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Abstract In machine learning, a high dimensional data set such as the digital image of a human face is

often viewed as a point set distributed on a differentiable manifold. In many cases, the intrinsic dimension

of this manifold is low but the representation dimension of the data points is high. To ease data processing

requirements, manifold learning (ML) techniques can be used to reduce a high dimensional manifold (HDM)

to a low dimensional one while keeping the essential geometric properties, such as relative distances between

points, unchanged. Traditional ML algorithms often assume that the local neighborhood of any point on

an HDM is roughly equal to the tangent space at that point. This assumption leads to the disadvantage

that the neighborhoods of points on the manifold, though they have a very different curvature, will be

treated equally and will be projected to a lower dimensional space. The curvature is a different way of

manifold processing, where traditional dimension reduction is ineffective at preserving the neighborhood.

To overcome this obstacle, we perform an ”operation” on the HDM using Ricci flow before a manifold’s

dimension reduction. More precisely, with the Ricci Flow, we transform each local neighborhood of the HDM

to a constant curvature patch. The HDM, as a whole, is then transformed into a subset of a sphere with

constant positive curvature. We compare the proposed algorithm with other traditional manifold learning

algorithms. Experimental results have shown that the proposed method outperforms other ML algorithms

with a better neighborhood preserving rate.

Keywords Manifold learning, Ricci flow, Ricci curvature, dimension reduction, curvature estimation

Citation Li Y Y, Lu R Q. Applying Ricci flow to high dimensional manifold learning. Sci China Inf Sci, for

review

1 Introduction

In machine learning tasks, one common problem is the redundant dimensions of data representation.

Manifolds usually arise from data generated in a continuous process. The generated manifold is often

embedded in a high-dimensional Euclidean space. In most cases, the manifold is represented as a discrete

data set. An intuitive example of this is the set of images generated by a continuously changing set of facial

expressions. This set of data points can be accurately represented by a low dimensional set of features.

To uncover these features, S. Roweis et al. [9] and J. Tenenbaum et al. [10] introduced a new research

field called manifold learning (in this paper, manifold learning only refers to a nonlinear dimensionality

reduction technique). This technique is a perfect combination of classical geometric analysis and computer

science with a detailed analysis shown in [16]. Traditional manifold learning algorithms aim to reduce the
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dimension of a manifold, so that its lower dimensional representation (i.e. the features) can reflect the

intrinsic geometric and topologic structure of the high dimensional data points. Generally, the existing

manifold learning algorithms can be roughly divided into two classes: one preserving the global geometric

structure of the manifold, such as Isomap [10] and the recently incremental method for Isomap (TLE) [17],

while the other one is to preserve the local neighborhood geometric structure, such as LLE [9], LEP [11],

LPP [14], Lie-LPP [8], LTSA [13], Hessian Eigenmap [12]. Isomap aims to preserve the geodesic distance

between any two high dimensional data points, which can be viewed as an extension of multidimensional

scaling (MDS) [25]. Local neighborhood preserving algorithms approximate manifolds with a union of

locally linear patches (possibly overlapped). After the local patches are estimated with linear methods

such as principal component analysis (PCA) [15], the global representation is obtained by aligning the

local patches together. Manifold learning algorithms have been applied to many applications such as

data dimension compression, computer vision, and image recognition, among others. Despite the success

of manifold learning, several problems still remained:

• Locally short circuit problem: If the embedded manifold is highly curved, the Euclidean distance

between any two points is obviously shorter than the intrinsic geodesic distance. In this case the geodesic

distance between these two points is often underestimated.

• Intrinsic dimension estimation problem: Since tangent spaces are simply taken as local patches,

the intrinsic dimension of the manifold cannot be determined by the latter, in particular, in the case of

a strongly varying curvature.

• Curvature sensitivity problem: If the curvature of the original manifold is especially high at

some point, very small size patches are needed to represent the neighborhoods around this point. But

there may not be as many data points as needed to produce enough small patches, especially when the

data points are sparse.

Among the above mentioned three problems, the third one is the most critical. It is the basis of the

other two. The main focus of this paper is to solve this problem.

1.1 Motivation

In manifold learning, an irregularly curved manifold is usually directly mapped to a lower dimensional

Euclidean space. This is often impractical since attention is not paid to the varying geometric structure

of the manifold at different points. To avoid this problem, some researchers regard the dataset as being

sampled from multiple manifolds and not just from a simple manifold, such as [18], [19]. However,

these approaches still cannot solve the local nonlinear structure of a manifold. Ricci flow, also known as

intrinsic curvature flow, is a very useful tool for evolving an irregular manifold and making it converge to

a regular one, i.e., constant curvature manifold. It has been used to prove the Poincare conjecture [26].

