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a b s t r a c t 

One of the fundamental assumptions of traditional manifold learning algorithms is that the embedded 

manifold is globally or locally isometric to Euclidean space. Under this assumption, these algorithms di- 

vided manifold into a set of overlapping local patches which are locally isometric to linear subsets of 

Euclidean space. Then the learnt manifold would be a flat manifold with zero Riemannian curvature. But 

in the general cases, manifolds may not have this property. To be more specific, the traditional manifold 

learning does not consider the curvature information of the embedded manifold. In order to improve 

the existing algorithms, we propose a curvature-aware manifold learning algorithm called CAML. With- 

out considering the local and global assumptions, we will add the curvature information to the process 

of manifold learning, and try to find a way to reduce the redundant dimensions of the general mani- 

folds which are not isometric to Euclidean space. The experiments have shown that CAML has its own 

advantage comparing to other traditional manifold learning algorithms in the sense of the neighborhood 

preserving ratios (NPR) on synthetic databases and classification accuracies on image set classification. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

In many machine learning tasks, we often face the problem of

ow to recognize and how to remove the redundant dimensions of

he data points. To solve this problem, a series of methods were

roposed. Some algorithms aim to learn the sparse representa-

ion of data points [1] and it is a special dimensionality reduc-

ion method. At the early stage, the idea and its relative algorithms

f using the theory of manifold in dimension reduction were pro-

osed in [2,3] , called manifold learning (MAL). In this decade, man-

fold learning has become a significant research area of machine

earning, pattern recognition and image vision, etc. The existing

anifold learning algorithms aim to reduce the dimensionality of

igh dimensional data points, so that the lower dimensional rep-

esentations could reflect the intrinsic geometrical and topological

tructure of the high dimensional sample points. In general, the ex-

sting MAL algorithms are mainly divided into two classes: global

ethods and local methods [4] . Global approaches aim to preserve

he global geometric structure of the manifold during dimension

eduction, such as IsoMap [2] and TCIE [5] ; Local approaches at-

empt to uncover the geometric structures of local patches, such as

LE [3] , LEP [6] , LPP [7] , LTSA [8] , and Hessian Eigenmap [9] . The
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ain purpose of IsoMap is to preserve the geodesic distance be-

ween any two high dimensional data points, which can be viewed

s a nonlinear extension of Multidimensional Scaling (MDS) [10] .

AL algorithms of local preserving type attempt to inherit and

reserve the local geometric structure of the underlying mani-

old. For instance, LLE preserves the local linear structures of lo-

al patches and LEP preserves the local similarities among the data

uring dimension reduction. 

.1. Manifold assumption 

One of the fundamental assumptions of all the existing MAL al-

orithms is that the input data points are actually samples from a

anifold M which is viewed as a sub-manifold of the ambient fea-

ure space. For each algorithm, it requires other special conditions.

soMap assumes that M is globally isometric to a convex subset of

uclidean space. TCIE [5] aims to avoid this requirement of IsoMap.

owever, it still need to assume that M is isometric to a subset

f Euclidean space. Locally preserved manifold learning algorithms

11] visualize the embedded manifold as a collection of overlap-

ing local patches. Each local method preserves a different local

eometrical structure of the embedded manifold, so the assump-

ions for local patches are different. LLE as well as the modified LLE

12] considers that M is an open sub-manifold and the input data

oints are dense enough to make the neighborhood of each data

oint a linear subspace. LEP also regards the neighborhood of each

ample as a linear subspace, then set up the corresponding local
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Table 1 

Major manifold learning algorithms and their assumptions. 

Authors Year Algorithm Manifold assumption 

Tenenbaum et al. 20 0 0 IsoMap Globally isometric to a convex subset of Euclidean space 

Roweis et al. 20 0 0 LLE Locally linear 

Belkin et al. 2003 LEP Locally linear 

Donoho et al. 2003 HLLE Locally isometric to an open, connected subset of Euclidean space 

Zhang et al. 2004 LTSA Locally linear 

He et al. 2005 LPP Linear form of Laplacian eigenmaps 

Dollar et al. 2007 LSML Not locally isometric to Euclidean space 

Binbin Lin et al. 2013 PFE Local isometric to subspace of Euclidean space 
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weight matrix, where the distance between two adjacent samples

is measured by Euclidean metric. HLLE assumes that M is locally

isometric to Euclidean space, so that the null space can be uncov-

ered by the average norm of Hessian matrix of all data points. For

LTSA, in each local patch it uses PCA [13] to reduce the dimension

of local samples. Therefore, LTSA assumes that each local patch

of M is a linear subspace of Euclidean space. PFE [14] uses par-

allel vector field to learn a dimension reduction map, where this

map induces that M is locally isometric to Euclidean space. LSML

[15] reduces the dimension of M which is not isometric to Eu-

clidean space. But it regards each local patch of sub-manifold as a

linear subspace. All the assumptions of MAL algorithms are shown

in Table 1 . 

As we can see, all the MAL algorithms except LSML require that

M is globally or locally isometric to Euclidean space. In practice,

generally speaking, a manifold is far from fitting these assump-

tions. On the other hand, all the existing MAL algorithms do not

reveal information about the reliability and validity of these as-

sumptions. Furthermore, all of them are unable to recognize the

difference between non-isometry property and isometry property

of a manifold. 

1.2. Limitations 

By analyzing the well-studied MAL, despite the wide applica-

tions of the existing MAL algorithms in many fields, such as: com-

puter vision, pattern recognition, and machine learning, there are

still a few limitations and problems remained to be solved. 

• Local linearity assumption: it requires the input data points

to be dense enough to guarantee the local patches being linear

subspaces. In practice, there are not enough samples to gener-

ate the local patches with small size enough to guarantee the

linearity. 
• Parameters sensitivity problem: the neighbor-size parameter

determines the size of local patches. Since the local isometry

hypothesis, it requires the neighbor-size small enough. Other-

wise, it would break the assumption of the existing MAL algo-

rithms. 
• Locally short circuit problem: if the embedded manifold is

highly curved, the local Euclidean distance between any two

points is obviously shorter than the intrinsic geodesic distance. 
• Intrinsic dimension estimation problem: since local patches

are simply taken as tangent spaces, the intrinsic dimension of

manifold cannot be determined by the latter accurately, in par-

ticular in case of strongly varying curvature. 

Since the disadvantages of existing MAL algorithms mentioned

above are caused by the assumption that M is locally or globally

isometric to Euclidean space, it is reasonable to eliminate this as-

sumption and to design a new algorithm. 

