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ABSTRACT
With the overwhelming popularity of Knowledge Graphs (KGs),
researchers have poured attention to link prediction to complete
KGs for a long time. However, they mainly focus on promoting
the performance on binary relational data, where facts are usually
represented as triples in the form of (head entity, relation, tail
entity). In practice, n-ary relational facts are also ubiquitous. When
encountering such facts, existing studies usually decompose them
into triples by introducing a multitude of auxiliary virtual entities
and additional triples. These conversions result in the complexity
of carrying out link prediction concerning more than two arities. It
has even proven that they may cause loss of structural information.
To overcome these problems, in this paper, without decomposition,
we represent each n-ary relational fact as a set of its role-value
pairs. We further propose a method to conduct Link Prediction on
N-ary relational data, thus called NaLP, which explicitly models the
relatedness of all the role-value pairs in the same n-ary relational
fact. Experimental results validate the effectiveness and merits of
the proposed NaLP method.
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• Computing methodologies → Reasoning about belief and
knowledge.

KEYWORDS
Link prediction; n-ary relational fact; knowledge graph; neural
network

ACM Reference Format:
Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. 2019. Link
Prediction on N-ary Relational Data. In Proceedings of the 2019 World Wide

∗Corresponding author: Xiaolong Jin (jinxiaolong@ict.ac.cn)

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313414

Web Conference (WWW ’19), May 13–17, 2019, San Francisco, CA, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3308558.3313414

1 INTRODUCTION
Since Google announced Knowledge Graph (KG) in 20121, KG
has been increasingly popular in these years. And link predic-
tion on KG has caught much attention for a long time, to com-
plete KG and further promote KG based applications. Usually, a KG
is represented as a set of binary relational triples in the form of
(head entity, relation, tail entity), where n-ary relational facts are
decomposed into multiple triples via introducing virtual entities,
such as the CompoundValue Type (CVT) entities in Freebase [1]. Ac-
tually, n-ary relational facts are not in theminority, as an example, in
Freebase, more than 1

3 of its entities are involved in n-ary relational
facts [31]. Based on these public KGs of binary form, researchers
have developed numerous methods for link prediction [21, 29],
which includes the tasks of head entity prediction, relation predic-
tion and tail entity prediction. The popular tensor/matrix based
methods [4, 17, 20, 23, 27, 28] and translation based ones [2, 11–
13, 15, 16, 30, 32] have been developed and improved for so long.
They view triples in a KG as entries in a tensor/matrix, or relational
translations between head entities and tail entities. Relatively newly
developed neural network based methods [3, 5, 7, 19, 25, 26] use
neural network to learn the information propagation of the entities
across the edges (relations) of a KG and integrate existing effective
methods, or use neural network to model triples directly. Regardless
of these various methods, link prediction is essentially reduced to
scoring triples by designing different score functions and casted
into a ranking/classification task, with valid triples preceding in-
valid ones in terms of their scores or having different labels from
invalid ones.

However, manipulating n-ary relational facts into triples has
some deficiencies. Firstly, it makes link prediction involving more
than two arities need to consider many triples. Since existing link
prediction methods on triples, like the above methods, usually
model triples one by one individually and correspondingly conduct
link prediction on only a single triple each time, it is intricate to

1https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-
not.html
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carry out link prediction involving more than one triple. Secondly,
there is a loss of structural information in some of the conversions
from n-ary relational facts to triples [31], which may lead to inaccu-
rate link prediction. Thirdly, the added virtual entities along with
the corresponding triples bring in more parameters to be learned.

With these considerations in mind, in this paper, each n-ary
relational fact is represented as a set of its role-value pairs instead
of being converted into multiple triples. Hence, no additional en-
tities and data are introduced, and all the structural information
is retained. Then, we propose a method to handle link prediction
on n-ary relational data. Specifically, in this paper, link prediction
on n-ary relational data is to predict the missing value or role of a
relational fact.

Recently, there are also a few studies for link prediction on n-ary
relational data directly. In m-TransH [31], a relation (binary or n-ary
relation) is defined by the mappings from a sequence of roles corre-
sponding to this type of relation, to their values. Each specific map-
ping is an instance of this relation. Then, a translation based method
is proposed to model these instances. However, m-TransH does not
take the relatedness of the components in the same n-ary relational
fact into consideration. RAE [34] further improves m-TransH by
complementally modeling the relatedness of values, i.e., the likeli-
hood that two values co-participate in a common instance. Although
RAE achieves favorable performance, it does not consider the roles
explicitly when evaluating the above likelihood. Actually, under
different sequences of roles (corresponding to different relations),
the relatedness of two values is greatly different. For example, under
the role sequence (person,award,point in time, toдether with) (in
this paper, the examples including the role names are all derived
from the raw data in Wikidata2),Marie Curie andHenri Becquerel
are more related than under the role sequence (person, spouse, start
time, end time,place o f marriaдe ), since they won Nobel Prize in
Physics in 1903 together. To address these problems, our method
explicitly models the relatedness of the role-value pairs involved in
the same n-ary relational fact. The above example also elucidates
its necessity.

In general, the main contributions of this paper can be summa-
rized as follows:
• We advocate a representation form for n-ary relational facts,
which represents each n-ary relational fact as a set of its
role-value pairs.
• We propose a link prediction method NaLP on n-ary rela-
tional data, which captures the relatedness of the role-value
pairs in the same n-ary relational fact explicitly.
• Experimental results and further analyses testify the effec-
tiveness and superiority of the proposed NaLP method.

In addition, as publicly available n-ary relational datasets are
limited, we build a practical one WikiPeople based on the raw data
in Wikidata, which is available on github3 for further research.

2 RELATEDWORKS
According to the fact type that link prediction focuses on, link
prediction and its methods can be divided into two categories, i.e.,

2https://www.wikidata.org/wiki/Wikidata:Main_Page
3https://github.com/gsp2014/WikiPeople

link prediction on binary relational data and link prediction on
n-ary relational data.