In this study, we use the Ricci flow to regularize the metric and curvature of the generated manifold

before reducing its dimension. The proposed algorithm, namely Ricci flow manifold learning (RF-ML)

algorithm, transforms the irregular manifold to a regular constant curvature manifold. Since Ricci flow

preserves the local structure of a manifold and the Riemannian metric of the manifold after Ricci flow

is uniform (see section 2), the local relations among the data points across the entire process of the

algorithm are preserved. The key concept behind the proposed algorithm is to construct a Ricci flow

equation directly on discrete data points without parametrization and meshes. Under the premise of

a non-negative curvature, the Ricci flow process transforms the original irregular manifold to a subset

of a sphere. Finally, traditional manifold learning algorithms can be used to reduce the dimensionality

of the (high dimensional) sphere. It is assumed that the data points are distributed on a single open

Riemannian manifold to guarantee that the manifold evolves into a punctured sphere under the Ricci flow.

In the current presentation, we only consider Riemannian manifolds with non-negative Ricci curvature.

Manifold learning with negative Ricci curvature will be discussed in our next paper. We refer to that

style as algorithm-dynamic manifold learning. This paper is just a first attempt in that direction.
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1.2 Related work

In recent years, there have been several works that have studied the intrinsic curvature of sampled points

by combining traditional manifold learning techniques in designing new algorithms. Among these, Kwang

et al. [3] studied this problem by redefining the group Laplacian operator on the data set. The redefined

group Laplacian matrix was used to measure the pair-wise similarities between the data points related to

the point to point distance as well as to the curvature information for each local patch. Their experimental

results showed that the redefined Laplacian operator led to lower error rates in spectral clustering than

the traditional Laplacian operator. W. Xu et al. [4] [5] [6] used the Ricci Flow to rectify the pair-wise

non-Euclidean dissimilarities among data points. However, these methods did not consider the relation

among the different edges. Another nonlinear dimension reduction algorithm is the two dimensional

siscrete surface Ricci Flow [1], which is mainly applied to the three dimensional data points distributed

on a two dimensional manifold. Chow and Luo have studied the relations between the circle packing

metric and surface Ricci flow in a theoretical view. Gu et al. [1] [2] constructed discrete triangle meshes

on three dimensional data points, as well as discrete circle packing metric on the triangle meshes. They

proposed the discrete surface Ricci flow algorithm using the Newton method, which can map any curved

surface to a normal two-dimensional surface (sphere, hyperbolic space, or plane). Traditional manifold

learning algorithms mainly used to reduce the dimension of especially high dimensional data points,

where it is difficult to construct the polygon meshes. Note that all these works which examine applying

the Ricci flow to manifold learning are 2-dimensional, no matter whether they are discrete or continuous.

They cannot be directly extended to higher dimensional cases.

2 Basic knowledge

If we are given the data set {x1, x2, · · · , xN ∈ RD}, where N is the number of data points and D is their

dimension, one fundamental assumption of traditional manifold learning is that {x1, x2, · · · , xN} lies on a

d-dimensional Riemannian manifold (M, g) which is embedded in the high dimensional Euclidean space

RD (d� D) , whereM is the manifold itself, g is its Riemannian metric defined as the family of all inner

products defined on all tangent spaces of M, and RD is called the ambient space of (M, g). On each

TpM, the tangent space at point p, the Riemannian metric is a Euclidean inner product gp. All of the

geometric intrinsic quantities (length, angle, area, volume, and Riemannian curvature) of the Riemannian

manifold can be computed under the Riemannian metric g.

2.1 Riemannian curvature

In general, the Riemannian curvature tensor of a d-dimensional (d > 3) Riemannian manifold is repre-

sented by a fourth-order tensor, which measures the curvedness of (M, g) with respect to its ambient

space RD. The directional derivative defined on a Riemannian manifold is a Riemannian connection,

represented by ∇. The Riemannian curvature tensor is a (1, 3)-tensor defined by:

Rm (X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (1)

on vector fields X,Y, Z [21]. Using the Riemannian metric g, the Riemannian curvature tensor can be

transformed into a (0, 4)-tensor shown as follows:

Rm (X,Y, Z,W ) = g (Rm(X,Y )Z,W ) . (2)

The trace of the Riemannian curvature tensor is a symmetric (0, 2)-tensor called Ricci curvature tensor

[21]:

Ric (Y,Z) = tr (Rm (·, X)Y ) . (3)

In differential geometry, the Riemannian metric is expressed by the first fundamental form. With respect

to the Riemannian sub-manifold, the Riemannian curvature tensor is captured by the second fundamental



Yangyang Li, et al. Sci China Inf Sci 4

form B (X,Y ) which is a bilinear and symmetric form defined on tangent vector fields X,Y . B (X,Y ) is

used to measure the difference between the intrinsic Riemannian connection ∇ on M and the ambient

Riemannian manifold connection ∇̃ on M̃, where M is embedded into M̃. The relation between ∇̃ and

∇ is shown by the following Gauss formula [22]:

∇̃XY = ∇XY + B (X,Y ) . (4)

The corresponding relationship between Rm (X,Y, Z,W ) of M and R̃m (X,Y, Z,W ) of M̃ is shown by

the following Gauss equation [22]:

R̃m (X,Y, Z,W ) = Rm (X,Y, Z,W )− 〈B (X,W ) ,B (Y,Z)〉+ 〈B (X,Z) ,B (Y,W )〉. (5)

If the ambient space M̃ is an Euclidean space RD then R̃m (X,Y, Z,W ) = 0. The Riemannian curvature

of M can be fully captured by the second fundamental form:

Rm (X,Y, Z,W ) = 〈B (X,W ) ,B (Y,Z)〉 − 〈B (X,Z) ,B (Y,W )〉. (6)

Under local coordinate system, the second fundamental form B can be represented by [22]:

B (X,Y ) =

D∑
α=d+1

hα (X,Y ) ξα, (7)

where ξα, (α = d+ 1, · · · , D) is the normal vector field of M and hα (X,Y ) is shown by the second

derivative of the embedding map.

2.2 Ricci flow

The Ricci flow is an intrinsic curvature flow on a Riemannian manifold, which is the negative gradient flow

of Ricci energy. The Ricci flow is defined by the following geometric evolution time dependent partial

differential equation [23]:
∂gij
∂t = −2Ricij , where gij = g (∂i, ∂j). The Ricci curvature Ric (g) can be

considered as a Laplacian of the metric g, making the Ricci flow equation a variation of the usual heat

equation. A solution of a Ricci flow is a one-parameter family of metrics g (t) on a smooth manifold M,

defined in a time interval I ⊂ R+. In the time interval I ⊂ R+, the Riemannian metric g (t) satisfies

the metric equivalence condition e−2Ctg (0) 6 g (t) 6 e2Ctg (0) [23], where |Ric| 6 C and t ∈ I. So the

relative geodesic distance between two arbitrary neighborhood points onM is consistent under the Ricci

flow. In general, the solution of the Ricci flow only exists for a short period of time, until the emergence

of singular points. In [24] researchers have worked out that the Riemannian manifold of dimension d > 4

can be transformed into a sphere under Ricci flow, when the sectional curvature K satisfies maxK
minK < 4

everywhere.

2.3 Statement of the spherical conditions

Returning to our problem, we note that the patches constructed below on each data point xi can be

either elliptic with positive sectional curvature or hyperbolic with negative sectional curvature. In this

paper we only consider the former case and use elliptic polynomial functions to evaluate the local patches

on every point, where the detail will be introduced later in this paper. The curvature operator at every

point of the Riemannian manifoldM is non-negative. In Ricci flow theory, when the intrinsic dimension

d 6 3 of M, the Riemannian manifold M with non-negative Ricci curvature can flow to a sphere under

Ricci flow. For d > 4, when the sectional curvature K satisfies maxK
minK < 4 everywhere, the Riemannian

manifoldM with positive sectional curvature can flow to a sphere under Ricci flow. So, in the Ricci flow

step of the proposed algorithm, we apply the Ricci flow process under the previously mentioned spherical

conditions.



Yangyang Li, et al. Sci China Inf Sci 5

3 Algorithm

In practice, it is difficult to analyze the global structure of a nonlinear manifold, especially when there

is no observable explicit structure. Our key concept is that we first uncover the local structure of the

embedded manifold and then the global structure can be obtained by the alignment of the local structures.

Keeping this in mind, we decompose the embedded manifold into a set of overlapping patches and apply

the Ricci flow to these overlapping patches independent of each other to avoid singular points, since

in general the Ricci flow on a global manifold may encounter singular points when scaling. The global

structure of the deformed manifold under the Ricci flow can be obtained from the deformed local patches

with a suitable alignment.

3.1 RF-ML algorithm

In this subsection, we describe the algorithm of the RF-ML process. Then, we give a detailed analysis of

the steps in this algorithm.

The proposed algorithm is essentially divided into five steps:

1. Find a local patch (neighborhood) Ui, i = 1, 2, · · · , N for each data point xi, i = 1, 2, · · · , N using

the K-nearest neighbor method. To find the K-nearest neighbors, we need to define a distance metric to

measure the proximity of arbitrary two points. We use the Euclidean metric as the distance measure in

this step.

2. Construct a special local coordinate system on every point xi. In the neighborhood Ui, we estimate

the local patch information of xi with a covariance matrix Ci, Ci =
∑
xk∈Ui (xk − xi)T (xk − xi), where

xi is the mean vector of the K-nearest data points. The first d eigenvectors (e1, e2, · · · , ed) with maximal

eigenvalues of Ci form a local orthonormal coordinate system of TxiM. The last D − d eigenvectors

(ed+1, · · · , eD) form a local orthonormal coordinate system of normal space.

3. Determine the intrinsic dimension d of local patches by computing the value of the 95% principle

components. In practice, due to the varying curvature of different local patches, the local dimension di
of each patch Ui may, in practice, be very inconsistent. We choose d = max{d1, d2, · · · , dN}.
If d = D, stop the algorithm. The manifold’s dimension is not reducible.