The problem presented in this paper is stated in the following

subsection. 
.3. Problem statement 

The input data points stated in this paper are denoted as

 x 1 , x 2 , . . . , x N } , x i ∈ R 

D , where N is the total number of data points

nd D is the original dimension of data points. We assume that

hese discrete data points lie on a d -dimensional manifold M em-

edded in the high dimensional feature space R 

D , d � D, where

 can be viewed as a sub-manifold of R 

D . The main purpose of

anifold learning is to learn an embedding map f : 

 i = f ( y i ) + ε i , i = 1 , . . . , N, (1)

here { y 1 , y 2 , . . . , y N } , y i ∈ R 

d d � D, are lower dimensional repre-

entations of { x 1 , . . . , x N } and { ε 1 , ε 2 , . . . , ε N } are the correspond-

ng noises. Map f must preserve the geometrical structure of sub-

anifold so that the lower dimensional representations can un-

over the intrinsic structure of the sub-manifold M . 

Under local isometry assumption, the embedding map f must

atisfy: 

 f ( y i ) − f 
(
y j 

)‖ 

2 = ‖ y i − y j ‖ 

2 + o 
(‖ y i − y j ‖ 

2 
)
, (2)

here y i , y j are in a same local patch. 

For general manifold, the locally isometric condition is not al-

ays satisfied, such as sphere [15] . The problem that we aim to

olve in this paper is the situation that M is non-locally isomet-

ic to Euclidean space. All the manifold learning algorithms aim to

ncover the intrinsic structure of the embedded-manifold M . Thus

ur method attempts to learn the embedding map f in Eq. (1) un-

er non-isometric condition which is not satisfied by Eq. (2) . 

. Geometry background 

In this section, we first analyze the local isometry of manifold,

hen give a geometric interpretation about the local isometry as-

umption. With this in mind, we uncover the potential limitations

f traditional manifold learning algorithms. 

.1. Local isometry 

The family of all inner products defined on all tangent spaces

f M is called Riemannian metric g of M . At each tangent space

 p M , the Riemannian metric is a scalar inner product g p , p ∈ M .

 Riemannian manifold is said to be flat if it is locally isometric

16] to Euclidean space. That is to say, if every point has a neigh-

orhood which is isometric to an open subset of Euclidean space,

he Riemannian manifold is called a flat manifold. 

heorem 2.1 [17] . A Riemannian manifold is flat if and only if its

urvature tensor vanishes identically . 

So under the local isometry assumption of traditional MAL, the

urvature tensor of sub-manifold M is zero tensor everywhere. In

eneral, the sub-manifold may be highly curved and not isometric

o Euclidean space. In this case, traditional MAL algorithms cannot

ccurately uncover the intrinsic structure of sub-manifold. Thus, by

nalyzing the well-studied local isometry, the basic causes of these
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imitations for traditional manifold learning algorithms is that the

urvature tensor of sub-manifold M has not been considered. 

To our knowledge, there have been several papers seeking to

stimate the intrinsic curvature of data points [18–20] . K. I. Kim

t al. [18] proposed to add the curvature information to recon-

truct the Laplace matrix. This method was only applied on semi-

upervised learning as a regularization item and it has been tested

n several experiments on four standard datasets. However, the

ase of unsupervised manifold learning has not been studied and

18] did not give a theoretical analysis to prove the improvement

ompared with the traditional methods. In [19,20] (Xu et al.), Ricci

ow technique was used to rectify the pair-wise non-Euclidean

issimilarities among data points. However, this method treated

he curvature information of each edge independently, hence, the

elations among edges were neglected. In this paper, we take a

ore comprehensive approach to formulate our curvature-aware

anifold learning algorithm. 

.2. Riemannian sub-manifold 

In Riemannian geometry, the geometric structure of sub-

anifold M is determined by two fundamental forms. Rieman-

ian metric g can be viewed as the first fundamental form which

s used to compute the intrinsic geometric structure of M , such as

he geodesic distance, area, volume and so on. The second funda-

ental form (its details will be introduced below) can be used to

ncover the extrinsic structure of sub-manifold M relative to am-

ient space, such as curvature, torsion and so on. It will help us to

ee and measure how the sub-manifold M curves with respect to

ts ambient space. For Riemannian manifold, the torsion is zero. 

.3. Second fundamental form 

Suppose ( ̃  M , ̃  g ) is a Riemannian manifold with dimension D
nd (M , g) is embedded in ( ̃  M , ̃  g ) with dimension d . At any point

p ∈ M , the ambient tangent space T p ̃  M divides into two perpen-

icular linear subspaces T p ̃  M = T p M � N p M [17] , where N p M 

. =
(T p M ) ⊥ is the normal space and T p ( M ) is the tangent space of

 at p . In this paper, we regard Riemannian manifold M as a Rie-

annian sub-manifold of R 

D . The Riemannian metric g of M is

efined as the induced metric from R 

D . Riemannian curvature ten-

or defined on Riemannian manifold is a 4 th order tensor. The cur-

ature operator is represented by the second order derivative on

ector field of Riemannian manifold, where the directional deriva-

ive is defined as Riemannian connection ∇ . In Riemannian sub-

anifold, the Riemannian curvature tensor [21] of sub-manifold is

omputed with the help of second fundamental form denoted as B
a second order tensor) and is represented by a fourth-order tensor

 ( X, Y, Z, W ) , where X, Y, Z, W are vector fields on M . 

In Riemannian sub-manifold, one main task is to compare the

iemannian curvature of M with that of ambient space ˜ M . Ac-

ording to the definition of curvature tensor, we first give the re-

ationship between the Riemannian connection ∇ of M and 

˜ ∇ of˜ 

 [17] : ˜ 

 X Y = ∇ X Y + B ( X, Y ) , (3)

herefore, the second fundamental form measures the difference be-

ween the Riemannian connection on M and the ambient Rieman-

ian connection on 

˜ M . By the Guass Equation [17] , the Riemannian

urvature ˜ R ( X, Y, Z, W ) of the ambient space can be decomposed

nto two components. Since the ambient space we deal with is Eu-

lidean space R 

D , so ˜ R ( X, Y, Z, W ) = 0 . Then the Riemannian cur-

ature of M is represented as: 

 ( X, Y, Z, W ) = 〈B ( X, W ) , B ( Y, Z ) 〉 − 〈B ( X, Z ) , B ( Y, W ) 〉 . (4)

n order to compute the scalar value of second fundamental

orm , we construct a locally natural orthonormal coordinate frame
 

∂ 
∂x 1 

, · · · , ∂ 
∂x d 

, ∂ 
∂y 1 

, · · · , ∂ 
∂y D−d 

} of the ambient space ˜ M at point

 . The restrictions { ∂ 
∂x 1 

, · · · , ∂ 
∂x d 

} to M form a local orthonor-

al frame of T p ( M ) . The last D − d orthonormal coordinates

 

∂ 
∂y 1 

, · · · , ∂ 
∂y D−d 

} form a local orthonormal frame of N p ( M ) . Under

he locally natural orthonormal coordinate frame, the Riemannian

urvature of M in Eq. (4) is represented as: 

