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One of the fundamental assumptions of traditional manifold learning algorithms is that the embedded
manifold is globally or locally isometric to Euclidean space. Under this assumption, these algorithms di-
vided manifold into a set of overlapping local patches which are locally isometric to linear subsets of
Euclidean space. Then the learnt manifold would be a flat manifold with zero Riemannian curvature. But
in the general cases, manifolds may not have this property. To be more specific, the traditional manifold
learning does not consider the curvature information of the embedded manifold. In order to improve
the existing algorithms, we propose a curvature-aware manifold learning algorithm called CAML. With-
out considering the local and global assumptions, we will add the curvature information to the process
of manifold learning, and try to find a way to reduce the redundant dimensions of the general mani-
folds which are not isometric to Euclidean space. The experiments have shown that CAML has its own
advantage comparing to other traditional manifold learning algorithms in the sense of the neighborhood

preserving ratios (NPR) on synthetic databases and classification accuracies on image set classification.

© 2018 Published by Elsevier Ltd.

1. Introduction

In many machine learning tasks, we often face the problem of
how to recognize and how to remove the redundant dimensions of
the data points. To solve this problem, a series of methods were
proposed. Some algorithms aim to learn the sparse representa-
tion of data points [1] and it is a special dimensionality reduc-
tion method. At the early stage, the idea and its relative algorithms
of using the theory of manifold in dimension reduction were pro-
posed in [2,3], called manifold learning (MAL). In this decade, man-
ifold learning has become a significant research area of machine
learning, pattern recognition and image vision, etc. The existing
manifold learning algorithms aim to reduce the dimensionality of
high dimensional data points, so that the lower dimensional rep-
resentations could reflect the intrinsic geometrical and topological
structure of the high dimensional sample points. In general, the ex-
isting MAL algorithms are mainly divided into two classes: global
methods and local methods [4]. Global approaches aim to preserve
the global geometric structure of the manifold during dimension
reduction, such as IsoMap [2] and TCIE [5]; Local approaches at-
tempt to uncover the geometric structures of local patches, such as
LLE [3], LEP [6], LPP [7], LTSA [8], and Hessian Eigenmap [9]. The
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main purpose of IsoMap is to preserve the geodesic distance be-
tween any two high dimensional data points, which can be viewed
as a nonlinear extension of Multidimensional Scaling (MDS) [10].
MAL algorithms of local preserving type attempt to inherit and
preserve the local geometric structure of the underlying mani-
fold. For instance, LLE preserves the local linear structures of lo-
cal patches and LEP preserves the local similarities among the data
during dimension reduction.

1.1. Manifold assumption

One of the fundamental assumptions of all the existing MAL al-
gorithms is that the input data points are actually samples from a
manifold M which is viewed as a sub-manifold of the ambient fea-
ture space. For each algorithm, it requires other special conditions.
IsoMap assumes that M is globally isometric to a convex subset of
Euclidean space. TCIE [5] aims to avoid this requirement of IsoMap.
However, it still need to assume that M is isometric to a subset
of Euclidean space. Locally preserved manifold learning algorithms
[11] visualize the embedded manifold as a collection of overlap-
ping local patches. Each local method preserves a different local
geometrical structure of the embedded manifold, so the assump-
tions for local patches are different. LLE as well as the modified LLE
[12] considers that M is an open sub-manifold and the input data
points are dense enough to make the neighborhood of each data
point a linear subspace. LEP also regards the neighborhood of each
sample as a linear subspace, then set up the corresponding local
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Table 1

Major manifold learning algorithms and their assumptions.

Authors Year Algorithm  Manifold assumption

Tenenbaum et al. 2000  IsoMap Globally isometric to a convex subset of Euclidean space

Roweis et al. 2000 LLE Locally linear

Belkin et al. 2003 LEP Locally linear

Donoho et al. 2003  HLLE Locally isometric to an open, connected subset of Euclidean space
Zhang et al. 2004 LTSA Locally linear

He et al. 2005 LPP Linear form of Laplacian eigenmaps

Dollar et al. 2007  LSML Not locally isometric to Euclidean space

Binbin Lin et al. 2013 PFE Local isometric to subspace of Euclidean space

weight matrix, where the distance between two adjacent samples
is measured by Euclidean metric. HLLE assumes that M is locally
isometric to Euclidean space, so that the null space can be uncov-
ered by the average norm of Hessian matrix of all data points. For
LTSA, in each local patch it uses PCA [13] to reduce the dimension
of local samples. Therefore, LTSA assumes that each local patch
of M is a linear subspace of Euclidean space. PFE [14] uses par-
allel vector field to learn a dimension reduction map, where this
map induces that M is locally isometric to Euclidean space. LSML
[15] reduces the dimension of M which is not isometric to Eu-
clidean space. But it regards each local patch of sub-manifold as a
linear subspace. All the assumptions of MAL algorithms are shown
in Table 1.

As we can see, all the MAL algorithms except LSML require that
M is globally or locally isometric to Euclidean space. In practice,
generally speaking, a manifold is far from fitting these assump-
tions. On the other hand, all the existing MAL algorithms do not
reveal information about the reliability and validity of these as-
sumptions. Furthermore, all of them are unable to recognize the
difference between non-isometry property and isometry property
of a manifold.

1.2. Limitations

By analyzing the well-studied MAL, despite the wide applica-
tions of the existing MAL algorithms in many fields, such as: com-
puter vision, pattern recognition, and machine learning, there are
still a few limitations and problems remained to be solved.

Local linearity assumption: it requires the input data points
to be dense enough to guarantee the local patches being linear
subspaces. In practice, there are not enough samples to gener-
ate the local patches with small size enough to guarantee the
linearity.

o Parameters sensitivity problem: the neighbor-size parameter
determines the size of local patches. Since the local isometry
hypothesis, it requires the neighbor-size small enough. Other-
wise, it would break the assumption of the existing MAL algo-
rithms.

e Locally short circuit problem: if the embedded manifold is

highly curved, the local Euclidean distance between any two

points is obviously shorter than the intrinsic geodesic distance.

