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Abstract In this work, we propose a new quantum structure
—weak quantum MV algebras (wQMYV algebras)—and
define coupled bimonoids and strong coupled bimonoids.
We find that the coupled bimonoids and strong coupled
bimonoids are ring-like structures corresponding to lattice-
ordered wQMYV algebras and lattice-ordered QMV algebras,
respectively. Using an automated reasoning tool, we give
the smallest 4-element wQMYV algebra but not a QMV alge-
bra. We also show that lattice-ordered wQMYV algebras are
the real nondistributive generalization of MV algebras. Cer-
tainly, most important properties of quantum MV algebras
(QMYV algebras) are preserved by wQMYV algebras. Further-
more, we can conclude that lattice-ordered wQMYV algebras
are the simplest unsharp quantum logical structures by far,
based on which computation theory could be set up.
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1 Introduction

Quantum logic was introduced in the 1930s of the twen-
tieth century as the logic of quantum mechanics (Birkhoff
and Neumann 1936), where projection operators (closed sub-
spaces) of Hilbert space are identified with propositions con-
cerning a quantum mechanical system. Since the set P (H) of
all projection operators of a separable infinite-dimensional
Hilbert space is an orthomodular lattice (Kalmbach 1983),
orthomodular lattices have been the main model in the study
of quantum logic. Any event in P(H) always satisfies the
noncontradiction principle, and such an event s called a sharp
event. Quantum logic corresponding to P (H) is called sharp
quantum logic. However, the set of projection operators is not
the set of maximal possible events by the statistical rules of
quantum theory. In order to meet the need of quantum theory,
the set of projection operators is extended to the set £(H) of
positive operators dominated by the identity in Hilbert space
(Ludwig 1983). The elements of £(H) are called effects.
Effects correspond to quantum properties that may be dis-
turbed by a certain noise. Since quantum events reflected by
E(H) do not satisfy the noncontradiction principle, they are
called unsharp events, and quantum logic corresponding to
E(H) is called unsharp quantum logic (Chiara et al. 2004).
In order to characterize the logical structures of the
unsharp proposition systems, many algebraic structures were
proposed. Weak orthoalgebras were introduced (Giuntini and
Greuling 1989) and further studied as effect algebras (Foulis
and Bennett 1994). Another equivalent structure of effect
algebras is the D-poset (Kopka and Chovanec 1994). They
are the main algebraic model of unsharp quantum logic.
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In the study of unsharp quantum logic, MV algebra is the
algebraic counterpart of Lukasiewicz infinite-valued propo-
sition logic Lo (Chang 1958, 1959). MV algebras play
the same role in unsharp quantum logic as Boolean alge-
bras play in sharp quantum logic. Later, another important
unsharp quantum structure—quantum MV algebra (QMV
algebra)—appeared. QMV algebra was proposed as a non-
lattice theoretic generalization of MV algebras and also
as a nonidempotent generalization of orthomodular lat-
tices (Giuntini 1996). It is closely related to effect algebras
(Dvurecenskig and Pulmannova 2000).

In 1934, Vandiver introduced semirings as an algebraic
structure owning two associative binary operations with one
distributing over the other. It is well known that semirings
are powerful tools in the study of formal languages and
automata theory. Certainly, some ring-like algebraic struc-
tures are closely connected to structures of quantum logics
(Di Nola and Gerla 2005). It was shown that there is a cor-
respondence between coupled semirings and MV algebras
(Gerla 2003). A coupled semiring contains an MV algebra,
and conversely an MV algebra induces a pair of a lattice-
ordered semiring (lc-semiring) and a dual lc-semiring which
comprise a coupled semiring. Later, the result was general-
ized to semirings and pseudo-MV algebras (Shang and Lu
2007). Naturally, we want to know what are the ring-like
quantum structures corresponding to QMV algebras?

As an application of those quantum logical structures
mentioned above, Ying, Qiu, etc., set up the computation
theory based on sharp quantum logic (Qiu 2004, 2007; Ying
2000a, b, 2005) and gave the main difference between clas-
sical automata theory and automata theory based on sharp
quantum logic. Since unsharp quantum logic is more general
than sharp quantum logic, then Shang and Lu studied the
computation theory based on unsharp quantum logic (lattice-
ordered QMYV algebras) (Shang et al. 2009, 2012). And they
gave the difference between computation theory based on
unsharp quantum logic and computation theory based on
sharp quantum logic. Can we find any weaker unsharp quan-
tum structure based on which computation theory could be
established?

In this paper, in order to make a step forward to find a
weaker quantum logical structure, we generalize QMV alge-
bras to weak QMYV algebras (wQMYV algebras). It is shown
that QMV algebras are a proper subclass of wQMYV alge-
bras. Meanwhile, wWQMYV algebras preserve most important
properties such as the monotony, cancelation law and the
relation with effect algebras. In Shang et al. (2009), we have
proved that if a lattice-ordered QMYV algebras satisfy some
distributive law, it becomes an MV algebra. However, in this
paper, we find that if an MV algebra deletes the same dis-
tributive law, it will become a wQMYV algebra. From this, we
can see wWQMYV algebras are the real nondistributive gener-
alization of MV algebra. Furthermore, we show that coupled
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Fig. 1 Circle of relations

bimonoids and strong coupled bimonoids are the ring-like
structures corresponding to lattice-ordered wQMYV algebras
(I-wQMYV algebras) and lattice-ordered QMV algebras (I-
QMY algebras), respectively, just like coupled semirings are
the ring-like structures corresponding to MV algebras. That
is, we complete Fig. 1. Similar to the computation theory
based on unsharp quantum logic (Shang et al. 2009, 2012),
we can successfully set up computation theory based on 1-
wQMYV algebras.