 

i 
jkl = 

∑ 

α

(
h 

α
ik h 

α
jl − h 

α
il h 

α
jk 

)
. (5) 

ccordingly, the second fundamental form B under this local

oordinate frame is shown as: B( ∂ 
∂x i 

, ∂ 
∂x j 

) = 

∑ D−d 
α=1 h 

α
i j 

∂ 
∂y α

, with

 

α
i j 
(α = 1 , . . . , D − d) being the coefficients of B( ∂ 

∂x i 
, ∂ 

∂x j 
) with re-

pect to the normal coordinate frame { ∂ 
∂y 1 

, · · · , ∂ 
∂y D−d 

} . Accord-

ngly, the embedding map f is redefined as: f (x 1 , x 2 , · · · , x d ) =
 x 1 , x 2 , · · · , x d , f 1 , · · · , f D−d ] , where x � [ x 1 , x 2 , ���, x d ] are natural

arameters. Here h α
ik 

= 

∂ 2 f α

∂ x i ∂ x j 
is the second derivative of the em-

edding component function f α , which constitutes the Hessian ma-

rix H 

α = ( ∂ 
2 f α

∂ x i ∂ x j 
) . Hence, to compute the Riemannian curvature of

iemannian sub-manifold M , we just need to estimate the Hes-

ian matrix of the embedding map f . In the next section, we give

he estimation of Hessian operator. 

. Curvature-aware manifold learning 

In this paper, we just consider the locally geometric structure

reserving MAL algorithms, namely LLE, LEP, LTSA and so on. In

eneral, the procedures of this type of algorithms are mainly di-

ided into three steps [22] . The detailed statement is given in the

ollowing subsection. 

.1. Manifold learning 

In the first step, traditional MAL algorithms partition local

atches { U i } on each input point x i based on the Euclidean met-

ic in ambient space R 

D . In general, there are two commonly used

ethods. One is to choose an ε-ball with x i as center and then

onsider the set of all the points in this ball as the neighbors of x i .

he other method is to use K -nearest neighbor method to find the

eighbors of each input data point x i . For these two methods, ε
nd K are parameters which are highly sensitive to the dimension

eduction results of experiments. 

In the second step, traditional MAL algorithms aim to construct

 weight matrix ˜ W i in each local patch U i to represent the local

eometric structure of sub-manifold M . Different MAL algorithms

roduce different weight matrices. 

The third step is to reconstruct a set of lower dimensional rep-

esentations Y = [ y 1 , . . . , y N ] , where y i ∈ R 

d corresponds to x i . Here

 is obtained by minimizing a reconstruction error function � un-

er some normalization constraints [22] . 

( Y ) = 

N ∑ 

i =1 

φ( Y i ) = 

N ∑ 

i =1 

‖ ̃

 W i Y i ‖ 

2 
F , (6)

ith the normalization constraints Y T Y = I, Y ′ 1 = 0 for LLE, LTSA,

LLE, and Y T ˜ D Y = I, Y T ˜ D 1 = 0 for LEP where ˜ D is a diagonal matrix

ith 

˜ d ii = 

∑ N 
j=1 ̃

 w i j . 

As we already point out, since the assumption of these tradi-

ional manifold learning algorithms is that the embedded man-

fold is isometric to Euclidean space, the similarity between any

wo neighborhood points obviously would be over-estimated if the

anifold is highly curved. Therefore, our method proposes to add

he local curvature information on manifold learning. 
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For Curvature-aware LLE: 
3.2. Curvature estimation 

In a continuous manifold, if there exists a cone point, the Rie-

mannian curvature at this point tends to infinity. Since manifold

would blow up in this point, we call this point as a singular point.

As discussed above, the Riemannian curvature of the sub-manifold

that we mentioned in this paper is captured by the Hessian matrix

of the embedding map. Thus based on this method, the singular-

ities would not appear in our proposed method. Hessian matrix

is a square matrix of second-order derivatives with respect to all

of the variables of a scalar-valued function (the embedding map)

and it represents the concavity, convexity and the local curvature

of this function. Suppose f α(x 1 , x 2 , . . . , x d ) is a multivariable func-

tion with d parameters. Then the Hessian matrix H of f α is given

as: H i j ( f α) = 

∂ 2 f α

∂ x i ∂ x j 
. 

In each local patch U i of x i , we choose a set of local natural

orthogonal coordinates { ∂ 
∂x 1 

, ∂ 
∂x 2 

, . . . , ∂ 
∂x d 

} . In practice, we use PCA

[13] to estimate the local orthogonal coordinate system of U i . The

corresponding normal coordinates of normal space are computed

by Gram-Schmidt orthogonal method. The corresponding local coor-

dinates of { x i 1 , . . . , x i K } ∈ U i under this new local normal coordinate

system are represented as { u i 1 , u i 2 , . . . , u i K } . x i is projected into the

original point. The second fundamental form coefficients are esti-

mated as h α
i j 

= 

∂ 2 f α

∂ x i ∂ x j 
, α = 1 , . . . , D − d. 

Consider the Taylor expansion of f α, α = 1 , . . . , D − d, at x i un-

der this new local coordinate system: 

f α
(
u i j 

)
= f α( 0 ) + u i j ∇ f α + u i j H 

αu 

T 
i j 

+ o 
(‖ u i j ‖ 

2 
)
. (7)

For each component h α
i j 

= 

∂ 2 f α

∂ x i ∂ x j 
of Hessian matrix H 

α , it can

be considered as the quadratic coefficient of this quadratic poly-

nomial function f α . For local tangent space T x i , the orthogo-

nal coordinate system is spanned by { ∂ 
∂x 1 

, ∂ 
∂x 2 

, . . . , ∂ 
∂x d 

} . For local

quadratic polynomial vector space Q x i , the local coordinate system

is spanned by { ∂ 
∂x 1 

, · · · , ∂ 
∂x d 

, ∂ 2 

∂ 2 x 1 
, · · · , ∂ 2 

∂ 2 x d 
, ∂ 2 

∂ x 1 ∂ x 2 
, · · · , ∂ 2 

∂ x d−1 ∂ x d 
} . So

the Hessian matrix H 

α is estimated by projecting the input

data points into the polynomial vector space Q x i . We use the

least square estimation method to compute the projecting co-

efficients. The solution is obtained as: B i = �† f, where �i j 
=

[1 , u 1 
i j 
, · · · , u d 

i j 
, (u 1 

i j 
) 2 , · · · , (u d 

i j 
) 2 , (u 1 

i j 
× u 2 

i j 
) , · · · , (u d−1 

i j 
× u d 

i j 
)] , � =

[�i 1 
, · · · , �i K 

] , �† is the pseudo-inverse matrix of � and f =
[ f 1 , f 2 , . . . , f D−d ] , f α = [ f α(u i 1 ) , · · · , f α(u i K )] 

T 
, α = 1 , 2 , . . . , D − d.

