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Abstract
In this paper, we propose an evolving network model with information filter-
ing and mixed attachment mechanisms. We theoretically analyze the in-degree
distribution of networks generated by the proposed model in two special cases.
And we prove that if the new coming vertex does not filter information, then
the in-degree distribution is power-law, and the power-law exponent has range
(3/2,∞). Otherwise, the in-degree distribution becomes complex which has a
transition between exponential and power-law scaling. Numerical simulations
are consistent with analytical results. In addition, we calculate various mea-
sures of networks generated by the proposed model, and compare values of
these measures with that of networks generated by uniform attachment model,
Barabási-Albert model and copying model. It shows that our model can gener-
ate networks with more diverse topological features.

Keywords: Network generative model, Information filtering, Preferential
attachment, Copying, In-degree distribution

1. Introduction

Modeling complex networks have been in the forefront of network science
research for almost two decades. Empirical studies on real-life networks such as
social networks, biological networks , citations networks and the World Wide
Web have shown that many networks exhibit common topological features[1]-
[6]. In particular, two important characteristics that many real networks share
are small-world behavior [7] and power-law degree distribution [8].

A great deal of network models have been formulated to capture the prop-
erties of real networks [8]-[16]. One of the earliest models is the classical
Erdős-Rényi(ER) random graph model [9], where edges are distributed ran-
domly among a fixed number of vertices. However, the degree distribution of
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the network generated by the ER model is Poisson distribution which is not
consistent with that of many real networks. In 1999, Barabási and Albert [8]
proposed a growing network model, also called BA model, which can generate
networks with power-law degree distribution. The BA model has two important
ingredients: growth and preferential attachment. Growth means that network
continuously expands by the addition of new vertices with several edges at-
tached to it, and preferential attachment means that new added vertex tends
to connect to high-degree vertices rather than low-degree vertices [17].

Despite its great success in explaining power-law degree distribution of real
networks, the BA model possesses several limitations. Actually, there is an im-
plicit assumption in the BA model that the new added vertex knows the degree
values of all existing vertices, and this assumption does not hold in many real
networks. For example, in social networks, it is impossible for a person to know
all other people’s information when he or she makes friends in a new city or a
new school. And it is more reasonable to assume that the newly coming ver-
tex only owns partial information of the entire network or it filters information
when it chooses targets. Several models have tried to describe this phenomenon
[18][10][19][13]. Mossa et al. [18] proposed a model which incorporates informa-
tion filtering, and they found that the in-degree distribution decays as a power
law with an exponential truncation. Li and Chen [10] proposed a local-world
evolving network model, where the new vertex will firstly select Mt vertices
randomly from the existing network as its “local world”, and then it only con-
nects to m vertices that are all selected from its local world with preferential
attachment rule. Li et al. showed that the degree distribution of the network
generated by their proposed model represents a transition between exponential
and power law. The above-mentioned models successfully incorporate informa-
tion filtering or local world effect, but they have ignored the fact that the new
vertex may connect to vertices that are not in its local world even the new vertex
does not own the information of those vertices. In a social network for instance,
it is common that our friends will introduce their friends, who are strangers for
us, to us. Similar phenomenon can also be found in citation networks where
researchers may refer those papers that appeared in papers they have read. We
can mimic this behavior by using copying mechanism [20]. Kleinberg et al. [20]
proposed a model which integrates copying mechanism when they studied the
World Wide Web, where a new vertex chooses an old vertex as its prototype
vertex and copies some out-neighbors of this prototype vertex to be its own
out-neighbors.

In this paper, inspired by above thoughts, we propose an evolving network
model with information filtering and mixed attachment mechanisms, and we
call it the IFMAM model. Information filtering means that the new vertex
will firstly choose some vertices randomly from the existing network as its local
world. And then the new vertex can connect to vertices chosen from its local
world with preferential attachment rule, or it can copy behaviors of an existing
vertex which is chosen randomly from its local world. As a result, on the one
hand, the new vertex filters information by choosing its local world and it knows
the complete information of the chosen local world. On the other hand, it is