Intrinsic dimension estimation problem: since local patches

are simply taken as tangent spaces, the intrinsic dimension of

manifold cannot be determined by the latter accurately, in par-
ticular in case of strongly varying curvature.

Since the disadvantages of existing MAL algorithms mentioned
above are caused by the assumption that M is locally or globally
isometric to Euclidean space, it is reasonable to eliminate this as-
sumption and to design a new algorithm.

The problem presented in this paper is stated in the following
subsection.

1.3. Problem statement

The input data points stated in this paper are denoted as
{x1.%2, ..., x5}, X; € RP, where N is the total number of data points
and D is the original dimension of data points. We assume that
these discrete data points lie on a d-dimensional manifold M em-
bedded in the high dimensional feature space RP,d « D, where
M can be viewed as a sub-manifold of RP. The main purpose of
manifold learning is to learn an embedding map f:

xi=f@) +e.i=1,...,N, (1)

where {y1.y3.....yn}. Vi € RY d « D, are lower dimensional repre-
sentations of {xq,...,xy} and {&1,&;,..., &y} are the correspond-
ing noises. Map f must preserve the geometrical structure of sub-
manifold so that the lower dimensional representations can un-
cover the intrinsic structure of the sub-manifold M.

Under local isometry assumption, the embedding map f must
satisfy:

IF ) = FWi) I = lyi = y5ll* + o(llyi — y511%). (2)
where y;, y; are in a same local patch.

For general manifold, the locally isometric condition is not al-
ways satisfied, such as sphere [15]. The problem that we aim to
solve in this paper is the situation that M is non-locally isomet-
ric to Euclidean space. All the manifold learning algorithms aim to
uncover the intrinsic structure of the embedded-manifold M. Thus
our method attempts to learn the embedding map f in Eq. (1) un-
der non-isometric condition which is not satisfied by Eq. (2).

2. Geometry background

In this section, we first analyze the local isometry of manifold,
then give a geometric interpretation about the local isometry as-
sumption. With this in mind, we uncover the potential limitations
of traditional manifold learning algorithms.

2.1. Local isometry

The family of all inner products defined on all tangent spaces
of M is called Riemannian metric g of M. At each tangent space
TyM, the Riemannian metric is a scalar inner product gy, p € M.
A Riemannian manifold is said to be flat if it is locally isometric
[16] to Euclidean space. That is to say, if every point has a neigh-
borhood which is isometric to an open subset of Euclidean space,
the Riemannian manifold is called a flat manifold.

Theorem 2.1 [17]. A Riemannian manifold is flat if and only if its
curvature tensor vanishes identically.

So under the local isometry assumption of traditional MAL, the
curvature tensor of sub-manifold M is zero tensor everywhere. In
general, the sub-manifold may be highly curved and not isometric
to Euclidean space. In this case, traditional MAL algorithms cannot
accurately uncover the intrinsic structure of sub-manifold. Thus, by
analyzing the well-studied local isometry, the basic causes of these
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limitations for traditional manifold learning algorithms is that the
curvature tensor of sub-manifold M has not been considered.

To our knowledge, there have been several papers seeking to
estimate the intrinsic curvature of data points [18-20]. K. I. Kim
et al. [18] proposed to add the curvature information to recon-
struct the Laplace matrix. This method was only applied on semi-
supervised learning as a regularization item and it has been tested
in several experiments on four standard datasets. However, the
case of unsupervised manifold learning has not been studied and
[18] did not give a theoretical analysis to prove the improvement
compared with the traditional methods. In [19,20] (Xu et al.), Ricci
flow technique was used to rectify the pair-wise non-Euclidean
dissimilarities among data points. However, this method treated
the curvature information of each edge independently, hence, the
relations among edges were neglected. In this paper, we take a
more comprehensive approach to formulate our curvature-aware
manifold learning algorithm.

2.2. Riemannian sub-manifold

In Riemannian geometry, the geometric structure of sub-
manifold M is determined by two fundamental forms. Rieman-
nian metric g can be viewed as the first fundamental form which
is used to compute the intrinsic geometric structure of M, such as
the geodesic distance, area, volume and so on. The second funda-
mental form (its details will be introduced below) can be used to
uncover the extrinsic structure of sub-manifold M relative to am-
bient space, such as curvature, torsion and so on. It will help us to
see and measure how the sub-manifold M curves with respect to
its ambient space. For Riemannian manifold, the torsion is zero.

2.3. Second fundamental form

Suppose (M, g) is a Riemannian manifold with dimension D
and (M, g) is embedded in (M, §) with dimension d. At any point
p € M, the ambient tangent space Tpﬂ divides into two perpen-
dicular linear subspaces TpM = TyM & NpM [17], where NyM =
(TpM)* is the normal space and T,(M) is the tangent space of
M at p. In this paper, we regard Riemannian manifold M as a Rie-
mannian sub-manifold of RP. The Riemannian metric g of M is
defined as the induced metric from R?. Riemannian curvature ten-
sor defined on Riemannian manifold is a 4th order tensor. The cur-
vature operator is represented by the second order derivative on
vector field of Riemannian manifold, where the directional deriva-
tive is defined as Riemannian connection V. In Riemannian sub-
manifold, the Riemannian curvature tensor [21] of sub-manifold is
computed with the help of second fundamental form denoted as B
(a second order tensor) and is represented by a fourth-order tensor
R(X,Y,Z,W), where X, Y, Z W are vector fields on M.