2.1 Link Prediction on Binary Relational Data
The rapid development of KG has triggered the spring up of a great
many methods, including tensor/matrix based methods, translation
based methods, and neural network based ones, for link prediction
on binary relational data.

Among tensor/matrix based methods [4, 17, 20, 23, 27, 28], the
well-known one, RESCAL [23], views a KG as a three-way tensor,
where each way corresponds to head entities, relations and tail enti-
ties, respectively. And the entry corresponds to the score indicating
the validity of the triple formed by the values of the thee ways. If a
triple (h, r , t ) is observed in the KG, the entry is set to 1, otherwise,
set to 0. Through minimizing the reconstruction error of the tensor,
the embeddings of entities and relations are learned. Then, the
reconstructed tensor from the learned embeddings is used to con-
duct link prediction, with triples corresponding to entries of high
score as valid ones. Similarly, a matrix factorization based method,
ComplEx [28], constructs a matrix for each relation, which is de-
composed and optimized via minimizing the reconstruction error
like RESCAL to learn the embeddings. Differently, complex values
are used to define the embeddings, so as to deal with antisymmetric
relations effectively.

Translation based methods are derived from the simple but effec-
tive method TransE [2]. Its popular translation assumption advo-
cates that valid triples can be viewed as relational translation oper-
ations from head entities to tail entities. Based on this assumption,
different types of translations and accordingly different score func-
tions measuring the similarity between the relational translation
results of head entities and the target tail entities are defined [2, 11–
13, 15, 16, 30, 32]. The embeddings of entities and relations are
then learned via minimizing score function based loss, which en-
courages valid triples to have much larger scores than invalid ones.
Among these methods, the seminal one, TransE, performs transla-
tion operations in a shared space of entities and relations. Further,
TransH [30] thinks translation operations should be conducted in
relation-specific hyperplanes. Thus, it relates each relation with a
hyperplane. Then, entities are projected into the hyperplanes of
relations before translations.

Inspired by the excellent performance of neural network in
various applications, it has been introduced into link prediction
on binary relational data and achieved extremely promising re-
sults [3, 5, 7, 19, 25, 26]. Among them, the R-GCN method [25]
introduces relational graph convolutional networks as its encoder
to get the embeddings of entities, and uses the existing method [33]
as its decoder to compute the scores of triples with the embed-
dings of entities from the encoder and the embeddings of relations
randomly initialized. Differently, ConvE [3] models entity predic-
tion directly, which reshapes and concatenates the embeddings of
the known entity and relation to apply two-dimensional convo-
lution on the concatenated matrix. Then, after a fully connected
projection, it generates the prediction entity. By comparing it with
the target entity, ConvE minimizes a binary cross-entropy loss.
SENN [7] integrates the prediction tasks of head entities, relations
and tail entities in a unified neural network framework based on
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shared embeddings. Fully connected layers are applied to model
the prediction processes. ConvKB [19] represents each triple as a
three-column matrix, where each column vector corresponds to an
element of the triple. This matrix is fed into a convolution layer
to generate different feature maps, which are then concatenated
into a single feature vector representing the triple. After passing it
to a fully connected layer, ConvKB obtains a score indicating the
validity of the triple.

2.2 Link Prediction on N-ary Relational Data
As n-ary relational facts are complicated and usually difficult to deal
with, most of existing studies convert them into multiple triples,
with the introduction of virtual entities and additional triples [1],
and research works for link prediction on n-ary relational data
directly are relatively much scarcer and newer.

Based on the link prediction method TransH [30] on binary re-
lational data, m-TransH [31] is proposed to generalize it to n-ary
relational data. The m-TransH method presents a mathematical
definition of relations (including binary and n-ary relations) as the
mappings from sequences of roles to their values. Each mapping is
an instance of the corresponding relation. Then, the score function
of an instance is defined by the weighted sum of the projection
results from its values to its relation hyperplane, where the weights
are the real numbers projected from its roles. RAE [34] further
considers the relatedness of values, i.e., the likelihood that two
values co-participate in a common instance, and adds this relat-
edness loss with a weighted hyper-parameter to the embedding
loss of m-TransH. Although with the additional modeling of the
relatedness of values, RAE outperforms m-TransH, it does not look
into the roles when computing the relatedness. Since roles are also
a fundamental part of instances, taking them into consideration
may make a difference as illustrated afore.

3 THE NALP METHOD
In this paper, link prediction on n-ary relational data is transformed
into estimating whether a relational fact is valid and then casted
into a classification task.

In this section, we first demonstrate our representation form of
n-ary relational facts, then outline the framework of the proposed
NaLP method and elaborate its two key components, respectively.
Subsequently, some characteristics of NaLP are discussed. And the
details of model training are introduced in the following part.

3.1 The Representation of N-ary Relational
Facts

In this paper, we represent each n-ary relational fact as a set of its
role-value pairs. As an example, the representation of the fact that
Marie Curie receivedWillard Gibbs Award , is as follows:

{person : Marie Curie,award :Willard Gibbs Award }.

It is an n-ary relational fact of arity 2, i.e., a binary relational fact,
as it has two role-value pairs.

And the facts where some roles have more than one value are
represented similarly. For example, the representation of the fact
thatMarie Curie received Nobel Prize in Physics in 1903 together

with Henri Becquerel and Pierre Curie , is as follows:

{person :Marie Curie,award :Nobel Prize in Physics,point in time :
1903, toдether with :Henri Becquerel , toдether with :Pierre Curie}.

It is an n-ary relational fact of arity 5, with 5 role-value pairs.
Formally, given an n-ary relational fact with n roles, and each

role ri havingmi values (i = 1, 2, . . . ,n), the representation of this
n-ary relational fact is the following set of role-value pairs:

{r1 : v1, . . . , r1 : vm1 , r2 : vm1+1, . . . , r2 : vm1+m2 , . . . ,

rn : vm1+m2+· · ·+mn−1+1, . . . , rn : vm1+m2+· · ·+mn }.