2



possible for the new vertex to connect to any vertex of the existing network,
even those that are not in its local word. Several models such as uniform
attachment model [17] and the BA model [8] are limiting cases of the proposed
model. If the new vertex select all existing vertices as its local world, we prove
that the in-degree distribution is a power-law distribution, and the power-law
exponent has range (3/2,∞). If the new vertex select a fixed number of existing
vertices as its local world, we also derive the asymptotic solution of the in-degree
distribution, which is complex and has a transition between exponential and
power-law scaling. Additionally, we numerically explore properties of networks
generated by the IFMAM model, such as clustering coefficient, average path
length and so on. It shows that the proposed model can generate networks
with small-world behavior. We also compare the values of these measures with
that of networks generated by uniform attachment model, the BA model and
the copying model, and it shows that the IFMAM model can generate networks
with more diverse structural properties.

The rest of the paper is organized as follows: The IFMAM model is intro-
duced and analyzed in Section 2. Properties of complex networks generated by
the IFMAM model are analyzed in Section 3. Finally, we conclude in Section
4.

Notation Meaning
Gt Graph at time t
Vt Vertex set at time t
Nt Number of vertex at time t
Itv In-degree of vertex v at time t
Dv Degree of vertex v
α The exponent of power-law distribution p(x) ∼ x−α

m Number of edges added at each time step
γ Copy factor
Ct Vertex set of the local world of the vertex vt
Mt Size of Ct; i.e. Mt = |Ct|
M Size of Ct when Mt is a constant
a Initial attractiveness of each vertex
Πt(v) The probability that the vertex v in Ct is chosen by preferential

attachment rule at time t.
pk(Nt) The proportion of vertices whose in-degree are k when the size

of graph is Nt

Table 1: Notations used in this paper

2. The Model

In this section, we firstly introduce the IFMAM model which considers infor-
mation filtering and combines preferential attachment and copying mechanisms.
And then we analyze the in-degree distribution of networks generated by the
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proposed model. Before going into further detail, we give notations used in this
paper in Table 1.

2.1. Model Description
We consider directed graph model and assume that all vertices have same

out-degree. If there is an edge originating from vertex u and ends at vertex
v, then we call v is an out-neighbor of u, so each vertex has exactly m out-
neighbors. The model is described by a graph process {Gt}t≥0. Start with a
directed graph G0 consisting of m0 vertices where every vertex connects to other
m < m0 vertices randomly. For t ≥ 1, the graph Gt is constructed from Gt−1

by following steps:
1. Add a new vertex vt and m new edges originating from vt, into Gt−1. And

the other ends of new edges are chosen by following rules described in step
2 and 3.

2. Choose a non-empty subset of Vt−1 as the local world of vt, using Ct to
denote this subset. Choose a vertex ut from Ct randomly as the prototype
vertex of vt.

3. Consider ut’s out-neighbors one by one, with probability γ, let vt connect
to this out-neighbor, and with probability 1−γ, let vt connect to a vertex p

in Ct selected by preferential attachment rule; i.e. Πt(p) =
It−1
p +a∑

q∈Ct
(It−1

q +a)
,

where a is a constant which represents initial attractiveness of each vertex.
It is worthy to note that several previous models are limiting cases of undi-

rected versions of the proposed model. We use Mt to represent the size of vt’s
local world. The proposed model becomes the BA model[8] when γ = 0, a =
m,Mt = Nt. When γ = 0, a = m,Mt = m, our model is same as model A
in [17], where the preferential attachment rule in BA is replaced by uniform
attachment, and we call it uniform attachment model. And when Mt = m for
all t, the preferential attachment selection in Ct will be equivalent to random
selection from Vt to some extent, because vertices in Ct are chosen randomly
from Vt and the out-degree of the new vertex is m. In this case, the IFMAM
model is similar to copying model.