In Riemannian sub-manifold, one main task is to compare the
Riemannian curvature of M with that of ambient space M. Ac-
cording to the definition of curvature tensor, we first give the re-
lgvtionship between the Riemannian connection V of M and V of
M [17]:

VY = VyY + B(X.Y), (3)

Therefore, the second fundamental form measures the difference be-
tween the Riemannian connection on M and the ambient Rieman-
nian connection on M. By the Guass Equation [17], the Riemannian
curvature ﬁ(X, Y,Z, W) of the ambient space can be decomposed
into two components. Since the ambient space we deal with is Eu-
clidean space R?, so R(X,Y,Z W) = 0. Then the Riemannian cur-
vature of M is represented as:

RX.Y,ZW) = (BX,W),B(Y.2)) — (BXX.Z), B(Y,W)). (4)

In order to compute the scalar value of second fundamental
form, we construct a locally natural orthonormal coordinate frame

(;’7% ,%} of the ambient space M at point
p. The restrictions {d T, 3%} to M form a local orthonor-
mal frame of Tp(M). The last D —d orthonormal coordinates
{afﬂ SRS = 0} form a local orthonormal frame of N,(M). Under
the locally natural orthonormal coordinate frame, the Riemannian
curvature of M in Eq. (4) is represented as:

= > (s — Bhs,). (5)

Accordingly, the second fundamental form B under this local
coordinate frame is shown as: B(axl’ M)—Za 1hfj aja’ with
hf}(a =1,...,D—d) being the coefficients of B(-%, -&.) with re-
spect to the normal coordinate frame {%,m ’W}' Accord-
ingly, the embedding map f is redefined as: f(x!,x2,---,x%) =
[x!,x2, ... x4, f1 ... fP-d] where x=[x!, x2, ---, x4] are natural
parameters. Here hf} = a,ﬁg", is the second derivative of the em-
bedding component function f%, which constitutes the Hessian ma-
trix H% = ( o 8x1) Hence, to compute the Riemannian curvature of
Riemannian sub-manifold M, we just need to estimate the Hes-
sian matrix of the embedding map f. In the next section, we give
the estimation of Hessian operator.

9
(.

oxi’ axi

3. Curvature-aware manifold learning

In this paper, we just consider the locally geometric structure
preserving MAL algorithms, namely LLE, LEP, LTSA and so on. In
general, the procedures of this type of algorithms are mainly di-
vided into three steps [22]. The detailed statement is given in the
following subsection.

3.1. Manifold learning

In the first step, traditional MAL algorithms partition local
patches {U;} on each input point x; based on the Euclidean met-
ric in ambient space RP. In general, there are two commonly used
methods. One is to choose an g-ball with x; as center and then
consider the set of all the points in this ball as the neighbors of x;.
The other method is to use K-nearest neighbor method to find the
neighbors of each input data point x;. For these two methods, ¢
and K are parameters which are highly sensitive to the dimension
reduction results of experiments.

In the second step, traditional MAL algorithms aim to construct
a weight matrix VT/l in each local patch U; to represent the local
geometric structure of sub-manifold M. Different MAL algorithms
produce different weight matrices.

The third step is to reconstruct a set of lower dimensional rep-
resentations Y = [y;, ..., yy], where y; € R? corresponds to x;. Here
Y is obtained by minimizing a reconstruction error function & un-
der some normalization constraints [22].

N N
DY) =Y p(¥) = [IWY? (6)
i=1 i=1

with the normalization constraints YTY =1, Y/ 1 =0 for LLE, LTSA,
HLLE, and YTDY = 1,YTD1 = 0 for LEP where D is a diagonal matrix
with d,, = Z] 1 Wij.

As we already point out, since the assumption of these tradi-
tional manifold learning algorithms is that the embedded man-
ifold is isometric to Euclidean space, the similarity between any
two neighborhood points obviously would be over-estimated if the
manifold is highly curved. Therefore, our method proposes to add
the local curvature information on manifold learning.



276 Y. Li/ Pattern Recognition 83 (2018) 273-286

3.2. Curvature estimation

In a continuous manifold, if there exists a cone point, the Rie-
mannian curvature at this point tends to infinity. Since manifold
would blow up in this point, we call this point as a singular point.
As discussed above, the Riemannian curvature of the sub-manifold
that we mentioned in this paper is captured by the Hessian matrix
of the embedding map. Thus based on this method, the singular-
ities would not appear in our proposed method. Hessian matrix
is a square matrix of second-order derivatives with respect to all
of the variables of a scalar-valued function (the embedding map)
and it represents the concavity, convexity and the local curvature
of this function. Suppose f*(x!,x2,...,x%) is a multivariable func-
tion with d parameters. Then the Hessian matrix H of f¢ is given

as: Hjj(f*) = 38X2f£zj~

In each local patch U; of x;, we choose a set of local natural
orthogonal coordinates {%, %, e 387}' In practice, we use PCA
[13] to estimate the local orthogonal coordinate system of U;. The
corresponding normal coordinates of normal space are computed
by Gram-Schmidt orthogonal method. The corresponding local coor-
dinates of {x;,...,x; } € U; under this new local normal coordinate
system are represented as {u,»1 Uiy eens u,»K}. X; is projected into the
original point. The second fundamental form coefficients are esti-

mated as h%: 92 a=1,...,D—d.

axioxi’
Consider the Taylor expansion of f¥ o =1,...,D—d, at x; un-
der this new local coordinate system:
Fo (i) = £0) +uy, V£ + uy Hul + o(|luy I?). (7)

2 fa . . .
For each component h = aaxing of Hessian matrix H*, it can

be considered as the quadratic coefficient of this quadratic poly-
nomial function f*. For local tangent space Ty, the orthogo-

nal coordinate system is spanned by {2y, %, .., a%}. For local
quadratic polynomial vector space Qy;, the local coordinate system
; i) 992 92 02

is spanned by {a— 3ad e

; X172 gxd > 92xT° 7 oxd-Tgxd It

the Hessian matrix H® is estimated by projecting the input
data points into the polynomial vector space Qy. We use the
least square estimation method to compute the projecting co-
efficients. The solution is obtained as: B; = WTf, where \I!ij =

(ol ud, @2 @2 @) xu?), - @b xud)], W=
j j j j j j lj j

[W;,, -, W, ], Wt is the pseudo-inverse matrix of W and f=

(£ F2 0 P, fo =), o )] e =1,2,...,D—d.