It is an n-ary relational fact of arity (m1 +m2 + · · · +mn ).

3.2 The Framework of NaLP
Then, we propose a link predictionmethod NaLP on n-ary relational
data. It is designed based on two considerations. On one hand, a
role and its value are tightly linked to each other, thus should be
bound together. On the other hand, as mentioned in the beginning
of Section 3, we aim to judge the validity of a relational fact, i.e.,
a set of role-value pairs. That is, for a set of role-value pairs, we
need to determine whether it is able to form a valid relational
fact. Intuitively, all the role-value pairs of a valid relational fact
are closely related. And if all the role-value pairs from a set are
closely related, then, we assume that this set of role-value pairs
has high probability to constitute a valid relational fact. With these
considerations in mind, the framework of NaLP is designed as
illustrated in Figure 1, which consists of two key components, role-
value pair embedding and relatedness evaluation. For clarity, in the
figure, we only exemplify one n-ary relational fact in the following
form:

Rel = {r1 : v1, r2 : v2, . . . , rm : vm },

wherem is the arity of the relational fact Rel . The role set of Rel
is denoted as RRel = {r1, r2, . . . , rm } and ri may be the same to r j
(i, j = 1, 2, . . . ,m, i , j), as demonstrated in Section 3.1; the value
set of Rel is denoted asVRel = {v1,v2, . . . ,vm }. In what follows, as
an example, we illustrate the learning details of this n-ary relational
fact.

For the given relational fact Rel , the embeddings of its roles in
RRel and values in VRel are looked up from the embedding matri-
ces MR ∈ R

|R |×k of roles and MV ∈ R
|V |×k of values, respectively,

where R is the set of all the roles on dataset; V is the set of all the
values; k is the latent dimension of the vector space. Following the
convention, in what follows, the embeddings are denoted with the
same letters but in boldface. As depicted in Figure 1, after passing
these embeddings to the role-value pair embedding component, we
get the embedding matrix of them role-value pairs, i.e., Rel (see Sec-
tion 3.3). This resulting embedding matrix is fed into the relatedness
evaluation component to compute the pair-wise relatedness of all
the role-value pairs, then estimate their overall relatedness, which
is used to obtain the evaluation score (see Section 3.4). Particularly,
this framework equips NaLP with the ability to be permutation-
invariant to the input order of the role-value pairs and deal with
relational facts of different arities (see Section 3.5). Subsequently,
the evaluation score is used to generate loss (see Section 3.6).
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Figure 1: The framework of the proposed NaLP method.

3.3 Role-Value Pair Embedding
The role-value pair embedding component aims to obtain the em-
beddings of the input role-value pairs. This process contains two
sub-processes, i.e., convolution and concatenation, corresponding
to “convolute” and “concat” in Figure 1, respectively.

3.3.1 “convolute”. As presented in Figure 1, before convolution,
the embeddings of the roles ri and the corresponding values vi
(i = 1, 2, . . . ,m) in the relational fact Rel are concatenated, and
form a matrix of dimension m × 2k , where each role-value pair
makes up a row.

Then, this concatenated matrix is passed to the convolution
with filter set Ω of nf filters. To capture the features of the role-
value pairs, the dimensions of the filters are all set to 1 × 2k . After
convolution, we get nf results of dimensionm. And Rectified Liner
Units (ReLU) [18] is applied to these results to getnf feature vectors.

3.3.2 “concat”. We concatenate the nf feature vectors to form a
matrix of dimensionm ×nf . Then, this matrix can be treated as the
embeddings of them role-value pairs, and each row corresponds to
the embedding of one role-value pair. Specifically, each entry of a
row encodes the feature of this dimension.

Formally, the embedding matrixMRel ∈ R
m×nf of the role-value

pairs, i.e., the relational fact Rel is defined as:

MRel = concat (ϒ(concat(RRel,VRel) ∗ Ω)) , (1)

where ϒ is the ReLU function [18], i.e., ϒ(x ) = max(0,x ); ∗ denotes
the convolution operator; concat(RRel,VRel) is the aforementioned
embedding concatenation process of the role-value pairs before
convolution.

3.4 Relatedness Evaluation
This component computes the pair-wise relatedness of all the input
role-value pairs, estimates their overall relatedness and obtains the
evaluation score, corresponding to “g-FCN”, “min” and “f-FCN” in
Figure 1, respectively. Before introducing these sub-processes, let’s
see the principle behind this component.

3.4.1 The Principle. The principle of its design goes deep into
determining whether a set of role-value pairs is able to form a
valid relational fact. As demonstrated in Section 3.2, this is reduced
to computing the overall relatedness of all the role-value pairs in

the set. However, the overall relatedness of a set with more than
two objects is intricate to measure. When the number of objects is
large, corresponding to relational fact of high arity, the evaluation is
further complicated. Whereas, computing the relatedness between
two objects is relatively much simpler. Thus, how to determine the
tricky overall relatedness via the simple relatedness between the
role-value pairs?

Straightforwardly, if all the role-value pairs form a closely re-
lated set, i.e., a valid relational fact, then every two pairs from
the set are greatly related. Thus, for any two pairs, the values of
their relatedness feature vector, measuring the relatedness in many
different views, are all expected to be sufficiently large. That is,
for each feature dimension, the minimum over this dimension of
every two pairs is not allowed to be too small. Hence, based on this
observation, we apply element-wise minimizing over the pair-wise
relatedness of all the role-value pairs to approximately evaluate
their overall relatedness. Accordingly, the relatedness evaluation
component is designed to contain the computation of the related-
ness between the role-value pairs and the overall relatedness of all
the role-value pairs, before estimating the final evaluation score.

3.4.2 “g-FCN”. The relatedness between the role-value pairs is
captured via a Fully Connected Network (FCN) with ReLU as its ac-
tivation function. In particular, the widely used FCN is also adopted
to infer the ways in which two objects are related and achieves
marvelous performance in computer vision [8, 24]. In this paper, it
turns out that a one-layer FCN already works very well. Thus, only
a fully connected layer is adopted in this sub-process.