2.2. In-degree Distribution
In this subsection, we use the method in Newman’s book [5] to derive the

in-degree distribution of the network generated by the IFMAM model. Let Nt

denote the size of Gt and Itv denote the in-degree of vertex v at time t, then
at time t + 1, an old vertex v may be chosen as the new coming vertex vt+1’s
out-neighbor by two possible ways. One is that vertex v is an out-neighbor of
vt+1’s prototype vertex and is chosen with probability γIt

v

Nt
. The other is that

v is in the local world of vt+1 and is chosen with preferential attachment rule.
So, for vertex v, the expectation of gotten new edges at time t+ 1 is

γItv
Nt

+ (1− γ)m
Mt

Nt

Itv + a∑
u∈Ct

(Itu + a)
(1)
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Below we discuss the in-degree distribution of the network in two cases. One is
that the new vertex selects all existing vertices as its local world; i.e. Mt = Nt.
The other is that the size of local world of all vertices are same; i.e. Mt = M ,
where M is a constant.

2.2.1. Case A: Mt = Nt

If Mt = Nt, equation (1) becomes

γItv
Nt

+ (1− γ)m
Itv + a

Nt(m+ a)

When the size of graph is Nt, for all vertices whose in-degree are k, the
expectation of gotten new edges is

Nt × pk(Nt)× [
γk

Nt
+

(1− γ)m

Nt

k + a

m+ a
] = [γk + (1− γ)m

k + a

m+ a
]pk(Nt) (2)

where pk(Nt) is the proportion of vertices whose in-degree are k when the size
of graph is Nt.

And the master equation for in-degree distribution is

(Nt + 1)pk(Nt + 1) = Ntpk(Nt)

+ [γ(k − 1) + (1− γ)m
k − 1 + a

m+ a
]pk−1(Nt)

− [γk + (1− γ)m
k + a

m+ a
]pk(Nt)

(3)

This equation is true except for k = 0. When k = 0 the second term of the right
part of the equation disappears and the new added vertex’s in-degree is zero.
So the equation becomes

(Nt + 1)p0(Nt + 1) = Ntp0(Nt) + 1− (1− γ)ma

m+ a
p0(Nt) (4)

Let t → ∞ and pk ≡ pk(∞) we have

pk = [γ(k − 1) + (1− γ)m
k − 1 + a

m+ a
]pk−1 − [γk + (1− γ)m

k + a

m+ a
]pk (5)

p0 = 1− (1− γ)ma

m+ a
p0 (6)

where k ≥ 1.
Rearrange above equations we have

pk =
(m+ a)γ(k − 1) + (1− γ)m(k − 1 + a)

(m+ a)(1 + γk) + (1− γ)m(k + a)
pk−1 (7)
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p0 =
m+ a

m+ a+ (1− γ)ma
(8)

The asymptotic solution of equation (7) and (8) is

pk =
1

k

m+ a

m+ aγ

B(k + 1, m+a+(1−γ)ma
m+aγ )

B(k, 1 + m(1−γ)(a−1)−(m+a)γ
m+aγ )

(9)

where B(x, y) is Beta function. The derivation details are given in Appendix
A. Using the property of Beta function

B(x, y) ≈ x−yΓ(y) for x → ∞ and x ≫ y

When k is large enough, the in-degree distribution behaves like

pk ∼ k−1 (k + 1)−[
m+a+(1−γ)ma

m+aγ ]

k−[1+
m(1−γ)(a−1)−(m+a)γ

m+aγ ]

∼ k−α

(10)

where
α = 1 +

m+ a

m+ γ
(11)

So we get that when Mt = Nt, the in-degree distribution has a power-
law form and the power law exponent is 1 + m+a

m+γ , which has range (3/2,∞).
Note that we have mentioned in Section 2.1 that the undirected version of
the proposed model is same as the BA model when γ = 0, a = m and Mt =
Nt. In this case, our derivation is consistent with that of the BA model, i.e.
α = 1 + m+m

m+0 = 3. We also carry out numerical simulations to verify our
derivation. In Fig 1, we show the relationship between the power-law exponent
and parameters of the IFMAM model. We use the method proposed by Clauset
et al. [21] to compute the power-law exponent. We can see that numerical
results are coincident with theoretical results.