The learnt local projection coordinates of each point Xi; € U; are
given as bi}_ =11, Tij» H'i] where T is the tangent components vec-

tor and H'i is the vector-form representation of Hessian matrix. x;
is projected into the original point expressed as b;, = 0.

3.3. Curvature-aware manifold learning

In LTSA [8], the authors analyzed the reconstruction error in
theory and obtained that the error is highly influenced by the cur-
vature of sub-manifold M. If the sub-manifold is highly curved
in the higher dimensional ambient space, the reconstruction error
would be very high. As we know, the accurate determination of lo-
cal tangent space is dependent on several factors: curvature infor-
mation embedded in the Hessian matrices, local sampling density,
and noise level of data points. Thus, for LTSA, it is necessary to an-
alyze the curvature information of sub-manifold during dimension
reduction but no further study has been done in our knowledge.

We propose to design a new algorithm to improve traditional
manifold learning algorithms by adding curvature information. In
this paper, we focus on improving two algorithms LLE and LEP
in detail and give the detailed theoretical analysis of these two

improved algorithms CA-LLE and CA-LEP. For local structure pre-
served method, we just divide the sub-manifold M into a set of
local patches {U;}. Here U; is the local patch with respect to x;
and we choose U; as an example to analyze our algorithm. Given

a local patch Uj, {5, - %% . %, % . ﬁ}
span the local polynomial vector space Q. By projecting origi-
nal input data points Xj, € U; to this local polynomial vector space
respectively, we obtain the corresponding projection coefficients
shown as bl-j =1, r,-]_,H'J'], j=1,2,...,K. The local curvature in-
formation of U; at Xi; is hidden in the quadratic component vector
Hii.

In the following, we give the detailed description of our CAML
algorithm.

CAML Algorithm Procedures:

1. Input a set of data points {x{,X,...,xn},x; € RP. This step is
the same as the first step of traditional manifold learning algo-
rithm. As we have known, for each i, U; is the K-nearest neigh-
bor set of x; based on Euclidean metric and the sub-manifold
M is supposed to be divided into the set of local patches
{U1,Uy, ..., Un}

2. Unlike traditional manifold learning algorithms to project local
patches into local tangent spaces, we project the local patch
U; into a second-order polynomial vector space and obtain
the new local coordinate representations {birbiz""’bix} by
Eq. (7), where b,-j =11, rij,Hif]. The curvature information at
each point x;; is hidden in Hi.

3. To add the curvature information into the weight matrix W; for
each U;, we use the local representations {b;.b;,.....b; }. To
give each element Wigi; of the weight matrix W;, for LEP, see
Eq. (8), and for LLE, see Eq. (9) below.

4, After constructing the curvature-aware weight matrix W, we
use this weight matrix to reconstruct the representations Y =
{¥1,¥2....,yy} in lower dimensional Euclidean space RY. Y is
learnt by minimizing ®(Y) given by Eq. (6) under some nor-
malization constraints. This step is the same as the third step
of traditional manifold learning.

To define each element of weight matrix W to LEP and LLE, we

Algorithm 1 Curvature-aware Manifold Learning.

Input: Training data points {x1, X, ..., Xy}, %; € RP, neighbor-size
parameter K.

Output: {y1.y;.....yn}. ¥ € R

l.fori=1to N do

2. Find K-nearest neighbors of x;;

3. end for

4. Determine the intrinsic dimension d of M.
5.fori=1to N do

6. Compute vector space B; by Eq. (7).

7. Construct the local weight matrix W;.

8. Eq. (8) for CA-LEP; Eq. (9) for CA-LLE.

9. end for

10. Minimize the reconstruction error function Eq. (6).

use the following two equations.
For Curvature-aware LEP:
_ libs=be1i?
0, Xs ¢ Ui

X5, Xt € Uj (8)
or x: ¢U;

The global weight matrix W on all the data points is a symmetric
matrix W = [wg],s,t =1,2,...,N, and W; is a sub-block matrix of
W, Wy, =W,

For Curvature-aware LLE:
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{w,»o,-j} in local patch U; is obtained by minimizing the following
equation:

K

argmin||bi, — > " wi; by, II>. 9)
j=1

When we use b;. to denote the local coordinate representation of

Xi;» the curvature information of each local patch is added into the

local weight matrix W;. The detailed theoretical analysis is shown

in the following section.

4. Algorithm analysis

We just consider one local patch U; as an example to give
the analysis of our curvature-aware manifold learning algorithm.
Different from traditional locally preserved MAL algorithms, our
method projects the original data points into a local polynomial
vector space. The corresponding local projection of x; € U; is shown
as b; =1, rj,Hf] and x; is projected into b; = 0.

4.1. Curvature-aware LEP

In the polynomial vector space, the weight value w;; between
two neighbor points x;, x; € U; is given by:

~ lIb—b;112
Wjj =exp 2

where ||H' — H/||2 = |H"i||2. H} represents the Hessian matrix at
point x;. Under this new local normal coordinate frame of U;, the
coordinate of x; is b; = 0, so H' = 0, obviously ||H/||> = ||H/||2.
Hessian matrix is a symmetric matrix. We do the eigenvalue
decomposition to H* and obtain the following expression:

IH*[IF = IUTAUIIE = A2, (11)

ll—;11> i |2

=exp =2 -exp =2 , (10)

where A; is the eigenvalue matrix of H. In Riemannian geome-
try, each eigenvalue of the Hessian matrix H represents a principal
curvature along the corresponding coordinate. Based on the above
analysis, the weight value w;; in Eq. (10) is shown as:

=112 g2

Wij = exp 22 -exp 27 . (12)

It is equivalent to add a curvature penalty on the similarity weight
matrix W. The higher the curvature of local patch, the smaller the
weight values will be among neighborhood points.