Concretely, the embeddings of any two role-value pairs are con-
catenated to form a vector of dimension 2nf , and then fed into
the fully connected layer with ngFCN nodes. The resulting vector
of dimension ngFCN is the relatedness feature vector with entries
greater than or equal to 0, each dimension of which indicates the
relatedness of the input two role-value pairs in some respect.

3.4.3 “min”. As discussed in Section 3.4.1, the overall relatedness
of all the role-value pairs is simply approximated by element-wise
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minimizing over their pair-wise relatedness. Thus, the overall relat-
edness RRel of Rel is defined as:

RRel=minmi, j=1

(
g-FCN

(
concat([MRel]i , [MRel]j )

) )
=minmi, j=1ϒ

(
concat([MRel]i , [MRel]j )WgFCN + bgFCN

)
,

(2)

where min(·) is the element-wise minimizing function; [x]i is the
i-th entry of x; WgFCN of dimension 2nf × ngFCN and bgFCN of
dimension ngFCN are the weight matrix and bias vector of g-FCN,
respectively. The resulting RRel is a vector of dimension ngFCN,
with each entry implying the degree of the overall relatedness in
terms of certain feature corresponding to that dimension.

3.4.4 “f-FCN”. Then, RRel is used to generate the evaluation score.
A one-layer FCN is also found to be sufficient and applied in this
sub-process. In this way, the evaluation score s (Rel ) ofRel is defined
as:

s (Rel ) = f-FCN(RRel)
= RRelWfFCN + bfFCN,

(3)

where WfFCN of dimension ngFCN × 1 and bfFCN are the weight
matrix and bias variable of f-FCN, respectively.

3.5 Look into NaLP
Note that, in m-TransH [31] and RAE [34], all relations along with
their role sequences are predefined, and the inputs of the models
are the instances of these relations, i.e., the sequences of ordered
values. Since the i-th value of an input instance corresponds to the
i-th role of its relation, the order of the input values are usually
not allowed to be changed randomly. Whereas, each input of the
proposed NaLP method is a set of role-value pairs, corresponding
to a relational fact. Thus, the order of the objects in each input
matters in m-TransH and RAE, while it has no impact on NaLP.
Actually, NaLP is permutation-invariant to the input order of the
role-value pairs and is able to cope with relational facts of different
arities. Let’s look into these two characteristics.

3.5.1 A Simple Explanation of Permutation Invariance. Suppose
that the role-value pairs of Rel are input into NaLP in the original
order with the indexes from 1 to m, and a permutation ρ to the
indexes results in a new order with the indexes from ρ (1) to ρ (m).

On these grounds, we simply explain the permutation invariance
as follows:
• In the process of role-value pair embedding, the embedding
matrix Mρ (Rel) of the permutated role-value pairs ρ (Rel ) is
the permutation of the original MRel, with the ρ (i )-th row
ofMRel placed in the i-th row ofMρ (Rel) , i.e.,

[Mρ (Rel)]i = [MRel]ρ (i ) . (4)

• In the process of relatedness evaluation, the overall related-
ness Rρ (Rel) of ρ (Rel ) is as follows:

Rρ (Rel)

= minmi, j=1

(
g-FCN

(
concat([Mρ (Rel)]i , [Mρ (Rel)]j )

) )
= minmi, j=1ϒ

(
concat([Mρ (Rel)]i , [Mρ (Rel)]j )WgFCN+bgFCN

)
= minmi, j=1ϒ

(
concat([MRel]ρ (i ) , [MRel]ρ (j ) )WgFCN+bgFCN

)
.

(5)

That is, we obtain m ×m relatedness results, the same to
those in the original version, but with the order of the results
changed. Since min(·) is permutation-equivariant, we have:

Rρ (Rel) = RRel. (6)

• Then, the evaluation score s (ρ (Rel )) of ρ (Rel ) is as follows:

s (ρ (Rel )) = f-FCN(Rρ (Rel) )
= Rρ (Rel)WfFCN + bfFCN

= RRelWfFCN + bfFCN

= s (Rel ).

(7)

• Therefore, NaLP is permutation-invariant to the input order
of the role-value pairs.

3.5.2 Handling Relational Facts of Different Arities. Suppose that
two batches of relational facts of arities m and m′, respectively,
are input into NaLP subsequently. In the process of role-value
pair embedding, they result in the embedding matrices of the role-
value pairs with m and m′ rows, respectively. In the process of
relatedness evaluation, correspondingly, we obtainm ×m andm′ ×
m′ relatedness results. As min(·) in Equation (2) returns one vector
among all these results of numberm ×m orm′ ×m′, the number
of results makes no difference. Thus, NaLP is able to deal with
relational facts of different arities.

3.6 Model Training
In the following, we present the loss function and the training
process of the proposed NaLP method in detail.

3.6.1 The Loss Function. As above described, we obtain the evalu-
ation score s (Rel ) of Rel . Following ComplEx [28], the loss of Rel
is defined as:

L (Rel ) = log
(
1 + e−IRel s (Rel )

)
, (8)

where IRel = 1, if Rel is a valid relational fact, and IRel = −1,
otherwise.

It is straightforward to optimize NaLP with the standard back-
propagation. The popular stochastic optimizationmethodAdam [14]
with hyper-parameter learning rate λ is used as the optimizer in
this paper.