If d < D, continue the algorithm.

4. Construct Ricci flow equations on local patches and then let the overlapping patches Ui, i = 1, · · · , N
flow independently into local spherical patches Yi, i = 1, 2, · · · , N with constant positive Ricci curvature

C. Details will be shown below.

5. Align the discrete spherical patches Yi, i = 1, 2, · · · , N into a global subset P of a sphere with positive

curvature C, where P ⊂ RD. pi ∈ P is the corresponding representation of xi. Details will also be shown

below.

6. Reduce the dimensionality of the subset P using traditional manifold learning algorithms, where the

distance metric between two arbitrary points on P is the metric of the sphere other than the Euclidean.

The d-dimensional representations are {z1, z2, · · · , zN} ∈ Rd.
The intuitive representation of the RF-ML algorithm is shown in Figure 1 and the brief algorithm pro-

cedure is shown in Algorithm 1.

Step 4) above is to minimize the value of the energy function such that the Ricci curvature at ev-

ery point converges to a constant curvature. The curvature energy function is shown as follows:

E (Ric) =

∫
‖Ric− C‖2dM≈

N∑
i=1

|Ric (xi)− C|2, (8)

where C is the value of the constant non-negative Ricci curvature, M is the embedded manifold, and

Ric is called the Ricci curvature. The convergence of the Ricci flow, which we prove in theorem 3.1

below, indicates that the energy function can arrive at the optimal solution. To obtain the minimum
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Figure 1 The intuitive process of the RF-ML algorithm. The sub-images from left to right are input data points distributed

on manifold M, overlapping patches, overlapping patches flowing into discrete spherical patches using Ricci flow, and

alignment of spherical patches to a subset of a sphere, respectively. On the bottom is the representation of data points in

a low dimensional Euclidean space.

solution of the curvature energy function, we calculate the step by step solution with the help of the

Ricci flow. Referring to the purpose of this paper, it is not in our interest to learn the structure of

a single Riemannian manifold (M, g), but rather to discover a one-parameter family of such manifolds

t→ (M (t) , g (t)), parameterized by a time parameter t. The dynamic process is controlled by the Ricci

flow, until (M (t) , g (t)) converges to a Riemannian manifold (H, g) with constant curvature, where the

global set of patches P (step 5) are contained. In theorem 3.2, we prove that the Riemannian manifold

H is diffeomorphic to the original Riemannian manifold M.

The discrete Ricci flow equation as well as the corresponding iterative equations defined on the discrete

data points {x1, x2, · · · , xN} ∈ RD is constructed in the following manner.

Assume that the local coordinates of xj ∈ Ui under local ambient coordinates 〈xi; e1, e2, · · · , ed, · · · , eD〉
are represented as

(
x1
j , x

2
j , · · · , xdj , · · · , xDj

)
. The first d coordinates are seen as the local natural parame-

ters of Ui. A smooth representation of the local patch Ui under the local coordinate system is described

by:

f
(
x1, x2, · · · , xd

)
=
(
x1, · · · , xd, fd+1

(
x1, x2, · · · , xd

)
, · · · , fD

(
x1, x2, · · · , xd

))
, (9)

where
(
x1, · · · , xd

)
is a coordinate chart at Ui.

In this paper, we use the least squares method to approximate the analytic functions fα, α = d +

1, · · · , D under the local coordinate system constructed above. To guarantee that the curvature operator

on each patch satisfies the spherical conditions, as presented in section 2, we choose second-order elliptic

polynomial functions to approximate the structures of local patches. The polynomial form of fα is depict-

ed as fα (x) = WαΦT , α = d+1, · · · , D, where Wα = [aα0 , a
α
1 , · · · , aαd , aα11, a

α
12, · · · , aα(d,d)] is the coefficient

vector to be determined by the least squares method and Φ = [1, x1, · · · , xd, x1x1, x1x2, · · · , xdxd] is the

second-order polynomial basis vector.

Under the local smooth representation f of Ui, the corresponding d tangent vector basis at xi is given by

{ ∂f∂x1 (xi) ,
∂f
∂x2 (xi) , · · · , ∂f∂xd (xi)}, where ∂f

∂xj =
(

0, · · · , 1, · · · , 0,Wd+1
∂ΦT

∂xj (xi) , · · · ,WD
∂ΦT

∂xj (xi)
)

. Then

the local Riemannian metric tensor is shown as Gi = [gjk], gjk = 〈 ∂f∂xj (xi) ,
∂f
∂xk

(xi)〉. The second

fundamental form coefficient is shown as: hαjk
.
= ∂2fα

∂xj∂xk
.