Theorem 4.1. Assume the reconstruction error under our curvature-
aware weight matrix is represented as E. And the reconstruction error
under traditional LEP [6] is represented as E. Then, we have

IEIlF < IEle- (13)

Proof. The element of weight matrix W under our CA-LEP is as
defined in Eq. (12):

g2 iR
Wij =exp % -exp 7.

And the weight W under traditional LEP algorithm is defined as:

- g2
Wij = exp 202

Obviously we have w;; < W,] The correspondmg Laplace matrices
are defined as L =D — W, L = D — W. Therefore, we have:

ML) =M().1=1.2,...N,

where N is the number of input data points.
For LEP, the lower dimensional representations are obtained
from the d eigenvectors of the smallest d eigenvalues of Laplace

matrix. The reconstruction error E is measured by the values of
the smallest d eigenvalues A, [=1,2,..., d,

N d
IENE =) llxi— Fooll =D A
P =1

We have proved that the eigenvalue of L is less than that of L. So
we have

IE|lF < |IE]|F-

Therefore, when considering the curvature information of sub-
manifold, the reconstruction error gets much lower during dimen-
sion reduction. O

4.2. Curvature-aware LLE

In each local patch U;, we compute the local linear combination
structure by minimizing the following equation:

;= [|bj — > wibjll. (14)
j

where x; € U, bj = [1. 7. HI]. Y5 wj; = 1.
The equation ®; in Eq. (14) can be rewritten as:

;=I5 — > wyti|2+ |[H = > wyH/ |2, (15)
J J

For traditional LLE, the authors just minimized the first item of &;.
For our method, we add the second item to measure the linear
combination of Hessian matrices (see Eq. (15)).

In the following, we give a theoretical derivation to explain the
necessity of adding the second Hessian item of &;.

First we give the Taylor expansion of the embedding map f in
the local patch U;:

f) = F©) +u"V f + 3 (u"Hu) + o ul?) (16)

Under the Taylor expansion of f, we obtain the linear relationship
between x; and its rest neighbors:

fO=Zwif(w)  ~ f(0)~ X, wyf(0) (17)
— Zj W;ju}-vf - % Ziwi]u-](Huf'
Since }°;wi; =1,u; = 0, 3" wjju; = 0,
1
£10) = 3wy f () ~ 5 3w Hu. 1e)
- -
where ZJWUU Huj =y wi;HI.

We have stated that the coordinate of x; under this local normal
coordinate frame is zero, so the corresponding Hessian matrix H' =
0. Therefore Eq. (18) can be given as:

FO) =Y wiif(uj) ~ —H' - = ZWUHJ (19)
j

In summary, for our method, it is necessary to add a Hessian item
when constructing the local linear combination structure of each
local patch U;.

4.3. Time complexity analysis

In this subsection, we give the time complexity analysis of
our CAML compared with traditional manifold learning algorithms
based on the number of data points N, the input dimension D
and the intrinsic dimension d. Comparing with traditional manifold
learning algorithms, the added time cost of our method mainly
focuses on the computation of Riemannian curvature information
of datasets. The main process of this step is to estimate the local
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Fig. 2. Gaussian dataset embedding by four algorithms. (a) the original dataset, (b) LEP algorithm, (c) LLE algorithm, (d) CA-LEP, (e) CA-LLE.

analytical structure by fitting a second-order polynomial function
shown in Eq. (7). The Riemannian curvature of each local patch is
obtained by computing the eigenvalues of the corresponding Hes-
sian matrix, where the size of each Hessian matrix is d x d. The
time cost of eigenvalue decomposition to each Hessian matrix is
0(d?), hence the total time cost of the full samples is shown as
O(Nd?). In general, the intrinsic dimension d is far less than the in-
put dimension D. In addition, only the time cost of finding K near-
est neighbors of all samples is O(N2 (D+K)) which is especially
higher than the added time cost of our method.

In short, comparing with the total time cost of traditional MAL
algorithms, the time cost of CAML is slightly higher than them. If

the number of samples N is especially large, the added time cost
of CAML can be ignored.

5. Experiments

In this section, we compare CAML with several traditional MAL
algorithms on four synthetic databases e.g. Swiss Roll, Punctured
Sphere, Gaussian, and Twin Peaks [23] as well as two real world
datasets e.g. Extended YaleFace B Database and USPS Database. For
synthetic databases, we respectively show the effectiveness of our
algorithm on two tasks: dimension reduction and parameter sensi-
tivity analysis. For real world datasets, we compare the classifica-
tion performance of our algorithm with other related methods.
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Table 2

The neighborhood preserving ratio (NPR) comparisons of our CA-LEP and CA-LLE algo-
rithms with other eight traditional manifold learning algorithms under four datasets
(Twin Peaks, Swiss Roll, Punctured Sphere, and Gaussian).

Methods Twin Peaks  Swiss Roll ~ Punctured Sphere  Gaussian
MDS [10] 0.6968 0.4352 0.6774 0.9082
PCA [13] 0.5567 0.4167 0.4941 0.8960
LEP [6] 0.6841 0.2145 0.7049 0.5400
LLE [3] 0.7352 0.6156 0.5362 0.8912
IsoMap [2] 0.8259 0.7957 0.5516 0.8568
Hessian [9] 0.7168 0.5739 0.4263 0.9073
LTSA [8] 0.8148 0.5143 0.4593 0.8960
Diffusion Map [25]  0.5576 0.2290 0.4863 0.8962
CA-LEP 0.8516 0.2739 0.7936 0.9002
CA-LLE 0.8365 0.6604 0.8040 0.9475
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Fig. 3. Neighbor preserving ratio (NPR) vs. neighbor-size parameter K on Twin Peaks dataset and Punctured Sphere dataset.