2.2.2. Case B: Mt is a fixed constant
Now we consider the situation that Mt is a fixed constant M and a =

1. When the size of graph is Nt, for all vertices whose in-degree are k, the
expectation of gotten new edges is

Nt × pk(Nt)× [
γk

Nt
+ (1− γ)m

M

Nt

k + 1∑
u∈Ct

(Itu + 1)
]

= [γk + (1− γ)mM
k + 1∑

u∈Ct
(Itu + 1)

]pk(Nt)

(12)
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Figure 1: Comparison between the analytical results (lines) derived from Eq.(11) and the
simulation results (circles) for different parameter values. The quantity shown is the exponent
α of the power law in-degree distribution of the resulting network. (a) N = 10000000, m = 3
and a = 1. (b) N = 10000000, γ = 0.2 and a = 1. (c) N = 10000000, γ = 0.1 and m = 3.

Then we can get the master equation. For k ≥ 1

(Nt + 1)pk(Nt + 1) = Ntpk(Nt)

+ [γ(k − 1) + (1− γ)mM
k∑

u∈Ct
(Itu + 1)

]pk−1(Nt)

− [γk + (1− γ)mM
k + 1∑

u∈Ct
(Itu + 1)

]pk(Nt)

(13)

And for k = 0

(Nt + 1)p0(Nt + 1) = Ntp0(Nt) + 1

− [(1− γ)mM
1∑

u∈Ct
(Itu + 1)

]p0(Nt)
(14)

It is worthy to note that we cannot get the exact value of the sum term∑
u∈Ct

(Itu + 1). By using similar tricks in [13], we can approximate the sum
term. When we know Ct contains a vertex whose in-degree is k, we can ap-
proximate the sum term as

∑
u∈Ct

(Itu + 1) = k + (M − 1)m +M . Substitute
approximations into equation (13) and (14) , for q ≥ 1 we have

(Nt + 1)pk(Nt + 1) = Ntpk(Nt)

+ [γ(k − 1) + (1− γ)mM
k

k − 1 + (M − 1)m+M
]pk−1(Nt)

− [γk + (1− γ)mM
k + 1

k + (M − 1)m+M
]pk(Nt)

(15)

And for k = 0 we have
(Nt + 1)p0(Nt + 1) = Ntp0(Nt) + 1

− [(1− γ)mM
1

(M − 1)m+M
]p0(Nt)

(16)
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Let t → ∞ and pk ≡ pk(∞), then

pk = [γ(k − 1) + (1− γ)mM
k

k − 1 + (M − 1)m+M
]pk−1

− [γk + (1− γ)mM
k + 1

k + (M − 1)m+M
]pk

(17)

And for k = 0

p0 = 1− [(1− γ)mM
1

(M − 1)m+M
]p0 (18)

Rearrange above equations we get

pk =
γ(k − 1) + (1− γ)mM k

k−1+(M−1)m+M

1 + γk + (1− γ)mM k+1
k+(M−1)m+M

pk−1 (19)

p0 =
1 + (M − 1)m+M

(1− γ)mM
(20)

The asymptotic solution of equation (19) and (20) is complex, and we can
only write it using Beta function as equation (21). The derivation details are
given in Appendix B. The asymptotic solution is

pk =
B(k, Mm+Mγ−mγ+

√▽+1
2γ + 1)B(k, Mm+Mγ−mγ−

√▽+1
2γ + 1)

B(k, Mm+Mγ−mγ+
√
△

2γ + 1)B(k, Mm+Mγ−mγ−
√
△

2γ + 1)

× 1 + (M − 1)m+M

γk(k + (M − 1)m+M) + (1− γ)mM(k + 1)

k + (M − 1)m+M

(M − 1)m+M
(21)

where

△ = M2m2 + 2M2mγ +M2γ2 − 2Mm2γ + 2Mmγ2 − 4Mmγ +m2γ2

▽ = M2m2+2M2mγ+M2γ2−2Mm2γ+2Mmγ2−8Mmγ+2Mm−2Mγ+m2γ2+2mγ+1

It is not easy to analyze the above solution completely. But when k ≫ Mm
γ

we have
pk ∼ k−(1+ 1

γ )

And this is the same result as copying model [5]. In addition, we plot the in-
degree distribution of networks generated by the IFMAM model with different
M and γ values. And we compare the results obtained by theoretical calculation
with numerical simulation in Fig 2. From Fig 2, we can see that when M and γ
are both small, the in-degree distribution is similar to exponential distribution,
and when M is getting larger, the in-degree distribution is similar to power-law
distribution. And numerical simulations are consistent with theoretical results.
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Figure 2: Comparison between the analytical results (dashed lines) derived from Eq. (21)
and the simulation results (circles) with different parameter values. The quantity shown is
the in-degree distribution of the resulting network. And the values of input parameters are:
(a) N = 10000000,M = 3,m = 3, γ = 0.001 (b) N = 10000000,M = 3,m = 3, γ = 0.1, (c)
N = 10000000,M = 10,m = 3, γ = 0.5, (d) N = 10000000,M = 100,m = 3, γ = 0.5. The
agreement is good.