The learnt local projection coordinates of each point x i j ∈ U i are

given as b i j = [1 , τi j 
, H 

i j ] where τi j 
is the tangent components vec-

tor and H 

i j is the vector-form representation of Hessian matrix. x i 
is projected into the original point expressed as b i 0 = 0 . 

3.3. Curvature-aware manifold learning 

In LTSA [8] , the authors analyzed the reconstruction error in

theory and obtained that the error is highly influenced by the cur-

vature of sub-manifold M . If the sub-manifold is highly curved

in the higher dimensional ambient space, the reconstruction error

would be very high. As we know, the accurate determination of lo-

cal tangent space is dependent on several factors: curvature infor-

mation embedded in the Hessian matrices, local sampling density,

and noise level of data points. Thus, for LTSA, it is necessary to an-

alyze the curvature information of sub-manifold during dimension

reduction but no further study has been done in our knowledge. 

We propose to design a new algorithm to improve traditional

manifold learning algorithms by adding curvature information. In

this paper, we focus on improving two algorithms LLE and LEP

in detail and give the detailed theoretical analysis of these two
mproved algorithms CA-LLE and CA-LEP. For local structure pre-

erved method, we just divide the sub-manifold M into a set of

ocal patches { U i }. Here U i is the local patch with respect to x i 
nd we choose U i as an example to analyze our algorithm. Given

 local patch U i , { ∂ 
∂x 1 

, · · · , ∂ 
∂x d 

, ∂ 2 

∂ 2 x 1 
, · · · , ∂ 2 

∂ 2 x d 
, ∂ 2 

∂ x 1 ∂ x 2 
, · · · , ∂ 2 

∂ x d−1 ∂ x d 
}

pan the local polynomial vector space Q x i . By projecting origi-

al input data points x i j ∈ U i to this local polynomial vector space

espectively, we obtain the corresponding projection coefficients

hown as b i j = [1 , τi j 
, H 

i j ] , j = 1 , 2 , . . . , K. The local curvature in-

ormation of U i at x i j is hidden in the quadratic component vector

 

i j . 

In the following, we give the detailed description of our CAML

lgorithm. 

CAML Algorithm Procedures: 

1. Input a set of data points { x 1 , x 2 . . . , x N } , x i ∈ R 

D . This step is

the same as the first step of traditional manifold learning algo-

rithm. As we have known, for each i, U i is the K-nearest neigh-

bor set of x i based on Euclidean metric and the sub-manifold

M is supposed to be divided into the set of local patches

{ U 1 , U 2 , . . . , U N } . 
2. Unlike traditional manifold learning algorithms to project local

patches into local tangent spaces, we project the local patch

U i into a second-order polynomial vector space and obtain

the new local coordinate representations { b i 1 , b i 2 , . . . , b i K } by

Eq. (7) , where b i j = [1 , τi j 
, H 

i j ] . The curvature information at

each point x i j is hidden in H 

i j . 

3. To add the curvature information into the weight matrix W i for

each U i , we use the local representations { b i 1 , b i 2 , . . . , b i K } . To

give each element w i 0 i j 
of the weight matrix W i , for LEP, see

Eq. (8) , and for LLE, see Eq. (9) below. 

4. After constructing the curvature-aware weight matrix W , we

use this weight matrix to reconstruct the representations Y =
{ y 1 , y 2 , . . . , y N } in lower dimensional Euclidean space R 

d . Y is

learnt by minimizing �( Y ) given by Eq. (6) under some nor-

malization constraints. This step is the same as the third step

of traditional manifold learning. 

To define each element of weight matrix W to LEP and LLE, we

lgorithm 1 Curvature-aware Manifold Learning. 

Input: Training data points { x 1 , x 2 , . . . , x N } , x i ∈ R 

D , neighbor-size

parameter K. 

Output: { y 1 , y 2 , . . . , y N } , y i ∈ R 

d . 

1. for i = 1 to N do 

2. Find K-nearest neighbors of x i ; 

3. end for 

4. Determine the intrinsic dimension d of M . 

5. for i = 1 to N do 

6. Compute vector space B i by Eq. (7). 

7. Construct the local weight matrix W i . 

8. Eq. (8) for CA-LEP; Eq. (9) for CA-LLE. 

9. end for 

10. Minimize the reconstruction error function Eq. (6). 

se the following two equations. 

For Curvature-aware LEP: 

 st = 

{
exp −

‖ b s −b t ‖ 2 
2 σ2 , x s , x t ∈ U i 

0 , x s / ∈ U i or x t / ∈ U i . 
(8)

he global weight matrix W on all the data points is a symmetric

atrix W = [ w st ] , s, t = 1 , 2 , . . . , N, and W i is a sub-block matrix of

 , W | U i = W i . 



Y. Li / Pattern Recognition 83 (2018) 273–286 277 

 

e

a  

W  

x  

l  

i

4

 

t  

D  

m  

v  

a

4

 

t

w  

w  

p  

c

 

d

‖  

w  

t  

c  

a

w  

I  

m  

w

T  

a  

u

‖  

P  

d

w

A

w

O  

a

λ

w

 

f  

m  

t

‖

W  

w

‖
T  

m  

s

4

 

s

�  

w

�  

F  

F  

c

 

n

 

t

 

U  

b

S

 

w

 

c  

0

 

I  

w  

l

4

 

o  

b

a  

l  

f  

o  
{ w i 0 i j 
} in local patch U i is obtained by minimizing the following

quation: 

rgmin ‖ b i 0 −
K ∑ 

j=1 

w i 0 i j b i j ‖ 

2 . (9)

hen we use b i j to denote the local coordinate representation of

 i j 
, the curvature information of each local patch is added into the

ocal weight matrix W i . The detailed theoretical analysis is shown

n the following section. 

. Algorithm analysis 

We just consider one local patch U i as an example to give

he analysis of our curvature-aware manifold learning algorithm.

ifferent from traditional locally preserved MAL algorithms, our

ethod projects the original data points into a local polynomial

ector space. The corresponding local projection of x j ∈ U i is shown

s b j = [1 , τ j , H 

j ] and x i is projected into b i = 0 . 

.1. Curvature-aware LEP 

In the polynomial vector space, the weight value w ij between

wo neighbor points x i , x j ∈ U i is given by: 

 i j = exp −
‖ b i −b j ‖ 2 

2 σ2 = exp −
‖ τi −τ j ‖ 2 

2 σ2 · exp −
‖ H i −H j ‖ 2 

2 σ2 , (10)

here ‖ H 

i − H 

j ‖ 2 = ‖ H 

x j ‖ 2 
F 

. H 

x j represents the Hessian matrix at

oint x j . Under this new local normal coordinate frame of U i , the

oordinate of x i is b i = 0 , so H 

i = 0 , obviously ‖ H 

j ‖ 2 = ‖ H 

x j ‖ 2 F . 

