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ABSTRACT

Knowledge graphs have recently been extensively applied in many
different areas (e.g., disaster management and relief, disease diagno-
sis). For example, event-centric knowledge graphs have been devel-
oped to improve decision making in disaster management and relief.
This paper focuses on the task of event detection, which is the pre-
condition of event extraction for constructing event-centric knowl-
edge graphs. Event detection identifies trigger words of events in
the sentences of a document and further classifies the types of
events. It is straightforward that context information is useful for
event detection. Therefore, the feature-based methods adopt cross-
sentence information. However, they suffer from the complication
of human-designed features. On the other hand, the representation-
based methods learn document-level embeddings, which, however,
contain much noise caused by unsupervised learning. To overcome
these problems, in this paper we propose a new model based on
Semi-supervised Auto-Encoder, which learns Context information
to Enhance Event Detection, thus called SAE-CEED. This model
first applies large-scale unlabeled texts to pre-train an auto-encoder,
so that the embeddings of segments learned by the encoder contain
the semantic and order information of the original text. It then uses
the decoder to extract the context embeddings and fine-tunes them
to enhance a bidirectional neural network model to identify event
triggers and their types in sentences. Through experiments on the
benchmark ACE-2005 dataset, we demonstrate the effectiveness
of the proposed SAE-CEED model. In addition, we systematically
conduct a series of experiments to verify the impact of different
lengths of text segments in the pre-training of the auto-encoder on
event detection.
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1 INTRODUCTION

Knowledge graph, an important branch of artificial intelligence, has
exerted widespread influence on many different areas, including
vertical search, intelligent question answering, disaster manage-
ment and relief [23], disease diagnosis [24], to name a few. For
example, in [23] a disaster knowledge graph was developed for
facilitating critical resource query and improving decision mak-
ing throughout disaster management. A knowledge graph usually
consists of a group of entities, as well as the inter-relations among
them. In practical knowledge graphes, events are a typical type of
entities. Therefore, detecting and further extracting events from
texts is very important for constructing knowledge graph and has
thus attracted numerous attention in recent years.

Event detection is a key sub-task in the field of event extraction
and the basic step of event argument identification. This paper fo-
cuses on sentence-level event detection, which determines whether
or not a sentence in a document contains a predefined event and if
it does, it further identifies the corresponding event trigger words
that can determine the type of the event. For instance, in the sen-
tence “Israel retaliated with rocket attacks and terrorists blew a
hole in a United States warship in Yemen?”, contained in the ACE-
2005 benchmark dataset!, an event detection system should be able
to detect an ATTACK event with the trigger words “attacks” and
“blew”. However, it is a challenging task, because the same event
may be indicated by different trigger words and a trigger word may
express different event types in different contexts.

Most of the existing event detection methods only pay attention
to the sentence level information for event classification. They can
mainly be categorized into two classes, namely, feature-based mod-
els and representation-based models. The former almost rely on
a set of hand-designed features, such as, lexical features and syn-
tactic features, extracted by natural language processing toolKkits,

Lhttps://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-
guidelines-v5.4.3.pdf
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... | knew it was time to /eave. ...

? Transport event ? End-Position event

... | knew it was time to /eave.
Is not that a great argument for term limits? ...

v End-Position event
Figure 1: An example of event detection.

and then feed these features into classifiers (e.g., support vector
machine [26] or maximum entropy learner [5]) to complete event
classification [1, 15]. The latter employ word embeddings as the
input and decode them into low-dimensional distributed represen-
tations by neural networks (e.g., convolution neural network [12],
recurrent neural network [19]) to capture meaningful semantic
information [2, 3, 17, 18, 20-22]. However, the same event trigger
word may represent different events in different contexts due to the
ambiguity of words and the flexibility of expression. It is usually
difficult to distinguish the event type with only the information
of a single independent sentence. For example, in Figure 1, if we
only examine the first sentence, it is hard to determine whether the
trigger word “leave” indicates a “Transport” event meaning that
he/she wants to leave the current place, or an “End-Position” event
indicating that he/she will stop working for the current organiza-
tion. However, if we observe “term limits” from the context of this
sentence, it will be more confident to label “leave” as the trigger
word of an “End-Position” event.