3. Property of networks generated by the IFMAM Model

In this section, we numerically calculate several measures of networks gen-
erated by the IFMAM model. And the measures include average path length,
clustering coefficient, number of triangles, effective diameter, spectral radius
and assortativity. In addition, we compare values of these measures with that
of networks generated by uniform attachment model, BA model and copying
model.

We ignore the directionality of edges when calculating these measures using
Python language package NetworkX [22]. And we focus on how these measures
will change by varying the parameters γ and M .
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3.1. Average path length
Average path length [23] is the average number of steps along the shortest

paths for all possible pairs of network vertices. Most real networks have small
average path length. In Fig 3, we plot average path length of networks generated
by the IFMAM model with different parameter values. It shows that the average
path length is negatively correlated to γ and M , and grows as lnN with network
size N .

We also compare the average path length of networks generated by our model
with that of networks generated by copying model [20], BA model [8] and uni-
form attachment model [17]. Fig5 shows that our model can generate networks
which have almost the same average path length as copying model, BA model
and uniform attachment model. On the other hand, the IFMAM model can
generate networks with smaller average path length.
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Figure 3: The average path length versus network size with the given values of input param-
eters: (a) M = 10, m = 3, a = 1 and γ = 0.1, 0.3, 0.5, 0.7 and 0.9. (b) M = 10, 100 and 1000,
m = 3, a = 1 and γ = 0.3.

3.2. Clustering coefficient
The local clustering coefficient rv for the vertex v is defined as

rv =
|Γv|

1/2Dv(Dv − 1)

where |Γv| is the number of actual edges existing in the network connecting
v’s neighbors [24]. The clustering coefficient of a network is defined as the
average local clustering coefficient of all vertices in the network [7]. In Fig4,
we plot clustering coefficient of networks generated by the IFMAM model with
different parameter settings. It shows that the clustering coefficient is positively
correlated to M and γ when the network size is fixed. As the network size
increases, the clustering coefficient decreases firstly and then reaches a stable
value gradually.
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We also plot the clustering coefficient of networks generated by our model,
copying model, BA model and uniform attachment model in Fig5. It shows that
the IFMAM model can generate networks which has similar clustering coefficient
as the three models. In addition, our model can generate networks with larger
clustering coefficient.
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Figure 4: The clustering coefficient versus network size with the given values of input param-
eters: (a) M = 10, m = 3, a = 1 and γ = 0.1, 0.3, 0.5, 0.7 and 0.9. (b) M = 10, 100 and 1000,
m = 3, a = 1 and γ = 0.3.
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Figure 5: Average path length and clustering coefficient of different size of networks generated
by the IFMAM model, copying model, BA model and uniform attachment model(UA). We
consider three parameter settings for the IFMAM model: M = 3, 10 and 100 when m = 3,
a = 1, and γ = 0.3. We set copy factor γ = 0.3 for copying model, and out-degree m = 3 for
uniform attachment model and BA model. (a) Average path length. (b) Clustering coefficient.

3.3. Other properties
The above results show that our model can indeed generate networks with

small-world property; i.e. short average path length and high clustering coeffi-
cient [7]. Besides above mentioned properties, we also calculate other measures
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including number of triangles [14], effective diameter [4], spectral radius [25]
and assortativity [26], which are plotted in Fig 6. And here we just explain
the results briefly. Fig 6 shows that our model can generate diverse networks
by tuning parameter γ and M . In addition, we compare values of these mea-
sures with that of networks generated by copying model, BA model and uniform
attachment model in Fig7. It shows that the IFMAM model can generate net-
works which has similar triangle counts, effective diameter, and spectral radius
as other three models. On the other hand, the IFMAM model can generate
networks with larger triangle count and spectral radius, and smaller effective
diameter. But it can only generate networks with disassortative mixing.