5.1. Topology structure

Before executing dimension reduction, we first analyze the
topology structures of these four synthetic databases. All the
datasets are generated from Matlab code ‘mani.m’ [23]. For each
dataset, it contains 2000 points distributed on the corresponding
synthetic manifold. Swiss Roll is a locally flat manifold which is
locally isometric to Euclidean space. For this dataset, traditional
manifold learning algorithms can uncover the intrinsic structure of
it accurately. For Punctured Sphere dataset, these 2000 data points
lie on a two dimensional sphere which is embedded in R3. The
curvature of this sphere is non-zero everywhere, so it is not lo-
cally or globally isometric to Euclidean space. Twin Peaks mani-
fold is a highly curved two-dimensional manifold embedded in R3.
Two dimensional Gaussian manifold is also not isometric to Eu-
clidean space, where the Gauss curvature of Gaussian manifold is
not zero everywhere. Therefore, traditional MAL algorithms can-
not accurately uncover the intrinsic structure of these three curved
synthetic manifolds except for Swiss Roll.

Based on the analysis of these four synthetic manifolds, we
compare our curvature-aware manifold learning algorithm with
eight traditional MAL algorithms in the next two subsection to
show the necessity of using curvature information.

5.2. Dimension reduction

In this subsection, to fully evaluate the performance of our
curvature-aware algorithm, we compare our method with eight
traditional MAL algorithms (e.g. MDS, PCA, IsoMap, LLE, LEP, HLLE,
DFM, LTSA). The objective of this comparison is to analyze the
neighborhood preserving ratio (NPR) [24] of different algorithms
during dimension reduction. All algorithms mentioned in this ex-
periment map these four datasets into two dimensional space. To
robustly evaluate the performance of different methods to differ-
ent neighbor-size parameter values, we repeat the experiment 10
times for each method. Table 2 shows the average NPRs of each
method, where the neighbor-size parameter K is taken in the set
of [10, 20, ..., 100]. The neighborhood preserving ratio (NPR) is de-
fined as:

1 N
NPR = - ; W) (YN W)l (20)

X; represents the input data point and y; is the corresponding
low dimensional representation. A/ (x;) is the set of subscripts {j},
where x; is the K-nearest neighbor of x;, and the same N (y;) is the
set of {I}, where y; is the K-nearest neighbor of y;. |-| represents
the number of intersection points.
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Fig. 6. Classification accuracy vs. dimensionality on Extended YaleFace B database with 10, 20, 30 respectively images per subject for training.

Table 2 shows that for all datasets except Swiss Roll, the NPRs
of our CA-LEP and CA-LLE are higher than the rest traditional MAL
algorithms. Swiss Roll is a flat Riemannian manifold, so our al-
gorithm has almost no advantages on this dataset. For Gaussian
dataset, it is a symmetric and convex manifold. So the NPRs of all
algorithms are much higher. For Punctured Sphere and Twin Peaks,
the NPRs of our algorithm are obviously more accurate than those
from traditional MAL algorithms. These results clearly demonstrate
that our CAML algorithm is more stable and better to discover the
local structure of data points.

In order to better understand the embedding process, we give
two intuitive examples shown in Figs. 1 and2. These two fig-
ures respectively illustrate the intuitive embedding results of Twin
Peaks dataset and Gaussian dataset under four different dimension
reduction algorithms. From Fig. 2, we can see that since the special
distribution of Gaussian dataset, the embeddings of LLE and CAML
are highly similar and structure preserved well.

5.3. Sensitivity analysis

As we have shown, traditional MAL algorithms are sensitive to
some parameters e.g. neighbor-size parameter K, intrinsic dimen-
sion d, and density of data points. However, for intrinsic dimen-
sion d, we have not a very suitable method to estimate it exactly.
So, in this paper, we assume that the intrinsic dimension d of sub-
manifold M is unique and approximately estimated [26]. In this
experiment, we mainly analyze the sensitivity to neighbor-size pa-
rameter K and the robustness to scarce data.

5.3.1. Parameter sensitivity analysis

We compare the NPRs of different manifold learning al-
gorithms w.r.t different neighbor-size parameter values K, K =
10, 20, 30, 40, 50, 60, 70, respectively. All the experiments are ex-
ecuted on these four datasets (Twin Peaks, Swiss Roll, Punctured
Sphere, and Gaussian) with 2000 data points. By analyzing in
the above subsection, Swiss Roll is a flat manifold and the Gaus-
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Table 3

Classification performance of YFB DB, USPS DB, together with the comparison results for CAML (CA-LEP
and CA-LLE) and traditional manifold learning algorithms PCA, LPP, LEP and LLE.

YFB DB YFB-trn10/tst40 YFB-trn20/tst30 YFB-trn30/tst20 YFB-trn40/tst10
PCA [13]  2426+12 353128 43.72+19 50.97+1.7

LPP [7] 29.70+2.5 3554+15 50.84+ 1.8 5829+14

LEP [6] 3443+21 37.87+13 5428 +1.8 62.62+ 1.5

LLE [3] 40.01+£1.9 69.72+ 1.8 70.56+2.3 7142+ 1.7
CA-LEP 50.03+1.4 58.02+1.2 63.38+1.6 69.87+13
CA-LLE 6121+15 75.31+09 78.64+13 79.39+1.2
USPS DB USPS-trn300/tst400  USPS-trn400/tst300  USPS-trn500/tst200  USPS-trn600/tst100
PCA [13]  86.68+13 84.71+1.2 86.40 £ 1.5 8720+ 11