Hessian matrix is a symmetric matrix. We do the eigenvalue

ecomposition to H 

x j and obtain the following expression: 

 H 

x j ‖ 

2 
F = ‖ U 

T 
 j U‖ 

2 
F = ‖ 
 j ‖ 

2 
F , (11)

here 
j is the eigenvalue matrix of H 

j . In Riemannian geome-

ry, each eigenvalue of the Hessian matrix H represents a principal

urvature along the corresponding coordinate. Based on the above

nalysis, the weight value w ij in Eq. (10) is shown as: 

 i j = exp −
‖ τi −τ j ‖ 2 

2 σ2 · exp −
‖ 
 j ‖ 2 F 

2 σ2 . (12)

t is equivalent to add a curvature penalty on the similarity weight

atrix W . The higher the curvature of local patch, the smaller the

eight values will be among neighborhood points. 

heorem 4.1. Assume the reconstruction error under our curvature-

ware weight matrix is represented as E. And the reconstruction error

nder traditional LEP [6] is represented as ˜ E . Then, we have 

 E‖ F ≤ ‖ ̃

 E ‖ F . (13)

roof. The element of weight matrix W under our CA-LEP is as

efined in Eq. (12) : 

 i j = exp −
‖ τi −τ j ‖ 2 

2 σ2 · exp −
‖ 
 j ‖ 2 F 

2 σ2 . 

nd the weight ˜ W under traditional LEP algorithm is defined as: 

˜ 

 i j = exp −
‖ τi −τ j ‖ 2 

2 σ2 . 

bviously we have w i j ≤ ˜ w i j . The corresponding Laplace matrices

re defined as L = D − W, ̃  L = ̃

 D − ˜ W . Therefore, we have: 

l ( L ) ≤ λl 

(̃
 L 
)
, l = 1 , 2 , . . . , N, 

here N is the number of input data points. 

For LEP, the lower dimensional representations are obtained

rom the d eigenvectors of the smallest d eigenvalues of Laplace
atrix. The reconstruction error E is measured by the values of

he smallest d eigenvalues λl , l = 1 , 2 , . . . , d, 

 E‖ F = 

N ∑ 

i =1 

‖ x i − f ( y i ) ‖ = 

d ∑ 

l=1 

λl . 

e have proved that the eigenvalue of L is less than that of ̃  L . So

e have 

 E‖ F ≤ ‖ ̃

 E ‖ F . 

herefore, when considering the curvature information of sub-

anifold, the reconstruction error gets much lower during dimen-

ion reduction. �

.2. Curvature-aware LLE 

In each local patch U i , we compute the local linear combination

tructure by minimizing the following equation: 

i = ‖ b i −
∑ 

j 

w i j b j ‖ 

2 , (14)

here x j ∈ U i , b j = [1 , τ j , H 

j ] , 
∑ K 

j=1 w i j = 1 . 

The equation �i in Eq. (14) can be rewritten as: 

i = ‖ τi −
∑ 

j 

w i j τ j ‖ 

2 + ‖ H 

i −
∑ 

j 

w i j H 

j ‖ 

2 . (15)

or traditional LLE, the authors just minimized the first item of �i .

or our method, we add the second item to measure the linear

ombination of Hessian matrices (see Eq. (15) ). 

In the following, we give a theoretical derivation to explain the

ecessity of adding the second Hessian item of �i . 

First we give the Taylor expansion of the embedding map f in

he local patch U i : 

f ( u ) = f ( 0 ) + u 

T ∇ f + 

1 

2 

(
u 

T Hu 

)
+ o 

(‖ u ‖ 

2 
)
, (16)

nder the Taylor expansion of f , we obtain the linear relationship

etween x i and its rest neighbors: 

f ( 0 ) − ∑ 

j w i j f 
(
u j 

)
≈ f ( 0 ) − ∑ 

j w i j f ( 0 ) 

−∑ 

j w i j u 

T 
j 
∇ f − 1 

2 

∑ 

i w i j u 

T 
j 
Hu j . 

(17) 

ince 
∑ 

j w i j = 1 , u i = 0 , 
∑ 

j w i j u j = 0 , 

f ( 0 ) −
∑ 

j 

w i j f 
(
u j 

)
≈ −1 

2 

∑ 

j 

w i j u 

T 
j Hu j , (18)

here 
∑ 

j w i j u 
T 
j 
Hu j = 

∑ 

j w i j H 

j . 

We have stated that the coordinate of x i under this local normal

oordinate frame is zero, so the corresponding Hessian matrix H 

i =
 . Therefore Eq. (18) can be given as: 

f ( 0 ) −
∑ 

j 

w i j f 
(
u j 

)
≈ 1 

2 

H 

i − 1 

2 

∑ 

j 

w i j H 

j . (19)

n summary, for our method, it is necessary to add a Hessian item

hen constructing the local linear combination structure of each

ocal patch U i . 

.3. Time complexity analysis 

In this subsection, we give the time complexity analysis of

ur CAML compared with traditional manifold learning algorithms

ased on the number of data points N , the input dimension D
nd the intrinsic dimension d . Comparing with traditional manifold

earning algorithms, the added time cost of our method mainly

ocuses on the computation of Riemannian curvature information

f datasets. The main process of this step is to estimate the local
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Fig. 1. Twin Peaks dataset embedding by four algorithms. (a) the original dataset, (b) LEP algorithm, (c) LLE algorithm, (d) CA-LEP, (e) CA-LLE. 

Fig. 2. Gaussian dataset embedding by four algorithms. (a) the original dataset, (b) LEP algorithm, (c) LLE algorithm, (d) CA-LEP, (e) CA-LLE. 
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analytical structure by fitting a second-order polynomial function

shown in Eq. (7) . The Riemannian curvature of each local patch is

obtained by computing the eigenvalues of the corresponding Hes-

sian matrix, where the size of each Hessian matrix is d × d . The

time cost of eigenvalue decomposition to each Hessian matrix is

O ( d 2 ), hence the total time cost of the full samples is shown as

O ( Nd 2 ). In general, the intrinsic dimension d is far less than the in-

put dimension D. In addition, only the time cost of finding K near-

est neighbors of all samples is O 

(
N 

2 ( D + K ) 
)

which is especially

higher than the added time cost of our method. 

In short, comparing with the total time cost of traditional MAL

algorithms, the time cost of CAML is slightly higher than them. If
t

he number of samples N is especially large, the added time cost

f CAML can be ignored. 

