Fig. 2, the closures w.r.t. them and aligned path-
unsatisfiable node Chair1 are listed as follows:
{〈Chair1, Chairman2〉, 〈Chair1, Person2〉, 〈Chair1,

ProgramCommittee1〉, 〈Chair1,

ConferenceMember1〉},
{〈Chair1, Chairman2〉, 〈Chair1, Person2〉, 〈Chair1,

Conference1〉, 〈Chair1,¬ConferenceMember1〉},
{〈Chair1, ProgramCommittee1〉, 〈Chair1,

ConferenceMember1〉},
{〈Chair1, Conference1〉, 〈Chair1,

¬ConferenceMember1〉}.
For mapping arc 〈Chair1, PC-Chair2〉, the common

closures w.r.t. it and 〈Chair1, ConferenceChair2〉 is
{〈Chair1, Chairman2〉, 〈Chair1, Person2〉}, whereas the
common closures w.r.t. it and other two mapping arcs
are both empty sets. Therefore, CC(〈Chair1,

PC-Chair2〉, mippd) = {〈Chair1, Chairman2〉, 〈Chair1,

Person2〉}.
As the common closures w.r.t. it in other MIPPs are

all empty sets, CC(〈Chair1, PC-Chair2〉) = {〈Chair1,

Chairman2〉, 〈Chair1, Person2〉}.

6.2. The principles for removing mappings

We propose three principles for repairing the inco-
herent mappings in the integrated graph as follows:

P1: The number of the removed mapping arcs
should be as small as possible.

P2: The number of common closures with regard to
the removed mapping arcs should be as small
as possible.

P3: The weights of mappings corresponding to the
removed mapping arcs should be as low as pos-
sible.

Principle P1 is based on our observation that wrong
mappings tend to cause more conflicts, thus occur in
more MIPPs. We can count the occurrence of each
mapping arc in all MIPPs and select the more frequent
ones as candidates of removal. Principe P2 is based on
our observation that wrong mapping arcs may relate
to fewer common closures in MIPPs. Note that prin-
ciples P1 and P2 are independent of individual match-

AUTHOR C
OPY

26 W. Li et al. / A graph-based approach for resolving incoherent ontology mappings

ers. Conversely, principle P3 relies on the weights of
mappings generated by concrete matchers. The lower
the weight, the less reliable the mapping is, thus more
likely to be removed, a strategy adopted by many inco-
herence repair systems. Next, we formalize principles
P1–P3 by three functions, respectively.

Definition 10 (Incision Function). Let G = (N,E ∪
EM) be the integrated graph constructed from two
DL-Lite ontologies Oi , Oj and their mappings M. S is
the set of all the MIPPs in G. An incision function for
S, denoted by σ , is a function (σ : 2S → 2EM) satis-
fying that

1. for each mipp ∈ S, mipp ∩ σ(S) �= ∅, and
2. the graph G′ = (N,E∪(EM\σ(S))) is coherent.

The incision function selects at least one mapping
arc in each MIPP to resolve the conflict. To meet the
restriction of principle P1, the number of mapping arcs
in σ(S) should be minimum for the given S.

Definition 11 (Closure Function). Let G = (N,E ∪
EM) be the integrated graph constructed from two
DL-Lite ontologies Oi , Oj and their mappings M. S is
the set of all the MIPPs in G. A closure
function for σ(S), denoted by τ , is a function
(τ : 2EM → 2(E∪EM)∗) satisfying τ(σ (S)) =⋃

marc∈σ(S) CC(marc), where CC(marc) is the com-
mon closures of G w.r.t. mapping arc marc in S.

The closure function formalizes Principle P2 by
counting the common closures of the removed map-
ping arcs in the integrated graph. To meet principle P2,
the number of common closures of τ(σ (S)) should be
minimum for σ(S).

Definition 12 (Weight Function). Let G = (N,E ∪
EM) be the integrated graph constructed from two
DL-Lite ontologies Oi , Oj and their mappings M. S
is the set of all the MIPPs in G. A weight function for
σ(S), denoted by ω, is a function (ω : σ(S) → P) sat-
isfying ω(σ(S)) = ∑

marc∈σ(S) nmarc, where P repre-
sents positive rational numbers and nmarc is the weight
of the mapping in M that corresponds to mapping arc
marc.

The weight function sums up the weights of the re-
moved mapping arcs. In order to satisfy Principle P3,
the value of ω(σ(S)) should be minimum for σ(S).

We attempt to use these functions to measure and
identify the wrong mapping arcs in the integrated
graph from different perspectives. To satisfy the con-
ditions of P1–P3, we define a composite function by

combining σ , τ and ω for the given S, denoted as F ,
for which there does not exist function F ′ combining
σ ′, τ ′ and ω′ satisfying the following conditions:

1. |σ ′(S)| < |σ(S)|.
2. If |σ ′(S)| = |σ(S)|, then |τ ′(σ (S))| < |τ(σ (S))|.
3. If |σ ′(S)| = |σ(S)| and |τ ′(σ (S))| = |τ(σ (S))|,

then ω′(σ (S)) < ω(σ(S)).

6.3. The mapping revision operator

In the process of repairing the inconsistency within
ontology, implicit axioms entailed from the removed
axioms are discarded, and in order to recover such
loss of information, revision operators are defined to
add these implied axioms back to the ontology as long
as the inconsistency remains [11–14]. Similarly, we
can define a mapping revision operator to relieve the
loss of information entailed by the removed mappings
under the condition that the coherence is not jeop-
ardized. More specifically, we focus on adding back
common closures of the integrated graph w.r.t. the re-
moved mapping arcs.

Definition 13 (Mapping Revision Operator). Let G =
(N,E∪EM) be the integrated graph constructed from
two DL-Lite ontologies Oi , Oj and their mappings M.
S is the set of all the MIPPs with regard to G. A map-
ping revision operator with respect to G is a function
υ : 2S → 2(E∪EM)∗ satisfying that υ(S) = (EM \
F(S)) ∪ τ(σ (S)) and the graph G ′ = (N,E ∪ υ(S)) is
coherent.

Example 7 (Example 6 continued). Consider map-
ping arc 〈Chair1, PC-Chair2〉 in mippd , the com-
mon closures w.r.t. it being {〈Chair1, Chairman2〉,
〈Chair1, Person2〉}. When this mapping arc is re-
moved, the common closures can be added back to
the integrated graph as they do not cause any in-
coherence. This is the same case for mapping arc
〈Chair1, ConferenceChair2〉.