LPP [7] 86.45+ 1.4 88.62+2.1 89.84+13 90.14+£ 1.5

LEP [6] 9125+ 1.2 91.89+0.8 92.03+0.7 92.81+13

LLE [3] 89.72+13 90.97 £1.2 91.30+0.8 92.48+0.6
CA-LEP 9331+11 93.52+1.6 9414+ 1.4 94.52+1.2
CA-LLE 91.46 £ 0.9 92.08 +£1.3 92.31+17 93.04+15

sian curvature is equal to O everywhere. Therefore, we just an-
alyze the effectiveness of our proposed curvature-aware method
on the other three data sets. In order to highlight the improve-
ment of our algorithm, we still use eight traditional MAL algo-
rithms (mentioned above) to compare with CAML. Since the dis-
tribution of Gaussian dataset is a symmetric convex structure and
the Gaussian curvature on each point is approximately equal to
zero, all the traditional MAL algorithms are very insensitive to
the neighbor-size parameter K. In addition, for all the MAL algo-
rithms except LEP, the neighborhood preserving ratios tend to 1
under different neighbor-size parameter values. Several intuitive il-
lustrations have been shown in Table 2 and Fig. 2. Thus, we just
give the experimental analysis on Twin Peaks dataset and Punc-
ture Sphere dataset to analyze the sensitivity of all the methods to
the neighbor-size parameter K.

The final comparison results are shown in Fig. 3. Easy to see
that, our method outperforms the existing MAL algorithms when
K>20. In addition, from Fig. 3(a) and (b) we can see that the NPR
curves of these traditional MAL algorithms are very sensitive to
neighbor-size parameter K, while the NPRs of CA-LEP and CA-LLE
are steady growth as the increase of neighbor-size parameter K.
Focus on the comparison between the traditional LEP, LLE and our
CALEP, CALLE, one can see that our method outperforms them in
any case.

5.3.2. Robust analysis

In this section, we propose to analyze the robustness of our
method to scarce data. We respectively generate 500 points and
1000 points from Twin Peaks database and the same from Punc-
ture Sphere database. In the dimension reduction process, we re-
spectively choose different neighbor-size parameter K. Then, we
compute the neighborhood preserving ratio under fixed neighbor-
size K = 30. Since PCA, MDS and Diffu-Map do not need to deter-
mine the neighbor-size parameter K, we just use five traditional
MAL algorithms to compare with our proposed method. The final
result is shown in Fig. 4. As can be seen, our methods outperform
all the other traditional MAL algorithms in all cases. Among these
methods, HLLE is the most sensitive to the density of data points.
Moreover, under 500 points, the NPRs of these traditional MAL
algorithms are significantly lower than those under 1000 points.
However, our method is more robust to scarce data than other
methods.

Above all, for synthetic database, our CAML algorithm is quali-
fied to overcome some limitations of traditional MAL algorithms.

5.4. Real world experiments

In this experiment, we consider the application of our algo-
rithm on two real-world datasets: Extended Yale Face B database

[27] and USPS database [28]. The main purpose of this experiment
is to test the classification accuracy of different methods.

5.4.1. About the databases

The Extended YaleFace B database, or YFB DB for short, con-
tains 2414 single light source images of 38 individuals each seen
under about 64 near frontal images. For every subject in a particu-
lar pose, an image with ambient illumination is also captured. The
face region in each image is resized into 32 x 32, so the original
dimension of this database is 1024.

The USPS database consists of 9298 images. It refers to numeric
data obtained from the scanning of handwritten digits from en-
velopes by the U.S. Postal Service. The original scanned digits are
binary and of different sizes and orientations. The images here
have been size normalized, resulting in 16 x 16 gray-scale images,
so the original dimension of this database is 256.

5.4.2. Evaluation

In this experiment, we first analyze the curvature distributions
of YFB database and USPS database shown in Fig. 5. One can see
that the embedded manifold of USPS database is highly curved in
higher dimensional Euclidean space. The curvature value in each
data point of USPS database is almost higher than 0.5. One rea-
son is that the handwritten digits from different classes are vary
greatly. Meanwhile, for Extended YaleFace B database, the curva-
ture distribution of each point is in the range of 0 to 5 x 1073, It
means that the local geometric structure of YFB database is close
to a flat space.

In the second step of this experiment, we compare our algo-
rithm with several traditional manifold learning algorithms under
these two databases. The whole experimental process is shown as
follows: Firstly, we use manifold learning algorithms to reduce the
dimension of databases. Secondly, in the low dimensional space,
we use Nearest Neighbor Classifier to test the classification accura-
cies of these two databases.

For YFB database, we choose 50 images from each class, then
obtain totally 1900 images for our experiment. We totally run the
experiment four times by each algorithm. In each experiment, we
randomly choose p(p = 10,20, 30,40) images per subject as the
training dataset, the rest 50 — p images per subject as the testing
dataset, respectively. The average classification accuracy results of
different algorithms are shown in Table 3 on upper part, where
the neighbor-size parameter K is tuned from 10 to 100 and the
dimension d is fixed to 10. The main purpose of this experiment
is to find how much improvement has been contributed by our
curvature-aware manifold learning algorithm comparing with tra-
ditional MAL algorithms. Notice that from Table 3, the classification
results of MAL algorithms mostly outperform the linear dimension
reduction algorithm PCA. In addition, the classification results of
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Fig. 7. Classification accuracy vs. dimensionality on USPS database with 300, 400, 500, 600 respectively images per subject for training.

LPP and LEP are especially higher than LLE. One main reason is that
LLE assumes the local patches of data points being linear space and
uncovers its linear combination relationship. Among all these clas-
sification results, we especially propose to analyze the comparisons
between traditional MAL algorithms and our proposed algorithm.
Easy to see that after adding curvature information to LLE, the clas-
sification results of CA-LLE slightly outperform LLE. One main rea-
son is that the curvature distribution of YFB database is close to
zero. Furthermore, comparing with traditional LEP, our CA-LEP al-
gorithm obviously performs better. In all cases, the performance of
our curvature-aware manifold learning algorithm is better than all
the other MAL algorithms.