3.6.2 The Training Process. Algorithm 1 presents the training pro-
cess of the NaLP method.

Before training, the training set is reorganized into several train-
ing groups, each of which keeps the relational facts of the same arity
(Line 1). In order to guarantee that NaLP masters basic relational
facts of low arities before learning relational facts of high arities, we
sort the above resulting groups by their arities in ascending order
(Line 2). Similar operations are applied to train model on the path
queries of length 1 and then all the path queries [9]. Subsequently,
the embedding matrices MR and MV are randomly initialized from
uniform distribution, respectively, with − 1√

k
as minimum and 1√

k
as maximum; truncated normal distribution with 0.0 as mean and
0.1 as standard deviation is adopted as initializer to initialize all the
filters in Ω [19]; WgFCN and WfFCN are randomly initialized via
xavier initializer [6], respectively; bgFCN and bfFCN are randomly
initialized with zeros (Line 3).
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Algorithm 1 The training process of the NaLP method.
Input: Training setT , role setR, value setV , max number of epochs

nepoch, embedding dimension k , batch size β , number of filters
nf in Ω, the hyper-parameter ngFCN ofWgFCN.

Output: WR andWV, as well as the parameters of NaLP.
1: T ← group T by the arities of the facts;
2: T ← sort the groups in T by their arities in ascending order;
3: InitializeMR,MV ← uniform(− 1√

k
, 1√

k
);

Ω ← truncated_normal(0.0, 0.1);
WgFCN,WfFCN ← xavier_initializer();
bgFCN,bfFCN ← zeros_initializer();

4: repeat
5: for each group T ′ ∈ T do

6: for j = 1 to
⌈
|T ′ |
β

⌉
do

7: S+ ← sample(T ′, β ); //sample β training facts fromT ′

8: S- ← neg_sample(S+, β ); //obtain β negative samples
9: S ← S+ ∪ S-;
10: loss ← 0;
11: for ∀Rel ∈ S do
12: RRel ← look-up(MR,RRel ); //look up RRel
13: VRel ← look-up(MV,VRel ); //look up VRel
14: MRel ← get the embedding matrix of the role-value

pairs following Equation (1);
15: RRel ← compute the overll relatedness of Rel follow-

ing Equation (2);
16: s (Rel ) ← generate the evaluation score following

Equation (3);
17: L (Rel ) ← compute the loss of Rel following Equa-

tion (8);
18: loss ← loss + L (Rel );
19: end for
20: Update the embeddings of the roles and values in S (i.e.,

the related rows ofMR andMV), the filters in Ω,WgFCN,
WfFCN, bgFCN, as well as bfFCN via ▽loss;

21: end for
22: end for
23: until the evaluation result on the validation set drops continu-

ously or this process has been iterated for nepoch times

During training, Lines 5-22 are repeated until the evaluation
result on the validation set drops continuously or reaching the max
number of epochs nepoch. In this paper, nepoch is set to 5000. In
each epoch,

⌈
|T ′ |
β

⌉
batches of training facts are sampled from each

training groupT ′, where ⌈·⌉ is the ceiling function. For each selected
training fact, similar to the negative sampling method adopted in
TransE [2], we randomly replace one of its values with a random
value that the corresponding role holds, or one of its roles is replaced
with a relatively lower probability, to obtain a negative sample not
contained in the dataset (Line 8). Thereafter, the selected training
facts and their negative samples are used to train the model. For
each such relational fact Rel , the embeddings of its roles and values
are looked up fromMR andMV, respectively (Lines 12 and 13). Then,
they are fed into the role-value pair embedding component to obtain
the embeddingmatrix of the role-value pairs (Line 14). After passing

this embedding matrix to the relatedness evaluation component,
we obtain the overall relatedness RRel and the evaluation score
s (Rel ) of Rel (Lines 15 and 16). Subsequently, based on s (Rel ), loss
is computed and added to the loss of the current batch (Lines 17 and
18). Finally, parameter update is performed in batch mode (Line 20).

Specifically, batch normalization [10] is applied after convolu-
tion in the role-value pair embedding component to stabilize and
accelerate the training process.

4 EXPERIMENTS
In this section, we evaluate the proposed NaLP method through
link prediction. Then, overall relatedness analysis is conducted to
have a better understanding of NaLP. And some important hyper-
parameters are analyzed their impacts on the robustness of NaLP.
Before elaborating these experiments, we will first introduce the
datasets and metrics, as well as the baselines and experimental
settings.

4.1 Datasets and Metrics
4.1.1 Datasets. We conduct our experiments on two datasets. The
first one is the public n-ary relational dataset JF17K, which is derived
from the popular KG Freebase [1]. All the facts in it are in good
quality with the role sequences equal to the predefined standard
ones and the corresponding values existing and known. This is
usually not the case. Andwe build a relativelymore practical dataset
WikiPeople, which is also our second experimental dataset. It is
constructed as follows:

• We download the Wikidata dump4 and extract the facts
concerning entities of type human.
• Then, these facts are further denoised. For example, facts
containing element related to image are filtered out, and
facts containing element in {unknown value,no values} are
removed.
• Subsequently, we select the subsets of elements which have
at least 30 mentions. The facts related to these elements are
kept. Further, each fact is parsed into a set of its role-value
pairs.
• The remaining facts are randomly split into training set,
validation set and test set by a proportion of 80%:10%:10%.

Actually, WikiPeople is relatively more flexible, where data in-
completeness, insert and update are universal. As an example, the
role sequence of some n-ary relational facts like “Marie Curie re-
ceived Nobel Prize in Chemistry in 1911” is [person, award, point
in time]. Then, the following similar facts in Wikidata5 correspond
to the three cases of data incompleteness, insert and update, respec-
tively:

• Marie Curie receivedWillard Gibbs Award .
• Marie Curie receivedMatteucci Medal in 1904 with Pierre
Curie .
Marie Curie received Nobel Prize in Physics in 1903 to-
gether with Henri Becquerel and Pierre Curie .
• Marie Curie received Davy Medal with Pierre Curie .

4https://archive.org/details/wikibase-wikidatawiki-20171120
5https://www.wikidata.org/wiki/Q7186
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In the first example, the value of the role point in time is unknown.
In the second examples, one or two new roles toдether with are in
need. In the third one, the value of the rolepoint in time is unknown
and a new role toдether with appears. Fortunately, our representa-
tion form of relational facts, which represents each relational fact
as a set of its role-value pairs, is able to cope with all these cases,
as exemplified in Section 3.1.