Such added-back common closures w.r.t. mapping
arcs are implied inclusions between concepts across
ontologies, representing potential semantic bridges. To
evaluate their reliability, weights of the mappings can
be exploited. More concretely, the weight of a path
can be computed by multiplying the weights of its
arcs; and the weight of an element in the common clo-
sures is (1 − (1 − weight1) × (1 − weight2)) where
weight1 and weight2 are the weights of two paths in
the corresponding MIPP. For instance, two common
closures have the same weight in Example 7 which is

AUTHOR C
OPY

W. Li et al. / A graph-based approach for resolving incoherent ontology mappings 27

1−(1−0.7)×(1−0.5) = 0.85. Common closures with
higher weights are more likely to be potential map-
pings, and can be provided to human experts to make
final decisions.

6.4. The graph-based algorithm for repairing
incoherent mappings

Now, we present Algorithm 4 based on above for-
malized functions. Given graph G constructed from
two input ontologies and their mappings, Steps 2–3
call Algorithm 2 to obtain the MIPPs and collect all the
mapping arcs in MIPPs, denoted as Arcs. Steps 4–21
are a concrete realization of the mapping revision op-
erator. Globally, it is intractable to calculate the closure
function and the weight function, thus we adopt an ap-
proximation implementation: in each while loop, one
mapping arc will be removed according to the func-
tions until the conflicts of all the MIPPs are resolved.
During this process, common closures of the removed
arcs are saved as candidate arcs. Mapping revision op-
erator implemented in Steps 4–21 can be computed in
linear time in the size of Arcs. Nevertheless, as calcu-
lating MIPP takes exponential time [14], the complex-
ity of Algorithm 4 is still in exponential time.

After removing mapping arcs and saving candidate
arcs, Algorithm 5 is invoked to update the integrated
graph. Steps 2–5 subsequently check whether the can-
didate arcs can be added into the graph, based on
whether the coherence is kept. Finally, the updated
mapping arcs are transformed into the mapping axioms
by Algorithm 3.

Example 8 (Example 4 continued). Algorithm 2 re-
turns eight MIPPs, and their mapping arcs are listed as
follows with weights:

〈Reviewer1, Review2, 0.8〉
〈Review2, Reviewer1, 0.8〉
〈Reviewer1, Reviewer2, 0.9〉
〈Reviewer2, Reviewer1, 0.9〉
〈Chair1, PC-Chair2, 0.5〉
〈PC-Chair2, Chair1, 0.5〉
〈ConferenceChair2, Conference1, 0.6〉
〈Conference1, ConferenceChair2, 0.6〉
〈Chair1, ConferenceChair2, 0.7〉
〈ConferenceChair2, Chair1, 0.7〉

Algorithm 4: Graph-based algorithm for mapping
revision.
Input: The graph G = (N,E ∪ EM) constructed

from ontologies and incoherent mappings;
Output: Revised mappings M′;

1 RemovedArcs ←− ∅, CandidateArcs ←− ∅;
2 MIPPs ←− CalculateMIPP(G);
3 Arcs ←− Collect the set of all the mapping arcs in

MIPPs;
4 while MIPPs is non-empty do
5 Narc ←− Count the number of each mapping

arc of Arcs appearing in MIPPs;
6 RankedNumberArcs ←− SortNumber(Arcs,

Narc);
7 if Maximum number in RankedNumberArcs is

unique then
8 removedArc ←− arc having maximum

number in RankedNumberArcs;
9 else

10 removedArcSet ←− arcs having
maximum number in
RankedNumberArcs;

11 RankedClosureArcs ←−
SortCommonClosure(removedArcSet);

12 if Minimum common closures in
RankedClosureArcs is unique then

13 removedArc ←− arc with minimum
common closures in
RankedClosureArcs;

14 else
15 removedArcSet ←− arcs with

minimum common closures in
RankedClosureArcs;

16 RankedWeightArcs ←−
SortWeight(removedArcSet);

17 removedArc ←− Get the arc with
minimum weight in
RankedWeightArcs;

18 RemovedArcs ←− RemovedArcs ∪
removedArc;

19 CandidateArcs ←− CandidateArcs ∪
CC(removedArc);

20 MIPPs ←− MIPPs\{MIPP | removedArc∈
MIPP};

21 Arcs ←− Arcs\removedArc;

22 UpdateGraph (G, RemovedArcs, CandidateArcs);
23 M′ ←− TransformSoucreMappings(EM);
24 return M′;

AUTHOR C
OPY

28 W. Li et al. / A graph-based approach for resolving incoherent ontology mappings

Table 1

The intermediate results of iterations in the while loop of Algorithm 4

Iteration removedArc in removedArcSet Principles applied MIPPs unsolved

1 〈ConferenceChair2, Conference1, 0.6〉 Principle 1 mippa , mippb

〈PC-Chair2, ProgramCommittee1, 0.8〉 Principle 3 mippb , mipph

2 〈Reviewer1, Review2, 0.8〉 Principle 1 mippb , mipph

〈Reviewer1, Reviewer2, 0.9〉 Principle 3

3 〈Conference1, ConferenceChair2, 0.6〉 mippb

〈Review2, Reviewer1, 0.8〉 Principle 1

〈Reviewer1, Reviewer2, 0.9〉 Principle 2

〈ConferenceChair2, Chair1, 0.7〉 Principle 3

〈Chair1, PC-Chair2, 0.5〉
〈PC-Chair2, ProgramCommittee1, 0.8〉

4 〈Review2, Reviewer1, 0.8〉 Principle 1 None

〈Reviewer1, Reviewer2, 0.9〉 Principle 3

Algorithm 5: UpdateGraph(G, RemovedArcs,
CandidateArcs).
Input: The graph G = (N,E ∪ EM),

RemovedArcs and CandidateArcs;
Output: Updated graph G′ = (N,E ∪ E′

M);
1 EM ←− EM\ RemovedArcs;
2 for each arc ∈ CandidateArcs do
3 EM ←− EM∪ arc;
4 if CalculateMIPP(G) �= ∅ then
5 EM ←− EM\arc;

〈ProgramCommittee1, PC-Chair2, 0.8〉
〈PC-Chair2, ProgramCommittee1, 0.8〉

Table 1 summarizes the intermediate result of every
iteration in the while loop of Algorithm 4. The second
column shows the initial set of arcs calculated in Step 6
and the final removed arc in Step 18. The third column
shows the effective principles for selecting the wrong
mapping arcs in MIPPs, and the last column lists the
left MIPPs in each loop.