. Experiments 

In this section, we compare CAML with several traditional MAL

lgorithms on four synthetic databases e.g. Swiss Roll, Punctured

phere, Gaussian , and Twin Peaks [23] as well as two real world

atasets e.g. Extended YaleFace B Database and USPS Database. For

ynthetic databases, we respectively show the effectiveness of our

lgorithm on two tasks: dimension reduction and parameter sensi-

ivity analysis. For real world datasets, we compare the classifica-

ion performance of our algorithm with other related methods. 
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Table 2 

The neighborhood preserving ratio (NPR) comparisons of our CA-LEP and CA-LLE algo- 

rithms with other eight traditional manifold learning algorithms under four datasets 

(Twin Peaks, Swiss Roll, Punctured Sphere, and Gaussian). 

Methods Twin Peaks Swiss Roll Punctured Sphere Gaussian 

MDS [10] 0.6968 0.4352 0.6774 0.9082 

PCA [13] 0.5567 0.4167 0.4941 0.8960 

LEP [6] 0.6841 0.2145 0.7049 0.5400 

LLE [3] 0.7352 0.6156 0.5362 0.8912 

IsoMap [2] 0.8259 0.7957 0.5516 0.8568 

Hessian [9] 0.7168 0.5739 0.4263 0.9073 

LTSA [8] 0.8148 0.5143 0.4593 0.8960 

Diffusion Map [25] 0.5576 0.2290 0.4863 0.8962 

CA-LEP 0.8516 0.2739 0.7936 0.9002 

CA-LLE 0.8365 0.6604 0.8040 0.9475 

Fig. 3. Neighbor preserving ratio (NPR) vs. neighbor-size parameter K on Twin Peaks dataset and Punctured Sphere dataset. 
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.1. Topology structure 

Before executing dimension reduction, we first analyze the

opology structures of these four synthetic databases. All the

atasets are generated from Matlab code ‘mani.m’ [23] . For each

ataset, it contains 20 0 0 points distributed on the corresponding

ynthetic manifold. Swiss Roll is a locally flat manifold which is

ocally isometric to Euclidean space. For this dataset, traditional

anifold learning algorithms can uncover the intrinsic structure of

t accurately. For Punctured Sphere dataset, these 20 0 0 data points

ie on a two dimensional sphere which is embedded in R 

3 . The

urvature of this sphere is non-zero everywhere, so it is not lo-

ally or globally isometric to Euclidean space. Twin Peaks mani-

old is a highly curved two-dimensional manifold embedded in R 

3 .

wo dimensional Gaussian manifold is also not isometric to Eu-

lidean space, where the Gauss curvature of Gaussian manifold is

ot zero everywhere. Therefore, traditional MAL algorithms can-

ot accurately uncover the intrinsic structure of these three curved

ynthetic manifolds except for Swiss Roll. 

Based on the analysis of these four synthetic manifolds, we

ompare our curvature-aware manifold learning algorithm with

ight traditional MAL algorithms in the next two subsection to

how the necessity of using curvature information. 

s  

t

.2. Dimension reduction 

In this subsection, to fully evaluate the performance of our

urvature-aware algorithm, we compare our method with eight

raditional MAL algorithms (e.g. MDS, PCA, IsoMap, LLE, LEP, HLLE,

FM, LTSA). The objective of this comparison is to analyze the

eighborhood preserving ratio (NPR) [24] of different algorithms

uring dimension reduction. All algorithms mentioned in this ex-

eriment map these four datasets into two dimensional space. To

obustly evaluate the performance of different methods to differ-

nt neighbor-size parameter values, we repeat the experiment 10

imes for each method. Table 2 shows the average NPRs of each

ethod, where the neighbor-size parameter K is taken in the set

f [10 , 20 , . . . , 100] . The neighborhood preserving ratio (NPR) is de-

ned as: 

P R = 

1 

KN 

N ∑ 

i =1 

|N ( x i ) 
⋂ 

N ( y i ) | . (20)

 i represents the input data point and y i is the corresponding

ow dimensional representation. N ( x i ) is the set of subscripts { j },

here x j is the K-nearest neighbor of x i , and the same N ( y i ) is the

et of { l }, where y l is the K-nearest neighbor of y i . | · | represents

he number of intersection points. 
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Fig. 4. Neighbor preserving ratio (NPR) vs. the density of two synthetic datasets (Twin Peaks dataset and Puncture Sphere dataset). 

Fig. 5. The curvature distributions of Extended YaleFace B database (a) and USPS database (b). 
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Fig. 6. Classification accuracy vs. dimensionality on Extended YaleFace B database with 10, 20, 30 respectively images per subject for training. 
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Table 2 shows that for all datasets except Swiss Roll, the NPRs

f our CA-LEP and CA-LLE are higher than the rest traditional MAL

lgorithms. Swiss Roll is a flat Riemannian manifold, so our al-

orithm has almost no advantages on this dataset. For Gaussian

ataset, it is a symmetric and convex manifold. So the NPRs of all

lgorithms are much higher. For Punctured Sphere and Twin Peaks,

he NPRs of our algorithm are obviously more accurate than those

rom traditional MAL algorithms. These results clearly demonstrate

hat our CAML algorithm is more stable and better to discover the

ocal structure of data points. 

In order to better understand the embedding process, we give

wo intuitive examples shown in Figs. 1 and 2 . These two fig-

res respectively illustrate the intuitive embedding results of Twin

eaks dataset and Gaussian dataset under four different dimension

eduction algorithms. From Fig. 2 , we can see that since the special

istribution of Gaussian dataset, the embeddings of LLE and CAML

re highly similar and structure preserved well. 
t  
.3. Sensitivity analysis 

As we have shown, traditional MAL algorithms are sensitive to

ome parameters e.g. neighbor-size parameter K , intrinsic dimen-

ion d , and density of data points. However, for intrinsic dimen-

ion d , we have not a very suitable method to estimate it exactly.

o, in this paper, we assume that the intrinsic dimension d of sub-

anifold M is unique and approximately estimated [26] . In this

xperiment, we mainly analyze the sensitivity to neighbor-size pa-

ameter K and the robustness to scarce data. 

.3.1. Parameter sensitivity analysis 

We compare the NPRs of different manifold learning al-

orithms w.r.t different neighbor-size parameter values K , K =
0 , 20 , 30 , 40 , 50 , 60 , 70 , respectively. All the experiments are ex-

cuted on these four datasets (Twin Peaks, Swiss Roll, Punctured

phere, and Gaussian) with 20 0 0 data points. By analyzing in

he above subsection, Swiss Roll is a flat manifold and the Gaus-
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Table 3 

Classification performance of YFB DB, USPS DB, together with the comparison results for CAML (CA-LEP 

and CA-LLE) and traditional manifold learning algorithms PCA, LPP, LEP and LLE. 