Upon such an observation, there have been some studies that
aim to exploit the clues beyond sentences to improve sentence-level
event detection. Some remarkable methods adopt cross-document
inference [11], cross-event inference [16], cross-entity inference [9],
modeling textual cohesion [10] and exploiting document-level in-
formation [7]. However, they suffer from two major limitations.
First, the feature-based studies usually use manually designed fea-
tures, which are not only time-consuming and complicated, but
also cannot guarantee the reasoning rules as complete as possible.
Meanwhile, it might involve error propagation due to natural lan-
guage processing; Second, the representation-based one (i.e., [7]),
which employ the Distributed Memory of Paragraph Vectors model
to train document embeddings and further uses it in a RNN-based
event classifier, might result in that the document-level representa-
tion cannot specifically capture event-related information, as being
limited by the unsupervised training process.

Therefore, in this paper we pre-train a semi-supervised auto-
encoder [4] with unlabeled texts based on recurrent neural net-
works to learn distributed representations of contexts for event
detection. The main advantages are three-fold: (1) The recurrent
neural network as the encoder and the decoder can convert a se-
quence into a hidden state, which is inspired by the work in se-
quence to sequence learning [25]. It avoids long distance syntactic
parsing of the sequence and thus eliminates error propagation; (2)
The encoder part of a pre-trained auto-encoder can be used as a
starting point of the supervised recurrent neural network, which
applies weights to learn context embeddings for initialization. This
semi-supervised approach can allow for easy fine-tuning. It can
then improve the performance of the supervised task and signifi-
cantly stabilize the training process. We believe that it is superior
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to other unsupervised sequence learning methods, e.g., paragraph
vectors [14]; (3) The data with labeled event information is really
limited due to the diversity of events and the complexity of their
structures. For example, the English ACE-2005 dataset contains
only 599 documents of different types. Thus we can benefit from
the unsupervised pre-training of the auto-encoder, which applies
additional large quantities of unlabeled data to improve the gen-
eralization ability of recurrent neural networks. Meanwhile, the
learning of sequence vector restores both sentence-level and word-
level information in contrast to word embedding.

In general, in this paper we propose a new model based on a
Semi-supervised Auto-Encoder, which learns Context information
to Enhance Event Detection, thus called SAE-CEED. This model
first apply large-scale unlabeled texts to pre-train the auto-encoder,
which uses a three-layer stacked GRU-based encoder to encode
long segments with fixed length into embeddings and applies an
another GRU-based decoder to reconstruct the original segments.
In this way, the learned embeddings of segments contains their se-
mantic and syntactic information. Then, the model uses the weights
obtained from pre-training to extract the context embedding by the
encoder and enhance the bidirectional GRU model, which identi-
fies event triggers and their types in sentences, through adaptively
fine-tuning the context embedding according to the specific do-
main. Through experiments on the benchmark dataset, ACE-2005,
we evaluate the developed SAE-CEED model and demonstrate its
effectiveness. In addition, we systematically conduct a series of
experiments to verify the impact of different lengths of segments
in pre-training of the auto-encoder on event detection.

2 THE SAE-CEED MODEL

In this paper, event detection is formalized as a multi-class classifi-
cation problem. We determine each trigger candidate to a certain
predefined event type. In a general way, we treat every word in a
sentence as a trigger candidate except stop-words. In the bench-
mark ACE-2005 dataset, there are 34 event subtypes including a
special “Not Applicable (NA)” type. Figure 2 presents the illustrative
diagram of the proposed SAE-CEED model, which mainly contains
two modules:

e The Auto-Encoder Pre-Training (AEPT) module, which trains
the encoder and decoder through large-scale unlabeled texts.
In this way, the pre-trained encoder can learn distributed rep-
resentations of segments and be used to extract the context
information in event detection.

e The Context information Enhanced Event Detection (CEED)
module, which tags each trigger candidate with a certain
event type based on the learned embeddings of context seg-
ments.

2.1 The AEPT module

To learn an effective context embedding of a sentence, we apply
large-scale unlabeled texts to pre-train the auto-encoder model
presented in the upper block of Figure 2, which mainly consists of
three steps.

2.1.1  Data preprocessing.
We use English Wikipedia data in order to obtain large-scale unla-
beled texts. First, the texts are cleaned by removing explicit non-text
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The Context information Enhanced Event Detection (CEED) module

Figure 2: The illustrative diagram of the SAE-CEED model for sentence-level event detection.

fragments (e.g., web page markups) and converting words to lower
case ones. Then we segment the texts according to punctuations
and remove stop words. Meanwhile, special treatments such as
morphological restoration and acronym reduction are performed.
Finally, we construct the training set by randomly cutting texts
into segments with L words avoiding the input texts too long, as
the GRU based auto-encoder may suffer from the long-term depen-
dency problem.