In real scenario, since there is possible missing in the process
of knowledge extraction, and knowledge also grows and updates
rapidly with many new contents flowing in, in the dataset derived
from one snapshot, the above phenomena of data incompleteness,
insert and update are inevitable. Thus, the developed WikiPeople
dataset is practical. Note that, in this paper, no special handling is
done to values from continuous domain (e.g., point in time, date
of birth, date of death, etc.), and they are tackled like other values
from discrete domain.

The detailed statistics of the two experimental datasets are dis-
played in Table 1, where #Relation, #Train, #Valid and #Test are
the sizes of the relation set, the training set, the validation set and
the test set, respectively. Here, #Relation is counted according to
RAE [34] to have a better understanding of the two datasets.

4.1.2 Metrics. We adopt the standardMean Reciprocal Rank (MRR)
andHits@N asmetrics for comparison. Thesemetrics are computed
in the similar way of binary dataset [2]. For each test fact, one of its
values/roles is removed and replaced by all the values/roles in V /R.
These corrupted facts are fed into NaLP to obtain the evaluation
scores. Then, these corrupted facts are sorted according to their
evaluation scores in descending order. The rank of the test fact is
finally stored. This whole procedure is repeated for all the other
values/roles of the test fact. Thus, MRR is the average of these
reciprocal ranks and Hits@N is the proportion of ranks which are
less than or equal toN . In this paper,N ∈ {1, 3, 10}, i.e., the results in
terms of Hits@1, Hits@3 and Hits@10 are reported. The traditional
mean rank (the average of these ranks) is not adopted as a metric,
since it is sensitive to outliers [22]. For these chosen metrics, the
higher the value of MRR/Hits@N , the better the performance of
the prediction.

In the test process, except the test fact, other corrupted facts that
may also be valid, i.e., exist in the training/validation/test set, are
discarded before sorting the facts.

4.2 Baselines and Experimental Settings
4.2.1 Baselines. Prior works for link prediction on n-ary rela-
tional data directly are scarce, and the state-of-the-art works are
m-TransH [31] and its enhanced version RAE [34]. Since RAE per-
forms better than its simplified version m-TransH, we only compare
the proposed NaLP method with RAE.

4.2.2 Experimental Settings. For the proposed NaLP method, the
reported results are given for the best set of hyper-parameters
after grid search on the following values, by reference to Con-
vKB [19]: The embedding dimension k ∈ {50, 100}, the batch size
β ∈ {128, 256}, the learning rate λ ∈ {5e−6, 1e−5, 5e−5, 1e−4, 5e−4,
1e−3}, the number of filters nf of the convolution in {50, 100, 200,
400, 500}, the hyper-parameter ngFCN of WgFCN in {50, 100, 200,
400, 500, 800, 1000, 1200}. The finally adopted optimal settings are:

k = 100, β = 128, λ = 5e−5, nf = 200, ngFCN = 1000 for JF17K,
and k = 100, β = 128, λ = 5e−5, nf = 200, ngFCN = 1200 for
WikiPeople.

For the RAE method, as it does not report the ranges of hyper-
parameters, we use the following ranges, by reference to its best
settings on JF17K: The embedding dimension k ∈ {50, 100}, the
margin ϵ of the first update step in {0.1, 0.5, 1.0, 2.0}, its weight
hyper-parameter w of the regularization term and its threshold
hyper-parameter δ in {1e−3, 0.01, 0.1}, the batch sizes of the three
update steps β1, β2 = β3 ∈ {128, 256, 512, 1000} (note that the sec-
ond and third update steps share the same batch size), their learn-
ing rates λ1, λ2, λ3 ∈ {5e−5, 5e−4, 5e−3, 1e−3, 1.5e−3}. The finally
adopted optimal settings are: k = 100, w = 0.1, δ = 1e−3, ϵ = 0.5,
β1 = 512, β2 = β3 = 128, λ1 = 5e−3, λ2 = 1.5e−3, λ3 = 5e−4 for
WikiPeople.

Note that, on WikiPeople, the best set of hyper-parameters are
determined according to the evaluation results on the validation
set in terms of MRR. And, on JF17K, since it lacks a validation set,
we tune the hyper-parameters on the test set.

Particularly, we reproduce the experimental results reported in
RAE on JF17K and compute more detailed results in terms of the
above fine-grained metrics. Note that, before running NaLP on
JF17K and RAE on WikiPeople, we need to transform the represen-
tation form of facts. It is effortless to transform each value sequence
in JF17K to a set of role-value pairs, by adding the correspond-
ing roles. To conduct the inverse transformation on WikiPeople,
relations along with their role sequences are defined in advance,
then only the value sequence of each fact is stored. Specifically,
a new relation is defined when the aforementioned case of data
incompleteness/insert/update appears.

4.3 Link Prediction
Link prediction on n-ary relational data has two tasks, i.e., value
prediction and role prediction.

4.3.1 Value Prediction. In order to illustrate the performance of
the proposed NaLP method on value prediction, we report the
experimental results compared with RAE in terms of all the fine-
grained metrics in Table 2.

From the results, it is clear that on both datasets, NaLP consis-
tently outperforms RAE in terms of all the four metrics, which
indicates the effectiveness and superiority of NaLP. Specifically, on
the dataset in good quality, i.e., JF17K, NaLP improves the perfor-
mance by 0.056 on MRR, 7.1% on Hits@1 and 5.7% on Hits@3. It
testifies the strength of NaLP considering the relatedness of role-
value pairs rather than only the relatedness of values in RAE. On the
relatively more practical dataset, i.e., WikiPeople, the superiority of
NaLP is significant. NaLP has considerable increase on all the four
metrics, especially 0.166 on MRR, 17.0% on Hits@1 and 18.2% on
Hits@3. It is not surprising, since NaLP is capable of better coping
with diverse data than RAE. Data incompleteness/insert/update,
which is ubiquitous on WikiPeople, is handled elegantly in NaLP,
while new relation is defined in RAE, which may lead to data spar-
sity, when the instances of the new relation are in small number.
Hence, it results in the relatively much worse performance of RAE
on WikiPeople. Moreover, the overall better results of NaLP re-
garding more fine-grained metrics, i.e., MRR, Hits@1 and Hits@3,
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Table 1: The statistics of the two datasets, JF17K and WikiPeople.