In Algorithm 5, we delete the removed arcs in the
graph, and check whether the candidate arcs will cause
incoherence. As there exist no common closures of the
removed mapping arcs, the final mapping arcs in the
graph are as follows:

〈Reviewer1, Reviewer2, 0.9〉
〈Reviewer2, Reviewer1, 0.9〉
〈Chair1, PC-Chair2, 0.5〉

〈PC-Chair2, Chair1, 0.5〉
〈Chair1, ConferenceChair1, 0.7〉
〈ConferenceChair2, Chair1, 0.7〉
〈ProgramCommittee1, PC-Chair2, 0.8〉
〈PC-Chair2, ProgramCommittee1, 0.8〉

By Algorithm 3, these mapping arcs are transformed
into the format of the original mappings.

7. Evaluation and results

7.1. The implementation in the evaluation

We implemented both the detection and repair al-
gorithms in our system. Several open source software
packages are used, including OWLAPI,1 a tool for
managing OWL ontologies [34], and Neo4j,2 a high-
performance graph database by Neo Technology [16]
for defining and querying graphs.

In the evaluation, we compare our approach with the
state-of-the-art mapping validation algorithms [5,7],
described as follows.

1. Alcomo-Greedy has been specifically developed
for the purpose of debugging ontology align-
ments. A greedy strategy is adopted to sort map-
pings according to their weights and remove
those that cause incoherence during an augment-
ing process [5].

1http://owlapi.sourceforge.net/
2https://neo4j.com/

http://owlapi.sourceforge.net/
https://neo4j.com/

AUTHOR C
OPY

W. Li et al. / A graph-based approach for resolving incoherent ontology mappings 29

Table 2

A summary of the repair systems compared in the evaluation

System Alcomo-Greedy Alcomo-Optimal LogMap Our approach

Incoherence
Detection

Pellet Reasoner Pellet Reasoner Dowling-Gallier
Algorithm

Graph-Based Algorithm

Repair Strategy Sort mappings by their
weights. Remove
mappings greedily
during the augmenting
process

Find all the MIPSs
without inclusions.
Remove mappings
globally by weights

Find the mappings
causing unsatisfiable
concepts and roles.
Remove mappings
locally by weights

Find all the MIPPs.
Remove mappings globally
by three principles

Complexity Polynomial Time Exponential Time Polynomial Time Exponential Time

Table 3

The statistics of the evaluated ontologies

Ontology Language � Concepts � Roles � PIs � NIs

cmt (Conference) ALCIN (D) 30 59 33 27

Conference (Conference) ALCHIF(D) 60 64 71 14

confOf (Conference) SIN (D) 39 36 64 43

edas (Conference) ALCOIN (D) 104 50 92 407

mouse (Anatomy) ALE 2744 3 4493 0

human (Anatomy) S 3304 2 5423 17

2. Alcomo-Optimal applies an exhaustive search
algorithm to find the global optimal diagnosis
[5].

3. LogMap consists of a mapping discovery and a
mapping repair component [7], and we only use
the latter in the evaluation. Its repair strategy is to
remove the minimum weighted mappings locally
to regain the satisfiability of concepts.

These algorithms and our approach are summarized
in Table 2.

All the experiments were performed on a desktop
computer with Intel® Core™ i7-2600 (3.4 GHz) and
8 GB RAM in Java 1.8. Our system3 can be down-
loaded together with the datasets and results.

7.2. The ontologies used in the evaluation

The ontologies to be mapped are from the Confer-
ence Track and Anatomy Track in OAEI4 (Ontology
Alignment Evaluation Initiative), an annual campaign
for evaluating ontology matching systems that attracts
many participants all over the world. Table 3 shows the
statistics of these ontologies.

As shown in Table 3, the expressivity of the lan-
guages underpinning these ontologies is beyond DL-
Lite, thus axioms that cannot be expressed by DL-Lite

3https://github.com/liweizhuo001/GraphBasedOntologyTask
4http://oaei.ontologymatching.org/

need to be approximated [16]. The approximations are
described as follows.

1. Axioms in the form of C � ∃R.D are replaced
by C � ∃R.

2. Role R having CD as domain and CR as range is
represented as ∃R � CD and ∃R− � CR.

3. Axioms containing constructor � in the form of
A � B � C are replaced by A � B and A � C;
and when B and C are disjoint, either A � B or
A � C is chosen so as to prevent A from being
unsatisfiable.

4. Axioms of enumeration and cardinality are ig-
nored.

These approximations are sound [35], i.e., axioms
hold in the resultant DL-Lite ontology can also be en-
tailed in the original ontology. However, not all the
axioms in the original ontology hold in the DL-Lite
version. The approximations have relaxed the restric-
tions of axioms, thus our graph-based approach is not
complete when detecting incoherent mappings across
ontologies beyond DL-Lite. This contrasts with using
OWL 2 reasoners such as Pellet [36] and Hermit [37],
which can obtain the complete incoherence whereas
the efficiency can be low. For approximating OWL 2
ontologies into DL-Lite, balancing between the effi-
ciency and expressivity is of importance [35,38,39],
and we leave this for our future work.

https://github.com/liweizhuo001/GraphBasedOntologyTask
http://oaei.ontologymatching.org/

AUTHOR C
OPY

30 W. Li et al. / A graph-based approach for resolving incoherent ontology mappings

Table 4

The incoherent alignments generated by the matchers

Num Ontology Pair Matcher �Mappings �Wrong Mappings Coherent

1 cmt-Conference GMap 16 5 No

2 cmt-confOf StringEquiv 6 2 No

3 cmt-edas GMap 11 3 No

4 Conference-confOf GMap 16 4 No

5 Conference-edas FCA-Map 12 3 No

6 confOf-edas StringEquiv 17 7 No

7 confOf-edas GMap 20 8 No

8 mouse-human StringEquiv 947 4 No

9 mouse-human GMap 1345 114 No

10 mouse-human FCA-Map 1361 92 No

7.3. The alignments used in the evaluation

For incoherent mappings, we select alignments gen-
erated by StringEquiv, GMap [40] and FCA-Map [41].
StringEquiv serves as the baseline for measuring the
performance of matchers. GMap is a probabilistic
scheme for ontology matching that combines the sum-
product network and the noisy-or model. FCA-Map
uses the Formal Concept Analysis formalism to cluster
the commonalities across ontologies. Applying these
three matchers to aligning the six ontologies in Ta-
ble 3, ten of the resultant alignments are incoherent, as
listed in Table 4. These alignments are used to evalu-
ate our repair system. OAEI provides reference align-
ments, so we can compute the precision, recall, and F-
measure to measure the effectiveness of mapping val-
idating systems. We assume that mappings not in the
reference alignment are wrong mappings. Note that
wrong mappings do not necessarily cause the incoher-
ence of alignment, whereas the incoherence must be
caused by wrong mappings.5