2.1.2  Pre-training of the auto-encoder.

The auto-encoder consists of an encoder and a decoder, which is
shown in Figure 3. A recurrent neural network can model a contin-
uous sequence, like textual data. In order to extract text features at
different levels, we choose a three-layer stack-ed GRU-based model
in the encoder, and the output of its last layer is regarded as the
embeddings of the segments. We also apply a GRU-based model
in the decoder, which is used to parse the segment embedding and
derive the original textual sequence from it. If the decoder can cor-
rectly reconstruct the distributed representation of the segment, it
can be claimed that the segment embedding learned by the encoder
implies the semantic information of the original text, which can
thus be used to learn the context feature of a single sentence.

(1) Encoder Given the training set of segments each with L
words, we build the word dictionary and randomly initialize
the corresponding word embedding matrix. Given a segment
consisting of words {w;|i = 1,2,...,L}. For each word w;,
we first obtain its embedding w; as the input of the encoder.
In the three-layer stacked GRU-based model, we learn the
output of the third layer as the segment embedding h{;:

h;1 = GRUencoderl(Wi’h;;Tl),i =12,...,L,

hy, = GRU;pcodera(hp, by, )i =1,2, ..., L, (1)

h, = GRUepcoders(hp, hy ). i=1,2, .., L,

2

where the hidden state of the first layer is the input of the
second layer, and the hidden state of the second layer is the
input of the third layer.

Decoder The decoder takes the segment embedding h{; as
its input into the GRU and obtains the representation q;
for each wj in the reconstructed segment. Finally, we get
the predicted probability vector z; of K dimensions through
a softmax layer for the j-th position in the reconstructed
segment, where the k-th element indicates the probability of
classifying the j-th position to the k-th word. And the pre-
dicted index, is finally obtained according to the maximum

—
N
~

probability in z;.

[q1,92. .-, qL] = GRUdecoder(h;l;)s
zj = SoftMax(q;),j = 1,2, ..., L, 2)

indexj = argmax (z;),j = 1,2,..., L.

The loss function, J(index, z), can thus be defined in terms
of the cross-entropy error between the real word index; and

(k)

the predicted probability z;as follows:

T K
Jindex,z) = - ) " l(index; = k)logz\", 3)
J=1 k=1

where I(-) is the indicator function.

2.1.3  Persistent store.

We persistently store the parameters of the auto-encoder after
finishing the training process, including the word embeddings and
all parameters of the encoder and the decoder. The parameters of
the encoder will be fine-tuned during event detection when it is
used to extract the distributed representation of the context feature.
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Figure 3: The framework of the auto-encoder.

2.2 The CEED module

In this module, we conduct sentence-level event detection, which
is presented in the bottom block of Figure 2. Firstly, the training
corpus where events are labeled is preprocessed, including word
segmentation and morphological restoration. Then, we convert
the labels into the “BIO” labelling mode, which can handle event
triggers with multiple words appeared frequently in English. There
are three categories of tags in the “BIO” labelling mode, which are
“B (Begin)”, indicating that the word is the start of the target phrase,
“I (In)”, indicating that the word is a non-starting word of the target
phrase, and “O (Other)”, indicating that the word is not the target
phrase, respectively. In the actual annotation, if the trigger word
consists of only one word, only the “B-event type” is marked; if it
consists of two or more words, such as “take over”, it marks “take”
as “B-Event type” and “over” as “I-event type”; other non-trigger
words are directly marked as “O”.

The event detection model mainly consists of feature extraction
and context information enhanced detection, which is shown in
Figure 4. In what follows we describe the specific steps.

2.2.1 Feature extraction.
We extract and concatenate both the context feature and the word
features as the input of the event detection model. Given a sentence
si(i = 1,2,...,D), we learn the distributed representation ¢; of
its preceding and succeeding segments through the pre-trained
encoder, which is viewed as its context information.