During this research, we found it quite helpful to use auto-
mated reasoning tools. In particular, we used the tool SEM
(Zhang and Zhang 1995) that can enumerate finite algebras
automatically, given the set of axioms characterizing the alge-
bras. With this tool, we were able to generate small examples
of QMYV algebras and wQMYV algebras.

This work is organized as follows. In Sect. 2 we give
two equivalent definitions of wQMYV algebras and investi-
gate some properties. In Sect. 3, by using the tool of SEM,
we generated a 4-element wQMYV algebra but not QMYV alge-
bra. In Sect. 4, we prove that the center of a wQMYV algebra
is an MV subalgebra. In Sect. 5 the relation between coupled
bimonoids and 1-wQMYV algebras and the relation between
strong coupled bimonoids and 1-QMYV algebras are estab-
lished.

2 Weak QMY algebras

As stated in Gudder (1995), a supplement algebra (S-algebra)
is a commutative monoid M = (M, @, 0) equipped with a
constant element 1 and a unary operation * satisfying the
following axioms:

S1) adb=bDa
S2) adbdc)=(a@db)dc

S3)) ada*=1
S4) 0®ba=a
(S5 1®a=1

(S6) (@a)* =a
S-algebras are the fundamental structures of quantum MV
algebras, effect algebras, and MV algebras, etc.

Definition 2.1 (Giuntini 2005) A quantum MV algebra
(QMYV algebra) is an S-algebra with (QMV7):
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a® [(a* nb)n(c I‘la*)] =@db)Nn@®c) (QMV7)
wherea O b := (@*®b"*,anb = (a®b*)Ob,aub =
(a®b*)Pb.

The characteristic axiom of QMV algebras is (QMV7), which
represents a conditional form of distributivity of @ over . In
order to introduce a semiring-like structure to QMV algebras,
we alter (QMV7) and define a kind of generalized QMV
algebra:

Definition 2.2 A weak quantum MV algebra (WQMYV alge-
bra) is an S-algebra with (WQMV7):

a® [(b MNa*)n(cn a*)] =@d®b)Nna@®c) WQMVT)

where ©, M and L are defined as in Definition 2.1.

As in QMV algebra, we take © as more binding than @ and
define the < relation:

a<b&sa=anb

In Proposition 2.3 we provide some basic properties that
wQMYV algebras share with QMV algebras. The verification
is straightforward and is omitted here.

Proposition 2.3 Let M be a wQMV algebra. The following
properties hold:

(i) aGb=b0Oa

(i) a©(bOc)=(@Ob)Oc
(i) a®@a*=0

iv) a®0=0

V) adOl=a

(vij a=anl=1nNa
(i) 0=an0=0na
(vili) a =ana

(ix) (@Ub)* =a*nb*
x) (anb)* =a*ub*
xi) axb=a=bnNa

Proof The same as Theorem 2.3 in Giuntini (1996). O

The monotonicity of several operations also holds in a
wQMYV algebra:

Proposition 2.4 Let M be a wQMYV algebra. The following
properties hold for any a,b € M:

(i) a®b=a®dbna*
(i) a<xa®b
(i) a®©b =<a
(iv) b<aUb
V) anb=<b

Proof (i). Thereisa®[(cra™)n(bna*)] = (a®c)M(adb)
by (wQMV7). Letc =1,

a®b=@d)N(a®b)

a® (@ ndna*))
=a®@®bna)*)o bna®)
a® (@ ® (b ua) o (bna)
=a®@d B Oa)®a) O (bNa*)
=a®bna*

(ii). Letc =0ina®[(cna®™)n((bna*)] = (a®c)N(adb),
get that a = a M (a @ b) by Proposition 2.3.
(iii). Follows from (i),

@Ob)na=@Ob®a*)Oa
=0bua*)®a
=b"Na®a")*
=a®b

s0 a © b < a by definition.
(iv). b < a ©b* ® b = a U b by (ii).
). anib = (a ® b*) © b < b by (iii). O

The monotonicity in QMV algebras could be found in The-
orems 2.9 ~ 2.12 in Giuntini (1996). There is also a verbose
definition of QMV algebras; we pick out (QMVSE) and
(QMV 10) in Definition 2.1 of Giuntini (1996) and prove their
validity in wQMYV algebras.

Theorem 2.5 Let M be a wOQMV algebra, the following
properties hold for any a, b € M:

(i) au(®na) =a.
) a®BN@®c))=@®b)N(a® (adc)?).

Proof (i) Following Proposition 2.4 (i) and (ii),

au(na)=a® B* ua*)y®bna
=@eobna)*®bna
=@ eb)ydb®a’)Oa
=al(a®b")
= (a"n(@ @ b)*

=a
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(i) Replace ¢ with (a @ ¢)* in (WQMV7). By Proposition
2.4 (i) and (iii),

@®b)N@®@®o)) =ad (bna)n (@ ©c*)na*))
=a® (bna")n@ oc))
=a®((bNa*®adc)Oa*Oc")
=a®((bdadc)Oa*Oc")
=a®dbn@d®c))

In the following we show that a wQMYV algebra is exactly
an S-algebra together with (i) and (ii) in Theorem 2.5 as
axioms.