7.4. The evaluation results

In order to measure the repair performance, we com-
pute the standard precision, recall and F-measure of
the repaired alignments by every revision system, rep-
resented by P ′, R′ and F ′, respectively, in the follow-
ing tables in this section. These measures are com-
pared with those of the original alignments, repre-
sented by P , R, and F , respectively. Moreover, the

5Such assumption does not always hold, as in the case of the
OAEI Large Biomedical Ontologies track, where the reference
alignments are extracted from the UMLS Metathesaurus, and for
mappings cause incoherence, OAEI labels them as “Unknown”, i.e.,
neither correct nor incorrect in the evaluation [42].

quality of repair can be revealed by comparing the
number of removed mappings (denoted as �MR) and
the number of wrong mappings among them (denoted
as �MW). Given the repaired alignment M′ and ref-
erence alignment A, the formulas about P ′, R′ and F ′
are defined as follows.

P ′ = |M′ ∩ A|
|M′| R′ = |M′ ∩ A|

|A|

F ′ = 2 × P ′ × R′

P ′ + R′

To test the efficiency, we ran all the repair systems
ten times for every alignments in Conference Track
and five times for Anatomy Track, and average runtime
is taken as the revision time.

7.4.1. A comparison with other repair systems
Table 5 lists the repair result of the seven alignments

across ontologies in the Conference track. Overall, all
the systems are able to detect the incoherence and re-
move mappings to regain coherence except one case,
that is our system failed to identify the incoherence
in the cmt-confOf alignment generated by StringE-
quiv. It derives from the inadequacy of our approach
in approximating ontologies beyond the expressivity
of DL-Lite. Nevertheless, in terms of the F-measure
and the percentage of the wrong mappings removed,
our approach achieves the best results in four out of
seven alignments; Alcomo-optimal, also adopting a
global repair strategy, performs better in three align-
ments; and Alcomo-Greedy and LogMap are relatively
weaker as they are based on local removal strategies.
Moreover, in terms of the precision, our approach per-
forms the best in five out of seven alignments, indicat-
ing that more wrong mappings have been removed.

AUTHOR C
OPY

W. Li et al. / A graph-based approach for resolving incoherent ontology mappings 31

Table 5

The repair result for the alignments in the Conference Track

Num Alignment Repair System P ′(P) R′(R) F ′(F) �MR �MW Time

1 cmt
Conference
by GMap

Alcomo-Greedy
Alcomo-Optimal
LogMap Our
Approach

0.667 (0.688)
0.733 (0.688)
0.692 (0.688)
0.733 (0.688)

0.667 (0.733)
0.733 (0.733)
0.600 (0.733)
0.733 (0.733)

0.667 (0.710)
0.733 (0.710)
0.643 (0.710)
0.733 (0.710)

1
1
3
1

0
1
1
1

1 s
1 s

0.4 s
13.4 s

2 cmt confOf
by
StringEquiv

Alcomo-Greedy
Alcomo-Optimal
LogMap
Our Approach

0.667 (0.667)
0.800 (0.667)
0.800 (0.667)
0.667 (0.667)

0.250 (0.250)
0.250 (0.250)
0.250 (0.250)
0.250 (0.250)

0.364 (0.364)
0.381 (0.364)
0.381 (0.364)
0.364 (0.364)

0
1
1
0

0
1
1
0

1 s
1 s

0.4 s
10.6 s

3 cmt edas by
GMap

Alcomo-Greedy
Alcomo-Optimal
LogMap
Our Approach

0.800 (0.727)
0.800 (0.727
1.000 (0.727)
1.000 (0.727)

0.615 (0.615)
0.615 (0.615)
0.615 (0.615)
0.462 (0.615)

0.696 (0.667)
0.696 (0.667)
0.762 (0.667)
0.632 (0.667)

1
1
3
5

1
1
3
3

1 s
1 s

0.5 s
83.5 s

4 Conference
confOf by
GMap

Alcomo-Greedy
Alcomo-Optimal
LogMap
Our Approach

0.800 (0.750)
0.800 (0.750)
0.692 (0.750)
0.923 (0.750)

0.800 (0.800)
0.800 (0.800)
0.600 (0.800)
0.800 (0.800)

0.800 (0.774)
0.800 (0.774)
0.643 (0.774)
0.857 (0.774)

1
1
3
3

1
1
0
3

1 s
1 s

0.5 s
15.4 s

5 Conference
edas by
FCA-Map

Alcomo-Greedy
Alcomo-Optimal
LogMap
Our Approach

0.900 (0.750)
0.900 (0.750)
0.889 (0.750)
0.875 (0.750)

0.529 (0.529)
0.529 (0.529)
0.471 (0.529)
0.412 (0.529)

0.667 (0.621)
0.667 (0.621)
0.615 (0.621)
0.560 (0.621)

2
2
3
5

2
2
2
2

1 s
1 s

0.5 s
19.5 s

6 confOf edas
by
StringEquiv

Alcomo-Greedy
Alcomo-Optimal
LogMap
Our Approach

0.625 (0.588)
0.667 (0.588)
0.692 (0.588)
0.818 (0.588)

0.526 (0.526)
0.526 (0.526)
0.474 (0.526)
0.474 (0.526)

0.571 (0.556)
0.588 (0.556)
0.562 (0.556)
0.600 (0.556)

1
2
4
6

1
2
3
5

1 s
3 s

0.5 s
46.8 s

7 confOf edas
by GMap

Alcomo-Greedy
Alcomo-Optimal
LogMap
Our Approach

0.611 (0.600)
0.647 (0.600)
0.750 (0.600)
0.769 (0.600)

0.579 (0.632)
0.579 (0.632)
0.474 (0.632)
0.526 (0.632)

0.595 (0.615)
0.611 (0.615)
0.581 (0.615)
0.625 (0.615)

2
3
7
7

1
2
4
5

1 s
3 s

0.4 s
138.5 s

Table 6

The repair result for the alignments in the Anatomy Track

Num Alignment Repair System P ′(P) R′(R) F ′(F) �MR �MW Time

8 mouse
human by
StringEquiv

Alcomo-Greedy
Alcomo-Optimal
LogMap
Our Approach

0.997 (0.996)
–
0.997 (0.996)
0.997 (0.996)