We treat every word {wi,j|j =1,2,...,T} in the sentence s; as
a candidate trigger word. For each word w; j, its word features
consist of its word embedding w; ; and its entity type embedding?
e; j [21]. Note that, the embedding of a word is a kind of distributed
representation, which expresses a word as a continuous and dense
vector of fixed length. Compared with the one-hot representation, it

2The words in the ACE-2005 dataset are annotated with their entity types (annotated
as “NA" if they are not an entity).
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cannot only contain the semantic information of the word, but also
save storage space. The entity type embedding is complementary
to the embedding of the word, where the entity refers to a specific
type in the sentence.

Finally, we concatenate the context feature ¢; and word features
w;, j and e; ; as the whole feature u; ; of a candidate trigger word
and input it into the detection model. At the same time during the
training of the event detection model, the parameters in the en-
coder, the word embedding and the entity type embedding are also
updated and fine-tuned according to the supervision information.

2.2.2 Context information enhanced detection.

We consider the extraction of event trigger words as a multi-label
classification task and employ a Bi-GRU [6] model to learn . In gen-
eral, the semantic information of a word is not only related to its
succeeding words, but also related to its preceding words consider-
ing the linguistic flexibility. Therefore, we employ the bi-directional
GRU network to encode the sentence, which enters a sequence of

length T and get the forward hidden state [hjlc s hjzt yeens hj;] and the

backward hidden state [hi’ R hg A hl% ] respectively. Given a sen-

tence s;(i = 1,2, ..., D) consisting of words {w; j|j = 1,2,...,T}, we
input the feature u; ; to the Bi-GRU network and obtain the hidden
state r; j:

ri,j = [GRUevent(ui,j)a GRUevent(ui,j) >
i=12,...D,j=1,2,...|si|.

4)

Finally, we get the probability vector 0;,; of K dimensions through
(k)

ij indicates
the probability of classifying w; ; to the k-th event type. And the
predicted event type e; ; is finally obtained according to the maxi-

mum probability in o; ;.

a softmax layer for w; ;. The k-th element of 0;,j,ie,o0

0;,j = SoftMax(ri’j),i =12,...,D,j=1,2,...,]si|,

5
e; j = argmax(0; j),i=1,2,...,D,j = 1,2,..., |s;]. (5)

The loss function, J(y, 0), can thus be defined in terms of the

cross-entropy error between the real event type y; j and the pre-
(k)

dicted probability o; ;as follows:
D T K .
J@.0) == > > 1y = klogol"), ©)
i=1j=1k=1

where I(-) is the indicator function.

3 EXPERIMENTS

In this section, we validate the proposed SAE-CEED model through
experimental comparison with existing state-of-the-art methods
on the benchmark ACE-2005 dataset and examine the pre-training
of the auto-encoder on the English Wikipedia dataset. The related
settings and experiment results are described respectively in what
follows.

3.1 Context Information Enhanced Detection
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Figure 4: Event detection enhanced with context information in the SAE-CEED model.

Table 1: The statistics on the documents of the ACE-2005
English dataset.

Words Files
NORM | NORM
Newsgroups 48399 106
Broadcast News 55967 226
Broadcast Conversations 40415 60
Weblog 37897 119
Usenet 37366 49
Conversation Telephone Speech 39845 39
Total 259889 599

3.1.1 Datasets and settings.

We use the ACE-2005 English dataset to validate the effective-
ness of the proposed model on event detection. The dataset has
599 documents, as shown in Table 1, and the data sources contain
Newsgroups, Broadcast News, Broadcast Conversations, Weblog,
Usenet, and Conversation Telephone Speech, respectively, in dif-
ferent folders. There are several annotation statuses including 1P,
DUAL, ADJ, NORM and we adopt NORM, where the texts have
been calibrated and normalized.

This dataset has 33 event subtypes and we regard the event
detection as a multi-label classification problem of 34 class-es, added
None (non-event type) as a special class in this paper.

In the experiments, the validation set has 30 documents ran-
domly extracted from different genres, the test set has 40 documents
extracted from Broadcast News and the training set contains the
remained 529 documents. All the data preprocessing and evaluation
criteria follow those in [8].

We tune the hyper-parameters on the validation set. The di-
mension of the hidden layers corresponding to GRU¢yen: and
GRU¢yent in the event detection model are set to 300. Thus the
output size of the hidden state r; ; is 300 x 2 = 600. The dimension
of the word embedding is also 300, and the dimension of the entity
type embedding is 50. In addition, we utilize the pre-trained word

embedding in the auto-encoder for initialization. For entity types,
their embeddings are randomly initialized.