4. Conclusions

In this paper we have proposed an evolving network model, which we call
the IFMAM model, that considers information filtering and mixed mechanisms.
We have showed that several previous models are limiting cases of the proposed
model. If the new vertex select all existing vertices as its local world, we prove
that the in-degree distribution is a power-law distribution with power-law expo-
nent 1+ m+a

m+γ . If the new vertex select a fixed number of existing vertices as its
local world, we also derive the asymptotic solution of the in-degree distribution,
which is a little complex. Theoretical derivations were in good consistent with
numerical simulations.

In order to investigate the properties of networks generated by the IF-
MAM model, we have calculated several network metrics including average path
length, clustering coefficient, triangle count, effective diameter, spectral radius,
and assortativity. We also compared the IFMAM model with previously men-
tioned models and showed that the IFMAM model are more powerful in the
sense that it could generate networks with more diverge topological features.

Even though the proposed model are more powerful than previous models,
it also has limitations. One of the limitations is that we just consider two
cases of the size of new vertex’s local world. In the future, we can consider
models allowing different vertices may have different sizes of local world based on
their capabilities. Furthermore, the future research can also focus on generating
networks which is similar to given real-life networks, and we plan to solve this
problem by parameter estimation in the future.
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Figure 6: Various topological features versus network size with the given values of input
parameters. (a)(c)(e)(g): M = 10, m = 3, a = 1 and γ = 0.1, 0.3, 0.5, 0.7 and 0.9. (b)(d)(f)(h):
M = 10, 100 and 1000, m = 3, a = 1 and γ = 0.3.
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Figure 7: Various measures of different size of networks generated by the IFMAM model,
copying model, BA model and uniform attachment model(UA). We consider three parameter
settings for the IFMAM model: M = 3, 10 and 100 when m = 3, a = 1, and γ = 0.3. We set
copy factor γ = 0.3 for copying model, and out-degree m = 3 for uniform attachment model
and BA model. (a) Number of triangles. (b) Effective diameter. (c) Spectral radius. (d)
Assortativity.
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Appendices
A. Derivation of the in-degree distribution when Mt = Nt

In this section, we give the derivation of the asymptotic solution of the in-
degree distribution when Mt = Nt. From equation (7) and (8), we have

pk =
(m+ a)γ(k − 1) +m(1− γ)(k − 1 + a)

(m+ a)(1 + γk) + (1− γ)m(k + a)
pk−1

=
(m+ aγ)k + a(1− γ)(a− 1)− (m+ a)γ

(m+ aγ)k +m+ a+ (1− γ)ma
pk−1

=
k + m(1−γ)(a−1)−(m+a)γ

m+aγ

k + m+a+(1−γ)ma
m+aγ

pk−1

(A.1)

And

p0 =
m+ a

m+ a+ (1− γ)ma

=

m+a
m+aγ

m+a+(1−γ)ma
m+aγ

(A.2)

For general k , by iteration we have

pk =
[k + m(1−γ)(a−1)−(m+a)γ

m+aγ ] · · · [1 + m(1−γ)(a−1)−(m+a)γ
m+aγ ]

[k + m+a+(1−γ)ma
m+aγ ] · · · [1 + m+a+(1−γ)ma

m+aγ ]

m+a
m+aγ

m+a+(1−γ)ma
m+aγ

=
m+ a

m+ aγ

Γ(m+a+(1−γ)ma
m+aγ )

Γ(k + 1 + m+a+(1−γ)ma
m+aγ )

Γ(k + 1 + m(1−γ)(a−1)−(m+a)γ
m+aγ )

Γ(1 + m(1−γ)(a−1)−(m+a)γ
m+aγ )

=
1

k

m+ a

m+ aγ

Γ(m+a+(1−γ)ma
m+aγ )Γ(k + 1)

Γ(k + 1 + m+a+(1−γ)ma
m+aγ )

Γ(k + 1 + m(1−γ)(a−1)−(m+a)γ
m+aγ )