0.622 (0.622)
–
0.621 (0.622)
0.622 (0.622)

0.766 (0.766)
–
0.765 (0.766)
0.766 (0.766)

1
–
3
1

1
–
1
1

4 s
–

4.2 s
492 s

9 mouse
human by
GMap

Alcomo-Greedy
Alcomo-Optimal
LogMap
Our Approach

0.915 (0.915)
–
0.917 (0.915)
0.916 (0.915)

0.805 (0.812)
–
0.811 (0.812)
0.812 (0.812)

0.857 (0.861)
–
0.861 (0.861)
0.861 (0.861)

10
–
3
1

0
–
2
1

5 s
–

5.1 s
1341 s

10 mouse
human by
FCA-Map

Alcomo-Greedy
Alcomo-Optimal
LogMap
Our Approach

0.951 (0.932)
–
0.935 (0.932)
0.935 (0.932)

0.814 (0.837)
–
0.832 (0.837)
0.836 (0.837)

0.877 (0.882)
–
0.881 (0.882)
0.883 (0.882)

64
–

11
6

29
–
4
4

5 s
–

4.5 s
2451 s

Table 6 shows the repair result of the three align-
ments across ontologies in the Anatomy track. The
optimality of Alcomo-Optimal is guaranteed via an
exhaustive search algorithm to check potential solu-
tions. This makes the system incompetent for large-

scale mapping validation problems [9], as shown by
all the tasks in Table 6. For Alcomo-Greedy, LogMap
and our approach, the incoherence of each alignment
is detected and resolved after repair. In terms of the
F-measure and the percentage of the wrong mappings

AUTHOR C
OPY

32 W. Li et al. / A graph-based approach for resolving incoherent ontology mappings

Table 7

The contribution of repair principles

Num Alignment Principles P ′(P) R′(R) F ′(F) �MR �MW

4 Conference
confOf by
GMap

P1
P2
P3
P1 + P2
P1 + P3
P2 + P3
P1 + P2 + P3

0.846 (0.750)
0.909 (0.750)
0.818 (0.750)
0.923 (0.750)
0.917 (0.750)
0.857 (0.750)
0.923 (0.750)

0.733 (0.800)
0.667 (0.800)
0.600 (0.800)
0.800 (0.800)
0.733 (0.800)
0.800 (0.800)
0.800 (0.800)

0.786 (0.774)
0.769 (0.774)
0.692 (0.774)
0.857 (0.744)
0.815 (0.774)
0.828 (0.774)
0.857 (0.774)

3
5
5
3
4
2
3

2
3
2
3
3
2
3

6 confOf edas
by
StringEquiv

P1
P2
P3
P1 + P2
P1 + P3
P2 + P3
P1 + P2 + P3

0.818 (0.588)
0.889 (0.588)
0.889 (0.588)
0.818 (0.588)
0.818 (0.588)
0.889 (0.588)
0.818 (0.588)

0.474 (0.526)
0.421 (0.526)
0.421 (0.526)
0.474 (0.526)
0.474 (0.526)
0.421 (0.526)
0.474 (0.526)

0.600 (0.566)
0.571 (0.556)
0.571 (0.556)
0.600 (0.566)
0.600 (0.556)
0.571 (0.556)
0.600 (0.556)

6
8
8
6
6
8
6

5
6
6
5
5
6
5

7 confOf edas
by GMap

P1
P2
P3
P1 + P2
P1 + P3
P2 + P3
P1 + P2 + P3

0.769 (0.600)
0.800 (0.600)
0.750 (0.600)
0.769 (0.600)
0.769 (0.600)
0.750 (0.600)
0.769 (0.600)

0.526 (0.632)
0.421 (0.632)
0.474 (0.632)
0.526 (0.632)
0.526 (0.632)
0.474 (0.632)
0.526 (0.632)

0.625 (0.615)
0.552 (0.615)
0.581 (0.615)
0.625 (0.615)
0.625 (0.615)
0.581 (0.615)
0.625 (0.615)

7
10
8
7
7
8
7

5
6
5
5
5
5
5

10 mouse
human by
FCA-Map

P1
P2
P3
P1 + P2
P1 + P3
P2 + P3
P1 + P2 + P3

0.936 (0.932)
0.935 (0.932)
0.934 (0.932)
0.935 (0.932)
0.936 (0.932)
0.935 (0.932)
0.935 (0.932)

0.835 (0.837)
0.830 (0.837)
0.824 (0.837)
0.836 (0.837)
0.835 (0.837)
0.834 (0.837)
0.836 (0.837)

0.883 (0.882)
0.879 (0.882)
0.876 (0.882)
0.883 (0.882)
0.883 (0.882)
0.881 (0.882)
0.883 (0.882)

8
16
24
6
8
9
6

5
5
4
4
5
5
4

removed, our approach achieves the best result in all
three alignments. Compared with the scalability prob-
lem of Alcomo-Optimal and local removal strategy of
LogMap, our approach pursues a balance between the
computational complexity of mapping validation and
expressivity of aligned ontologies.

Alcomo-Greedy, Alcomo-Optimal and Logmap de-
cide the mappings to be removed based on their
weights. Solely relying on the weights in repair can
be unreliable. More importantly, it is not suitable for
alignments generated by qualitative matchers such as
StringEquiv and FCA-Map which do not assign nu-
merical weights to mappings. Our approach, on the
other hand, combines three principles, where two are
independent of the weights from specific matchers.
Of note, not all wrong mappings in the alignment can
cause the incoherence, as exemplified by the mouse
and human anatomy alignment generated by GMap,
where 114 mappings are wrong, and our approach
solely removed one of them and then the coherence is
regained.

In terms of the time consumption, our approach
takes much longer times than the other systems, where
a large proportion is spent on calculating MIPPs dur-
ing the incoherence detection. Similarly to find MIPSs,
computing MIPPs in graph is a NP-hard problem [14].
The optimization technologies like [43,44] may reduce
the repeated calculations for our graph-based incoher-
ence repair algorithm, which are worth exploring in
our future work.