So the local Ricci flow equation defined on xi is represented as follows:

∂

∂t

(
∂f

∂xj
·
(
∂f

∂xk

)T)
xi

= −2

D∑
α=d+1

d∑
l=1

(
∂2fα

∂xl∂xl
· ∂2fα

∂xj∂xk
− ∂2fα

∂xl∂xj
· ∂2fα

∂xl∂xk

)
xi

. (10)

To solve the Ricci flow equation, we need to discretize the differential operators on point clouds. Suppose

Vj =
(
∂fd+1

∂xj , ∂f
d+2

∂xj , · · · , ∂f
D

∂xj

)
, Eq.10 can be represented as the function of Vj , that is ∂

∂tVj = F (Vj ,∇Vj),
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Algorithm 1 Applying Ricci flow to Manifold Learning (RF-ML)

Input: Training data points {x1, x2, · · · , xN} ∈ RD, neighbor size parameter K.

1. for i = 1 to N do

2. Find K-nearest neighbors of xi;

3. Compute tangent space TxiM.

4. end for

5. Repeat

6. Update the Ricci flow equations using Eq.11, Eq.12, Eq.13.

7. Until convergence

8. Align the deformed {Y1, Y2, · · · , YN} to a complete subset P of sphere.

9. Use traditional manifold learning algorithms to reduce the dimension of spherical data points.

Output: Low dimensional representations {z1, z2, · · · zN} ∈ Rd

where F (Vj ,∇Vj) = −
∑D
α=d+1

∑d
l=1

(
∂2fα

∂xl∂xl
· ∂2fα

∂xj∂xj −
∂2fα

∂xl∂xj
· ∂2fα
∂xl∂xj

)
·
(
∂f
∂xj

)T+

. Therefore, the local

Riemannian metric tensor as well as the corresponding Ricci curvature are iterated under the Ricci flow

in the local neighborhood Ui as follows:

V n+1
j = V nj + ∆tF

(
V nj ,∇V nj

)
, j = 1, · · · , d, (11)

gn+1
jk = δjk + V n+1

j · V n+1
k

T
, (12)

Rmn+1
jk =

∑
l

(
∇lV n+1

l · ∇kV n+1
j

T −∇lV n+1
j · ∇lV n+1

k

T
)
. (13)

These equations are optimized by updating them until RmT
jk → C, where C is a non-negative constant

and T is the number of total iterations.

In step 5) above, after the Ricci flow converges at each xi, the overlapping local patches {U1, U2, · · · , UN}
flow to a set of discrete local spherical patches {Y1, Y2, · · · , YN}. We denote the global coordinates of

{Y1, Y2, · · · , YN} as {P1, P2, · · · , PN}, which are related based on a linkage by a set of global alignment

maps which shift the discrete local spherical patches to a global subset of a sphere. We propose the

global coordinates pij ∈ Pi to satisfy the following equations, such that pij is obtained by the local affine

transformation of yij , where yij ∈ Yi. We have:

pij = p̄i +Qiyij + ε
(i)
j , i = 1, · · · , N, j = 1, · · · ,K, (14)

where N is the number of sample points, K is the nearest neighbor size parameter, Qi is the unit of

orthogonal transformation, and ε
(i)
j is the reconstruction error.

To obtain the optimized local affine transformation, we need to minimize the local reconstruction error

matrix Ei:

minEi =

N∑
i=1

‖Pi
(
I − 1

K
eeT
)
−QiYi‖2F , (15)

where Ei = [ε
(i)
1 , ε

(i)
2 , · · · , ε(i)K ].

Minimizing the above least square error is equal to solve the following eigenvalue problem:

B = SWWTST , (16)

where S = [S1, S2, · · · , SN ], PSi = Pi, W = diag (W11,W22, · · · ,WNN ), Wii =
(
I − 1

K ee
T
) (
I − Y †i Yi

)
and Y †i the generalized inverse matrix of Yi.

Decomposing matrix B using the singular value decomposition (SVD) method, we obtain B = UΛU−1,

where the columns of U are the unit orthogonal eigenvectors of B. Λ is a diagonal matrix and the diagonal

components, which are arranged in ascending order, are the eigenvalues of B. The optimal solution
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is obtained by the D eigenvectors of the matrix B, corresponding to the 2nd to (D + 1) st smallest

eigenvalues of B. However, the optimal data set P that we finally need is distributed on a sphere with

curvature C. So we need to give a set of constraints:

PiP
T
i =

1

C
, i = 1, 2, · · · , N. (17)

Under these constraints, we rewrite matrix B as: B = QRRTQT , where R is a diagonal matrix, Rii =
D√
C

2
√
‖(Ui1,Ui2,··· ,UiD)‖2

(i = 2, · · · , D + 1), the rest Rjj = 1 (j 6= 2, · · · , D + 1). The values of the obtained

from the 2nd to (D + 1) st columns of Q are the optimal data set P , which is distributed on a sphere

with curvature C.

3.2 Theoretical analysis

In this subsection, we present a theoretical analysis of our algorithm. First we want to illustrate the

convergence of the Ricci flow, which has previously been proven by researchers. Second, we derive the

relation between the original and the deformed manifolds under the Ricci flow.