Dataset |V |
#Relation #T rain #Valid #T est

Binary N-ary Overall Binary N-ary Overall Binary N-ary Overall Binary N-ary Overall

JF17K 28,645 186 136 322 44,210 32,169 76,379 - - - 10,417 14,151 24,568
WikiPeople 47,765 150 557 707 270,179 35,546 305,725 33,845 4,378 38,223 33,890 4,391 38,281

Table 2: Experimental results of value prediction in terms of MRR and Hits@{1, 3, 10}.

Method JF17K WikiPeople
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RAE 0.310 0.219 0.334 0.504 0.172 0.102 0.182 0.320
NaLP 0.366 0.290 0.391 0.516 0.338 0.272 0.364 0.466

Table 3: Detailed experimental results of value prediction on binary and n-ary relational facts in terms of MRR and Hits@{1,
3, 10}.

Method
JF17K WikiPeople

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
Binary N-ary Binary N-ary Binary N-ary Binary N-ary Binary N-ary Binary N-ary Binary N-ary Binary N-ary

RAE 0.115 0.397 0.050 0.294 0.108 0.434 0.247 0.618 0.169 0.187 0.096 0.126 0.178 0.198 0.323 0.306
NaLP 0.118 0.477 0.058 0.394 0.121 0.512 0.246 0.637 0.351 0.283 0.291 0.187 0.374 0.322 0.465 0.471

Table 4: Experimental results of role prediction in terms of MRR and Hits@{1, 3, 10}.

Dataset MRR Hits@1 Hits@3 Hits@10
Binary N-ary Overall Binary N-ary Overall Binary N-ary Overall Binary N-ary Overall

JF17K 0.811 0.831 0.825 0.738 0.773 0.762 0.872 0.874 0.873 0.928 0.927 0.927
WikiPeople 0.728 0.763 0.735 0.578 0.670 0.595 0.856 0.835 0.852 0.941 0.922 0.938

elucidate that NaLP is more effective in picking exactly valid values
out.

To further elaborately evaluate the performance of NaLP on value
prediction, we group the test set into binary and n-ary categories
according to the arities of the facts. The detailed results on these
two categories are presented in Table 3.

It can be seen from Table 3 that on the two datasets, NaLP demon-
strates its advantage on both binary and n-ary categories. In more
detail, on JF17K, the performance gap between NaLP and RAE is
pronounced, especially in terms of MRR, Hits@1 and Hits@3. On
WikiPeople, RAE is more significantly left behind by a large margin.
These verify that NaLP is able to well deal with value prediction on
both binary and n-ary categories. Notably, on JF17K, both RAE and
NaLP perform much more poorly on binary category than on n-ary
category. To analyze the reason behind, we dig into the dataset. It
can be observed from Table 1 that JF17K has less n-ary relations.
Although, the ratios between the sizes of n-ary and binary cate-
gories on the relation set (136/186 = 0.731) and the training set
(32, 169/44, 210 = 0.728) are similar and less than 1, JF17K has much
more test facts on n-ary category and the above ratio is greater
than 1 (14, 151/10, 417 = 1.358). Since the test facts are used to
tune the hyper-parameters (due to the lack of validation set), the
relatively more facts on n-ary category in the test set encourage

the models to do prediction on n-ary category much better. Thus,
it is reasonable that both RAE and NaLP obtain worse performance
on binary category than on n-ary category in JF17K.

4.3.2 Role Prediction. As there is no other method that conducts
role prediction on n-ary relational data, and even RAE is deliber-
ately designed only for value prediction, we conduct role prediction
experiment only on the proposed NaLP method. Table 4 demon-
strates the detailed experimental results in terms of all the four
metrics on binary category, n-ary category and the whole dataset.
The experimental results also illustrate the power of NaLP. NaLP
achieves excellent results on all the metrics. We attribute this to
the reasonable modeling of role-value pairs. Thus, it not only en-
hances the performance of value prediction, but also benefits role
prediction.

4.4 Overall Relatedness Analysis
In the proposed NaLP method, the overall relatedness vector of a set
of role-value pairs, i.e., a relational fact, is the crucial intermediate
result. We conduct further analyses to dig deep into what it has
learned.

According to Section 3.2, a valid relational fact is expected to
have an overall relatedness vector of large value, while an invalid
relational fact is on the contrary. And how to evaluate the degree
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Figure 2: The visualization of the distinguishability results of Case-1 concerning the binary relational fact Fact-1: {son :
Michael Douдlas, f ather : Kirk Douдlas} (left) and Case-2 concerning the n-ary relational fact Fact-2: {person : Marie Curie,
award : Nobel Prize in Physics, point in time : 1903, toдether with : Henri Becquerel, toдether with : Pierre Curie} (right).

of largeness? Actually, the relative magnitude between a valid rela-
tional fact and its negative samples is relatively more meaningful.
Specifically, it is expected that a valid relational fact has larger
values in a majority of dimensions of the overall relatedness vector
compared to its negative samples, and thus the valid relational fact
is distinguishable from its negative samples. Therefore, we propose
the following metric to measure this type of distinguishability:

d (Rel+,Rel -) = sum
(
sgn(RRel+ − RRel- )

)
−

sum
(
sgn(RRel- − RRel+ )

)
,

(9)

where Rel+ is a valid relational fact, and Rel - is one of its negative
samples; RRel+ and RRel- are the overall relatedness vectors of
Rel+ and Rel -, respectively; sgn(x ) is the function that returns 1,
if x > 0, otherwise, returns 0; sum(·) is the element-wise sum
function. In Equation (9), the left part of the minus sign counts
the number of dimensions that RRel+ is larger than RRel- , and the
right part is defined similarly. Hence, d (Rel+,Rel -) measures the
relative amount that RRel+ has more dimensions of larger values
than RRel- .