7.4.2. The contribution of each repair principle
In order to evaluate the contribution of each repair

principle separately, we select four of the alignments
that our approach performs better, as listed in Table 7.
One can see that principle P1, a global principle is in-
dependent of specific matchers, serves as a good guid-
ance for removing wrong mappings. Nevertheless, the
order of removing with P1 is indecisive, and this is
when principles P2 and P3 can complement to further
improve the repair performance. For example, com-
mon closures can play a part in alignment 4 and 10,
so combining P2 with P1 increased the F-measure and

AUTHOR C
OPY

W. Li et al. / A graph-based approach for resolving incoherent ontology mappings 33

Table 8

Applying repair principles in different orders

Num Alignment Principles P ′(P) R′(R) F ′(F) �MR �MW

4 Conference
confOf by
GMap

P1→ P2 →P3
P1→ P3 →P2
P2→ P1 →P3
P2→ P3 →P1
P3→ P1 →P2
P3→ P2 →P1

0.923 (0.750)
0.917 (0.750)
0.917 (0.750)
0.857 (0.750)
0.846 (0.750)
0.846 (0.750)

0.800 (0.800)
0.733 (0.800)
0.733 (0.800)
0.800 (0.800)
0.733 (0.800)
0.733 (0.800)

0.857 (0.774)
0.815 (0.774)
0.815 (0.774)
0.828 (0.744)
0.786 (0.774)
0.786 (0.774)

3
4
4
2
3
3

3
3
3
2
2
2

the proportion of the removed wrong mappings. When
mapping arcs in MIPPs have no common closures, the
improvements from P2 becomes limited. As matter of
fact, P2 is more suitable for ontologies with rich taxo-
nomic structures. Lastly, utilizing the three principles
as a whole always achieved the best performance.

7.4.3. The order of applying the repair principles
We use the alignment between Conference and con-

fOf generated by GMap to explore the influence of
following different orders to apply the principles, as
shown in Table 8. One can see that the composition
of three principles in any order is better than applying
singular principle. Moreover, considering principle P1
first would obtain a better repair, whereas the order-
ing of P2 and P3 following P1 is not certain. When the
weights of mappings are reliable, it is recommended to
apply P3 before P2, otherwise P2 can come before P3.

7.4.4. The common closures exploited by the mapping
revision operator

In order to relieve the loss of information during the
repair process, common closures of the removed map-
ping arcs are saved, and later added back to the inte-
grated graph once determined that no further incoher-
ence can be caused. In our evaluation, the number of
common closures actually added back is limited. For
example, only one common closure (mouse:organ sys-
tem, human:Anatomic_Structure_System_or_
Substance, �, 1.0) is used after repairing the align-
ment between mouse and human anatomy generated
by FCA-Map. Such common closures can be used by
domain experts, for instance, to identify potential, new
mappings across ontologies.

8. Conclusions

In this paper, we present a graph-based approach
for resolving incoherent mappings among DL-Lite on-
tologies. We first encode ontologies and mappings into
a graph according to the designed construction rules,
in which the problem of computing the set of all the

MIPSs can be reduced to obtaining the MIPPs based
on the graph. In order to remove the wrong mappings
in the repair stage, we propose three elaborated repair
principles, and define functions that fulfill these prin-
ciples, in which we introduce the notion of common
closures of the integrated graph w.r.t. a mapping arc.
To relieve the loss of information, we further design a
mapping revision operator based on these functions, so
that the common closures related to the removed map-
ping arcs can be added back to the graph when no in-
coherence occurs. Compared with some state-of-the-
art systems on real-world ontologies, our approach can
remove more wrong mappings and achieve better re-
pairing results in most of the cases.

There are several avenues for our future work. Our
graph-based mapping validation approach targets the
family of DL-Lite ontologies, and in order to extend
to more expressive description logics, we will focus on
approximating OWL 2 ontologies into DL-Lite tailed
for our algorithms. Recently, Solimando et al. pre-
sented an approach to detecting and minimizing vio-
lations in ontology alignments based on the conserva-
tivity principle, which is useful for measuring wrong
mappings and negotiating about mappings in dialogues
with humans [45,46]. In addition to knowledge base
repairing based on logical incoherence, there are works
modeling wrong relations that cannot be identified
by logical reasoners. These works include data-driven
methods based on top level ontologies and cycle meth-
ods based on is-a relations for improving the qual-
ity of the automatically constructed web-scale knowl-
edge bases [47,48]. Incorporating such ideas into our
method can facilitate discarding more wrong map-
pings. Importantly, optimization technologies shall be
explored so as to improve the efficiency of our system.
Lastly, our repair techniques will be extended in or-
der to cater for other tasks and scenarios such as revi-
sion of complex ontology mappings and networks of
ontologies [49,50].

AUTHOR C
OPY

34 W. Li et al. / A graph-based approach for resolving incoherent ontology mappings

Acknowledgements

This work has been supported by the National Key
Research and Development Program of China under
grant 2016YFB1000902, the Natural Science Founda-
tion of China grants 61232015, 61621003, 61272378,
supported in part by the 863 Program under Grant
2015AA015406, the Knowledge Innovation Program
of the Chinese Academy of Sciences (CAS), and Insti-
tute of Computing Technology of CAS.

References

[1] R. Tolksdorf, L. Nixon and E. Simperl, Towards a tuplespace-
based middleware for the semantic web, Web Intelligence and
Agent Systems: An International Journal 6(3) (2008), 235–
251. doi:10.3233/WIA-2008-0139.

[2] L. Otero-Cerdeira, F.J. Rodríguez-Martínez and A. Gómez-
Rodríguez, Ontology matching: A literature review, Expert
Systems with Applications 42(2) (2015), 949–971. doi:10.
1016/j.eswa.2014.08.032.

[3] G. Qi, Q. Ji and P. Haase, A conflict-based operator for map-
ping revision, in: Proceedings of the 8th International Seman-
tic Web Conference, Springer, 2009, pp. 521–536.

[4] M. Ruta, T. Di Noia, E. Di Sciascio and F.M. Donini, Seman-
tic based collaborative P2P in ubiquitous computing, Web In-
telligence and Agent Systems: An International Journal 5(4)
(2007), 375–391.

[5] C. Meilicke, Alignment incoherence in ontology matching,
PhD thesis, Universitätsbibliothek Mannheim, 2011.

[6] J. Euzenat and P. Shvaiko, Ontology Matching, Springer
Science & Business Media, 2013. doi:10.1007/978-3-642-
38721-0.

[7] E. Jiménez-Ruiz and B.C. Grau, Logmap: Logic-based and
scalable ontology matching, in: Proceedings of the 10th Inter-
national Semantic Web Conference, Springer, 2011, pp. 273–
288.

[8] S. Castano, A. Ferrara, D. Lorusso, T.H. Näth and R. Möller,
Mapping validation by probabilistic reasoning, in: Proceedings
of the 5th European Semantic Web Conference, Springer, 2008,
pp. 170–184.