Definition 2.6 A WQMYV algebra is an S-algebra with

au(bna)=a (WQMV7)

a@BbnN@®)N=@db)n(a® (a®c)
(WQMVS)

As usual we take © as more binding than @. Define
a<b&sa=anb

It is straightforward to verify that Proposition 2.3 is valid if
M is a WQMYV algebra in the hypothesis.

Proposition 2.7 Let M be a WQMYV algebra, the following
properties hold for any a, b € M:

AD)a®dbna*)=adb
(i) a®Ob < a.

(iii) Ifa < b, then b = b U a.
@iv) Ifa < b, then b* < a*.
V) a=b*"Na) ® (a ©b).

Proof (i). Letc = 0in (WQMV), thatisa & (bMa*) =
a®b.
(i1). Following (i),

@oOb)na=@oOb®a*)oa
=0bua*)Oa
=0*Na®a"*
=a®b

so a © b < a by definition.
(iii). By (WQMV7),b=bu(anb) =bUaifa <b.
@iv). It follows from (iii) immediately.
(V). a®b < a=a = al(a®b) = [a®(@Ob)*|®(a®b) =
[a@@®b"))®@Ob)=0D*Na)®@Ob). O

@ Springer

Remark 2.8 a < b < b = ba by Proposition 2.7 (iii) and
@iv).

The monotony of the partial relation in QMV algebras is
preserved by < in WQMYV algebras:

Proposition 2.9 (Monotony) Let M be a WOMV algebra.
The following properties hold:

(1) Ifa < b, thena®c <b® cforanyc € M.
(ii) Ifa < b, thena ©c <b O cforanyc € M.
(i) Ifa < b, thenamc < bnmc foranyc € M.
@iv) Ifa < b, thenauc <bUc foranyc € M.

Proof (i). By Proposition 2.7 (i) and (v),

b@®U@®)=[bB)O W@ O] Do)

=[(anb®a*Obdc)O (a* O]
®@do)

=[@ob®adc)O @ O
®@ado)

=[@obn@ o] e @dc

=@ob)®adc

=buUua)®c

=b&c

soa @ c < b ® c by Remark 2.8.
(i1). Obtained by (i) and Proposition 2.7 (iv).

(iii) and (iv) Follow from (i) and (ii).

]

Theorem 2.10 Let M be a WQMYV algebra, then (wQMV7)
holds for all a, b, c € M.

Proof Since a < (a & b) N (a & c) by Proposition 2.9 (iii),
it follows from Proposition 2.7 (i) and (v) that:

(a@a®b)n(a®c)=an[(a®b)n(a®c)l
Bladb)N@a®c)]Oa*
=a69(a69b€9(a69c)*)
O@®dc)oa*
=a@(b|‘|a*@a€9(a*®c*))
O@®c)oa*
:a@(bl‘la*@c*ua)@(cl‘la*)
=a69[(b|‘|a*)|‘|(c|’la*)]
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Theorems 2.5 and 2.10 indicate that Definition 2.1 coin-
cides with Definition 2.6; wQMYV algebras are exactly
WQMV algebras.

Since in wQMYV algebras as well as in QMV algebras the
operation Mis not associative, two kinds of weak associativity
are presented based on wQMYV algebras:

Proposition 2.11 Let M be a wQMYV algebra, the following
propetrties hold for any a, b, c € M:

G @®b)U(a®c)=a®[(bna*)uc]
(i) (@anb)nc=(@nb)ynnec).
(i) an(bne) = (@ne)n(bne).

Proof (1).

@®byu@®c)=ana®b)u@®c)l
Dlla®db)u(a®dc)]Oa*

[(a®b)O @) Dadc]Oa*
[@@b)oa*OcFdadc]Oa
[(bna*®a)0a* O Badc]Oa*
[bna)na* o ®adc]Oa*
[
[
[

(bl‘la*)@c*@c@a]@a*
[(bﬂa*)LJc@a]@a*
(bl‘la*)l_lc]l‘la*

=a® (bf‘la*)l_lc]

a®
a®
a®
a®
a®
a®
ad

(ii).

(@anb)yn@dne)=[anb)®@G*uc)H]o @GN
[@nby@ P 0@ lobec)OC
[(@nby@c)NbdcH)]oc
((anb)y®c*)Oc

=(anb)rc

(iii).

an(ne)=@®®Bne)*)o (bnc)
=@db*OcHHObBHOC
=[@®HnGac)]oc
=[c*@an(c*db]oc
=[c*®(anon®ne)]oc
=[a@anc)yn@®nc)]nc
=(anc)yn®nec)

m}

Theorem 2.12 InawQMYV algebra < is a partial-order rela-
tion.

Proof Reflexivity:ana =a = a < a.

Antisymmetry: If a < b, namely b* < a*, then b* © a
a*0a=0.Soa=b"Qadbrna=bna=>a.