YFB DB YFB-trn10/tst40 YFB-trn20/tst30 YFB-trn30/tst20 YFB-trn40/tst10 

PCA [13] 24.26 ± 1.2 35.31 ± 2.8 43.72 ± 1.9 50.97 ± 1.7 

LPP [7] 29.70 ± 2.5 35.54 ± 1.5 50.84 ± 1.8 58.29 ± 1.4 

LEP [6] 34.43 ± 2.1 37.87 ± 1.3 54.28 ± 1.8 62.62 ± 1.5 

LLE [3] 40.01 ± 1.9 69.72 ± 1.8 70.56 ± 2.3 71.42 ± 1.7 

CA-LEP 50.03 ± 1.4 58.02 ± 1.2 63.38 ± 1.6 69.87 ± 1.3 

CA-LLE 61.21 ± 1.5 75.31 ± 0.9 78.64 ± 1.3 79.39 ± 1.2 

USPS DB USPS-trn30 0/tst40 0 USPS-trn40 0/tst30 0 USPS-trn50 0/tst20 0 USPS-trn60 0/tst10 0 

PCA [13] 86.68 ± 1.3 84.71 ± 1.2 86.40 ± 1.5 87.20 ± 1.1 

LPP [7] 86.45 ± 1.4 88.62 ± 2.1 89.84 ± 1.3 90.14 ± 1.5 

LEP [6] 91.25 ± 1.2 91.89 ± 0.8 92.03 ± 0.7 92.81 ± 1.3 

LLE [3] 89.72 ± 1.3 90.97 ± 1.2 91.30 ± 0.8 92.48 ± 0.6 

CA-LEP 93.31 ± 1.1 93.52 ± 1.6 94.14 ± 1.4 94.52 ± 1.2 

CA-LLE 91.46 ± 0.9 92.08 ± 1.3 92.31 ± 1.7 93.04 ± 1.5 
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sian curvature is equal to 0 everywhere. Therefore, we just an-

alyze the effectiveness of our proposed curvature-aware method

on the other three data sets. In order to highlight the improve-

ment of our algorithm, we still use eight traditional MAL algo-

rithms (mentioned above) to compare with CAML. Since the dis-

tribution of Gaussian dataset is a symmetric convex structure and

the Gaussian curvature on each point is approximately equal to

zero, all the traditional MAL algorithms are very insensitive to

the neighbor-size parameter K . In addition, for all the MAL algo-

rithms except LEP, the neighborhood preserving ratios tend to 1

under different neighbor-size parameter values. Several intuitive il-

lustrations have been shown in Table 2 and Fig. 2 . Thus, we just

give the experimental analysis on Twin Peaks dataset and Punc-

ture Sphere dataset to analyze the sensitivity of all the methods to

the neighbor-size parameter K . 

The final comparison results are shown in Fig. 3 . Easy to see

that, our method outperforms the existing MAL algorithms when

K ≥ 20. In addition, from Fig. 3 (a) and (b) we can see that the NPR

curves of these traditional MAL algorithms are very sensitive to

neighbor-size parameter K , while the NPRs of CA-LEP and CA-LLE

are steady growth as the increase of neighbor-size parameter K .

Focus on the comparison between the traditional LEP, LLE and our

CALEP, CALLE, one can see that our method outperforms them in

any case. 

5.3.2. Robust analysis 

In this section, we propose to analyze the robustness of our

method to scarce data. We respectively generate 500 points and

10 0 0 points from Twin Peaks database and the same from Punc-

ture Sphere database. In the dimension reduction process, we re-

spectively choose different neighbor-size parameter K . Then, we

compute the neighborhood preserving ratio under fixed neighbor-

size K = 30 . Since PCA, MDS and Diffu-Map do not need to deter-

mine the neighbor-size parameter K , we just use five traditional

MAL algorithms to compare with our proposed method. The final

result is shown in Fig. 4 . As can be seen, our methods outperform

all the other traditional MAL algorithms in all cases. Among these

methods, HLLE is the most sensitive to the density of data points.

Moreover, under 500 points, the NPRs of these traditional MAL

algorithms are significantly lower than those under 10 0 0 points.

However, our method is more robust to scarce data than other

methods. 

Above all, for synthetic database, our CAML algorithm is quali-

fied to overcome some limitations of traditional MAL algorithms. 

5.4. Real world experiments 

In this experiment, we consider the application of our algo-

rithm on two real-world datasets: Extended Yale Face B database
27] and USPS database [28] . The main purpose of this experiment

s to test the classification accuracy of different methods. 

.4.1. About the databases 

The Extended YaleFace B database, or YFB DB for short, con-

ains 2414 single light source images of 38 individuals each seen

nder about 64 near frontal images. For every subject in a particu-

ar pose, an image with ambient illumination is also captured. The

ace region in each image is resized into 32 × 32, so the original

imension of this database is 1024. 

The USPS database consists of 9298 images. It refers to numeric

ata obtained from the scanning of handwritten digits from en-

elopes by the U.S. Postal Service. The original scanned digits are

inary and of different sizes and orientations. The images here

ave been size normalized, resulting in 16 × 16 gray-scale images,

o the original dimension of this database is 256. 

.4.2. Evaluation 

In this experiment, we first analyze the curvature distributions

f YFB database and USPS database shown in Fig. 5 . One can see

hat the embedded manifold of USPS database is highly curved in

igher dimensional Euclidean space. The curvature value in each

ata point of USPS database is almost higher than 0.5. One rea-

on is that the handwritten digits from different classes are vary

reatly. Meanwhile, for Extended YaleFace B database, the curva-

ure distribution of each point is in the range of 0 to 5 × 10 −3 . It

eans that the local geometric structure of YFB database is close

o a flat space. 

In the second step of this experiment, we compare our algo-

ithm with several traditional manifold learning algorithms under

hese two databases. The whole experimental process is shown as

ollows: Firstly, we use manifold learning algorithms to reduce the

imension of databases. Secondly, in the low dimensional space,

e use Nearest Neighbor Classifier to test the classification accura-

ies of these two databases. 

For YFB database, we choose 50 images from each class, then

btain totally 1900 images for our experiment. We totally run the

xperiment four times by each algorithm. In each experiment, we

andomly choose p ( p = 10 , 20 , 30 , 40 ) images per subject as the

raining dataset, the rest 50 − p images per subject as the testing

ataset, respectively. The average classification accuracy results of

ifferent algorithms are shown in Table 3 on upper part, where

he neighbor-size parameter K is tuned from 10 to 100 and the

imension d is fixed to 10. The main purpose of this experiment

s to find how much improvement has been contributed by our

urvature-aware manifold learning algorithm comparing with tra-

itional MAL algorithms. Notice that from Table 3 , the classification

esults of MAL algorithms mostly outperform the linear dimension

eduction algorithm PCA. In addition, the classification results of
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Fig. 7. Classification accuracy vs. dimensionality on USPS database with 300, 400, 500, 600 respectively images per subject for training. 
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PP and LEP are especially higher than LLE. One main reason is that

LE assumes the local patches of data points being linear space and

ncovers its linear combination relationship. Among all these clas-

ification results, we especially propose to analyze the comparisons

etween traditional MAL algorithms and our proposed algorithm.

asy to see that after adding curvature information to LLE, the clas-

ification results of CA-LLE slightly outperform LLE. One main rea-

on is that the curvature distribution of YFB database is close to

ero. Furthermore, comparing with traditional LEP, our CA-LEP al-

orithm obviously performs better. In all cases, the performance of

ur curvature-aware manifold learning algorithm is better than all

he other MAL algorithms. 