In the training process, we apply the Stochastic Gradient De-
scent (SGD) over shuffled mini-batched and use dropout [13] for
regularization, where the batch size and the dropout rate is set to
80 and 0.5, respectively.

3.1.2 Baselines.
In the experiment, we take four existing methods as our base-
lines.

o Cross-event (2010) [16]: This method proposes an artificially
constructed document-level feature to improve the perfor-
mance of event extraction, which learns relations among
event types from the training corpus and further helps pre-
dict the occurrence of events.

e Sentence-level (2011) [9]: This is a feature-based model for
event detection, which regards entity type consistency as a
key feature to predict event mentions and uses its reason-
ing mechanism to improve traditional event detection at
sentence level.

e JRNN (2016) [20]: This is a representation-based model, which

proposes a joint framework based on bidirectional recurrent

neural networks and exploits the inter-dependency between
event triggers and argument roles via discrete structures.

DLRNN (2017) [7]: This is also a representation-based model,

which automatically extracts cross-sentence clues via learn-

ing document embeddings with the unsupervised PV-DM
model to improve sentence-level event detection.

In this paper, precision, recall and F1-measure are used to eval-
uate the performance of the model on the event detection task,
which indicate the correctness, completeness and comprehensive
performance of the model respectively. Therefore, we mainly focus
on F1- measure. Precision, recall and F1-measure are specifically
defined as follows:



WI°19, October 14-17, 2019, Thessaloniki, Greece

Table 2: Performance comparison between the SAE-CEED
model and other baselines on the ACE-2005 English dataset.

Model Precision Recall F1
Sentence-level(2011) 67.6 535  59.7
JRNN(2016) 66.0 73.0  69.3
Cross-event(2010) 68.7 68.9  68.8
DLRNN (2017) 77.2 649 705
SAE-CEED 68.1 74.2 71.0
o TruePositive
Precision = — —,
TruePositive + FalsePositive
TruePositive
Recall = — —, 7)
TruePositive + FalseNegative
2 X Precision X Recall
F1 — Measure =

Precision + Recall

where TrusePositive is the number of sentences with labeled events,
which are correctly extracted and identified, FalsePositive is the
number of sentences without labeled events, but they are extracted,
and FalseNegative is the number of sentences with labeled events,
which are not correctly extracted.

3.1.3  Performance comparison on event detection.

Table 2 presents performance comparison between different
event detection methods on ACE-2005. We can see that our pro-
posed model outperforms the existing methods in terms of both
recall and F1-measure, while its precision is comparable to that
of others. The better performance of SAE-CEED can be explained
by the following reasons: (1) Compared with the methods only
focusing on sentence-level information, including feature-based
methods, Sentence-level [9], and the representation-based method,
JRNN [20], our method employs context information to enhance
its capability of identifying trigger words. Therefore, all the three
evaluation metrics have better performance; (2) Compared with
the methods exploiting information beyond sentence level, such as
the feature-based method, Cross-event [16], and the representation-
based method, DLRNN [7], out method can not only automatically
capture rich context information via an end-to-end Bi-GRU based
model without manually designed rules, but also learn event detec-
tion oriented embeddings of the contexts through the fine-tuning
process in the training of event detection. On the other hand, the
experimental results show that the pre-training based on unlabeled
English Wikipedia data can effectively improve the performance of
our model in the news field, which reflects the better robustness.

3.2 Auto-Encoder Pre-Training

3.2.1 Datasets and settings.

English Wikipedia is the English version of this free online en-
cyclopedia, which was founded on January 15, 2001 and is its first
version. It is the most widely published version of Wikipedia in all
languages. As of March 20, 2019, there were 5,826,555 articles in
English Wikipedia, and the detailed statistics is presented in Ta-
ble 3. English Wikipedia has a mechanism for assessing the quality
and importance of the article, which guarantees the reliability of
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Table 3: The statistics of English Wikipedia.

Number of user | Number of articles | Number of files Number of
accounts administrators
35,939,162 5,826,555 882,475 1,183

the corpus while satisfying the various criteria. Therefore, we use
articles in English Wikipedia to pre-train the auto-encoder.