Transitivity: Suppose a < band b < c. Thenanc =
(@anb)ync=(@anb)n(bnc)=anb = a by Proposition
2.11 (ii). O

IA

Theorem 2.13 (Cancelation law) Let M be a wOMYV alge-
bra. Forany a,b,c € M such that a < ¢* and b < c*,

1) Ifa®c=<b®c, thena < b.
() Ifa®c=bdc, thena = b.

Proof (). Sincea < c*andb <X c¢*,a =anc* = (a ®
O < b®c)Oc*=bnc*=b.
(>i1). It follows from (i).
[m}

Theorem 2.14 Let M be a wOMYV algebra, then M is a
OMYV algebra if and only if a ® b = a & (a* 1 b) for any
a,be M.

Proof “If part.” Only need to prove (QMV7),

(@@db)yn@@c)=anl@db)n@®o)l@l@@b)n@dcloa”
=a®@ObD@D))OW@dc)Oa*
=a@ (@ Nb®ad @ ©c"))O@dc)oa*
=a®@nNbdc*ua)®(cna®)
:a@[(a*l‘lb)l‘l(cﬂa*)]

“Only if part.” See Lemma 2.2 of Giuntini (2005). O

The equation presented in the theorem above is a kind of
conditional distributive law of @ over 1.

For wQMYV algebras, a generalization of Theorem 2.14 in
Giuntini (1996) is obtained:

Theorem 2.15 Let M be a wOQMV algebra, the following
conditions are equivalent:

(1) M is an MV algebra.
(i) Ya,b e M: Ifa* ® b =1, thena < b.

Proof (i) implies (ii). See Theorem 2.14 of Giuntini
(1996).

(i) implies (i).Ifa*®b = 1,thenbna = (a*Pb)Oa = a.
Conversely, if bria = a,thena*@® (bra) = a*®b = 1.
Hence a* @ b = 1is equivalentto b Ma = a.

Foranya,b € M,anb = a*©®(anb)®an(anb) = (a®
b*)ObOa*®an(anb) = am(amb), whichimpliesarb < a
by the hypothesis. Soanb = (anb)na = (anb)r(bna)
by Proposition 2.11 (ii). It follows that a mb < b a. In
the same way, bMa < anb,soanb = bnma.lItimplies
a®b=a®bna*=a®a*nb,so MisaQMYV algebra
by Theorem 2.14, and also an MV algebra. O

@ Springer
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Fig. 2 9,

Let M beawQMYV algebra. We say M is alattice-ordered
wQMYV algebra (I-wQMYV algebra for short) if M forms a
lattice with the partial-order <. When M is lattice-ordered,
the distributivity of @ over A makes M be an MV algebra.

Theorem 2.16 Let M be a I-wQMV algebra, the following
conditions are equivalent:

(1) M isan MV algebra.
(i) Forallx,y,ze M, x®Y)AXx D) =xd (Y A2).

Proof (i) implies (ii). Refer to Dvurecenskig and Pulman-
nova (2000).

(ii) implies (i). For any a,b € M, assume ¢’ @ b = 1.
Letx =d/,y=b,z =a,then (@’ ®b) A (@’ ®a) =
a' ®(bAa),namely ' &b = a’'®(bra).Byad &b =1,
thena’ @ (bAa) =a' ®a.SincebAa <a,a < a,we
have b A a = a by the cancellation law. That is, a < b.
So M is an MV algebra by Theorem 2.15. O

Axiom (WQMV7) is a kind of weak distributivity law.
InfactaB[(bNna)N(cna®)] = @Bb)Nn@HBc) =
(aB (bna*))n(a B (cna*)). Generally, the distributivity
law does not hold in a wQMV algebra. However, wQMV
algebras endowed with some kind of “distributivity law” turn
out to be QMV algebras:

Theorem 2.17 Let M be a wQMYV algebra. It is a QMV
algebra if one of the following conditions is satisfied.

1) @®b)N@®c)=a® (dnNc)forala,b,cc M.
@) @@®b)yn(a®c)y=a®(cnb)foralla,b,ce M.

Proof (i). Take b = a*,thena ® (a*Mc¢) = a ® c for any
a,c € M. Then M isaQMYV algebra by Theorem 2.14.
(ii). Take ¢ = a* and follow the same proof of (i). O

Example 2.18 Consider the smallest QMV algebra 914 in
Fig. 2 which is not an MV algebra. The operation is defined
asa®b=1.

It is easy to check that (i) and (ii) in Theorem 2.17 are
satisfied. Since QMV algebras are special wQMYV algebras,
it follows that there exists a wQMYV algebra satisfying (i), (ii)
in Theorem 2.17 but not an MV algebra.

@ Springer
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Fig. 3 A wQMYV algebra but not a QMV algebra

Theorem 2.19 Let M be a wOQMV algebra. Ifa < a Ub or
anb =< aforanya,b € M, then M is an MV algebra.

Proof The condition “a < au b forall a, b” is equivalent to
“anb < aforalla, b.” Since (arb)M(bMa) = (amb)Na =
anb,soarb < bnaVa,b € M.Itfollowsthatamnb = bna,
Ya, b, and M is an MV algebra. O

In the following, we give an example which is a wQMV
algebra but not a QMYV algebra.
Example 2.20 Consider M = ({a, b, ¢, a*, b*, ¢*, 0, 1},
®,*,0,1) in Fig. 3.