Based on this proposed metric, we select two typical cases from
the validation set, one binary case and one n-ary case, which are
predicted correctly by NaLP, to carry out overall relatedness anal-
ysis. Note that, we only sample cases regarding value prediction,
since role prediction is much simpler due to the much smaller role
set. The sampled cases are as follows:

• Case-1: PredictMichael Douдlas , given the role son and the
remaining role-value pair of the binary relational fact {son :
Michael Douдlas, f ather :Kirk Douдlas}, denoted as Fact-1.
• Case-2: Predict Nobel Prize in Physics , given the role award
and the remaining role-value pairs of the n-ary relational
fact {person : Marie Curie, award : Nobel Prize in Physics,

point in time : 1903, toдether with :Henri Becquerel , toдether
with : Pierre Curie}, denoted as Fact-2.

Similar to the evaluation procedure, we replace Michael Douдlas
in Fact-1 and Nobel Prize in Physics in Fact-2 with all the values
in V , then these corrupted facts are fed into NaLP to obtain the
overall relatedness vectors. Subsequently, the distinguishability
metric is computed following Equation (9). Figure 2 depicts these
distinguishability results.

As exhibited in Figure 2, most distinguishability results lie in
the area above 0. It visually corroborates that the overall related-
ness vector of a fact really captures many discriminant features to
further estimate the validity of the fact. Therefore, our conjecture
on relatedness (see Section 3.2) makes sense to a certain degree.
Due to the diversity of relational facts, the dimension of the overall
relatedness vector is encouraged to be large. In this way, there is
sufficient dimensions to encode various features. This is consistent
with the large optimal value ofngFCN (see Section 4.2.2). Specifically,
in the left part of Figure 2, corresponding to the binary Case-1, the
distinguishability metric of the negative sample indexed as 1844,
corresponding to Kirk Douдlas is extremely small. As the two role-
value pairs son : Kirk Douдlas and f ather : Kirk Douдlas share
the same part Kirk Douдlas , there is no doubt that their related-
ness is large, and the negative sample formed by this two role-vale
pairs is easy to be judged as valid. NaLP is unable to filter out such
situation. Actually, one value usually cannot correspond to two or
more roles of the same fact. Thus, some rules may helpful to deal
with the above deficiency. We leave it for future work. From the
right part of Figure 2, corresponding to the n-ary Case-2, we have
the following two observations:
• The negative samples indexed as 9556, 30913 and 39270,
corresponding to Marie Curie , Henri Becquerel and 1903,
obtain the smallest, the second smallest and the third smallest
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distinguishability results, respectively. These three values
participate in some other roles of Fact-2, which is similar to
the situation of Kirk Douдlas in Case-1.
• Besides the negative samples corresponding to values of type
human, some negative samples corresponding to values of
type time , club or institution also achieve relatively smaller
distinguishability results. It is acceptable, since NaLP does
not take value type into consideration.

4.5 Hyper-parameter Analysis
To investigate the robustness of the proposed NaLP method, we fur-
ther analyze the impacts of its important hyper-parameters, i.e., the
number of filters nf in the role-value pair embedding component
and the hyper-parameter ngFCN ofWgFCN in the relatedness eval-
uation component. Without loss of generality, these experiments
are all conducted on WikiPeople concerning value prediction.

4.5.1 The Impact of the Number of Filters nf . To make the compar-
ison fair, we keep all the hyper-parameters except nf to be the opti-
mal settings, and only vary the value of nf in {50, 100, 200, 400, 500},
as mentioned in Section 4.2.2. To be clear, the evaluation results on
the validation set with regard to only MRR are illustrated in the left
part of Figure 3.

From the left part of Figure 3, it can be observed that the value
of nf affects the results indistinctively when the value lies in {100,
200, 400, 500}. Thus, NaLP is insensitive to the value of nf , when
the value is not too small, and is robust. The best performance with
respect to MRR is obtained when nf is set to 200.

4.5.2 The Impact of the Hyper-parameter ngFCN of WgFCN. Sim-
ilarly, we vary the value of ngFCN in {50, 100, 200, 400, 500, 800,
1000, 1200} and adopt all the other optimal hyper-parameter set-
tings. We also demonstrate the evaluation results on the validation
set in terms of only MRR in the right part of Figure 3.

In the right part of Figure 3, it turns out that different values
of ngFCN, no less than 400, demonstrate insignificant difference
on performance and NaLP is thus robust. Among all these setting,
ngFCN = 1200 results in slightly better performance.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we represented each n-ary relational fact as a set of its
role-value pairs and proposed amethod to copewith Link Prediction
on N-ary relational data, called NaLP. The design of the framework
equips NaLP with the feature of permutation invariance to the input
order of the role-value pairs, and the ability to well handle relational
facts of different arities. By evaluating the pair-wise relatedness
of all the role-value pairs in the same relational fact, NaLP is able
to estimate their overall relatedness approximately. The resulting
overall relatedness vectors further enable NaLP to pick up many
determinant features to decide the validity of the input relational
facts. Furthermore, since publicly available n-ary relational datasets
are limited, we developed a practical one, WikiPeople, and it was
published for further research. Experimental results on the public
dataset and the newly developed WikiPeople manifest the merits
and superiority of the proposed NaLP method. On value prediction,
compared to the state-of-the-art method, NaLP improves all the
metrics significantly, especially on WikiPeople. Specifically, NaLP

improves the performance even by 7.1% in terms of Hits@1 on the
public dataset, and has more than 17.0% increase in terms of Hits@1
and Hits@3 on WikiPeople.

For future work, on one hand, we will explore more expressive
neural network models to capture more favorable features for va-
lidity evaluation. On the other hand, in this paper, we use only
relational facts to conduct link prediction, and in the future we will
introduce additional information, such as rules and value types, to
further improve the developed model.
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