Theorem 3.1. [7] Assume that (M, g0) has weakly 1/4-pinched sectional curvatures in the sense that

0 6 K (π1) 6 4K (π2) for all two-planes π1, π2 ⊂ TpM. Moreover, we assume that (M, g0) is not locally

symmetric. Then the normalized Ricci flow with initial metric g0 exists for all time, and converges to a

constant curvature metric as t→∞.

This theorem has been proven by S. Brendle and R. Schoen [7] in 2008. Generally, the Ricci flow exists

for all time and it converges to a constant curvature. For each local patch, the Ricci flow definitely exists

and also converges to a positive constant curvature C.

Theorem 3.2. The global set of patches P (step 5) is distributed on a subspace H of a sphere, where

H is a Riemannian manifold. Additionally, H is diffeomorphic to the original Riemannian manifold M .

Proof: The original data points {x1, x2, · · · , xN} are distributed on M . At each data point xi, there is

a local neighborhood Ui, such that
∑
i Ui can fully cover the manifold M . Thus, M has an enumerable

set as a basis.

According to the local Ricci flow, at each data point xi, there is a diffeomorphism fi between Ui and Yi.

In the global alignment, there is a diffeomorphism gi between Yi and Pi. Thus, the map gi ◦ fi between

Ui and Pi is also a local diffeomorphism. Let:

li (p) =

{
1, p ∈ Ui
0, p /∈ Ui

, (18)

oi =
li∑
j lj

, i = 1, 2, · · · , N. (19)

Define:

oi · gi ◦ fi =

{
oi · gi ◦ fi (p) , p ∈ Ui
0, p /∈ Ui

, i = 1, 2, · · · , N. (20)

Let f =
∑
i oi · gi ◦ fi. It is defined on the global manifold M and induces a local diffeomorphism in any

local patch. Since M has an enumerable set as a basis, according to the unit decomposition theorem of

manifolds, f is a global diffeomorphism. Therefore, f (M) is also a Riemannian manifold. It is obvious

that the data set P is distributed on the manifold f (M), which is just the manifold H mentioned in the

statement of this theorem.

�
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4 Experiments

In this section, we compare the proposed RF-ML algorithm with other manifold learning algorithms on

several synthetic datasets and on four real world databases.

4.1 Intrinsic dimension

One implicit fundamental assumption of traditional manifold learning is that the dimension of the input

data set at each point is consistent. But in practice the distribution of data points on a manifold may

not be uniform and the dimensions of the manifold may even differ at the various data points. An

intuitive example illustrating this situation is depicted in Table 1. We list the numbers of neighborhoods

with different dimensions for six groups of datasets: ORL Face [28], Yale Face [30], Yale-B Face [30],

Weizmann [29], Swiss Roll [27] and Sphere [27]. We choose the neighborhood-size parameter K = 10 and

use the PCA algorithm to obtain the 95% principal components. The latter is approximately viewed as

the dimension of the local neighborhoods and may not be the same for all of the neighborhoods. Table 1

shows the number of neighborhoods in each dimension.

4.2 Dimensionality reduction

To evaluate the performance of RF-ML algorithm, we compare the proposed method with several tradi-

tional manifold learning algorithms (PCA, Isomap, LLE, LEP, Diffu-Map, LTSA) on four sets of three

dimensional data, including: Swiss Roll, Sphere, Ellipsoid and Gaussian. Swiss Roll is a locally flat sur-

face, where the Gauss curvature (i.e. Ricci curvature of two dimensional manifolds) is zero everywhere.

However, the Gauss curvatures of the other three datasets are not zero. The objective of this compari-

son is to map each data set to two dimensional Euclidean space and then to analyze the neighborhood

preserving ratios (NPRs) [20] of different algorithms. Table 2 shows the results of our RF-ML compared

with seven different algorithms on these four sets of data, where the K-nearest neighbor parameter is set

to K = 10. The neighborhood preserving ratio (NPR) [20] is defined as follows:

NPR =
1

KN

N∑
i=1

|N (xi)
⋂
N (zi) |. (21)

The parameter xi represents the input data point and zi is the corresponding low dimensional represen-

tation. N (xi) is the set of subscripts {j}, where xj is the K-nearest neighbor of xi, and the same N (zi)

is the set of {l}, where zl is the K-nearest neighbor of zi. The notation | · | represents the number of

intersection points.

NPR measures the local structure preserving ratio of the dimension reduction algorithms. Table 2

shows that for all but the Gaussian dataset, the NPR of RF-ML has the best performance among all of

the algorithms. The Swiss Roll is a locally flat two-dimensional manifold. Its data structure is unchanged

under the Ricci flow. Therefore, no Ricci flow is needed. As for the Sphere dataset, its Gauss curvature

is a unique constant everywhere. There is no need for the Ricci flow here either. With regard to the

Ellipsoid and Gaussian datasets, note that the Gauss curvatures at different points are not always the

same. When using RF-ML to reduce their dimensions, the NPR of the Ellipsoid dataset outperforms the

other six traditional manifold learning algorithms. For the Gaussian database, due to the characteristics

of the dataset distribution, the NPRs of PCA and LTSA are quite high. In comparison with the six

algorithms, the NPR of our method is not bad and is also quite high. Comparing the TLE algorithm

with Isomap, we can see that TLE outperforms Isomap in all cases. However, since TLE does not consider

the curvature information of datasets, our proposed method achieves better results in the Ellipsoid, Sphere

and Gaussian datasets. This clearly demonstrates that RF-ML is more stable and the Ricci flow process

is better at preserving the local structure of data points.