The operation @ is defined as follows:

*

® |a b c a* b* ¢
a c* b 1 1 c*
b ¢ b a* a* c*
c b* a* ¢ a* b* 1
a* |1 a* a* a* 1 1
|1 1 »b»p 1 1 1
c* ot 1 1 1 c*

It is straightforward to verify that M is a wQMYV algebra.

@®bHN@db)=1nc* =c*
aea[(b*l‘la*)l‘l(bl‘la*)]=a69(a*l‘|b):c*
a@[(a*l‘lb*)l‘l(bl‘la*)]:a@(cl‘lb):a

Thus M is not a QMV algebra. Reexamine the condition
in Theorem 2.14, a @ a* N b* = a ® (a* ® b) © b* =
a@a*Ob*=a®c=b*#Aadb*=1.

Example 2.21 Let £(H) be the class of all effects in a Hilbert
space H, that is the set of all bounded linear operators
between 0 and 1, where 0 is the null operator; 1 is the identity
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operator. Define @ and * for E, F € £(H) as:

E+F, ifE+F e &H)

E®F= { 1, otherwise

E*=1-—E

where + and — are the usual sum and difference operations in
E(H). The structure (E(H), @, *, 0, 1) is a wQMYV algebra.
The relation < defined in a wQMYV algebra coincides with
the usual partial order in £(H).

It is well known that the set of all idempotent elements in
aQMYV algebra is an orthomodular lattice, but this is not true
for wQMYV algebras. Define M; = {a € M|a = a®a} tobe
the set of all idempotent elements of wWQMYV algebra M. In
fact M; is not closed under *. For instance, in Example 2.20
b is idempotent but b* is not. It is easy to see that M; is an
upper semilattice where a @ b is the least upper bound of a
and b. For the idempotent elements in a wQMYV algebra, we
have the following conclusion:

Proposition 2.22 Let M be a wQMV algebra. For any a €
M,ana*=0iffa®a=a.

Proof Ifana* = 0,thena = ana™*®a = (a®a)Oa*Ba =
(a®a)la = a®a by Propositions 2.4 and 2.7. Conversely,
ifa®a=a,thenana*=(a®a) Oa*=a®a*=0. O

Definition 2.23 A quasi-linear wQMYV algebra is a wQMV
algebra that satisfies the following condition:

anb— a,ifa <b,
| b, otherwise.
The quasi-linearity of wQMYV algebras is equivalent to
some kind of cancelation law.

Proposition 2.24 Let M be awQMYV algebra. The following
conditions are equivalent:

(1) M is quasi-linear.
(i) Ya,b,ce M,a® c =b @ c # 1impliesa = b.

Proof (i) implies (ii): By Proposition 2.4, a @ ¢ = a ®
(c M a*). Since M is quasi-linear, ¢ M a* = c ora*,
then a ® ¢ # 1 ensures ¢ Ma* = ¢, that is ¢ < a*.
Similarly, ¢ < b*. So a = b by cancelation law.

(ii) implies (i): Va,b € M, a* ® b = a* @ (b a). If
a*®b # 1,thenbna = b. Ifa*®b = 1, then
bna=b®a*)Oa=a.

O

Actually quasi-linearity turns a wQMYV algebra into a
QMYV algebra.

Proposition 2.25 Quasi-linear wQMYV algebras and quasi-
linear QMYV algebras coincide.

Proof Clearly all quasi-linear QMYV algebras are quasi-linear
wQMYV algebras. On the other hand, if a* < b, thena® (a* N
by=a®a*=1=a®b.Otherwisea ® (a*Mb) =a®b.
So any quasi-linear wQMYV algebra is a quasi-linear QMV
algebra by Theorem 2.14. O

Therefore an effect algebra could be converted to a quasi-
linear wQMYV algebra and vice versa (Chiara et al. 2004).

3 Automatic generation of finite algebras

As mentioned in Sect. 1, we used a tool called SEM (Zhang
and Zhang 1995) to generate small algebras automatically.
The input of the tool consists of a set of axioms specifying
the algebraic structure and the size of the structure.

As an instance, let us see how to find a QMYV algebra using
the tool. The following is the input file:

4.

f(x,y) = f£(y,x).
f(x,f(y,z)) = £(f(x,vy).,2).
f(x,i(x)) = 1.

f(x,0) = x.

1(i(x)) = x.

f(x,1) = 1.

g(x,y) = i(£(i(x),1i(y)))
m(x,y) = g(f(x,1(y)),y)
j(x,y) = £lg(x,i(y)).,y)

f(x,m(m(i(x),y) m(z,1(x))))
=m(f(x,y),f(x,2z)).

Here £ corresponds to the binary operation @, g corresponds
to the binary operation ©, and i corresponds to the unary
operation x; m is the meet operation (M), and j is the join
operation (LI). The last line in the above input corresponds to
Eq. (QMV7). The first line specifies the size of the algebra.
That is, it has 4 elements.

Given the above input, the tool SEM can generate several
4-element QMYV algebras automatically.

If we would like to construct wQMYV algebras, we just
replace the last line of the input file by the following:

f(x,m(m(y,i(x)),m(z,1i(x))))
= m(f(x,y),f(x,2)).

It corresponds to Eq. (wQMV7).
By comparing the set of 4-element QMV algebras and
the set of 4-element wWQMYV algebras, we found that the fol-
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Fig. 4 A smallest wQMYV algebra but not a QMYV algebra

lowing algebra is a wQMYV algebra but not a QMYV algebra
(Fig. 4).