[9] J. Noessner, H. Stuckenschmidt, C. Meilicke and M. Niepert,
Completeness and optimality in ontology alignment debug-
ging, in: Proceedings of the 9th International Conference on
Ontology Matching, CEUR-WS.org, 2014, pp. 25–36.

[10] P. Klinov, Practical reasoning in probabilistic description logic,
PhD thesis, University of Manchester, 2011.

[11] G. Qi, P. Haase, Z. Huang, Q. Ji, J.Z. Pan and J. Völker, A ker-
nel revision operator for terminologies – algorithms and eval-
uation, in: Proceedings of the 7th International Semantic Web
Conference, Springer, 2008, pp. 419–434.

[12] J. Du, G. Qi and X. Fu, A practical fine-grained approach to re-
solving incoherent OWL 2 DL terminologies, in: Proceedings
of the 23rd ACM International Conference on Information and
Knowledge Management, ACM, 2014, pp. 919–928.

[13] G. Qi, Z. Wang, K. Wang, X. Fu and Z. Zhuang, Approximat-
ing model-based ABox revision in DL-lite: Theory and prac-
tice, in: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI Press, 2015, pp. 254–260.

[14] X. Fu, G. Qi, Y. Zhang and Z. Zhou, Graph-based ap-
proaches to debugging and revision of terminologies in DL-
Lite, Knowledge-Based Systems 100 (2016), 1–12. doi:10.
1016/j.knosys.2016.01.039.

[15] L. Zhou, H. Huang, G. Qi, Y. Ma, Z. Huang and Y. Qu, Para-
consistent query answering over DL-Lite ontologies, Web In-
telligence and Agent Systems 10 (2012), 19–31. doi:10.3233/
WIA-2012-0228.

[16] D. Lembo, V. Santarelli and D.F. Savo, Graph-based ontology
classification in OWL 2 QL, in: Proceedings of the 10th Ex-
tended Semantic Web Conference, Springer, 2013, pp. 320–
334.

[17] C. Meilicke and H. Stuckenschmidt, Applying logical con-
straints to ontology matching, in: Proceedings of the 30th
Annual Conference on Artificial Intelligence, Springer, 2007,
pp. 99–113.

[18] C. Meilicke, H. Stuckenschmidt and A. Tamilin, Repairing
ontology mappings, in: Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence, AAAI Press, 2007,
pp. 1408–1413.

[19] C. Meilicke, J. Völker and H. Stuckenschmidt, Learning dis-
jointness for debugging mappings between lightweight on-
tologies, in: Proceedings of the 16th International Confer-
ence on Knowledge Engineering and Knowledge Management,
Springer, 2008, pp. 93–108.

[20] Y.R. Jean-Mary, E.P. Shironoshita and M.R. Kabuka, Ontology
matching with semantic verification, Web Semantics: Science,
Services and Agents on the World Wide Web 7(3) (2009), 235–
251. doi:10.1016/j.websem.2009.04.001.

[21] M.G. Scutella, A note on Dowling and Gallier’s top-down al-
gorithm for propositional Horn satisfiability, The Journal of
Logic Programming 8(3) (1990), 265–273. doi:10.1016/0743-
1066(90)90026-2.

[22] E. Santos, D. Faria, C. Pesquita and F.M. Couto, Ontology
alignment repair through modularization and confidence-based
heuristics, PloS one 10(12) (2015), 1–19.

[23] T.H. Näth and R. Möller, ContraBovemRufum: A system for
probabilistic lexicographic entailment, in: Proceedings of the
21st International Workshop on Description Logics, CEUR-
WS.org, 2008.

[24] T. Lukasiewicz, Expressive probabilistic, Artificial Intelligence
172(6) (2008), 852–883. doi:10.1016/j.artint.2007.10.017.

[25] P. Shvaiko and J. Euzenat, Ontology matching: State of the art
and future challenges, IEEE Transactions on Knowledge and
Data Engineering 25(1) (2013), 158–176. doi:10.1109/TKDE.
2011.253.

[26] T. Lukasiewicz and U. Straccia, Managing uncertainty and
vagueness in description logics for the semantic web, Web Se-
mantics: Science, Services and Agents on the World Wide Web
6(4) (2008), 291–308. doi:10.1016/j.websem.2008.04.001.

[27] F. Riguzzi, E. Bellodi, E. Lamma and R. Zese, Probabilistic
description logics under the distribution semantics, Semantic
Web 6(5) (2015), 477–501. doi:10.3233/SW-140154.

[28] T. Lukasiewicz, Probabilistic description logic programs, In-
ternational Journal of Approximate Reasoning 45(2) (2007),
288–307. doi:10.1016/j.ijar.2006.06.012.

http://dx.doi.org/10.3233/WIA-2008-0139
http://dx.doi.org/10.1016/j.eswa.2014.08.032
http://dx.doi.org/10.1016/j.eswa.2014.08.032
http://dx.doi.org/10.1007/978-3-642-38721-0
http://dx.doi.org/10.1007/978-3-642-38721-0
http://dx.doi.org/10.1016/j.knosys.2016.01.039
http://dx.doi.org/10.1016/j.knosys.2016.01.039
http://dx.doi.org/10.3233/WIA-2012-0228
http://dx.doi.org/10.3233/WIA-2012-0228
http://dx.doi.org/10.1016/j.websem.2009.04.001
http://dx.doi.org/10.1016/0743-1066(90)90026-2
http://dx.doi.org/10.1016/0743-1066(90)90026-2
http://dx.doi.org/10.1016/j.artint.2007.10.017
http://dx.doi.org/10.1109/TKDE.2011.253
http://dx.doi.org/10.1109/TKDE.2011.253
http://dx.doi.org/10.1016/j.websem.2008.04.001
http://dx.doi.org/10.3233/SW-140154
http://dx.doi.org/10.1016/j.ijar.2006.06.012

AUTHOR C
OPY

W. Li et al. / A graph-based approach for resolving incoherent ontology mappings 35

[29] G. Qi, Q. Ji, J.Z. Pan and J. Du, Extending description logics
with uncertainty reasoning in possibilistic logic, International
Journal of Intelligent Systems 26(4) (2011), 353–381. doi:10.
1002/int.20470.

[30] T. Lukasiewicz, L. Predoiu and H. Stuckenschmidt, Tightly in-
tegrated probabilistic description logic programs for represent-
ing ontology mappings, Annals of Mathematics and Artificial
Intelligence 63(3) (2011), 385–425. doi:10.1007/s10472-012-
9280-3.