For USPS Database, we respectively choose 700 images per sub-

ect in this experiment. We also do the experiments four times by

ach algorithm respectively. Using the same method with YFB DB,

e randomly choose p, ( p = 30 0 , 40 0 , 50 0 , 60 0 ) respectivel y image

ets (per subject) for training, the rest for testing. The average clas-

ification results of different algorithms are shown in Table 3 on

ower part. From these results, we can see that the classification

esults of traditional MAL algorithms outperform PCA in any case.

or our curvature-aware manifold learning, by adding the curva-

ure information to dimension reduction, the classification accura-
 p
ies of our algorithm are higher than the other MAL algorithms.

mong these results, it is worthy to point out that comparing with

he classification accuracies between LEP, LLE and CA-LEP. CA-LLE,

he results of our method significantly outperform them. 

.4.3. Qualitative analysis 

In order to show a clear comparison of the effectiveness of our

roposed method with the existing algorithms, we further give

everal qualitative results. Previously, we have already mentioned

hat the intrinsic dimension estimation is affected by the Rieman-

ian curvature. Until now, the advantage of our proposed approach

as not been demonstrated for dimension estimation. Here, we

tudy some qualitative results under different low-dimension d .

n the dimension reduction step, we respectively take the low-

imension d in the set of [10 , 20 , . . . , 100] and set the neighbor-

ize parameter K to be 30. For YFB database, we respectively

hoose p = 10 , 20 , 30 images per subject for training, the rest for

esting. The corresponding classification accuracy results are shown

n Fig. 6 . For USPS database, we choose p = 30 0 , 40 0 , 50 0 , 60 0 im-

ges per subject for training, and the corresponding results are dis-

layed in Fig. 7 . 



284 Y. Li / Pattern Recognition 83 (2018) 273–286 

Fig. 8. Classification accuracy vs. neighbor-size parameters on YFB database and USPS database. 
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From YFB database experimental results, we can see that our

CA-LLE achieves the highest accuracy rate in all cases. Again,

among these results, focus on the comparison between LLE, LEP

and our CA-LLE, CA-LEP, our method performs the best in all cases.

In addition, comparing the manifold learning based algorithms

with sparse representation method DSNPE [1] , the results show

that when the dimension d < 100 the accuracy rate of DSNPE is

lower than our method. From [1] , we can see that DSNPE would

achieves high performance only when the dimension d is greater

than 200. Therefore, our CAML algorithm achieves competitive re-

sults under lower dimension d < 100. For USPS database, compared

with LLE, the classification accuracy curves of MLLE are relatively

stable. CA-LLE and CA-LEP outperform all other methods in any

case. One reason is that the curvature value of USPS database is

almost higher than 0.5 as shown in Fig. 5 . 

Moreover, we do some qualitative experiments under different

neighbor-size parameter K . In this experiment, the dimension d is

set to be 50. For YFB database, we respectively choose 20 and 30

images per subject for training. For USPS database, we randomly

use 300 and 400 images per subject as training set, the rest as test

set. The final experimental result is shown in Fig. 8 . As can be seen,

c  
he accuracy curves of these traditional MAL algorithms change

apidly, while the corresponding accuracy curves of our method

re relatively stable. In addition, our method outperforms all other

lgorithms in all cases. 

In summary, when adding the curvature information of data

oints into manifold learning, the classification results of our algo-

ithm outperform the traditional manifold learning algorithms in

lmost any case. 

.4.4. Other comparison 

Besides comparing our proposed method with the existing di-

ensionality reduction algorithms, we also do some comparative

xperiments to our most related work r-Lap [18] on these two real

orld databases. r-Lap proposes to add curvature information to

e-weight the Laplace matrix which is a regularization item of the

emi-supervised learning. In the experiment of [18] , r-Lap focuses

n binary classification problems. Thus we transform these multi-

lass databases into several binary classification problems. 

YFB database and USPS database respectively contain 38 classes

nd 10 classes. For YFB database, we randomly construct 20 binary

lassification problems by choosing 20 pairs of classes, and use 50
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Table 4 

Average binary classification perfor- 

mance of YFB DB, USPS DB, together 

with the comparison results for CAML 

(CA-LEP and CA-LLE) and r-Lap. 

YTB DB Classification accuracy 

LLE [3] 80.25% 

LEP [6] 74.35% 

r-Lap [18] 78.12% 

CA-LLE 86.14% 

CA-LEP 84.51% 

USPS DB Classification accuracy 

LLE [3] 93.86% 

LEP [6] 94.14% 

r-Lap [18] 95.21% 

CA-LLE 96.36% 

CA-LEP 97.03% 
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ata points per subject as training set the rest as test set. For USPS

atabase, we randomly construct 5 binary classification problems

nd randomly choose 200 images per subject for training. For each

ethod, the experiment is repeated 10 times with different sets of

abeled examples and the results are averaged. The corresponding

otal average classification results of different binary classification

roblems for different methods are shown in Table 4 . From these

xperimental results, we can see that our proposed method out-

erforms r-Lap in all cases. 

. Conclusions and future works 

To precisely describe the continuous change of point cloud, one

ritical step of manifold learning is to assume the dataset dis-

ributed on a lower dimensional embedded manifold. Then re-

earchers use the mathematical theoretical knowledge of manifold

o deal with these datasets, such as dimensionality reduction, clas-

ification, clustering, recognition and so on. Whether the manifold

tructure is uncovered exactly or not directly impacts the learning

esults. Traditional MAL algorithms just consider the distance met-

ic. However, general Riemannian manifold may be not isometric

o Euclidean space. So our method aims to excavate the higher or-

er geometric quantity, Riemannian curvature, of Riemannian sub-

anifold and uses curvature information as well as distance metric

o uncover the intrinsic geometric structure of local patches. The

xtensive experiments have shown that our method is more sta-

le comparing with other traditional manifold learning algorithms.

he main contribution of our work presented in this paper is that

t is the first time to try to add curvature information on high di-

ensional data points for dimensionality reduction algorithm and

ive the theoretical analysis. 

We have pointed out that the intrinsic dimension estimation is

ffected by the curvature of the underlying manifold. However, we

ave not yet found a suitable method to solve this problem. In the

uture, we will consider this question further. And our work will

ry to use Ricci flow to dynamically uncover the intrinsic curva-

ure structure of sub-manifold. Furthermore, we will look into the

icci flow theory, find more useful theoretical techniques, and ap-

ly them in the study of manifold learning. 
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