For USPS Database, we respectively choose 700 images per sub-
ject in this experiment. We also do the experiments four times by
each algorithm respectively. Using the same method with YFB DB,
we randomly choose p, (p = 300, 400, 500, 600) respectively image
sets (per subject) for training, the rest for testing. The average clas-
sification results of different algorithms are shown in Table 3 on
lower part. From these results, we can see that the classification
results of traditional MAL algorithms outperform PCA in any case.
For our curvature-aware manifold learning, by adding the curva-
ture information to dimension reduction, the classification accura-

cies of our algorithm are higher than the other MAL algorithms.
Among these results, it is worthy to point out that comparing with
the classification accuracies between LEP, LLE and CA-LEP. CA-LLE,
the results of our method significantly outperform them.

5.4.3. Qualitative analysis

In order to show a clear comparison of the effectiveness of our
proposed method with the existing algorithms, we further give
several qualitative results. Previously, we have already mentioned
that the intrinsic dimension estimation is affected by the Rieman-
nian curvature. Until now, the advantage of our proposed approach
has not been demonstrated for dimension estimation. Here, we
study some qualitative results under different low-dimension d.
In the dimension reduction step, we respectively take the low-
dimension d in the set of [10,20,...,100] and set the neighbor-
size parameter K to be 30. For YFB database, we respectively
choose p =10, 20, 30 images per subject for training, the rest for
testing. The corresponding classification accuracy results are shown
in Fig. 6. For USPS database, we choose p = 300, 400, 500, 600 im-
ages per subject for training, and the corresponding results are dis-
played in Fig. 7.
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Fig. 8. Classification accuracy vs. neighbor-size parameters on YFB database and USPS database.

From YFB database experimental results, we can see that our
CA-LLE achieves the highest accuracy rate in all cases. Again,
among these results, focus on the comparison between LLE, LEP
and our CA-LLE, CA-LEP, our method performs the best in all cases.
In addition, comparing the manifold learning based algorithms
with sparse representation method DSNPE [1], the results show
that when the dimension d <100 the accuracy rate of DSNPE is
lower than our method. From [1], we can see that DSNPE would
achieves high performance only when the dimension d is greater
than 200. Therefore, our CAML algorithm achieves competitive re-
sults under lower dimension d < 100. For USPS database, compared
with LLE, the classification accuracy curves of MLLE are relatively
stable. CA-LLE and CA-LEP outperform all other methods in any
case. One reason is that the curvature value of USPS database is
almost higher than 0.5 as shown in Fig. 5.

Moreover, we do some qualitative experiments under different
neighbor-size parameter K. In this experiment, the dimension d is
set to be 50. For YFB database, we respectively choose 20 and 30
images per subject for training. For USPS database, we randomly
use 300 and 400 images per subject as training set, the rest as test
set. The final experimental result is shown in Fig. 8. As can be seen,

the accuracy curves of these traditional MAL algorithms change
rapidly, while the corresponding accuracy curves of our method
are relatively stable. In addition, our method outperforms all other
algorithms in all cases.

In summary, when adding the curvature information of data
points into manifold learning, the classification results of our algo-
rithm outperform the traditional manifold learning algorithms in
almost any case.

5.4.4. Other comparison

Besides comparing our proposed method with the existing di-
mensionality reduction algorithms, we also do some comparative
experiments to our most related work r-Lap [18] on these two real
world databases. r-Lap proposes to add curvature information to
re-weight the Laplace matrix which is a regularization item of the
semi-supervised learning. In the experiment of [18], r-Lap focuses
on binary classification problems. Thus we transform these multi-
class databases into several binary classification problems.

YFB database and USPS database respectively contain 38 classes
and 10 classes. For YFB database, we randomly construct 20 binary
classification problems by choosing 20 pairs of classes, and use 50
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Table 4

Average binary classification perfor-
mance of YFB DB, USPS DB, together
with the comparison results for CAML
(CA-LEP and CA-LLE) and r-Lap.

YTB DB Classification accuracy
LLE [3] 80.25%
LEP [6] 74.35%
r-Lap [18]  78.12%
CA-LLE 86.14%
CA-LEP 84.51%
USPS DB Classification accuracy
LLE [3] 93.86%
LEP [6] 94.14%
r-Lap [18]  95.21%
CA-LLE 96.36%
CA-LEP 97.03%

data points per subject as training set the rest as test set. For USPS
database, we randomly construct 5 binary classification problems
and randomly choose 200 images per subject for training. For each
method, the experiment is repeated 10 times with different sets of
labeled examples and the results are averaged. The corresponding
total average classification results of different binary classification
problems for different methods are shown in Table 4. From these
experimental results, we can see that our proposed method out-
performs r-Lap in all cases.

6. Conclusions and future works

To precisely describe the continuous change of point cloud, one
critical step of manifold learning is to assume the dataset dis-
tributed on a lower dimensional embedded manifold. Then re-
searchers use the mathematical theoretical knowledge of manifold
to deal with these datasets, such as dimensionality reduction, clas-
sification, clustering, recognition and so on. Whether the manifold
structure is uncovered exactly or not directly impacts the learning
results. Traditional MAL algorithms just consider the distance met-
ric. However, general Riemannian manifold may be not isometric
to Euclidean space. So our method aims to excavate the higher or-
der geometric quantity, Riemannian curvature, of Riemannian sub-
manifold and uses curvature information as well as distance metric
to uncover the intrinsic geometric structure of local patches. The
extensive experiments have shown that our method is more sta-
ble comparing with other traditional manifold learning algorithms.
The main contribution of our work presented in this paper is that
it is the first time to try to add curvature information on high di-
mensional data points for dimensionality reduction algorithm and
give the theoretical analysis.

We have pointed out that the intrinsic dimension estimation is
affected by the curvature of the underlying manifold. However, we
have not yet found a suitable method to solve this problem. In the
future, we will consider this question further. And our work will
try to use Ricci flow to dynamically uncover the intrinsic curva-
ture structure of sub-manifold. Furthermore, we will look into the
Ricci flow theory, find more useful theoretical techniques, and ap-
ply them in the study of manifold learning.
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