Γ(k)Γ(1 + m(1−γ)(a−1)−(m+a)γ
m+aγ )

=
1

k

m+ a

m+ aγ

B(k + 1, m+a+(1−γ)ma
m+aγ )

B(k, 1 + m(1−γ)(a−1)−(m+a)γ
m+aγ )

(A.3)
When x → ∞ and x ≫ y, Beta function has the property

B(x, y) ≈ x−yΓ(y)

So when k is large enough, the in-degree distribution behaves like

pk ∼ k−1 (k + 1)−[
m+a+(1−γ)ma

m+aγ ]

k−[1+
m(1−γ)(a−1)−(m+a)γ

m+aγ ]

∼ k−α

(A.4)

where
α = 1 +

m+ a

m+ γ
(A.5)
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B. Derivation of the in-degree distribution when Mt = M

In this section we try to find the asymptotic solution of equation (19) and
(20).

pk =
γ(k − 1)(k − 1 + (M − 1)m+M) + (1− γ)mMk

(1 + γk)(k + (M − 1)m+M) + (1− γ)mM(k + 1)

k + (M − 1)m+M

k − 1 + (M − 1)m+M
pk−1

(B.1)
We try to find the relationship between

(1 + γk)(k + (M − 1)m+M) + (1− γ)mM(k + 1)

and
γk(k + (M − 1)m+M) + (1− γ)mM(k + 1)

because we want to get the format

pk = □γ(k − 1)(k − 1 + (M − 1)m+M) + (1− γ)mMk

γk(k + (M − 1)m+M) + (1− γ)mM(k + 1)

k + (M − 1)m+M

k − 1 + (M − 1)m+M
pk−1

(B.2)
where

□ =
γk(k + (M − 1)m+M) + (1− γ)mM(k + 1)

(1 + γk)(k + (M − 1)m+M) + (1− γ)mM(k + 1)

=
γk2 + (Mm+Mγ −mγ)k +Mm−Mmγ

γk2 + (Mm+Mγ −mγ + 1)k +M −m+ 2Mm−Mmγ

(B.3)

Factor the expression we have

γk2 + (Mm+Mγ −mγ)q +Mm−Mmγ

= γ(k +
Mm+Mγ −mγ +

√
△

2γ
)(k +

Mm+Mγ −mγ −
√
△

2γ
)

(B.4)

where

△ = M2m2 + 2M2mγ +M2γ2 − 2Mm2γ + 2Mmγ2 − 4Mmγ +m2γ2

And

γk2 + (Mm+Mγ −mγ + 1)k +M −m+ 2Mm−Mmγ

= γ(k +
Mm+Mγ −mγ +

√
▽+ 1

2γ
)(k +

Mm+Mγ −mγ −
√
▽+ 1

2γ
)

(B.5)

where

▽ = M2m2+2M2mγ+M2γ2−2Mm2γ+2Mmγ2−8Mmγ+2Mm−2Mγ+m2γ2+2mγ+1
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By iteration, we have

pk = ■ (1− γ)mM

γk(k + (M − 1)m+M) + (1− γ)mM(k + 1)

k + (M − 1)m+M

(M − 1)m+M
p0

= ■ 1 + (M − 1)m+M

γk(k + (M − 1)m+M) + (1− γ)mM(k + 1)

k + (M − 1)m+M

(M − 1)m+M
(B.6)

where

■ =

k∏
i=1

(i+ Mm+Mγ−mγ+
√
△

2γ )(i+ Mm+Mγ−mγ−
√
△

2γ )

(i+ Mm+Mγ−mγ+
√▽+1

2γ )(i+ Mm+Mγ−mγ−
√▽+1

2γ )

=
B(k, Mm+Mγ−mγ+

√▽+1
2γ + 1)B(k, Mm+Mγ−mγ−

√▽+1
2γ + 1)

B(k, Mm+Mγ−mγ+
√
△

2γ + 1)B(k, Mm+Mγ−mγ−
√
△

2γ + 1)

(B.7)

We use
Γ(x+ n)

Γ(x)
= (x+ n− 1)(x+ n− 2) · · ·x

and
B(x, y) =

Γ(x)Γ(y)

Γ(x+ y)

to derive Eq. (B.6).
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