In addition to the elements O and 1, it has two elements: a
and b, with a* = b and b* = a. The operation & is defined
as follows:

®|0 1 a b
0[O0 1 a b
1 1 1 1 1
a [a 1 1 1
b |b 1 1 b

This “counterexample” is much smaller than what we give
in Example 2.20.

4 Center of wQMYV algebras

As we know that a QMV algebra is an MV algebra if and
only if the operation 1 is commutative. In general, the center
of a QMYV algebra is an MV subalgebra and therefore a dis-
tributive De Morgan lattice (Giuntini 1998). In this section,
we define commutativity in wQMYV algebras and prove that
the center of a wQMYV algebra is also an MV subalgebra and
a distributive De Morgan lattice.

Definition 4.1 Let M be a wQMV algebra and a, b € M.
We say that a commutes with b (aCb) iffab = bna. The
center of M is C(M) = {a € M|aCb,Vb € M}.

Similar to Lemma 3.2 and Lemma 3.3 in Giuntini (1998),
we give the following results.

Lemma 4.2 Let M be a wQMV algebra, then aCb iff a =
a®b*® (anb).

Proof Note that if aCb, thena = a @ b* @& (bMa) =
a ® b* & (a1 b) by Proposition 2.7 (v). Conversely, assume
a=a0b®@nb) = a®b*® (bna). Note that
a®b* < b* < (anb)*anda ©b* < aOb*®a* = (bNa)*,
thus @ M b = b M a by the cancelation law. O

Lemma 4.3 Let M be awQMYV algebra, thenC (M) is closed
under *.

Proof YVa € C(M) and Vb € M,aub =aQOQb*®b =
aOb*ebOa*®danb=bOa*®a =>buUa. Thatis
a*Cb*. Since M = {a*|a € M}, so a* € C(M). O
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Lemma 4.4 Let M be a wQMYV algebra,

(1) Ya,b,c € M, if aCb and aCc, then (a1 b) NMc =
bri(anc).
(ii) Ya,b,c € M, if bCc, then (anb)NMc = an (cnb).
(iii)) VYa, b,c € M, ifaCb, aCc and bCc, then (anb)Nc =
cm(anb).

Proof (i). By Proposition2.11, (arb)rc = (bNa)rc =
(bra)N(anc) = (Bna)n(cna) =bn(cna) =
bri(anc).

(i1). By Proposition2.11, (anb)mc = (anb)n(bmc) =
(anb)ni(cnb) =an (cnb).
(iii). It follows (i) and (ii) that (ab)Mc = amn(cmb) =
ant(bnc)=(@nc)nb=cnanbh).
O

Lemma 4.5 Let M beawQMV algebra.Va,b € C(M) such
thata < b*, a® b € C(M).

Proof By Lemma 4.2, it only needs to show that c = ¢ ©
@®b)*® (cn(a®b)) Ve € M. First, it is easy to conclude
that (wQMV3) is equivalent to

a®bre)=@®b)n@®c)ifa<c*  (WQMVS)

And in fact (b ® ¢)C(b ® a):

bdcynd®da)=>b® ((cndb*) n(and*)) (wQMVT)
=b® ((cnb*)na)
=b® (an (cnb*))
=b® ((and*)n(cnb*))

=boa)yn(bdc) (WQMV7)

Thus
c=cOa*®(cna) (Lemma4.2)
(cOa)Ob*®(cOa*)Nb)® (cna) (Lemma4.2)

cO@BdL*®((cna)dcOa*)N((cMna)®b) (WQMVSE’)

cO@db)* @ (cn((cma)®b)) (Lemma4.2)
cO@Dh* D (cn((b®c)n (b a))) (WQMVE’)
cO@db)y*d(((bdc)ync)yn(b®da)) (Lemma4.4 (i)
=cO0@db)*®(cn®da)
Therefore (a & b)Cc. O

Theorem 4.6 Let M be a wQMYV algebra. The structure
CM) = (CM),®, *,1,0) is an MV subalgebra of M.
VYa, b € C(M);, the greatest lower bound (least upper bound)
inC(M)isanb (aub). (C(M), N, U, x,1,0)isa De Morgan
distributive sublattice of the involutive bounded poset (M, <
L, 1,0).

Proof By Lemmas 4.3 and 4.5, C(M) is closed under &
and . Furthermore, (wWQMV7) coincides with (QMV7) in
C(M); it follows that C(M) is a QMV subalgebra of M.
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Thus C(M) is an MV subalgebra of M by Theorem 3.2 of
Giuntini (1998).