Here, we see another advantage of the proposed algorithm. RF-ML is relatively stable under different

values of the neighbor size parameter K. Stable in this section means that the change of NPRs under

different values of K is both relatively small and smooth, while traditional manifold learning algorithms
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Table 1 Number of neighborhoods in each dimension. The first row shows six datasets. The second row shows the original

dimension of each dataset. The rows from 3 to 11 list the number of neighborhoods in dimension 1, 2, 3, 4, 5, 6, 7, 8, and 9,

respectively. The ”Total” row shows the total number of data in each dataset. ’K’ denotes the neighborhood-size parameter

and ”Ratio” denotes the percentage of principal components. Among all the data in table 1, those labeled by ’∗’ are from

the original dataset and the other data comes from our experiment results.

Databases ORL Face Yale Face YaleB Face Weizmann Swiss Roll Sphere

Org-dim 1024* 1024* 1024* 200* 3* 3*

1 0 0 0 0 0 0

2 0 0 0 90 1000 984

3 0 0 38 317 16

4 0 0 238 366

5 0 0 362 315

6 6 0 415 251

7 214 9 772 349

8 182 156 583 387

9 6

Total 400* 165* 2414* 2075* 1000* 1000*

K 10 10 10 10 10 10

Ratio 0.95 0.95 0.95 0.95 0.95 0.95

Table 2 Neighborhood Preserving Ratio. In this experiment, we fix the neighborhood-size parameter K = 10.

Methods PCA Isomap LLE LEP LTSA TLE RF-ML

Swiss Roll 0.5137 0.8594 0.6187 0.3981 0.6121 0.8701 0.8594

Ellipsoid 0.4399 0.6914 0.6205 0.7506 0.4390 0.7246 0.8702

Sphere 0.4815 0.6467 0.5213 0.7720 0.5465 0.6871 0.8684

Gaussian 0.9969 0.9261 0.9359 0.6406 0.9970 0.9421 0.9909

Figure 2 The neighborhood preserving rate of two-dimensional Ellipsoid embedded in 3-dimensional Euclidean space.

Compute the NPRs under different neighborhood size parameter values K with five manifold learning algorithms.
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Figure 3 The intuitive embedding of Puncture Sphere database under different algorithms. (a) the original database, (b)

Isomap, (c) LLE, (d) LEP, (e) LTSA, (f) RF-ML.

Figure 4 The intuitive embedding of Gaussian database under different algorithms. (a) the original database, (b) Isomap,

(c) LLE, (d) LEP, (e) LTSA, (f) RF-ML.
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Table 3 Neighborhood Preserving Ratio. In this experiment, we fixed the neighborhood size parameter at K = 10. In

the dimension reduction step, we choose d = 6, 8, 7, 10 as the intrinsic dimensions of the ORL DB, Yale DB, YaleB DB, and

USPS DB. In the recognition step, we chose half of each dataset as the training dataset and used the rest as the testing

dataset.

Methods PCA LPP LLE LEP LTSA RF-ML

ORL DB 52.50± 1.2 62.50± 2.1 61.87± 1.6 63.82± 2.3 60.31± 1.6 65.04± 1.3

Yale DB 35.73± 1.4 71.24± 1.8 69.05± 2.2 72.06± 1.5 70.43± 1.4 73.28± 1.6

YaleB DB 63.72± 1.7 67.26± 1.2 60.46± 1.7 72.62± 1.8 65.76± 1.3 73.95± 2.1

USPS DB 86.69± 0.9 91.61± 1.3 84.62± 1.5 92.53± 1.1 86.12± 1.4 93.01± 1.7

are more sensitive to the neighbor-size parameter K. That is because those traditional algorithms im-

plicitly assume that the local patch at each point is flat. Our method tries to find the intrinsic curvature

structure of the local patch at every point and thus, is not sensitive to the neighbor size parameter K.

In this experiment, we evaluated the performance of our RF-ML algorithm compared with the other four

algorithms (LLE, LEP, Isomap, and LTSA) under different values of neighbor size parameter K on the

Ellipsoid dataset. The comparison results are showed in Fig. 2. As the neighborhood-size parameter K

values are increasing, the NPR of RF-ML grows continuously. But the NPRs of the other four manifold

learning algorithms are unstable and especially sensitive to the different values of neighbor size parameter

K.