[31] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini and
R. Rosati, DL-Lite: Tractable description logics for ontologies,
in: Proceedings of the Twentieth National Conference on Ar-
tificial Intelligence and the Seventeenth Innovative Applica-
tions of Artificial Intelligence Conference, AAAI Press, 2005,
pp. 602–607.

[32] F. Baader, The Description Logic Handbook: Theory, Im-
plementation and Applications, Cambridge University Press,
2007. doi:10.1017/CBO9780511711787.

[33] S. Even, Graph Algorithms, Cambridge University Press, 2011.
doi:10.1017/CBO9781139015165.

[34] M. Horridge and S. Bechhofer, The owl api: A Java api for owl
ontologies, Semantic Web 2(1) (2011), 11–21. doi:10.3233/
SW-2011-0025.

[35] E. Botoeva, D. Calvanese and M. Rodriguez-Muro, Expres-
sive approximations in DL-Lite ontologies, in: Proceedings
of the 13th International Conference on Artificial Intelli-
gence: Methodology, Systems, and Applications, Springer,
2010, pp. 21–31. doi:10.1007/978-3-642-15431-7_3.

[36] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur and Y. Katz, Pel-
let: A practical owl-dl reasoner, Web Semantics: Science, Ser-
vices and Agents on the World Wide Web 5(2) (2007), 51–53.
doi:10.1016/j.websem.2007.03.004.

[37] R. Shearer, B. Motik and I. Horrocks, HermiT: A highly-
efficient OWL reasoner, in: Proceedings of the 5th Workshop
on OWL: Experiences and Directions, CEUR-WS.org, 2008,
pp. 91–100.

[38] M. Console, V. Santarelli and D.F. Savo, Efficient approxima-
tion in DL-Lite of OWL 2 ontologies, in: Proceedings of the
26th International Workshop on Description Logics, CEUR-
WS.org, 2013, pp. 132–143.

[39] I. Horrocks, P.F. Patel-Schneider and F. Van Harmelen, From
SHIQ and RDF to OWL: The making of a web ontology lan-
guage, Web Semantics: Science, services and agents on the
World Wide Web 1(1) (2003), 7–26. doi:10.1016/j.websem.
2003.07.001.

[40] W. Li and Q. Sun, GMap: Results for OAEI 2015, in: Proceed-
ings of the 10th International Workshop on Ontology Match-
ing, CEUR-WS.org, 2015, pp. 150–157.

[41] M. Zhao and S. Zhang, Identifying and validating ontology
mappings by formal concept analysis, in: Proceedings of the
11th International Workshop on Ontology Matching, CEUR-
WS.org, 2016, pp. 61–72.

[42] C. Pesquita, D. Faria, E. Santos and F.M. Couto, To repair or
not to repair: Reconciling correctness and coherence in ontol-
ogy reference alignments, in: Proceedings of the 8th Interna-
tional Workshop on Ontology Matching, CEUR-WS.org, 2013,
pp. 13–24.

[43] A. Fijany and F. Vatan, New approaches for efficient solution of
hitting set problem, in: Proceedings of the Winter International
Symposium on Information and Communication Technologies,
Trinity College Dublin, 2004.

[44] L. Lin and Y. Jiang, The computation of hitting sets: Review
and new algorithms, Information Processing Letters 86(4)
(2003), 177–184. doi:10.1016/S0020-0190(02)00506-9.

[45] A. Solimando, E. Jiménez-Ruiz and G. Guerrini, Minimiz-
ing conservativity violations in ontology alignments: Algo-
rithms and evaluation, Knowledge and Information Systems 51
(2016), 775–819. doi:10.1007/s10115-016-0983-3.

[46] E. Jiménez-Ruiz, T.R. Payne, A. Solimando and
V.A.M. Tamma, Limiting logical violations in ontology align-
ment through negotiation, in: Proceedings of the 15th Interna-
tional Conference on Principles of Knowledge Representation
and Reasoning, AAAI Press, 2016, pp. 217–226.

[47] H. Paulheim, Data-driven joint debugging of the DBpedia map-
pings and ontology – towards addressing the causes instead of
the symptoms of data quality in DBpedia, in: Proceedings of
the 14th Extended Semantic Web Conference, Springer, 2017,
pp. 404–418.

[48] J. Liang, Y. Xiao, Y. Zhang, S.-w. Hwang and H. Wang, Graph-
based wrong IsA relation detection in a large-scale lexical tax-
onomy, in: Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, AAAI Press, 2017, pp. 1178–1184.

[49] N. Silva and J. Rocha, Semantic web complex ontology map-
ping, Web Intelligence and Agent Systems: An International
Journal 1(3) (2003), 235–248.

[50] J. Euzenat, Revision in networks of ontologies, Artificial in-
telligence 228 (2015), 195–216. doi:10.1016/j.artint.2015.07.
007.

http://dx.doi.org/10.1002/int.20470
http://dx.doi.org/10.1002/int.20470
http://dx.doi.org/10.1007/s10472-012-9280-3
http://dx.doi.org/10.1007/s10472-012-9280-3
http://dx.doi.org/10.1017/CBO9780511711787
http://dx.doi.org/10.1017/CBO9781139015165
http://dx.doi.org/10.3233/SW-2011-0025
http://dx.doi.org/10.3233/SW-2011-0025
http://dx.doi.org/10.1007/978-3-642-15431-7_3
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1016/j.websem.2003.07.001
http://dx.doi.org/10.1016/j.websem.2003.07.001
http://dx.doi.org/10.1016/S0020-0190(02)00506-9
http://dx.doi.org/10.1007/s10115-016-0983-3
http://dx.doi.org/10.1016/j.artint.2015.07.007
http://dx.doi.org/10.1016/j.artint.2015.07.007

	Introduction
	Related work
	Repair methods based on logical entailments
	Repair methods based on probabilistic reasoning
	Uncertainty languages for mapping validation

	Preliminaries
	The DL-Lite family
	Ontology mappings and their incoherence

	Constructing graphs to represent ontology mappings
	Detecting incoherent mappings
	Minimal incoherent path pairs
	The graph-based algorithm for detecting incoherent mappings

	Repairing incoherent mappings
	The common closures with regard to mapping arcs
	The principles for removing mappings
	The mapping revision operator
	The graph-based algorithm for repairing incoherent mappings

	Evaluation and results
	The implementation in the evaluation
	The ontologies used in the evaluation
	The alignments used in the evaluation
	The evaluation results
	A comparison with other repair systems
	The contribution of each repair principle
	The order of applying the repair principles
	The common closures exploited by the mapping revision operator

	Conclusions
	Acknowledgements
	References