Assume Va, b € C(M),anb < a, b. For any ¢ € C(M)
such that ¢ < a, b, ¢ < a 1 b by Proposition 2.9. Soa b
is the greatest lower bound of @ and b in C(M). In the same
way a U b is the least upper bound of a, b in C(M). By
Chang (1958) we also obtain that (C(M), M, L, *, 1, 0) is a
De Morgan distributive sublattice of the involutive bounded
poset (M, <, x,1,0). O

5 Coupled bimonoids

In order to find a most general framework for developing
axiomatic quantum mechanics, a study of ring-like struc-
tures was initiated. It was shown that semirings and MV
algebras are closely related (Gerla 2003). In detail, a coupled
semiring induces an MV algebra and conversely an MV alge-
bra induces a pair of lc-semiring and dual lc-semiring which
comprise a coupled semiring. The above coupled semiring is
commutative (Gerla 2003). Later, the above result was gener-
alized to semirings and pseudo-MYV algebras which are non
commutative algebraic structures (Shang and Lu 2007). The
authors proved that right (left) coupled semiring contains
right (left) pseudo-MV algebra and right (left) pseudo-MV
algebra induces right (left) coupled semiring. In this sec-
tion we demonstrate the similar relation between coupled
bimonoids and I-wQMYV algebras.

A strong bimonoid L = (M, &, 0, ®, 1) is an algebraic
structure where 0 and 1 are distinct elements of M; @ and ©
are binary operations on R satisfying:

(1) (M, &) is a commutative monoid with identity 0;
(i) (M, ©) is a monoid with identity 1;
(i) Vr e M,00r=r©0=0.

We call a strong bimonoid /X right distributive if (¢ ®b) ©
c=a®@cda®bVa,b,c € M. A strong bimonoid K is
left distributive ifa © (b®¢c) =a ObPaOcVa,b,c € M.
Obviously, a strong bimonoid K is a semiring iff © distributes
over @. We say that /C is a commutative strong bimonoid if
(M, ®) is a commutative monoid.

Example 5.1 As an example for strong bimonoid, consider

. def
K=®R,®,0,0,1). The operation x & y & X+ y+xy

and x © y is taken as the usual product of real number.

Definition 5.2 A strong bimonoid X = (M, ®,0, 0, 1) is
called lattice-ordered (Is-bimonoid for short) iff it has the
structure of a lattice such that for all a, b € K:

(i) a®db=aVb;
(i) a®b<anhb.

Definition 5.3 A strong bimonoid X = (M, $,0, 0, 1) is
called dual lattice-ordered (dual 1s-bimonoid for short) iff it
has the structure of a lattice such that forall a, b € K:

(i) a®b=aAnb,
(i) a®b=>aVvhb.

Is-bimonoids and dual Is-bimonoids are additively idem-
potent.

Let R and S be strong bimonoids. A transposition mor-
phism between R and S isamap f : R — § such that

@) fOr) =0g, f(1r) = 15.
() forer)=fr)@fE)and f(ror) = fr)OfF)

forany r,r’ € R.

If f is a transposition bimorphism, it is called a transposition
isomorphism.

Definition 5.4 A coupled bimonoid A is a structure
(K1, Ka, *) satisfying

(CBl) K1 = M,Vv,0,0,1) and K, = (M, A, 1,D,0)
are a commutative Is-bimonoid and a dual commu-
tative Is-bimonoid, respectively,

(CB2) % : M —> M is a transposition isomorphism from
IC1 to ICa; the image of a is denoted by a*.

(CB3) (a*)* =aforanya € M.

(CB4) Foralla,be M:a <biffa = (a ®b*) ©b.

Remark 5.5 Ya,b €¢ A,a <b & a=anrnb & a* =
(anNb)* & a* =a*Vvb* & b* <a*.

Proposition 5.6 Let A = (K1,K2, %) be a coupled
bimonoid, where K1 = (M, V,0,0, 1) and Ky = (M, A, 1,
@, 0); then, (M, @, *,0, 1) is an S-algebra.

Proof (S1),(S2), (S4) and (S6) are satisfied since /C; is com-
mutative strong bimonoid. (S5) is satisfied by the definition
of .

Since 0 < x for any x € M, by (CPS4) and (S4), 0 =
0Vda")Ca=a*"0a=(a®a*)*. Thusa ® a* =1, that
is (S3). O

The following operations can be defined:

anb=@®b*)Ob
alb=@oOb")®b

Obviously (a M b)* = a* U b*. With these operations we
can rewrite (CPS4) as “a < b iff a = a 1 b.” Note that
a<b&wavb=>b<s a*Ab* =b* & b* <a*. Thus
(CPS4) again could be written as “a < b iff b =bua.” If
a <b,thenbna = (bua)Na = (a*ObBaBa*) ®a = a.
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Proposition 5.7 Let A = (K1, K3, *) be a coupled bimonoid.
The following properties hold:

AD)adbna*)y=adb
(i) a=b*Na)® (a®©b)

Proof(1). a<avb<a®b=a®db=(@®b)Ua=
[(@a®b)©a*®a=(bna*) ®a.

(ii). a®b <arnb<a=a=aU(@®b) =[a®@Ob)*]1®

(a®b) =[a® (@ ®b")]®(@Ob) = (b*Na)®(a®b).

O

The monotony of operations in coupled bimonoid could
be verified in a similar way with Proposition 2.9; we omit the
details here.

Proposition 5.8 (Monotony) Let A = (K1, K2, *) be a cou-
pled bimonoid, where K1 = (M,Vv,0,0,1) and Ky =
(M, N, 1,8,0). The monotonicity of several operations
hold:

(1) Ifa <b,thena®c <b® cforanyc € M.
(i) Ifa < b, thena ®c <bOc foranyc € M.
(i) Ifa < b,thenanc <bnc foranyc € M.
@iv) Ifa < b, thenauc <bUc foranyc € M.