Finally, to show the intuitive embedding of the synthetic datasets, we give two intuitive examples

shown in Figs. 3 and 4. These two figures illustrate the intuitive embedding results of the puncture

sphere and Gaussian datasets under five different manifold learning algorithms.

4.3 Real world databases

In this subsection, we present the results of our experiments on four real world databases: ORL database

[28], Yale Face database [30], Extended Yale Face B database [30], and USPS database [31].

The ORL Face database contains 10 different images of 40 distinct subjects. In total, this database

contains 400 images. For some subjects, the images were taken at different times, varying the lighting,

facial expressions, and facial details.

The Yale Face database contains 165 grayscale images of 15 individuals. There are 11 images per

subject. These consist of one image per different facial expression or configuration: center-light, glasses,

happy, left-light, no glasses, normal, right-light, sad, sleepy, surprised, and wink.

The Extended Yale Face database B contains 5760 single images of 10 subjects. There are 576 images

per subject. For every subject in a particular pose, an image with ambient illumination was also captured.

The USPS database refers to numeric data obtained from the scanning of handwritten digits from

envelopes by the U.S. Postal Service. There are 10 classes of these handwritten digits from 0 to 9. The

total number of images in this database is 9298. The size of these images has been normalized, resulting

in 16× 16 grayscale images. Herein, we choose 700 images for each digital class.

The proposed algorithm aims to regularize the curvature distribution of each database using the Ricci

flow. We first analyzed the curvature distributions of these four databases. The intuitive results are shown

in Fig. 5. From these four histograms in Fig. 5, we can see that the curvature distribution of the USPS

database is more variable than it is for the other three databases. One reason is that USPS database

have enough samples to guarantee that the sample distribution is sufficiently dense. The other reason

is that the data points among each classes vary greatly. For the other three databases, the curvature

distributions ranged from 0 to 0.01. The total size of the ORL and Yale Face databases are 400 and 165,

respectively. The distribution within these databases in high dimensional Euclidean space is especially

sparse. Therefore, the curvature on each data point is relatively small.

Next, we compared the proposed algorithms with traditional manifold learning algorithms on these

four databases mentioned above to test their classification performance. In this experiment, we used

both traditional manifold learning algorithms and RF-ML algorithm to reduce the dimensions of these
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Figure 5 The curvature distributions of the ORL face database (a), Yale face database (b), YaleB face database (c), and

USPS database (d).

Figure 6 The classification accuracies of different manifold learning algorithms under different low dimensions d.
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four databases. Then we use a Nearest Neighbor Classifier method to test the recognition accuracies

of the different algorithms on these four databases. In the classification step, for these four databases,

we chose half of the images of each distinct subject as the training subset and the rest of the images of

each subject were used as the test subset. The experimental results are shown in Table 3. From Table 3,

where we can see that RF-ML mostly outperforms the other five traditional manifold learning algorithms.

The proposed method analyzed the curvature information of these four databases and uses Ricci flow to

regularize the curvature information. Thus, in comparison with traditional manifold learning algorithms,

we uncovered the intrinsic curvature information of these databases and added the information into the

dimension reduction process.

Finally, we further compared our RF-ML algorithm with these four algorithms on the USPS database

to test the classification accuracies under different low dimension d. In comparison with the other three

real world databases, the curvature distribution of the USPS database varied higher than the other

databases. In this way, we did run sufficiently comparative experiments on the USPS database to test

the performance of these algorithms under different low dimensions d. The final experimental results are

shown in Fig. 6. From this figure, we can see that the classification accuracies of our algorithm mostly

outperform other traditional manifold learning algorithms under different low dimensions d. Overall,

using the Ricci flow to regularize the curvature distribution of datasets is a significant improvement of

manifold learning.

5 Conclusions and future work

In the field of image recognition where it is necessary to precisely describe the continuously changing

images, one critical step is to assume that the image set is distributed on a low dimensional manifold,

which is embedded in the high dimension pixel space. Then, it is possible to use mathematical knowledge

of manifolds to deal with these datasets using techniques such as dimensionality reduction, classification,

clustering, and recognition among others. Manifold learning is an effective way to link the classical

geometry with machine learning. Discovery of the precise manifold structure has direct impact the

learning results. Many traditional manifold learning algorithms do not differentiate between the varying

curvature at different points manifolds. The proposed aims to excavate the power of the Ricci flow and

to use it to dynamically deform the local curvature to make the manifold’s curvature uniform. Extensive

experiments were conducted, which have shown that the proposed method is more stable in comparison

with other traditional manifold learning algorithms.

Several researches based on the application of Ricci flow to manifold learning have been reported. How-

ever, to the best of our knowledge, this is the first study to have applied the Ricci flow to high dimensional

(unlimited dimension) data points for dimensionality reduction. One limitation of our algorithm is that

RF-ML only works for manifolds with non-negative curvature. We will discuss the applicability of the

curvature flow algorithm to manifolds with negative Ricci curvature in our next paper. We believe that

there will be la significant number of applications to manifold learning where curvature flow is relevant.
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