We build the training set and the validation set by randomly sam-
pling segments of length L, where L is a hyper-parameter. As afore-
said, the recurrent neural network may suffer from the long-term
dependency problem if L is too large. But, the segment embedding
may lack of semantic information, if L is set too short. Therefore, we
have calculated the document length distribution of the ACE-2005
English dataset, as shown in Figure 5, which shows that about 70%
of the documents is less than 600 words. We set the segment length
to 70, 100, 150, and 300 for training, and use the trained encoder to
extract the preceding and succeeding context feature of length 140,
200, 300 and 600, respectively. The training set contains 337,944
segments and the validation set contains 36,263 segments.

/counts  The Lengths of Documents in the ACE-2005 English Dataset
70

60

200 400 600 800 1000 1200 1400  1600/words

Figure 5: The statistics on document length of the ACE-2005
English dataset.

We tune the hyper-parameters on the validation set. The dimen-
sions of the hidden layers corresponding to GRU,,—
coder1, CRUencoder2: GRUencoders and GRUgecoder are set to 600,
600, 300 and 300, respectively. The word dictionary contains 30,000
words with the highest frequency.

There are two main evaluation indicators for the auto-encoder.
The first one is the loss function J(index, z) during training, which
measures the difference between the predicted vector and the actual
vector. The magnitude of loss reflects the convergence of the model.
The second one is the accuracy in reconstructing segments. A word
wj is considered to be correctly restored when index} predicted by
the decoder is the same as the original word index. Here, the accu-
racy is defined as the ratio of the number of correctly reconstructed
words to the total number of words in the training set.

3.2.2 Impacts of segment length on the auto-encoder.
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Table 4: The performance of auto-encoder based pre-
training with different length of segments on English
Wikipedia.

Length of Segment | Loss Accuracy
70 3.64 35.91%
100 3.59 36.47%
150 343 37.82%
300 3.51 36.22%

Table 4 shows the value of loss function and classification ac-
curacy of the auto-encoder of different segment lengths on the
validation set. We can see that as the length of segments increases
from 70 to 150, both measurements are gradually improved; How-
ever, when the length of the segment further increases to 300, the
performance of the model is degraded. This is because that the GRU
based model has a limited ability to reconstructing too long texts.
It is thus not suggested to choose a segment that is very long for
training.

In order to verify the validity of the encoder, we calculate the
cosine similarity between the last hidden layer state, which is con-
sidered as the reconstructed word embedding, as shown in Table 5.

»

It can be found that “cat” and “dog”, “apple” and “banana”, “king”
and “queen”, “beijing” and “China” have the highest similarity, re-
spectively, which reflects that the reconstructed word embeddings
basically contain the correct semantic information. In other words,
the distributed representation of context learned by the encoder
effectively models the semantic and order information of the seg-
ment.

Table 6 presents the performance of the proposed model us-
ing context representations pre-trained with segments of different
lengths. We can see that the performance of event detection is
significantly and positively correlated with that of the pre-trained
auto-encoder, and particularly, the best F1-measure is achieved
when the segment length is 150.

4 CONCLUSIONS

As one of the hottest research branches of artificial intelligence,
knowledge graph has attracted tremendous attention from diversi-
fied areas, including vertical search, intelligent question answering,
disaster management and relief, disease diagnosis etc. Particularly,
event-centric knowledge graphes have gained successful applica-
tion in such fields as finance and disaster management. In this
paper, we investigated the problem of event detection from texts,
which is fundamental for constructing event-centric knowledge
graphes. Specifically, we proposed a semi-supervised auto-encoder
based model, called SAE-CEED, to learn context information for en-
hancing event detection. Moreover, we used large-scale unlabeled
text data to pre-train the auto-encoder for keeping both the seman-
tic and order information in segment embeddings, and fine-tuned
the auto-encoder to learn the context embedding in the training
process of event detection, which can learn the event-oriented dis-
tributed representation. In order to prove the effectiveness of the
proposed method, we systematically conducted a series of exper-
iments on the ACE-2005 dataset. Experimental results show that
the proposed method is better than both the sentence-level models
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and the models exploiting information beyond sentence level in
terms of recall and F1-measure. Meanwhile, we verified the impact
of segments of different lengths in pre-training the auto-encoder
on event detection.

In this paper, we search the better length of segments by exper-
iments on the validation set. In the future, we may improve the
SAE-CEED model to automatically determine the optimal length
of segments.
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