Theorem 5.9 Let A = (K, K, %) be a coupled bimonoid,
where K1 = (M, V,0,0, 1) and Ky = (M, A, 1, ®,0). The
structure M = (M, ®, %, 0, 1) is a -wQMV algebra.

Proof First M is an S-algebra. Note thata < (a®b)M(a®c)
by Proposition 5.8 (iii), and from Proposition 5.7 we obtain

(@a®b)N@®c)=a®[bna)n(cna®)] (wWQMVT)

along with the same the reasoning of Theorem 2.10. Fur-
thermore, M is a I-wQMYV algebra for the partial order <
coincides with < by (CPS4). O

Theorem 5.10 Let M = (M, ®,*,0,1) be a I-wQMV
algebra. The reducts K1 = (M,V,0,0,1) and Ky =
M, N, 1, D, 0) are a commutative ls-bimonoid and a dual
commutative Is-bimonoid, respectively, and (K1, Ky, *) is a
coupled bimonoid.

Proof

(CB1) : In M, the reducts (M, v, 0), (M, O, 1),
(M, A, 1) and (M, @, 0) are commutative
monoids. Further, a ©0 = 00 a = 0
anda @1 =16@a = 1foranya € M.
So (M, Vv,0,®,1) is a Is-bimonoid, and
(M, A, 1, &, 0) is the dual Is-bimonoid.
(CB2), (CB3) : By the definitions of * and ® in M.

@ Springer

(CB4) : By the definition of < in M. O

Let A = (K1, K3, %) be a coupled bimonoid, K| =
M,v,0,0,1) and £, = (M, A, 1,®,0). Recall that a
residuated lattice is a structure £ = (L, <, ®, 1) such that

(i) (L, <) isalattice.
(i) (L, ®,1) is a monoid.
(iii) Residuation properties: For all ¢, there exists a greatest
b for every a and exists a greatest a for every b, such
thata © b <c.

Alternatively the residuation properties could be stated as
there exists a binary operation — being the right adjoint to
the operation ©:

aOb<c&eb<a—c (1)

(M, <,0,1) is a residuated lattice if Eq. (1) is satisfied in
KC1. So the distributivity law

a®bVve)y=@oOb)Vvabdc) )

is true as a consequence of the residuated lattice. Since K
is commutative, it becomes a lattice-ordered commutative
semiring if endowed with Eq. (1) the corresponding I-wQMV
algebra turns out to be an MV algebra. Conversely, K is a
lattice-ordered commutative semiring if Eq. (2) holds in K1,
then A corresponds to an MV algebra, so Eq. (1) is satisfied.
That is, Egs. (1) and (2) are equivalent in coupled bimonoid
A. Therefore coupled bimonoids are exactly the generaliza-
tion of coupled semirings which do not satisfy Eq. (2), as
well as 1-wQMV algebras are exactly the generalization of
MV algebras which do not satisfy Eq. (1).

Fora QMV algebra, it is difficult to give its corresponding
ring-like structure directly. In the following, we can deduce
the ring-like structures corresponding to 1-QMV algebras.
By Theorems 2.14, 5.9 and 5.10, we define the following
algebras:

Definition 5.11 A strong coupled bimonoid A is a structure
(K1, K, ) satisfying

(SCB1) K1 = M,Vv,0,0,1) and K = (M, A, 1,8,0)
are a commutative Is-bimonoid and a dual commu-
tative Is-bimonoid, respectively,

(SCB2) % : M —> M is a transposition isomorphism from
KC1 to Ky; the image of a is denoted by a*.

(SCB3) (a*)* =aforanya € M.

(SCB4) Foralla,b e M:a <biffa = (a ® b*) ©b.

(SCB3) Foralla,be M:a®b=a® (a ®b)* ©Ob.
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Corollary 5.12 Let A = (K1, Ky, %) be a strong cou-
pled bimonoid, where K1 = (M,Vv,0,0,1) and Ky =
(M, A 1,8,0). The structure M = (M, ®, *%,0,1) is a I-
OMYV algebra.

Corollary 5.13 Let M = (M, ®,*,0,1) be a I-QMV
algebra. The reducts K1 = (M,V,0,0,1) and Ky =
(M, A, 1,®,0) are a commutative ls-bimonoid and a dual
commutative Is-bimonoid, respectively. And (K1, Ky, %) is a
strong coupled bimonoid.

6 Conclusion

In this paper, we propose a new quantum structure—wQMV
algebras—and find that it can share most of the important
properties with QMV algebras except for some idempotent
properties. Furthermore, we give the concept of ring-like
structures coupled bimonoids and establish the correspond-
ing relation between 1-wQMYV algebras and the coupled
bimonoids, which is similar to the relation between MV
algebras and coupled semirings. Interestingly, since cou-
pled bimonoids could be obtained by removing distributivity
from coupled semirings, correspondingly, it is easy to see
that -wQMYV algebras could also be viewed as a structure
by removing distributivity from MV algebras. For a lattice-
ordered QMV algebras, it is very difficult to construct its
corresponding ring-like structure directly. By the use of the
wQMYV algebras and coupled bimonoids, we obtain the ring-
like algebraic structure corresponding to a 1-QMV algebra.
Certainly, with the similar means in Shang et al. (2009,
2012), we could also set up computation theory based on
1-wQMYV algebras.
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